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A B S T R A C T   

Quantitative assessment of the negative environmental effects of mining is vital for the eco-environmental 
restoration and management of mining areas. However, it remains unclear about the spatial dimension of the 
influence on the environment that comes from mining. Here, we constructed a new method to quantify the 
vegetation impact of mining activity using Sentinel-2 time series and Pareto principle, and applied it to the 
Liaoning Nanfen iron mining area (LNMA), the Inner Mongolia Sanheming iron mining area (IMMA), and the 
Sichuan Hongge iron mining area (SCMA) in China. Based on the unequal relationship of 80% of the conse-
quences determined by 20% of the causes, the influence of mining activities on vegetation was quantified by the 
maximum phenological difference, the decay rate, the asymptotic value of exponential trend and the distance 
from the mine. Results showed that the impact of mining activities on vegetation phenology decayed expo-
nentially along with the increase of the distance to the mines. The influence distance of mining activities on 
vegetation were 1566.95 m, 1959.67 m, and 1809.61 m for LNMA, IMMA and SCMA, respectively. Compared to 
areas 5 km away from the mining activity, the start of the growing season for vegetation surrounding the mining 
activity was delayed by 1.1 ± 0.4 days, 6.1 ± 1.9 days, and 1.5 ± 0.7 days for LNMA, IMMA and SCMA, 
respectively, while the length of the growing season was successively shortened by 1.0 ± 0.6 days, 5.4 ± 2.5 
days, and 5.1 ± 3.9 days, respectively. Our investigation found that the dust pollution, decreases in groundwater 
levels, and waterborne pollution were the main factors that directly caused phenological changes around the 
mining area, and the distance and degree of their impact on phenology were closely related to drought and 
topography. This finding could provide a reference for the environmental restoration and management of mining 
areas and help to add insights on the assessment for the long-term impacts of mining activities on vegetation.   

1. Introduction 

The mining industry is a significant contributor to the national 
economy (Litvinenko, 2020) and plays a serious and strategic role in its 
economic development (Firozjaei et al., 2021). Although the mining 
industry significantly impacts social welfare (Sonderegger et al., 2020), 
it has also caused long-term negative effects on the eco-environment 
around mining areas. Intensive mining activities have often led to the 
degradation of land as well as deforestation, topographic and hydro-
logical changes, soil erosion, and environmental pollution, severely 
damaging the health of countless organisms (Odell et al., 2018; Tost 

et al., 2018). If the impacts of mining activities on the environment do 
not arouse enough attention by the authorities, it will impose a double 
cost for the ecological restoration in mining areas (Maryati et al., 2012). 
Thus, attaching great importance to the impact of mining activities on 
the surrounding environment is necessary for mine ecological restora-
tion, planning, and pattern optimization. 

The advancement of satellite-to-earth observation technology pro-
vides a systematic, fast, and excellent configuration for processing large 
and complex spatial data. Therefore, many researchers have demon-
strated the importance of satellite-to-earth observation technology in 
studying the impact of the mining industry on the eco-environment. 
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First, the size and location distribution of the mines were determined 
using satellite images. Chaussard and Kerosky (2016)Chaussard et al. 
(2016) provided a reliable, safe, cost-effective, and objective way to 
investigate black sand mining and its impacts via a systematic analysis of 
remote sensing (RS) data. Forkuor et al. (2020) and Gallwey et al. (2020) 
believed that RS data could be used to monitor illegal mining sites and 
characterize the direct impact of mining on the environment. Second, RS 
and geographic information systems (GIS) were used as analytical tools 
to assess the impact of mining activities on the eco-environment. Shao 
et al. (2021) and He et al. (2017) indicated that mining intensity and 
eco-environment restoration were the main factors determining the 
changes in the environment of the mines area. Rudke et al. (2020) 
analyzed the concentration of mining projects in the southwestern 
Amazon. They used RS and GIS to create a mining pressure index (MPI) 
to evaluate the impact of mining activities on environmental protection 
areas. Third, explore one or more impacts of mining activities on water, 
land and society. Castellazzi et al. (2018) used a combination of GRACE 
and InSAR data to map groundwater in a mining area. Yu et al. (2018) 
used multiple RS datasets to investigate the impact of mining on land 
cover globally from the 1980 s to 2013. McDonald et al. (2012) analyzed 
the social and economic impact of mine closures from a spatial 
perspective. Although the above studies have analyzed the impact of 
mining activities on the environment using RS and GIS technology, the 
spatial dimension of mining impacts on the surrounding environment 
remains unclear. 

