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A bundle-like progressive hedging algorithm

For convex multistage programming problems, we propose a variant for the Progressive Hedging algorithm inspired from bundle methods. Like in the original algorithm, iterates are generated by first solving separate problems for each scenario, and then performing a projective step to ensure non-anticipativity. An additional test checks the quality of the approximation, splitting iterates into two subsequences, akin to the dichotomy between bundle serious and null steps. The method is shown to converge in both cases, and the convergence rate is linear for the serious subsequence. Our bundle-like approach endows the Progressive Hedging algorithm with an implementable stopping test. Moreover, it is possible to vary the augmentation parameter along iterations without impairing convergence. Such enhancements with respect to the original Progressive Hedging algorithm are obtained at the expense of the solution of additional subproblems at each iteration, one per scenario.

.

]. This difficulty is not a surprise as, for the specific PH context, the parameter in question must strike a good balance between optimality and feasibility. Clearly, such a goal is not easy to attain with a value that is kept fixed along iterations.

Our proposal is to employ, instead, a proximal bundle method [7, Part II], tailored to maximize the dual function over N K . To this aim, we consider a more general setting, the constrained minimization of weakly convex functions. For tackling such problems, assuming that projecting onto the feasible set is an easy operation, we propose to apply a bundle algorithm of projective type.

) is shown in Section 5, using the dual form. An equivalent primal formulation is useful to compare our new approach with the original PH algorithm. The final Section 6 discusses similarities and differences between the original Progressive Hedging algorithm and our proposal.

The PH algorithm

Before stating the Progressive Hedging algorithm when applied to the multistage program (1), we fix our notation and discuss the crucial non-anticipativity constraint in this stochastic setting.

Notation and some definitions

Our notation is standard, following mainly [33] and [20]. Given S scenarios, for a certain scenario realization s P t1, . . . , Su, the probability of occurrence is denoted by p s ą 0. For a vector v P R nS with components v s P R n for all s " 1, . . . , S, the expected value and the conditional expectation at stage t are respectively denoted by Ervs " S ÿ s"1 p s v s , and E rt´1s rvs , where the uncertainty realization at stages 1, . . . , t ´1 is known.

Considering that all vectors are column vectors, the inner product employed in the space of decision variables is @u,

Introduction and motivation

Multistage stochastic programs represent an important source of large-scale optimization problems. This is because the number of variables and constraints needed to formulate the problem grows with the number of scenarios. As illustrated by energy applications in [START_REF]Divide to Conquer: Decomposition Methods for Energy Optimization[END_REF], decomposition methods are essential for solving effectively this type of problems; see also [START_REF] Tseng | Applications of a Splitting Algorithm to Decomposition in Convex Programming and Variational Inequalities[END_REF].

A very popular approach that deals with scenario decomposition is the Progressive Hedging (PH) algorithm, introduced in [START_REF] Rockafellar | Scenarios and policy aggregation in optimization under uncertainty[END_REF] and later extended to handle risk measures in [START_REF] Rockafellar | Solving stochastic programming problems with risk measures by progressive hedging[END_REF]. The setting is such that the problem uncertainty, represented by a set of S scenarios, reveals progressively, in T stages. For each scenario s, the decision variable is x s P R n , the convex objective function is f s : R n Ñ R and a nonempty convex compact feasible set C s Ď R n is given. Consider the following stochastic multistage optimization problem,

$ ' ' ' ' & ' ' ' ' % min x
Erf pxqs :" S ÿ s"1 p s f s px s q s.t. x s P C s , for all s " 1, . . . , S, x P N , [START_REF] Van Ackooij | Probabilistic optimization via approximate p-efficient points and bundle methods[END_REF] where, in the last inclusion, the linear subspace N gathers the so-called non-anticipativity constraints. Such constraints ensure that, at each stage t, the decision making process depends only on information of the uncertainty that is available at time t.

Non-anticipativity constraints couple decisions along scenarios in a structured manner. The PH algorithm decouples those constraints so that, at each iteration, individual subproblems can be solved separately for each scenario. This makes the approach very suitable for parallel implementations. The parallel phase of separate scenario subproblems is followed by a synchronization step that yields a non-anticipative vector by projecting onto the linear subspace N .

The PH algorithm is in fact a Douglas-Rachford splitting, in a space endowed with a weighted scalar product; see for example [START_REF] Eckstein | Asynchronous Projective Hedging for Stochastic Programming[END_REF]. Early work on splitting methods, dealing with the classical problem of finding a zero of a sum of maximal monotone operators, can be traced back to [25, 13, Note that this inner product uses the (nonnegative) probability of each scenario as a weight, a crucial feature in the analysis. We denote by } ¨}S its corresponding induced norm in R nS , while } ¨} stands for the usual Euclidean norm in R n . Throughout the text, the symbol x¨, ¨y refers to any inner either product (with or without weights), and similarly for the corresponding norms.

