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Abstract. Renal transplantation appears as the most effective solution
for end-stage renal disease. However, it may lead to renal allograft re-
jection or dysfunction within 15% − 27% of patients in the first 5 years
post-transplantation. Resulting from a simple blood test, serum creati-
nine is the primary clinical indicator of kidney function by calculating
the Glomerular Filtration Rate. These characteristics motivate the chal-
lenging task of predicting serum creatinine early post-transplantation
while investigating and exploring its correlation with imaging data. In
this paper, we propose a sequential architecture based on transformer
encoders to predict the renal function 2-years post-transplantation. Our
method uses features generated from Dynamic Contrast-Enhanced Mag-
netic Resonance Imaging from 4 follow-ups during the first year after
the transplant surgery. To deal with missing data, a key mask tensor
exploiting the dot product attention mechanism of the transformers is
used. Moreover, different contrastive schemes based on cosine similarity
distance are proposed to handle the limited amount of available data.
Trained on 69 subjects, our best model achieves 96.3% F1 score and
98.9% ROC AUC in the prediction of serum creatinine threshold on a
separated test set of 20 subjects. Thus, our experiments highlight the rel-
evance of considering sequential imaging data for this task and therefore
in the study of chronic dysfunction mechanisms in renal transplantation,
setting the path for future research in this area. Our code is available at
https://github.com/leomlck/renal_transplant_imaging.

Keywords: Sequential architectures · missing data · contrastive learn-
ing · renal transplant · MRI

1 Introduction

Renal transplantation appears as the most effective solution for end-stage renal
disease and highly improves patients’ quality of life, mainly by avoiding periodic

https://github.com/leomlck/renal_transplant_imaging
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dialysis [24]. However, a substantial risk of transplant chronic dysfunction or
rejection persists and may lead to graft loss or ultimately the patient death [11].
The genesis of such events takes place in heterogeneous causes, complex phe-
nomena, and results from a gradual decrease in kidney function. In clinical prac-
tice, the primary indicator of kidney function is based on blood tests and urine
sampling (serum creatinine, creatinine clearance). However, when results are
irregular, the gold standard method is needle biopsy, an invasive surgical oper-
ation. Thus, the need for a non-invasive alternative that could provide valuable
information on transplant function post-transplantation through time is crucial.

Medical imaging plays a significant role in renal transplantation. In [21], di-
verse imaging modalities have been investigated to assess renal transplant func-
tions in several studies. Moreover, in [17] multiple Magnetic Resonance Imaging
(MRI) modalities are used for the unsupervised kidney graft segmentation. Be-
yond the respective limitations of the several imaging modalities, such as the
necessity of radiations or the intrinsic trade-off on resolution, to our knowl-
edge, there are no studies focusing on monitoring the evolution of kidney grafts
using imaging data. On the other hand, the recent transformer models [26] of-
fer new directions in processing sequential data. Moreover, recent advances in
self-supervised learning [25] enable the training of powerful deep learning repre-
sentations with a limited amount of data. Renal transplantation datasets usually
belong to this case, making the use of such methods the way to move forward.
Our study is among the first that explore such methods for renal transplantation,
solving challenging clinical questions.

In this work, we propose a method to forecast the renal transplant func-
tion through the serum creatinine prediction from follow-up exams of Dynamic
Contrast-Enhanced (DCE) MRI data post-transplantation. The main contribu-
tions of this work are twofold. First, we propose the use of contrastive schemes,
generating informative manifolds of DCE MRI exams of patients undergoing
renal transplantation. Different self-supervised and weakly-supervised clinical
pertinent tasks are explored to generate relevant features using the cosine sim-
ilarity. Secondly, we introduce a transformer-based architecture for forecasting
serum creatinine score, while proposing a tailored method to deal with missing
data. In particular, our method is using a key mask tensor that highlights the
missing data and does not take them into account for the training of the se-
quential architecture. Such a design is very robust with respect to the position
and number of missing data, while it provides better performance than other
popular data imputation strategies. To the best of our knowledge, our study is
among the first that propose a novel, robust, and clinically relevant framework
for forecasting serum creatinine directly from imaging data.

2 Related Work

Several medical imaging approaches investigated the diagnosis of renal transplant
dysfunction. Recent studies focused on detecting specific events such as renal
fibrosis [18] or acute rejection [14]. In [22], multi-modal MRI and clinical data are
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explored to assess renal allograft status at the time of the different exams. Most
of those approaches seek to, indirectly through related events or directly through
complex automated systems, non-invasively retrieve structural, functional, and
molecular information to diagnose chronic kidney disease [1].