Vegetation is one of the comprehensive indicators for assessing 
environmental changes (Parmesan et al., 2003). Numerous sources of 
disturbance (geological hazards, groundwater decline, environmental 
pollution) caused by mining activities often bury entire plant commu-
nities and damage their roots, leading to their degradation (Mi et al., 
2019). Therefore, quantifying the spatial dimension of the mining im-
pacts on the eco-environment by determining the mining impact on 

vegetation is feasible and challenging. Long-term serial phenological 
observation is an effective method by which to distinguish changes in 
vegetation caused by natural and human activities as it can reveal trends 
in the changes that could be caused by external forces (Verbesselt et al., 
2010). In recent years, most existing land surface phenology (LSP) 
studies have used data from coarse spatial resolution instruments (e.g., 
MODIS and AVHRR) (Kandasamy and Fernandes, 2015; Adole et al., 
2018; Zhang et al., 2020). Data from such coarse spatial resolution in-
struments have generally become easier to process and are easily 
available, making LSP algorithms, products, and applications have 
rapidly matured and expanded. However, for many applied studies (e.g., 
microclimatic effects, urban heat islands, and land use), information is 
required at finer spatial resolutions (Bolton et al., 2020; Gao et al., 
2021). Recently, with the successful launch of the Sentinel-2 (S2) sat-
ellite, optical images with a revisit period of 5 days and a spatial reso-
lution of 10 m have been made available; these images largely resolve 
constraints and help improve the phenological observation of vegetation 
around the mining area. The main objectives of this study were based on 
S2 image to investigate (1) the degree and distance of the impact of 
mining activities on phenology, (2) the main factors in the impact of 
different mining areas on phenology, and (3) factors controlling of the 
impact of mining activities on phenology. 

2. Study area and materials 

2.1. Study area 

Three typical iron mining areas in China, namely, Liaoning Nanfen 
iron mining area (41◦ 06′ 14′′ N, 123◦ 36′ 10′′ E, LNMA), Inner Mongolia 
Sanheming iron mining area (41◦ 21′ 25′′ N, 110◦ 59′ 59′′ E, IMMA), and 
Sichuan Hongge iron mining area (26◦ 39′ 21′′ N, 101◦ 59′ 49′′ E, SCMA) 
were selected as study areas (Fig. 1). These mining areas were selected 

Fig. 1. Geographical location of the case and the distribution of its mining activities. (a) Liaoning Nanfen iron mining area; (b) Inner Mongolia Sanheming iron 
mining area; (c) Sichuan Hongge iron mining area. 
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because (1) they were large in scale and had outstanding eco- 
environmental problems (Dai et al., 2021); (2) besides mining activ-
ities, there were few other human activities around the mining areas; 
and (3) there were enough cloud-free S2 images available to investigate 
the impact of mining activities on vegetation phenology. Additionally, 
these mining areas had different climate types. LNMA had a temperate 
monsoon climate, IMMA had a dry inland climate, and SCMA had a 
subtropical monsoon climate. Thus, comparing these three mining areas 
enabled us to understand better the impact of mining activities on the 
surrounding vegetation phenology in different environments. 

2.2. Materials 

2.2.1. Dataset 
We compared data availability and cloud cover ratios of all S2 (L1C, 

Level-1C) images from the USGS (https://earthexplorer.usgs.gov) dur-
ing the growth cycle of vegetation surrounding the three mining areas. 
According to the Sentinel-CLD band classification standard (Main-Knorn 
et al. 2015), a total of 229 S2 images from 2018 to 2020 with low cloud 
probability were selected to obtain dense time series data, from which 
the vegetation phenological metrics for the study areas were obtained. 
Specifically, LNMA, IMMA and SCMA had 81 images, 73 images, and 75 
images, respectively, which could provided adequately clear observa-
tions to capture the growth cycle of vegetation around the mining area. 
Before using these images, L2A (Level-2A) bottom of the atmosphere 
reflectance products was obtained by performing atmospheric correc-
tion of the L1C images with Sen2Cor software (Sola et al., 2018). 
Additionally, the digital elevation model with 30 m spatial resolution 
was obtained from NASA (Earthdata Search, https://earthdata.nasa. 
gov/), and the meteorological data was collected from the National 
Meteorological Information Centre (https://data.cma.cn/en). These 
materials were used to analyze the relationship between vegetation 
phenology of surrounding the mining area and its climatic background 
and topography. 

2.2.2. Image preprocessing 
Preprocessing the S2 (L1C) image consisted of three steps. The first 

step was screening cloudy and shadow pixels. The accuracy of cloud and 
shadow masks were critical for minimizing errors in processing time- 
series data from satellites (Misra et al., 2020). Therefore, the newly 
released Fmask 4.0 (Qiu et al., 2019) was applied to the cloud and 
shadow pixel detection of S2 images. Although Sen2Cor can detect cloud 
and shadow coverage, it easily misclassifies urban areas and bright 
pixels as clouds, limiting its scene classification (Baetens et al., 2019). 
The second step was the surface water mask. The normalized difference 
water index and the threshold method were used to identify and elim-
inate pixels dominated by surface water. The third step involved the 
calculation of the normalized difference vegetation index (NDVI). As 
NDVI has a strong correlation with vegetation greenness and biomass, it 
is commonly used in vegetation phenology research (Hmimina et al., 
2013; Norris and Walker, 2020). Here, the near-infrared (NIR) and red 
bands of the S2 images were used to calculate NDVI: 

NDVI =
ρNIR − ρred

ρNIR + ρred
(1) 

where ρred and ρNIR are band 4 and band 8 of the S2 image, 
respectively. 