On non-anticipativity. In the stochastic setting, decisions have to be taken progressively, as uncertainty is revealed: at stage t, decisions should only depend on the information that became available in stages 1, . . . , t ´1. Accordingly, if x t,s denotes the decision made in stage t for scenario s, the following relations, called of non-anticipativity, need to hold for all t and s:

x t,s " E rt´1s rx t s .

In particular, for the first stage, this constraint states that x 1,s are equal for all scenario s. Nonanticipativity constraints define a linear subspace N of decision variables characterized by conditional expected values. In a manner similar, the projection operator P N onto N is characterized by the following simple algebraic relations: for each stage t, P N rxs t " E rt´1s rx t s.

Being a self-adjoint operator, the following relation holds for the projection: P N K " I ´PN .

Primal and dual formulations of the multistage program

To induce separability, the PH algorithm relaxes the non-anticipativity constraint in (1), namely x P N ðñ x " P N rxs , by means of the following Lagrangian:

Lpx, wq " Erf pxqs `xw, x ´PN rxsy S .

Because of the identity P N K " I ´PN , the Lagrangian multiplier w " pw s q S s"1 P R nS can be assumed to satisfy w P N K ðñ P N rws " 0 .

Furthermore, by perpendicularity, the linear term in the relaxation can be simplified:

xw, x ´PN rxsy S " xw, xy S ´xw, P N rxsy S " xw, xy S .

Therefore, the Lagrangian Lpx, wq " Erf pxqs `xw, xy S is decomposable along scenarios. More specifically, Lpx, wq " S ÿ s"1 p s L s px s , w s q , where for each scenario s " 1, . . . , S, we defined the s´Lagrangian L s px s , w s q " f s px s q `wJ s x s .

Througout our development, subindices s refer to scenario components (of functions, sets, or vectors). To ease the understanding, Table 1 below summarizes the main elements in our notation and clarifies their dimensionality.

In Algorithm 1, with the PH algorithm, the s-Lagrangians (3) are used to construct separate subproblems in the primal space, one per scenario.

Notice that, by ( 3) and ( 4), the dual updating rule can be interpreted as a gradient step for maximizing an augmented s-dual function.

Algorithm 1 Progressive Hedging (PH) Algorithm [START_REF] Rockafellar | Scenarios and policy aggregation in optimization under uncertainty[END_REF] 1: Initialization: Choose a primal-dual starting point px 0 , w 0 q P N ˆN K . 2: for k " 0, 1, . . . do

3:

Primal subproblems: solve

x k`1 2 s " arg min xsPCs L s px s , w k s q `tk 2 }x s ´xk s } 2 for s " 1, . . . , S . (4) 4: 
Primal projection: x k`1 " P N px k`1 2 q.

5:

Dual update:

w k`1 s " w k s `tk px k`1 2 s ´xk`1 s q for s " 1, . . . , S .
A notable feature of the PH algorithm is that feasibility is achieved both in the primal and dual iterates by performing simple calculations. On the primal space, the vector formed by collecting the subproblem solutions is projected onto N . On the dual space, the difference x k`1 2 ´xk`1 , which measures primal feasibility, lies in N K . As a result, dual feasibility is guaranteed throughout the iterative process, as long as the starting dual point belongs to N K . The Bundle Progressive Hedging algorithm proposed in this work preserves this characteristic, introducing some modifications in the PH scheme by resorting to duality. More precisely, consider the convex dual function derived from the Lagrangian, that is hpwq " S ÿ s"1 p s h s pw s q , where h s pw s q " max xsPCs p´L s qpx s , w s q .

(5)

With this notation, the problem dual to (1) has the expression

# min w hpwq s.t. w P N K (6) 
Since the multistage stochastic program (1) is convex with a linear constraint, there is no duality gap. As a result, a convergent dual method applied to (6) yields solutions to the original problem. Note that in view of weak duality and the fact that the feasible set of the primal problem is compact and the primal objective function is continuous, then inf N K h ą ´8. 

vector in R nS scenario s subvector in R n primal variable x x s dual variable w w s full function scenario s subfunction primal objective f : R nS Ñ R f s : R n Ñ R Lagrangian L : R nS ˆRnS Ñ R L s : R n ˆRn Ñ R dual objective h : R nS Ñ R h s : R n Ñ R