When it comes to real clinical settings, missing data is one of the most impor-
tant issues during data curation. Handling of missing data has been thoroughly
studied by data imputation methods, which mainly propose approaches to fill
the missing data as a pre-processing step to some downstream task [16]. Beyond
simple statistical approaches such as sampling the mean or median of available
data, methods can be categorized into two groups: discriminative and genera-
tive approaches. The former is mainly developed for structural data (discrete or
continuous) with methods such as structured prediction [13]. On the other hand,
generative approaches include expectation-maximization algorithms [8] or deep
learning models such as Generative Adversarial Imputation Nets (GAIN) [29].
Those latest approaches showed very good performance for medical image tasks,
as proposed in [5,28]. However, the training of such models usually is subjective
to a big amount of data that are not all the time available [12], especially in a
clinical setting.

Considering the use of the transformer models, the attention mechanism
showed promising results in missing data imputation for structural [27] and tra-
jectory data [2,9]. In particular, the attention mask was used to investigate the
robustness of a vanilla encoder-decoder transformer and a Bidirectional Trans-
former (BERT) model [7] while missing 1 to 6 point’s coordinates out of 32 for
forecasting the people trajectories. Among all these methods, our method is the
first to handle in an efficient and robust way missing data with high dimension-
ality, tested on sequences with long time dependencies.

3 Method

In this study, we focus on the prediction of serum creatinine from imaging data
and in particular DCE MRI, exploring both anatomical and functional informa-
tion. An overview of our method is presented in Fig. 1.

3.1 Contrastive learning for renal transplant

In this work, we propose two contrastive learning schemes to explore meaningful
data representations: (a) a self-supervised scheme, where we learn meaningful
features by solving the proxy task of determining if two MRI volumes belong to
the same patient, and (b) a weakly-supervised scheme, where we discriminate
samples based on the differences in the value of various clinical variables.

Let us denote (v1, v2) ∈ (RNx×Ny×Nz )2 a pair of MRI regions of interest.
Each stream i = 1, 2 consists of a ResNet model to extract a latent representation
from the MRI volumes, which takes vi as input and outputs features zi ∈ RDf ,
with Df = 512 for ResNet18. Then, a feature embedding head associates these
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Fig. 1. Overview of the proposed method. Different contrastive schemes are used to
represent the different MRIs. These features are used to train a sequential model cou-
pled with a key mask tensor to mark the missing data.

features with the underlying task. This is modeled by a linear layer or a Multi-
Layer Perceptron (MLP) mapping the features to (z′1, z

′
2) ∈ RDfe , with Dfe =

256.

Self-supervised pre-training. Our first strategy relies on a self-supervised task
at the patient level, i.e., we train a model to distinguish if a pair of volumes
comes from the same patient or not. Pj = {v ∈ RNx×Ny×Nz |v from patient j}
for j ∈ [[1, Np]], where Np denotes the number of patients, the set of available
volumes from MRI series for each exam and patient. Then, our proxy task is
to discriminate pairs by knowing if they belong or not to the same patient, i.e.,
y = 1 if ∃j (v1, v2) ∈ (Pj)

2; else y = 0.

Weakly-supervised various clinical pre-training. Our second strategy discrimi-
nates samples based on the difference of certain clinical variable’s value, i.e.,
y = 1 if ∥Var(v1)− Var(v2)∥ < θ; else y = 0, where V ar(·) is a clinicobiological
variable and θ a clinically relevant threshold. The clinicobiological variables are
suggested by nephrology experts to encode clinical priors and information, as
they are significantly linked to graft survival [15]. In this paper, we investigate
three variables: (1) the transplant incompatibility, (2) the age of the transplant’s
donor, and (3) the Glomerular Filtration Rate (GFR) value.

Training Loss. From the embedded features (z′1, z
′
2), the optimization is done

by the following cosine embedding loss:

CosEmbLoss(z′1, z
′
2, y) =

{
1− cos(z′1, z′2), if y = 1,

max(0, cos(z′1, z′2), if y = 0,
(1)

where cos refers to the cosine similarity. This loss enforces the model to build
relevant features that express adequately the kidney transplant imaging and
define the way to create strategies to label y each pair.
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Training Scheme and Curriculum Learning. Since the dimensionality of
our data is very high and the tasks we investigate are very challenging, we apply
curriculum learning to facilitate the training process. In particular, for the self-
supervised task at the patient level, pairs from the same exam of each patient
are enabled in the beginning until half of the training, while they are discarded
in the second half.