In order to distinguish between vegetation and other land use types, 
the support vector machine (SVM) classifier was used to divide the land 
cover of the study area into six categories (i.e., forestland, grassland, 
farmland, waterbody, construction land, and other land covers) (Fig. 2). 
The accuracy of the classification results was evaluated using high- 
resolution images from Google Earth; moreover, Kappa statistics of all 
classification results were greater than 0.85. For complete details on 
using SVM classifiers to classify S2 images, please refer to the work of 
Thanh and Kappas (2018). 

Fig. 2. (a) Selection of Sentinel-2 L1C images. The land use type distribution of (b) Liaoning Nanfen iron mining area; (c) Inner Mongolia Sanheming iron mining 
area; (d) Sichuan Hongge iron mining area. 
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3. Methodology 

3.1. Data smoothing 

The initially generated NDVI time series contained various noises. 
Thus, it was necessary to convert the noisy NDVI time series into a 
smooth time series before identifying the vegetation phenological met-
rics to minimize residual noise. Existing research has fitted several 
models to smooth NDVI time series from different data sources to extract 
phenological metrics. However, fine-tuning the model parameters and 
differences between the models affects the extraction of vegetation 
phenological metrics from the smoothed NDVI time series data (Atkin-
son et al., 2012). At present, choosing the optimal method for smoothing 
time series is very difficult. Furthermore, when choosing the most 
appropriate method, biogeographical characteristics of the study area, 
targeted phenological metrics, potential noise sources in the NDVI data, 
and general shape of NDVI time series curves should be considered (Hird 
and Mcdermid, 2009). Therefore, this study selected four commonly 
used models: Double Logistic filter (DL), Savitzky-Golay filter (S-G), 
Asymmetric Gaussian filter (AG), and Harmonic Analysis of Time Series 
(HANTS) to smooth the initial NDVI time series. As noise and gaps in the 
initial data can negatively influence the realism of the smoothed NDVI, 
multi-year (2018–2020) imagery from S2 was merged within a single 
phenological time series to eliminate the impact of both sources of un-
certainty (Melaas et al., 2016). 

3.1.1. Harmonic analysis of time series 
HANTS decomposes the time-spectrum data into many sines and 

cosine curves of different frequencies, selects the curves that can 
represent the time series and superimposes them to reconstruct the time 
series data (Padhee and Dutta, 2019). In essence, the harmonic fit is a 
linear regression between an independent variable and a dependent 
variable. The basic formula is expressed as: 

Ri,j
N = a0 +

∑N

n=1
ancos

(
2πfnti,j)+ bnsin

(
2πfnti,j) (2)  

Oi,j
N = Ri,j

N + βi,j (3) 

where RN represents the smoothed NDVI time series; ON represents 
the initial NDVI time series; β represent the error series; f represents 
frequency; n and N represent the number and maximum number of 
harmonic components related to f, respectively; (i, j) represents the 
position of the pixel; t represents the time corresponding to the NDVI 
time series; a0 represents the baseline constant; an represents the coef-
ficient of the cosine component with fn; bn represents the coefficient of 
the sine component with fn. 

3.1.2. Savitzky-Golay 
The S-G is based on the average trend of the NDVI time series curve to 

determine the appropriate filter parameters and use polynomials to 
achieve the least-squares fitting in the filter window (Chen et al., 2004). 
The basic formula is expressed as: 

RYj =
∑i=k

i=− k
WiYj+1/N (4) 

where RYj represents the smoothed NDVI time series; Y represents 
the initial NDVI time series. Wi represents the filter parameters of the i-th 
NDVI value in the filter window. N represents the number of convoluting 
integers, and k is a parameter that determines the filter window size; j 
represents the j-th data in the NDVI time series. 

3.1.3. Asymmetric Gaussian 
AG fits local nonlinear functions at the local minimum and maximum 

intervals, and then the NDVI time series reconstruction is realized by 
smoothly connecting the fitting curves (Jönsson and Eklundh, 2002). 

The basic formula for AG is expressed as: 

G(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

exp
[

−

(
t − p1

p2

)p3
]

, t > p1

exp
[

−

(
p1 − t

p4

)p5
]

, t < p1

(5) 

where G(t) represents the smoothed NDVI value at time t, p1 repre-
sents the minimum (or maximum) position (in time), p2 and p3 represent 
the flatness and width of the right half function, and p4 and p5 represent 
the flatness and width of the left half function, respectively. 

3.1.4. Double Logistic 
DL is a new time series analysis method proposed by Efron B in 1986 

(Efron, 1986). This method is applied to the remote sensing investi-
gating of vegetation phenology and can effectively estimate various 
parameters related to vegetation phenology, such as the start of the 
growing season (SOS), the end of the growing season (EOS), and the 
length of the growing season (LOS) (Beck et al., 2006). Compared to 
other approaches, this model captures the vegetation green-up and 
senescence phases well, and the physical meaning of the parameters is 
related to vegetation growth and senescence (Li et al., 2019). The basic 
formula for DL is expressed as: 

X(t) =
1

1 + exp
(

d1 − t
d2

) −
1

1 + exp
(

d3 − t
d4

) (6) 

where X(t) represents the smoothed NDVI value at time t; d1- d4 are 
position and shape parameters; d1 and d3 are the positions of the left and 
right inflection points, respectively. d2 and d4 determine the change rate 
of the left and right inflection points, respectively. 