A projective bundle-like approach

In [START_REF] Bareilles | Randomized Progressive Hedging methods for multi-stage stochastic programming[END_REF], the objective function is nonsmooth and convex while the feasible set is a subspace. To handle constrained problems, many bundle methods include easy constraints directly in the subproblems that define iterates, usually a quadratic programming problem, [START_REF] Oliveira | Bundle Methods in the XXIst century: A bird's-eye view[END_REF]Sec. 3]. An alternative is to make use of an improvement function or a filter method, as in [START_REF] Sagastizábal | An Infeasible Bundle Method for Nonsmooth Convex Constrained Optimization Without a Penalty Function or a Filter[END_REF][START_REF] Apkarian | Mixed H 2 {H 8 control via nonsmooth optimization[END_REF][START_REF] Karas | A Bundle-Filter Method for Nonsmooth Convex Constrained Optimization[END_REF][START_REF] Ackooij | Constrained Bundle Methods for Upper Inexact Oracles with Application to Joint Chance Constrained Energy Problems[END_REF]. The drawback of those approaches is that they destroy decomposable structures, like the one present in [START_REF] Attouch | Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods[END_REF]. We now explain how to put in place a new algorithmic scheme that preserves separability in the iterate subproblems while keeping the well-known convergence properties of bundle methods.

On subdifferentials and weak convexity. Consider a function H : R N Ñ R Y t`8u, and a point w where Hpwq is finite.

If H is a locally Lipschitz function, the Clarke subdifferential of H at w is the set BHpwq given by the convex hull of all the points of the form lim kÑ`8 ∇Hpw k q, where tw k u is a sequence of points where H is differentiable, and w k Ñ w.

If H is a proper convex lower semicontinuous (lsc) function, then BHpwq coincides with the subdifferential of H at w of convex analysis:

BHpwq " tx P R N : Hpwq ě Hpwq `xx, w ´wy S for all w P R N u.

We shall work with a special class of nonconvex objective functions, defined below.

-Given ρ ą 0, the function h : R N Ñ R Y t`8u is said to be ρ´weakly convex, if the augmented function hp¨q `ρ 2 | ¨|2 is convex. Recall that | ¨| could either be } ¨} or } ¨}S (in the latter case, the dimension is N " nS).

Weakly convex functions are related to other nonconvex notions in the literature, such as prox-regular or lower´C 2 functions [33, Definition 13.27], generalized differentiable functions in the sense of Norkin [START_REF] Norkin | Generalized-differentiable functions[END_REF], and semismooth functions [START_REF] Mifflin | Semismooth and Semiconvex Functions in Constrained Optimization[END_REF]. Furthermore, weakly convex functions can be characterized using the Clarke subdifferential. In particular, from [4, 

by means of a bundle-like method. For the multistage program (1), the constraints are given by M " N K in problem [START_REF] Bareilles | Randomized Progressive Hedging methods for multi-stage stochastic programming[END_REF], but any easy-to-project feasible set could be considered (for instance a nonnegative orthant, M " tw ě 0u). Accordingly, assumptions (A1)-(A5) in Theorem 3.2 shall make use of the following definitions, stated for a function H given by the dual function h plus the indicator function of the feasible set.

-A lsc function H : R N Ñ R Y t`8u satisfies the proper separation of isocost surfaces property, if there exists ε ą 0 such that

x1 , x2 P pBHq ´1p0q, |x 1 ´x 2 | ă ε ùñ Hpx 1 q " Hpx 2 q . ( 8 
)
-The subdifferential error bound holds for problem min w Hpwq, where H : R N Ñ R Y t`8u is bounded below, if for every v ě inf wPR N Hpwq, there exist ϵ, ℓ ą 0 such that whenever w P R N , Hpwq ď v, and x P BHpwq X Bp0, ϵq, the following is true:

dpw, Sq ď ℓ|x| , (9) 
where S " pBHq ´1p0q is the set of critical points of H.