For the weakly-supervised task based on a clinicobiological variables, the
perplexity of the task is determined by the thresholds θ. More specifically, the
training labels are adjusted every ei epochs following the rule: y = 1 if |Var(v1)−
Var(v2)| < θi,1; y = 0 if |Var(v1)−Var(v2)| > θi,2; else discard the pair (v1, v2),
where θi,1, θi,2 are set in the image of V ar(·) satisfying ∀i (1) θi,1 ≤ θi,2; (2)
θi+1,1 ≤ θi,1; and (3) θi,2 ≤ θi+1,2. Our loss enforces the feature pairs to be near
or far in the feature embedding space, depending on the label y. The condition
(1) enables to form a grey area between the two cases, while the conditions
(2) and (3) strengthen the constraint through epochs on the difference of value
V ar(·) between the two pairs to be correctly arranged.

3.2 Sequential model architecture

Our forecasting model takes as input T = 4 features z ∈ RDf corresponding
to the different follow-ups and relies on a transformer encoder architecture [26].
First, these features are mapped to embeddings of size Dmodel using a linear
layer, while a special classification token (CLS) is aggregated in the first position
to generate an embedded sequence. Then, the core of the transformer encoder
architecture stacks N layers on top of learned positional embeddings added to the
embedded sequences. Each layer is first composed of a multi-head self-attention
sub-layer, which consists of h heads running in parallel. Each head is based on
the scaled dot-product attention. Then, a position-wise fully connected feed-
forward sub-layer applies an MLP of hidden dimension Dmodel to each position
separately and identically. Finally, to perform the classification task, the CLS
token output is fed to a linear layer.

Strategy for missing data. Our proposed strategy to deal with missing data
is applied to the scaled dot product operation, core of each multi-head self-
attention sub-layer. For simplicity, we consider here a sub-layer with one head,
h = 1. The operation takes as input the query Q, key K and value V , which are
linear projections of the embedded sequences, with dk, dk and dv dimensions,
respectively and performs Attention(Q,K, V ) = softmax( (QKt)√

dk
)V . In this work,

we build a key mask tensor mk ∈ RT based on the availability of exams for each
patient so that zero attention is given to missing data both during the training
and inference times, i.e. ∀t ∈ [[1, T ]] mk[t] = −∞ if exam t is available else 0.
Thus, our mask cancels the attention on missing exams by Attention(Q,K, V ) =

softmax( (QKt)√
dk

+ Mk)V where Mk = [[mkmk...mk]] ∈ RT×dk . For h > 1, keys,
values, and queries are linearly projected h times with different, learned linear
projections, concatenated, and once again projected after the scaled-dot product.
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3.3 Implementation Details

Starting with the contrastive learning, we used data augmentation with horizon-
tal flipping and random affine transformation with a 0.5 probability, as well as
random Gaussian blur (σ ∈ [0, 0.5]) and random Gaussian noise (σ ∈ [0, 0.05]),
using TorchIO python library [20]. Having approximately a set of pairs of

(
V
2

)
=

V (V−1)
2 , where V is the number of available volumes, we proposed to fix the

training set size to Vt = 5000. We decided to fix the number of positive samples,
as well as its balance to 25%, and to randomly sample every epoch the remaining
from the negative samples.

Concerning the optimization of our models, a 10% dropout has been used
for the linear layers of both the contrastive and sequential models. For the con-
trastive model, the Stochastic Gradient Descent optimizer with a momentum
equal to 0.9 was used with a starting learning rate of 1e−2 following a cosine
schedule and preceded by a linear warm-up of 5 epochs. The batch size was set to
20 and the model trained for 60 epochs on 4 NVIDIA Tesla V100 GPU using Py-
torch [19]. For the transformer, a binary cross-entropy loss (BCE) was used when
binarizing the serum creatinine value using a threshold of 110µmol.L−1, specified
by nephrology experts, as a clinically relevant value to assess normal/abnormal
renal transplant function at a specific time point. Adam optimizer was used with
a starting learning rate of 1e−4 following the same learning rate scheduler. The
batch size was set to 32 and the model was trained for 30 epochs on 1 NVIDIA
Tesla V100 GPU. The architecture’s hyperparameters were set by grid search
and 10-fold cross-validation, providing N = 2, h = 2, Dmodel = 768.

4 Data

Our study was approved by the Institutional Review Board, which waived the
need for patients’ consent. The data cohort corresponds to study reference ID-
RCB: 2012-A01070-43 and ClinicalTrials.gov identifier: NCT02201537. All the
data used in this study were anonymized. Overall, our imaging data are based on
DCE MRI series collected from 89 subjects at 4 follow-up exams which took place
approximately 15 days (D15), 30 days (D30), 3 months (M3), and 12 months
(M12) after the transplant surgery, resulting in respectively 68, 75, 87, and 83
available scans at each follow-up.