The HANTS approach was tested with its interactive data language 
(IDL) implementations, and the parameter settings in the fitting process 
were as: (1) the number of frequencies was 3; (2) suppression flag was 
low; (3) the high threshold was 1, and the low threshold was 0 in the 
invalid data rejection threshold setting; (4) fit error tolerance was 0.05; 
(5) degree of over-determinedness was 20; and (6) damping factor was 
0.5. The S-G, AG and DL approaches were carried out through the 
TIMESAT package (Jönsson and Eklundh, 2004). 

3.2. Extraction of vegetation phenological metrics 

This study focused on three phenological metrics, namely SOS, EOS, 
and LOS. They were extracted using smoothed NDVI time series. To date, 
many methods have been proposed to extract phenological metrics; 
these include the threshold method (Zhang and Goldberg, 2011), mov-
ing average method (Ivits et al., 2012), and largest derivative (Xin et al., 
2020). Among these, the threshold method is the simplest for extracting 
phenological metrics and is also the most commonly used. Usually, there 
are two types of threshold methods: (1) a fixed threshold that arbitrarily 
determines a fixed and single index value as SOS or EOS and (2) a dy-
namic threshold, which is generally based on a metric calculated from 
the smoothed time series data, such as the long-term median, mean and 
ratio of the time series data record. As the NDVI value in the mining 
activity area is much lower than that of the surrounding areas, it is 
difficult to accurately find the thresholds for determining the SOS and 
EOS dates. Therefore, by referring to existing studies (Buyantuyev and 
Wu, 2012; Zhou et al., 2016), this study defined SOS and EOS as 20% of 
the seasonal amplitude measured from the lowest level on the left and 
right, respectively (Fig. 3). 

3.3. A method for quantifying the impact of mining activities on 
phenology 

Generally, the negative impact of mining activities on the environ-
ment often decreases as the distance from the mine increases. Buffer 
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analysis is an effective method for identifying the impact range of 
mining activities on the surrounding environment. According to Wu 
et al. (2020), the theoretical reference range for the impact of mining on 
the surrounding environment is 5000 m. Therefore, mining activity 
vectors were used to create 25 buffer zones with a distance of 200 m. In 
order to quantify the impact of mining activities and eliminate the ef-
fects of climate on vegetation as much as possible, the average 
phenology outside the buffer zone was chosen as the reference. Next, the 
impact of mining activities on phenology was discussed at the buffer 
scale for three mining areas. The average of the phenological metrics in 
each buffer zone was counted, and the phenology difference between the 
buffer zone and the reference zone were calculated using Eq. (7). Sub-
sequently, the phenological difference at different distances of the buffer 
zone was applied for quantifying the impact of mining activities on 
vegetation. Finally, the spatial distribution of the impact of mining ac-
tivities on the surrounding vegetation was analyzed according to the 
calculated influence distance and the degree of influence. In addition, 
cropland was excluded because human activities controlled the planting 
and harvesting of crops. 

ΔP = Pm − Pr (7) 

Where ΔP is the phenological difference in the buffer zone, Pm is the 
mean of the phenological metrics in the buffer zone, and Pr is the 
reference phenology. 

This study analyzed the trends in phenological differences from the 
mine to the reference areas, and the reference similar study (Zhou et al., 
2015) found that the phenological differences from the mine to the 
reference area changed exponentially with distance (Fig. 4). Given that 
there was no inflection point in the fitted curve, it was difficult to 
quantify the spatial distance of the impact of mining activities. To this 
end, the Pareto principle (Espada, 2018) was introduced to quantify the 
influence distance of mining activities on vegetation. This principle 
believes that there is an unequal relationship between outputs and in-
puts, and 80% of the consequences are caused by 20% of the causes 
(Rohith and Kumar, 2020). In Fig. 4, “Part A” contains 80% of the in-
formation on the impact of mining activities on vegetation phenology, 
while “Part B” contains less information that can be omitted. Therefore, 
the distance corresponding to the dividing point between “Part A” and 
“Part B” is defined as the influence distance of mining activities. Based 
on the fitting equation and Pareto principle, the model to quantify the 
spatial distance of the impact of mining activities on vegetation can be 
expressed as: 

∫ l

0
f (x)dx =

4
5

(
AenR0 − A

R0
+ ny0

)

(8) 

The fitting equation is f(x) = y0 + AeR0x, where A represents the 
maximum phenological difference, R0 represents the decay rate, and y0 
represents the asymptotic value of exponential trend; n represents the 
distance from the mine to the reference area; l represents the influence 
distance. 