The subdifferential error bound, sometimes also called metric subregularity, is related to other concepts in the literature. For convex functions, condition ( 9) is equivalent to the Kurdyka-Lojasiewicz inequality with exponent 1 2 , and also equivalent to a quadratic growth condition with respect to the distance to the set of minimizers ([38, Proposition 2]). In the nonconvex case, in particular for weakly convex functions, the subdifferential error bounds implies the Kurdyka-Lojasiewicz inequality with exponent 1 2 , and the quadratic growth condition for the set of critical points [START_REF] Drusvyatskiy | Nonsmooth optimization using Taylor-like models: error bounds, convergence, and termination criteria[END_REF]. For nonconvex structured problems, the subdifferential error bound combined with the assumption of properly separated isocost surfaces implies the Kurdyka-Lojasiewicz inequality with exponent 1 2 [START_REF] Li | Calculus of the exponent of Kurdyka-Lojasiewicz inequality and its applications to linear convergence of first-order methods[END_REF]Theorem 4.1]. All these regularity conditions relate primal and dual information, in particular points in the primal space or their function values, with subgradients at a critical point or near a critical point. These conditions are usually used in the literature to prove linear rate of convergence of different methods, see [START_REF] Luo | Error bounds and convergence analysis of feasible descent methods: a general approach[END_REF]4,[START_REF] Attouch | Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods[END_REF] and references therein.

A general algorithmic pattern for weakly convex problems

In the setting of problem [START_REF] Bonnans | Numerical Optimization: Theoretical and Practical Aspects[END_REF], a family of model functions tφ k w k u, built along iterations, is available. Denoting by i M the indicator function of the feasible set, given w k P M, the model is a convex function φ k w k p¨q approximating hp¨q `iM p¨q ´hpw k q . (10)

If the objective function h is convex, a typical construct is to create a cutting-plane model for the sum h `iM . For nonconvex h, cutting-plane models need to be tilted and/or downshifted to be adequate. If the parameter of weak convexity ρ is known, this is an easy task. Otherwise, estimates of such parameter must be "guessed" and suitably updated along the iterative scheme, as in the redistributed proximal bundle method from [START_REF] Hare | Computing proximal points of nonconvex functions[END_REF][START_REF] Hare | A redistributed proximal bundle method for nonconvex optimization[END_REF].

In our development, to generate iterates with a special subsequence converging with linear rate, the following property should be satisfied by the models. Definition 3.1 (1QA models). The family of finite-valued convex functions φ k w k : R N Ñ R satisfying (10) is one-sided with quadratic accuracy for h `iM if there exists q ą 0 such that @w k P M , @w P R N , φ k w k pwq ď hpwq `iM pwq ´hpw

k q `q 2 |w ´wk | 2 . ( 11 
)
It is shown in [4, Proposition 5.2] that the redistributed approach from [START_REF] Hare | Computing proximal points of nonconvex functions[END_REF][START_REF] Hare | A redistributed proximal bundle method for nonconvex optimization[END_REF], which defines piecewise linear models for hpwq `q 2 }w ´wk } 2 , satisfies the 1QA property.

Model functions are useful to define iterates with low computational burden. Finding a new iterate in our proposal amounts to solving

min w " φ k w k pwq `1 2t k |w ´wk | 2 * , (12) 
a problem that is a simple quadratic program if the model is piecewise linear. The first-order optimality condition for problem [START_REF] Eckstein | A Simplified Form of Block-Iterative Operator Splitting and an Asynchronous Algorithm Resembling the Multi-Block Alternating Direction Method of Multipliers[END_REF],

0 P Bφ k w k pwq `1 t k pw ´wk q,
characterizes the implicit updating rule (13a) given below.

Given parameters m P p0, 1q, t min ą 0, and some initial w 0 P M, for all k ě 0, our algorithmic scheme defines

w k`1 2 " w k ´tk G k , for some G k P Bφ k w k pw k`1 2 q , ( 13a 
)
u k`1 " P M pw k`1 2 q, (13b) 
if hpu k`1 q ´hpw k q ď mφ k w k pw k`1 2 q, declare a serious step. Set w k`1 " u k`1 (13c) and t k`1 ě t min .

Otherwise, declare a null step. Set w k`1 " w k (13d) and choose t k`1 .

In both cases select a new model φ k`1 w k`1 .

In this algorithmic pattern, iterates satisfying (13a)-(13c) form the so-called serious-step subsequence in bundle methods. As indicated by (13c), at serious steps the objective functional values decrease. Iterates satisfying (13a) and (13b) but not (13c) form the subsequence of null steps.

Since iterates in bundle methods can be of two types, the convergence theory splits the asymptotic analysis into two parts, depending on whether the serious step sequence is finite or infinite. We state below the corresponding result for the latter, referring for the proof in the appendix. Note that the result extends the theory for descent methods in [4], to take into consideration the extra projective step in (13b). Theorem 3.2 (Global convergence and local linear rate of serious subsequence). Consider problem [START_REF] Bonnans | Numerical Optimization: Theoretical and Practical Aspects[END_REF] with the following assumptions:

h : R N Ñ R Y t`8u is a ρ ´weakly convex function; (A1) M is a nonempty closed convex set; (A2) h is bounded below on M, that is inf M h ą ´8 ; (A3)
h `iM satisfies the proper separation of isocost surfaces property (8); (A4) h `iM satisfies the subdifferential error bound (9). (A5)

Assume that in the pattern (13) the functions φ k w k are 1QA models having parameter q ď ρ, as in Definition 3.1, and that the stepsizes t k are bounded above by t max ą 0 in step (13c). Note that, by construction, they are bounded from below by t min ą 0 whenever a serious step is performed.