The MRI volumes sized 512×512× [64−88] voxels included spacing ranging
in [0.78−0.94]× [0.78−0.94]× [1.9−2.5] mm. All volumes were cropped around
the transplant using an automatic selection of the region of interest in order to
reduce dimensionality while no information about the transplant is discarded.
Intensity normalization was executed to each volume independently by applying
standard normalization, clipping values to [−5, 5] and rescaling linearly to [0, 1].

As a primary indicator of the kidney function assessment, all patients were
subject to blood tests regularly a few days before the transplantation to several
years after, to measure the serum creatinine level in µmol.L−1. The serum cre-
atinine target prediction value is calculated as the mean over an interval of two
months before and after the prediction date, 2-year post-transplantation (M24).
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Table 1. Quantitative evaluation of the proposed method against other
methods. sCreat stands for simple statistics from the serum creatinine and Radiomics
for predefined radiomics features [10], including shape, intensity, and texture imaging
features. We report in format mean(std): Precision (Prec), Recall (Rec), F1 score, and
ROC AUC (AUC). Bold indicates the top-performing combination.

Method Features Validation Test
Prec Rec F1 AUC Prec Rec F1 AUC

LSTM

sCreat 80, 5(12, 3) 62, 9(21, 0) 71, 1(13, 8) 80, 4(22, 4) 83, 3 76, 9 80, 0 83, 5
Radiomics [10] 86, 2(14, 9) 73, 5(15, 5) 77, 3(8, 2) 80, 7(16, 0) 90, 9 76, 9 83, 3 84, 6
Imagenet [6] 85, 5(15, 0) 68, 0(17, 7) 74, 0(12, 8) 91, 0(10, 8) 90, 9 76, 9 83, 3 81, 3
Kinetics [23] 90,7(9,4) 74, 0(21, 5) 78, 5(11, 3) 91,4(8,5) 92, 3 92, 3 92, 3 85, 7
MedicalNet [3] 86, 5(13, 9) 78, 5(21, 2) 79, 8(13, 2) 82, 7(18, 8) 57, 1 61, 5 59, 3 41, 8
SimCLR [4] 79, 8(15, 9) 86, 5(24, 1) 80, 9(17, 2) 91, 8(13, 7) 72, 2 100,083, 9 64, 8
Proposed GFR 82, 8(9, 6) 95,5(9,1) 88,3(7,7) 88, 3(13, 1) 86, 7 100,092, 9 98,9

Transformer

sCreat 79, 0(28, 7) 60, 2(31, 1) 65, 4(29, 3) 71, 6(24, 2) 81, 3 100,089, 7 86, 8
Radiomics [10] 81, 3(15, 7) 66, 0(28, 6) 69, 1(20, 2) 65, 3(30, 5) 90, 9 76, 9 83, 3 91, 2
Imagenet [6] 58, 4(22, 4) 76, 5(34, 8) 65, 8(27, 5) 45, 5(21, 6) 65, 0 100,078, 8 58, 2
Kinetics [23] 53, 2(35, 8) 66, 0(44, 8) 58, 3(38, 9) 64, 0(19, 7) 65, 0 100,078, 8 83, 5
MedicalNet [3] 65, 5(27, 9) 58, 0(33, 2) 58, 3(28, 3) 64, 8(19, 6) 75, 0 46, 2 57, 1 50, 6
SimCLR [4] 58, 9(30, 9) 75, 5(38, 7) 65, 6(33, 2) 64, 8(23, 5) 68, 4 100,081, 3 72, 5
Proposed GFR 86, 3(20, 9) 71, 5(22, 7) 77, 4(20, 6) 79, 7(20, 7) 92,9 100,096,3 98,9

5 Experiments & Analysis

To evaluate the performance of our proposed method and compare it with other
strategies for the forecasting of serum creatinine, four evaluation metrics are
used: recall, precision, F1 score, and the area under the receiver operating char-
acteristic curve (ROC AUC). A testing set of 20 patients is separated from the
train set and used to validate the performance of our models. We perform a
10-fold cross-validation (CV) on the train set (69 patients) and report the mean
(standard deviation) scores in % for each fold. During CV, the model reaching
the minimum loss is saved, and an ensemble approach is used to make the final
prediction on the test set from models, which reach more than 50% ROC AUC
out of the 10 folds.