4. Results 

4.1. Vegetation phenology in the mining area 

Fig. 5 shows the spatial distribution of the phenological metrics 
obtained by different smoothing methods. The results passed the T-test 
at the 95% confidence level (Press et al., 1992), and outliers were 
excluded. The spatial patterns of the vegetation phenology were similar 
in each mining area; that is, the SOS was delayed compared to areas 
away from the mining area; the LOS was shorter than the area away from 
the mining area, especially in IMMA (Fig. 5b). The impact of mining 
activities on EOS was small, and there was no obvious difference in the 
spatial distribution. Fig. 6 shows the median of the vegetation pheno-
logical metrics derived from the different models, which indicates that 
the results depend on the choice of the model. For example, HANTS first 
reached SOS, and the SOS obtained by SG, AG, and DL varied with the 
mining area. In general, the mean SOS (mean of the median) of LNMA, 
IMMA, and SCMA were DOY 109, DOY 176, and DOY 155, respectively. 
Moreover, the EOS in the three mining areas were similar and were 
reached in the following order: DL, AG, SG, and HANTS; The mean EOS 
of LNMA, IMMA, and SCMA were DOY 307, DOY 276, and DOY 364, 
respectively. With respect to LOS, SCMA had the longest LOS duration 
(approximately 214 days), followed by LNMA (192 days); IMMA had the 
shortest duration (96 days). Overall, the LOS in low latitudinal regions 
(SCMA) was generally longer than that in high latitudinal regions 
(LNMA and IMMA), and this phenomenon was also found by Zhang et al. 
(2007). 

4.2. Changes of phenological metrics in the mining area 

Fig. 7 shows the mean of phenological metrics and the fitted curve 
for every 200 m buffer zone. Clearly, the ΔSOS, ΔEOS, and ΔLOS ob-
tained by the four smoothing methods showed an exponential change 
with an increase in the distance from the mining area, and the changing 
trend was consistent. Changes in ΔSOS and ΔLOS were the most 
obvious, while the change in ΔEOS was relatively weak. Based on the 
Pareto principle, the influence distance of mining activities on 

Fig. 3. Schematic diagram of extract phenological metrics. The selected pixels 
are in the Liaoning Nanfen iron mining area (41◦ 06′ 35.211′′ N, 123◦ 51′

05.094′′ E). DOY, day of the year. 

Fig. 4. Conceptual model to quantify the influence distance of min-
ing activities. 
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Fig. 5. Spatial distribution of phenological metrics in the mining areas. (a) Liaoning Nanfen iron mining area; (b) Inner Mongolia Sanheming iron mining area; (c) 
Sichuan Hongge iron mining area. 
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vegetation phenology was determined. The final influence distance was 
acquired by calculating the maximum average value of the influence 
distance of the different methods (Fig. 8). In LNMA, the influence dis-
tance of mining activities on surrounding vegetation phenology was 
1566.95 m, which directly caused a delay in SOS by 1.1 ± 0.4 days and a 
shortening of LOS by 1.0 ± 0.6 days. The influence distance of mining 
activities on the phenology of surrounding vegetation in IMMA was 
1959.67 m, which directly caused SOS to be delayed by 6.1 ± 1.9 days 
and LOS to be shortened by 5.4 ± 2.5 days. The influence distance of 
mining activities on the phenology of surrounding vegetation in SCMA 
was 1809.61 m, which directly caused SOS to be delayed by 1.5 ± 0.7 
days, EOS to be advanced by 3.6 ± 1.8 days, and LOS to be shortened by 
5.1 ± 3.9 days. In general, the mining activities of LNMA and IMMA had 
the greatest effect on the SOS of the surrounding vegetation, while the 
mining activities of SCMA had a greater effect on LOS than SOS and EOS. 

4.3. Spatial distribution of affected vegetation 

By analyzing the exponential changes in the surrounding phenolog-
ical metrics of mining areas, it was observed that mining activity has a 
slight impact on the phenology outside the influence distance and the 
most significant effect on SOS (LNMA and IMMA) and LOS (SCMA). 
Therefore, the mean SOS (or LOS) outside the influence distance was 
used as the threshold to classify the SOS (or LOS) within the influence 
distance to quantify the spatial distribution of the impact of mining 
activities on the surrounding vegetation. The affected vegetation ob-
tained by different smoothing methods had a highly similar spatial 
distribution and area (Table 1, Fig. 9). For different mining areas, within 
the influence distance, SCMA had the largest proportion of affected 
vegetation, which was 69.08%, followed by IMMA at 63.74%, and 
LNMA had the smallest proportion of 59.08%. These affected vegetation 
were mainly distributed around mining intensive areas and large stopes. 

It was also important to recognize the response of vegetation 
phenology to mining activities by dividing the intensity and scale of 
mining activities. To this end, mining activities in the study areas were 
divided into intensive areas (② and ⑥ in Fig. 9), scattered areas (①, ③, 
⑤, and ⑦), and single large mines (④ and Fig. 9b) based on field surveys 
and remote sensing survey data. Intensive area was the main area that 
affected vegetation phenology. Its affected area was 59.30 km2, 

accounting for 46.44% of the vegetation in the affected area. The area of 
affected vegetation in scattered areas was 31.72 km2, accounting for 
24.84%. Moreover, the area of affected vegetation in the single large 
stope was 36.67 km2, accounting for 28.72%. 