If there is an infinite subsequence of serious steps, that is tw k u satisfying (13a)-(13c), the following holds.

(i) The subsequence of functional values thpw k qu monotonically converges to some critical value h ˚of h `iM , such that the sequence of functional errors tv k " hpw k q ´h˚u converges to 0 with Q-linear rate: there exists r P p0, 1q such that for all sufficiently large k,

v k`1 ď rv k .
(ii) The subsequences of iterates tw k u and intermediate points tw k`1 2 u converge to a critical point w ˚of h `iM with R-linear rate: there exists r P p0, 1q, and c ą 0 such that for all sufficiently large k

|w k ´w˚| ď c ? r k , |w k`1 2 ´w˚| ď cp2 ´?rq ? r k
It remains to analyze the asymptotic behavior of the "tail of null steps". To do so, the specific definition of the model functions plays a crucial role. Since this feature is problem dependent, we consider the particular instance of interest, that is problem (1)-( 6), and give a complete convergence analysis for the bundle PH algorithm presented in the next section.

Bundle Progressive Hedging

Our motivation to consider algorithmic schemes of the form (13a)-(13c) is to exploit decomposable structures in the objective function in [START_REF] Bonnans | Numerical Optimization: Theoretical and Practical Aspects[END_REF]. The challenge is to define model functions that inherit h's structure and, at the same time, incorporate information on the feasible set M without destroying separability. We now explain how to build suitable model functions for [START_REF] Bareilles | Randomized Progressive Hedging methods for multi-stage stochastic programming[END_REF] and present the bundle variant of the PH algorithm.

Building separable models

As mentioned, usually bundle methods define linearizations for the sum h `iM , but such model functions are not separable. To illustrate this difficulty, consider the following simple instance of [START_REF] Bonnans | Numerical Optimization: Theoretical and Practical Aspects[END_REF], where w 1 , w 2 P R are decision variables and A P R is given:

# min w1,w2 h 1 pw 1 q `h2 pw 2 q s.t. w 1 `w2 " A .
A classical model for this problem takes cutting-plane approximations for each term, say q h s pw s q for s " 1, 2, and adds the indicator function:

φ k w k pw 1 , w 2 q :" q h 1 pw 1 q `q h 2 pw 2 q ´h1 pw k 1 q ´h2 pw k 2 q `iM pw 1 , w 2 q .
With such a model, problem [START_REF] Eckstein | A Simplified Form of Block-Iterative Operator Splitting and an Asynchronous Algorithm Resembling the Multi-Block Alternating Direction Method of Multipliers[END_REF], whose solution yields (13a), is not separable:

min w1`w2"A # φ k w k pw 1 , w 2 q `1 2t k ˇˇˇˆw 1 w 2 ˙´ˆw k 1 w k 2 ˙ˇˇˇ2 + .
By contrast, if a separable model function was available for the indicator function i M pw 1 , w 2 q, the calculations required in (13a) could be performed separately, by solving, for s "

k s pw s q `1 2t k }w s ´wk s } 2 * . 1, 2, min ws " φ k w 
When the objective function h involves the sum of more than two terms, as in the case of multistage programs with many scenarios, using separable models improves significantly the computational performance (the solution to (15) can be computed in parallel for the different scenarios).

Following the espirit of Table 1, and because the ability of defining separable models depends on the constraints M under consideration, we recall in Table 2 Regarding the PH setting, that is when (7) has the format ( 5)´( 6), the feasible set therein is given by the non-anticipativity constraints written in dual form. Hence, as in (2), M " N K " tw : P N rws " 0u . This subspace has a favorable structure, in particular, the projection step (13b) is straightforward:

P M rws " w ´PN rws .
Recall that, by [START_REF] Attouch | Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods[END_REF], hpwq " ř S s"1 p s h s pw s q. Our proposal is to work with the weighted sum of special model functions, defined for each scenario and derived from (4). Proposition 4.1 (Separable 1QA models). Given px k , w k q P N ˆN K , for s " 1, . . . , S consider the approximate s-Lagrangian

L k s px s , w s q " f px s q `wJ s px s ´xk s q " L s px s , w s q ´wJ s x k s , (16) 
and the individual functions

φ k w k s pw s q :" max xsPCs p´L k s qpx s , w s q ´hs pw k s q . ( 17 
)
The corresponding weighted sum

φ k w k pwq " S ÿ s"1 p s φ k w k
s pw s q " hpwq ´hpw k q ` w, x k S defines a model for ph `iN K q pwq at w k that is separable, convex and of type 1QA with q " 0.