We compare our sequential model to an LSTM model, which is a commonly
used architecture for sequential data, and which architecture was set using the
same approach as our main model, resulting in 2 LSTM cells and a hidden size of
768. Additional sets of feature representations were used to compare the signifi-
cance of our approach. First simple statistics from the serum creatinine captured
from the available blood test results between each follow-up (number of points,
mean, median, standard deviation, minimum, maximum) are calculated and used
as input to the models. Second, a set of predefined radiomics features [10] are
obtained from the segmentation of the kidney transplant following the unsuper-
vised method presented in [17]. Finally, we investigate generating MRI features
from SimCLR [4] contrastive scheme, while we report the performance of differ-
ent transfer-learning approaches, pre-trained on ImageNet [6] by duplicating the
weights to 3D, Kinetics [23], and medical image datasets MedicalNet [3].
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Quantitative results for all the methods are reported in Table 1. Our pro-
posed approach outperforms the rest of the methods for the test. Both LSTMs
and transformers architectures report good performances, with only a few mod-
els reporting performance lower than 60% on every metric. Interestingly, our
method outperforms the sCreat model which models directly the serum creati-
nine level. Moreover, our GFR contrastive-based features report the best perfor-
mance among all the other features for both LSTMs and transformer formula-
tions. The rest of the pre-training performances are summarised in the supple-
mentary materials. Limitations appear as our model seems to misclassify cases
where the patient’s serum creatinine is stable and close to the used threshold,
during the first two years post-transplantation.

5.1 Ablation study for missing data strategies

The proposed key mask padding approach for handling missing data is specific
to the attention mechanism, hence the transformer model. Thus, we investigate
3 other missing data strategies applicable to both the transformer and LSTM
model: (1) filling with zeros strategy (None), (2) filling with the nearest available
exam (N.A.), and (3) taking the mean for intermediate exams and fill for first
and last (M.+N.A.). Results presented in Table 2 are obtained with the best
performing imaging features (proposed using the GFR value).

Our proposed approach to handling missing data reports the best precision,
recall, and F1 score and the second-best ROC AUC on the test set. Overall,
the different strategies report better performance on transformer based architec-
tures than the LSTMs ones indicating the interest in using such models for this
task. Moreover, the M.+N.A. strategy reports a lower precision rate for both
LSTM and our sequential model, affirming the difficulty to interpolate imaging
features. Both None and N.A. strategies appear to report competitive results,
lower however from our proposed.

Table 2. Quantitative evaluation of different strategies for missing data.
With none we denote the filling with zero strategy, N.A. the filling with the nearest
neighbor exam, and with M.+N.A. the filling with the mean and nearest neighbor
exam. Bold indicates the top performing combination.

Method Strategy Validation Test
Prec Rec F1 AUC Prec. Rec F1 AUC

LSTM
None 80, 5(11, 5) 81, 0(14, 3) 80, 0(9, 6) 73, 6(16, 9) 86, 7 100,092, 9 98, 9
N.A. 82, 8(9, 6) 95,5(9,1) 88,3(7,7) 88,3(13,1) 86, 7 100,092, 9 98, 9
M.+N.A. 81, 1(10, 8) 93, 5(10, 0) 86, 1(6, 8) 84, 2(11, 0) 81, 3 100,089, 6 96, 7

Transformer

None 86, 2(12, 9) 78, 5(23, 2) 79, 7(18, 2) 71, 5(25, 3) 92, 3 92, 3 92, 3 98, 9
N.A. 88, 8(20, 6) 75, 5(21, 5) 81, 3(20, 8) 80, 5(22, 2) 92, 3 92, 3 92, 3 96, 7
M.+N.A. 90,5(12,3) 73, 5(17, 3) 80, 0(12, 7) 80, 0(18, 3) 76, 5 100,086, 7 100,0
Proposed 86, 3(20, 9) 71, 5(22, 7) 77, 4(20, 6) 79, 7(20, 7) 92,9 100,096,3 98, 9
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6 Conclusion

This study proposes a novel transformer based architecture tailored to deal with
missing data for the challenging task of serum creatinine prediction 2 years post-
transplantation using imaging modalities. First, we show the significant use of
contrastive learning schemes for this task. Our trained representations outper-
form common transfer learning and contrastive approaches. Then, a transformer
encoder architecture enables to input the sequential features data per follow-up
in order to forecast the renal transplant function, including a custom method to
handle missing data. Our strategy performs better than other commonly used
data imputation techniques. Those promising results encourage the use of med-
ical imaging over time to assist clinical practice for fast and robust monitoring
of kidney transplants.
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