5. Discussion 

5.1. The impact of mining activities on vegetation phenology 

The results showed that no matter the scale of mining area large or 
small, the closer to the mining activity area, the greater the difference in 
phenology. We provided further insights into how the mining activities 
affect the changes in the surrounding vegetation phenology. Specif-
ically, the impact of the main environmental problems caused by mining 
activities on vegetation phenology was analyzed based on remote 
sensing, field surveys, and existing research. The survey found that 1) 
the decreases in groundwater level were mainly caused by the deep 
excavation of stopes, 2) the tailings pond was the main source of 
waterborne pollution, and 3) a large amount of dust pollution was 
caused by other mining activities, such asore transportation and waste 
rock accumulation. Fig. 10a shows that intensive areas and large stopes 
are the main areas affecting vegetation, suggesting that the environ-
mental impact of mining is related to the intensity and scale of mining 
activities (Edwards et al., 2014). The factors influencing vegetation 
phenology varied from area to area. For the intensive areas which 
consisted of many mining and concentration industries, the main factors 
included the dust pollution, the decrease in groundwater level, and the 
waterborne pollution (Fig. 10a). For the scattered areas which domi-
nated by concentrated industries, the main factors included the dust 
pollution and the waterborne pollution caused by mining activities. For 
the single large stope area, the main factor was the decrease in 
groundwater level caused by mine drainage. For example, ore trans-
portation in region A produced severe dust pollution; a large amount of 
dust adhered to the vegetation, causing the SOS of the vegetation in this 
area to be delayed by about 23 days, EOS was advanced by about 15 
days, and the LOS was reduced by about 37 days (Fig. 10b). This is 
because dust pollution affected respiration, transpiration, and photo-
synthesis, allowed the penetration of phytotoxic gaseous pollutants, and 
led to a general decline in the productivity of the vegetation (Farmer, 

Fig. 6. Vegetation phenological metrics obtained by different methods. (a) Liaoning Nanfen iron mining area; (b) Inner Mongolia Sanheming iron mining area; (c) 
Sichuan Hongge iron mining area. 
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1993; Kameswaran et al., 2019; Watkinson et al., 2021). In region B, 
with an increase in mining depth, a slope of 552 m that formed locally 
(Tao et al., 2017) directly affected the underground habitat of vegeta-
tion and caused the SOS in this area to be delayed by about five days, 
EOS was advanced by about one day, and the LOS was reduced by about 
six days (Fig. 10c). This is because the transpiration of groundwater on 
plants is very important in the ecosystem, particularly in areas with 
chronic or transient water shortages (Barbeta and Peñuelas, 2017). 
During the mining process, the mine drainage caused the groundwater 
level to decrease, and the groundwater flow system was affected, which 
led to changes in the vegetation growth and caused vegetation degra-
dation in the areas surrounding those where mining activities were 
taking place (Maihemuti et al., 2021; Sun et al., 2021). In region C, 
mining activities produced a large amount of acidic drainage containing 
heavy metals, which negatively affected the environment and caused the 
SOS in this area to be delayed by about 19 days, EOS was advanced by 
about 14 days, and the LOS was reduced by about 33 days (Fig. 10d). 
This is because these wastewaters were toxic to most organisms and 
limited the acclimation of vegetation and natural succession in mining 
areas (Pająk et al., 2018). Overall, dust pollution, groundwater level 
drop, and waterborne pollution were the main factors that directly 

Fig. 7. Changes of phenological metrics in the mining areas. (a) Liaoning Nanfen iron mining area; (b) Inner Mongolia Sanheming iron mining area; (c) Sichuan 
Hongge iron mining area. 

Fig. 8. Influence distance of mining activities in different mining areas 
on vegetation. 
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affected the phenological changes around mining areas. 
Additionally, Fig. 7 shows that the mining activities of LNMA and 

IMMA had a greater impact on SOS than EOS, which indicated that the 
effects of the environmental factors on phenology varied with the site 
and that SOS was generally more sensitive to environmental factors 
(White et al., 2002; Wang et al., 2019). 

5.2. Factors controlling the impact of mining activities on vegetation 
phenology 

Earlier studies have shown that mining and its scale are the main 
factors affecting the surrounding environment (Johnson and Hallberg, 
2005; Sun et al., 2020); that is, the larger the mining scale, the greater 
the impact on the environment. The results in our study revealed that 
the mining activity area of each mining area was in the following order: 
LNMA (40.55 km2) > SCMA (20.45 km2) > IMMA (11.98 km2), but its 
influence distance on the surrounding vegetation was IMMA (1959.76 
m) > SCMA (1809.61 m) > LNMA (1566.95 m). This showed that other 
factors also controlled the impact of mining activities on the surround-
ing vegetation phenology in addition to the mining scale. As phenology 
varied greatly over broad geographic gradients and was controlled by 
many environmental factors (Richardson et al., 2013), this study 
adopted the contrast method to analyze the difference in influence dis-
tance and degree of mining activities on the surrounding vegetation 

from two aspects of climate and topography. 
For LNMA and SCMA with the same topography, although the min-