Proof. First, the model φ k w k is separable by construction, and convex, since each φ k w k s is the maximum of affine functions ´Ls px s , w s q ´hs pw k s q in w s . From [START_REF] Hare | A redistributed proximal bundle method for nonconvex optimization[END_REF] it follows that φ k w k s pw s q ď h s pw s q `wJ s x k s ´hs pw k s q.

After multiplying by p s and adding all scenarios, this means that

φ k w k pwq ď hpwq `xw, x k y S ´hpw k q.
Note that since

x k P N , then xw, x k y S ď i N K pwq for all w. Indeed, if w P N K , xw, x k y S " 0 ď 0 " i N K pwq. On the other hand, if w P N zt0u, xw, x k y is a finite value, thus xw, x k y S ă `8 " i N K pwq. Therefore, φ k w k pwq ď hpwq `iN K pwq ´hpw k q. Hence, φ k
w k is a 1QA model for h `iN K at w k with q " 0. The approximate s-Lagrangians put together build a 1QA model for h `iN K . In fact, as L k s px s , w w q " L s px s , w s q ´px k s q J w s , the term xx k , wy S corresponds to a lower linearization of the indicator function i N K . Using the wording from [START_REF] Ackooij | Constrained Bundle Methods for Upper Inexact Oracles with Application to Joint Chance Constrained Energy Problems[END_REF], the models φ k w k are of lower type; see also [START_REF] Van Ackooij | Probabilistic optimization via approximate p-efficient points and bundle methods[END_REF].

Comparison with subproblems in the PH algorithm

To understand the given definition for the individual models, first recall we are interested in dealing with separate subproblems [START_REF] Eckstein | Asynchronous Projective Hedging for Stochastic Programming[END_REF]. Plugging (17) therein yields min ws " max

xsPCs p´L k s qpx s , w s q ´hs pw k s q `1 2t k }w s ´wk s } 2 * " min ws " max xsPCs p´L s qpx s , w s q `px k s q J w s ´hs pw k s q `1 2t k }w s ´wk s } 2 * .
For this (convex-concave) saddle-point problem it is equivalent to solve max

xsPCs min ws " p´L s qpx s , w s q `px k s q J w s ´hs pw k s q `1 2t k }w s ´wk s } 2 * " ´hs pw k s q `max xsPCs " min ws " ´fs px s q ´wJ s px s ´xk s q `1 2t k }w s ´wk s } 2 ȷ* .
The expression between brackets is minimized at w s " w k s `tk px s ´xk s q. Therefore,

(15) is equivalent to max xsPCs " ´fs px s q ´pw k s `tk px s ´xk s qq J px s ´xk s q `tk 2 }x s ´xk s } 2 * " max xsPCs " ´fs px s q ´pw k s q J px s ´xk s q ´tk }x s ´xk s } 2 `tk 2 }x s ´xk s } 2 * " ´min xsPCs " f s px s q `pw k s q J px s ´xk s q `tk 2 }x s ´xk s } 2 * " pw k s q J x k s ´min xsPCs L k s px s , w k s q `tk 2 }x s ´xk s } 2 . ( 18 
)
This last minimization problem is practically identical to the PH original subproblem (4). The difference is that the stepsize t k , in this case, can be dynamically updated, as in a bundle method.

Additionally, note that the Lagrangian L k s is an approximation of the original Lagrangian obtained when relaxing the non-anticipativity constraint. More specifically, the Lagrangian Lpx, wq " S ÿ s"1 p s `fs px s q `wJ s px s ´PN rxs s q ȋs approximated with

L k px, wq " S ÿ s"1 p s `fs px s q `wJ s px s ´xk s q ˘, x k s P N .
Consequently 

*

The difference is that, with our approach, the quality of this approximation is measured by means of the serious/null step test (13c). Performing the descent test is not free, as it requires an extra dual function evaluation, that is, solving another set of subproblems in parallel. This is made clear in the descent test in Algorithm 2 given below.

Statement of the algorithm in dual form

Recall that the PH algorithm keeps separate subproblems for each scenario, performing afterwards a coordination step, projecting the primal candidates onto the linear subspace of non-anticipative constraints. The Bundle Progressive Hedging Algorithm 2 maintains those features, adding a descent test to measure the quality of the model approximation. The main steps of the algorithm are as follows.

-Iteration k starts by solving, for each scenario s " 1, . . . , S, a dual subproblem, yielding dual intermediate iterates.

-Intermediate primal points are derived from the dual intermediate solutions. As shown in Lemma 4.2(i), such primal points actually correspond to minimizing an augmented s-Lagrangian in the primal space.

-The projection of the dual intermediate points onto the orthogonal subspace of the nonanticipativity ensures dual feasibility.

-The projected dual iterates are evaluated, to determine if there was some decrease in the dual function h:

-if there is sufficient descent, a serious step is made. This point then becomes the best candidate point generated so far, or -if there is no sufficient descent, a null step is made.

Algorithm 2 Bundle Progressive Hedging (BPH) Algorithm in dual form 1: Initialization: Given a stopping tolerance TOL ě 0 and parameters m P p0, 1q and t min ą 0, choose a primal-dual starting point px 0 , w 0 q P N ˆN K and an initial stepsize t 0 ą 0.

Compute the dual value h s pw 0 s q " ´Ls pp y 0 s , w 0 s q, by finding p y 0 s P arg min xsPCs L s px s , w 0 s q for s " 1, . . . , S .

2: for k " 0, 1, . . . do

3:

Dual subproblems: given φ k w k s pw s q " max xsPCs p´L k s qpx s , w s q ´hs pw k s q, solve

w k`1 2 s " arg min ws " φ k w k s pw s q `1 2t k }w s ´wk s } 2 * for s " 1, . . . , S . (19) 
The nominal decrease

φ k w k s pw k`1 2 s
q is available.

4:

Primal projection: x k`1 " P N rx k`1 2 s, where

x k`1 2 s " x k s `1 t k pw k`1 2 s ´wk s q for s " 1, . . . , S . (20) 5: 
Stopping test: if ´φk w k pw k`1 2 q ď TOL, stop and return px k , w k q.

6:

Dual projection: u k`1 " P N K pw k`1 2 q " w k`1 2 ´PN rw k`1 2 s .

7:

Descent test: Compute the dual value h s pu k`1 s q " ´Ls py k`1 s , u k`1 s q, by finding

y k`1 s P arg min xsPCs L s px s , u k`1 s q for s " 1, . . . , S .
If ´Lpy k`1 , u k`1 q ď ´Lpp y k , w k q `mφ k w k pw k`1 2 q declare a serious step:

$ & % w k`1 " u k`1 p y k`1 " y k`1 t k`1 ě t min Otherwise, declare a null step: set w k`1 " w k , p y k`1 " p y k and choose t k`1 P p0, t k q.
The Bundle Progressive Hedging Algorithm 2 results from applying the scheme ( 13) with the 1QA model in Proposition 4.1, to the dual problem [START_REF] Bareilles | Randomized Progressive Hedging methods for multi-stage stochastic programming[END_REF]. Being a particular instance of the general algorithmic pattern given in Section 3.1, convergence of the serious dual subsequence generated by BPH in therefore ensured by Theorem 3.2.

Table 3 compares the notation employed in Algorithms 2 and 3 to generate, respectively, the primal and dual sequences of the bundle approach.

Before passing to Section 5, with BPH's convergence analysis, some remarks are in order.

-Notice that the descent test is performed with the full Lagrangian L, and not the individual s-Lagrangians.

-In [START_REF] Eckstein | Splitting Methods for Monotone Operators, with Applications To Parallel Optimization[END_REF], consider h to be the dual function defined in (5), the linear subspace M " N K , and N " nS. First, the optimality conditions of the problem in [START_REF] Hiriart-Urruty | Convex Analysis and Minimization Algorithms I and II[END_REF] correspond to (13a), for

G k " ´px k ´xk`1 2 q, vector in R nS scenario s subvector in R n intermediate primal x k`1 2 x k`1 2 s projected primal x k x k s intermediate dual w k`1 2 w k`1 2 s projected dual u k u k s dual serious step w k w k s minimizer of L s p¨, u k s q over C s y k y k s
Table 3: Notation for primal and dual sequences generated by Algorithms 2 and 3.

according to [START_REF] Hiriart-Urruty | Convex Analysis and Minimization Algorithms I: Fundamentals[END_REF]. Furthermore, step 6 of Algorithm 2 is exactly (13c), while the descent test in step 7 of Algorithm 2 is equivalent to (13c), by using the definition of the dual function h in ( 5), the construction of y k`1 , and the definition of ŷk . Barring the stopping test, Algorithm 2 is a particular instance of the pattern in [START_REF] Eckstein | Splitting Methods for Monotone Operators, with Applications To Parallel Optimization[END_REF].