ing scale of LNMA was much larger than that of SCMA, the influence 
distance of LNMA on the surrounding vegetation was 150.15 m less than 
that of SCMA. The impact degree of LNMA on surrounding phenology 
was also less than SCMA; that is, the mean of △SOSLNMA was 1.1 days, 
which was less than 1.5 days of △SOSSCMA; the mean of △LOSLNMA was 
1.0 day, which was less than 5.1 days of △LOSSCMA. Moreover, the 
proportion of affected vegetation area within the influence distance of 
SCMA was 10% higher than that of LNMA. Through comparing the 
evaporation and precipitation in the two regions (Fig. 11), it was found 
that the drought of the SCMA was much greater than that of the LNMA. 
Therefore, the drought may be one of the main factors that control the 
influence distance and degree of mining activities on the surrounding 
vegetation phenology. This is because vegetation phenology is more 
sensitive to drought (Luo et al., 2021). Depleting groundwater levels 
caused by mining activities aggravated water resource problems in arid 
areas, affecting the growth, distribution, and succession of the sur-
rounding vegetation (Mi et al., 2021). Similar effects of groundwater 
depletion on vegetation in mining areas have been found in other re-
gions of the world, for example, mining-induced dewatering depletes 
groundwater storage surrounding mine sites, then causes a drop in the 
mean vegetation conditions in Europe and Africa by 25% and 1%, 
respectively (Shen et al., 2021). Similar conclusions were reported in 

Table 1 
Area of affected vegetation surrounding mining activities. (Area: km2).  

Model HANTS S-G AG DL Mean 

Area Percentage Area Percentage Area Percentage Area Percentage Area Percentage 

LNMA  43.49  55.29%  46.81  59.50%  49.06  62.36%  46.55  59.17%  46.48  59.08% 
IMMA  22.07  63.59%  22.13  63.74%  22.40  64.53%  21.90  63.08%  22.12  63.74% 
SCMA  59.13  69.13%  59.38  69.43%  58.54  68.44%  59.30  69.33%  59.09  69.08%  

Intensive area  58.38  46.82%  60.19  46.91%  59.22  45.56%  59.39  46.49%  59.30  46.44% 
Scattered area  30.21  24.23%  31.84  24.81%  32.66  25.12%  32.18  25.19%  31.72  24.84% 
Single large mine  36.10  28.95%  36.28  28.28%  38.11  29.32%  36.18  28.32%  36.67  28.72%  

Fig. 9. Spatial distribution of affected vegetation surrounding mining activities. (a) Liaoning Nanfen iron mining area; (b) Inner Mongolia Sanheming iron mining 
area; (c) Sichuan Hongge iron mining area. 
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Nevada by Albano et al. (2020), where almost all water withdrawals for 
mining came from groundwater and then led to a decline in vegetation 
vigor around the mining area. In addition, the humid climate in the 
LNMA mitigated the impact of groundwater depletion caused by mining 
activities on vegetation phenology to a certain extent (Rishmawi et al., 

2016). In conclusion, mining-induced groundwater level changes in arid 
areas have greater long-term and latent impacts on vegetation than 
those in humid areas. 

For both IMMA and SCMA in arid areas, the influence distance of 
IMMA on surrounding vegetation was 243.02 m more than that of 
SCMA, and the impact degree of IMMA was greater than that of SCMA, 
even though the mining scale of IMMA was much smaller than SCMA. 
Specifically, the mean of △SOSIMMA was 6.1 days, which was greater 
than 1.5 days of △SOSSCMA; the mean of △LOSIMMA was 5.4 days, 
which was greater than 5.1 days of △LOSSCMA. Comparing the topog-
raphy of the two regions, it was found that the average relief amplitude 
of SCMA (62 m) was much greater than that of IMMA (8 m). Therefore, 
topography may also be a factor that controls the influence distance and 
degree of mining activities on the surrounding vegetation phenology, 
and this hypothesis can be mutually confirmed by the correspondence 
between wind direction and phenology (Fig. 12). Dominated by north-
west and southwest winds (163 days), the IMMA had almost 30 days 
shorter LOS in the northeast and southeast regions than in other di-
rections (Fig. 12b). For the SCMA, the south wind (199 days) prevailed, 
but the northern LOS was about 15 days shorter than the southwest 
(Fig. 12c). There are two main reasons for the inconsistent relationship 
between wind direction and phenology in these two arid regions. One is 
that the terrain of the SCMA is low in the south (1,335 m) and high in the 
north (1,750 m), and the high-altitude terrain in the north hinders the 

Fig. 10. (a) The impact degree of environmental problems on vegetation phenology in different regions; (b-d) the main factors and site photos of the impact of 
mining activities on vegetation. 

Fig. 11. Precipitation, temperature, and evaporation in the study area.  

X. Sun et al.                                                                                                                                                                                                                                      



International Journal of Applied Earth Observation and Geoinformation 111 (2022) 102814

11

spread of dust. The other is that the distribution of mining activities is 
affected by topography (Chen et al., 2012; Adhikari et al., 2022). In the 
SCMA, the stopes on the western slope of mountain accout for about 
82%, and the mining activities (e.g., ore transportation, concentration 
industry and dumping ground) distributed along the southwest direction 
accout for about 71%. Similarly, the LOS in the northeast direction of the 
LNMA that dominated by the southwest wind, was slightly lower than in 
the southwest (Fig. 12a). 

Our study showed that the distance and degree of the impact of 
mining activities on phenology were closely related to drought and 
topography. This conclusion is supported by the existing research re-
sults. As shown in ecosystem carbon gain studies, under severe drought 
conditions in areas dominated by herbs and shrubs, vegetation greening 
is delayed, shrub senescence is accelerated, and phenological differences 
between herbs and shrubs will lead to a reduction in potential ecosystem 
carbon gain (Esch et al., 2019). Recent studies have also demonstrated 
that warming (or mining)-induced drought could limit carbon seques-
tration by reducing the rate of cell production, and a longer LOS will not 
benefit the growth of vegetation located in drought areas (Gao et al., 
2022). In addition, pollution dispersion studies have shown that 
topography mainly affects the formation and dispersion of pollutants 
through local humidity, airflow and temperature patterns, and boundary 
layers, especially in areas with complex topography such as mountains, 
valleys, and basins (Wang et al., 2019). Common types of pollution, like 
land pollution, water pollution, and air pollution are influenced by 
topography (Haldane & Kneese, 2019). Numerous studies have shown 
that global warming has greatly altered vegetation phenology (Keenan 
et al., 2014). However, a comparison of the three mining areas showed 
that temperature might not be a factor that controls the influence dis-
tance and degree of mining activities on the surrounding vegetation 
phenology. On the one hand, there was no obvious change in the tem-
perature around the mining area during the mining process. On the 
other hand, the mean of the phenology index outside the buffer zone was 
used as the reference phenology, and the difference between the 
phenological metrics in the buffer zone and the reference phenology 
were compared, which eliminated the impact of climate change. 

6. Conclusion 

In our study, a method was proposed to quantify the impact of 
mining activities on vegetation based on the Sentinel-2 time series and 
Pareto principle, and was applied to the LNMA, the IMMA, and the 
SCMA in China. The influence distances of mining activities on vegeta-
tion were 1566.95 m, 1959.67 m, and 1809.61 m for the LNMA, the 
IMMA, and the SCMA respectively. In terms of the influence level, SOS 
was delayed by 1.1 ± 0.4 days, 6.1 ± 1.9 days and 1.5 ± 0.7 days in the 
LNMA, the IMMA and the SCMA, respectively, while LOS was shortened 

by 1.0 ± 0.6 days, 5.4 ± 2.5 days and 5.1 ± 3.9 days in the LNMA, the 
IMMA and the SCMA, respectively. The SCMA had the largest proportion 
69.08% of the affected area (59.09 km2) of vegetation to total vegetation 
area within the influence distance, followed by the IMMA with a pro-
portion of 63.74% (22.12 km2) and the LNMA with a proportion of 
59.08% (46.48 km2). Intensive areas and single large stopes were the 
main mining activity areas that affected vegetation, and the areas of 
affected vegetation around these areas were 59.30 km2 and 36.67 km2, 
respectively. The affected vegetation area in the scattered area was 
31.72 km2, accounting for only 24.84% of the total affected vegetation 
area. The impact of mining activities on vegetation was not only related 
to the scale of mining but was also closely related to the degree of 
drought and topography of the mining area. The more arid the area, the 
more fragile the ecological environment, and the greater the impact of 
mining activities on vegetation. Topography controlled the distribution 
of mining activities and the resulting environmental pollution of mining 
area. Additionally, dust pollution, the drop of groundwater level, and 
waterborne pollution were the main factors that directly affecting the 
phenological changes around mining areas. 

These results suggest that in addition to the mining activity areas, the 
surrounding areas should also be considered in environmental moni-
toring, management, and restoration of mine. These findings can pro-
vide data support and help to related departments for conducting mine 
management in a more targeted manner and optimizing the mine 
environment restoration plan. Given the limited availability of Sentinel- 
2 images, only three representative iron mining areas are selected for 
analysis in this study. Future studies can adopt the method developed in 
this study to investigate more mining areas to verify the utility of the 
method. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgments 

This study was supported and funded by the National Natural Sci-
ence Foundation of China (Grant No. 42074021; Grant No. 42001310), 
the Department of Science and Technology of Sichuan Province (Grant 
No. 2020YFS0530; Grant No. 2020JDTD0003), the Science and Tech-
nology Bureau of Nanchong City (Grant Nos. 21YFZJ0034), and the 
China Scholarship Council (CSC No. 202007000081). 

Fig. 12. Correspondence between wind direction and vegetation phenology. (a) Liaoning Nanfen iron mining area; (b) Inner Mongolia Sanheming iron mining area; 
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Shen, Z., Zhang, Q., Piao, S., Peñuelas, J., Stenseth, N.C., Chen, D., Xu, C.-Y., Singh, V.P., 
Liu, T., 2021. Mining can exacerbate global degradation of dryland. Geophys. Res. 
Lett. 48 (21) https://doi.org/10.1029/2021GL094490. 

Sola, I., García-Martín, A., Sandonís-Pozo, L., Álvarez-Mozos, J., Pérez-Cabello, F., 
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