-The stopping test of step 5 in Algorithm 3 yields indeed approximate solutions. To see this, recall that the BPH method stops when the aggregate error and the aggregate subgradient defined in Lemma A.1(i) are sufficiently small. Since, see Lemma A.1(ii),

G k P B E k φ k w k s pw k s q for E k ě 0, and φ k w k s pw k s q " 0, this means that for all w hpwq ´hpw k q ` w, x k S ě G k , w ´wk ´Ek , where t k }G k } 2 , E k ď TOL.
In particular, for all w P N K the linear term in the left-hand side vanishes, and w k is an approximate minimizer of the dual problem (6), for η " max " TOL, c TOL t min * :

hpwq ě hpw k q ´η}w ´wk } ´η .

Relation with Progressive Hedging and primal formulation

The BPH Algorithm 2 differs from the PH Algorithm 1 in the implementation of the descent test. Notwithstanding, both methods also share some features. As shown in [START_REF] Hare | Computing proximal points of nonconvex functions[END_REF], for each scenario, the subproblem (19) solved by BPH is dual to the subproblem of the PH Algorithm 1. In both PH and BPH, primal points are projected onto the set of non-anticipativity constraints; and the nature of the dual update is the same, projecting onto N K to guarantee dual feasibility. The resemblance between the two methods becomes more apparent after formulating Algorithm 2 in primal terms, exploiting in addition to [START_REF] Hare | Computing proximal points of nonconvex functions[END_REF], primal-dual relation stated in Lemma 4.2. The primal formulation of the Bundle Progressive Hedging given in Algorithm 3 allows a straightforward comparison with the PH Algorithm 1. However, the dual form Algorithm 2 is more handy for the convergence analysis. In particular, x k`1 2 s P C s .

(ii) The dual projection rule u k`1 " w k`1 2 ´PN rw k`1 2 s can be equivalently performed by doing u k`1 " w k `tk px k`1 2 ´xk`1 q.

(iii) The dual model φ k w k evaluated at the dual intermediate point w k`1 2 can be written in primaldual terms as follows φ k w k pw k`1 2 q " Lpp y k , w k q ´Lk px k`1 2 , w k`1 2 q.

Proof. To show item (i), recall the relations [START_REF] Hare | Computing proximal points of nonconvex functions[END_REF]. Since w

k`1 2 s minimizes φ k w k s pw s q `1 2t k }w s ´wk s } 2
, and it also has the form

w k`1 2 s " w k s `tk px k`1 2 s ´xk s q, then x k`1 2 s minimizes over C s f s px s q `pw k s q J px s ´xk s q `tk 2 }x s ´xk s } 2 " L k s px s , w k s q `tk 2 }x s ´xk s } 2 .
Regarding item (ii), since w k`1 2 " w k `tk px k`1 2 ´xk q, and w k P N K , then

w k`1 2 ´PN rw k`1 2 s " w k `tk px k`1 2 ´xk q ´PN rw k `tk px k`1 2 ´xk qs " w k `tk px k`1 2 ´xk q ´tk px k`1 ´xk q " w k `tk px k`1 2 ´xk`1 q,
where in the second equality we use x k`1 " P N rx k`1 2 s.

Finally, note that [START_REF] Hiriart-Urruty | Convex Analysis and Minimization Algorithms I: Fundamentals[END_REF] q. Therefore, from the definition of φ k w k s , it holds that

φ k w k s pw k`1 2 s q " p´L k s qpx k`1 2 s , w k`1 2 s
q ´hs pw k s q.

Moreover, by construction, p y k s solves max xsPCs p´L s qpx s , w k s q, then

φ k w k s pw k`1 2 s q " p´L k s qpx k`1 2 s , w k`1 2 s
q `Ls pp y s , w k s q.

Taking the expected value in this last formula gives item (iii). . Together with the primal updating rule [START_REF] Hiriart-Urruty | Convex Analysis and Minimization Algorithms I: Fundamentals[END_REF], this means that the dual subproblems of Algorithm 2 can be written in primal terms, followed by a dual updating rule for w k`1 2 s deduced from [START_REF] Hiriart-Urruty | Convex Analysis and Minimization Algorithms I: Fundamentals[END_REF]. Algorithm 3, given next, is the primal version of Algorithm 2.

By

We now show that Bundle Progressive Hedging algorithm finds primal and dual solutions, in the case of finite termination, infinite number of serious steps or when there is a tail of null steps.

Algorithm 3 Bundle Progressive Hedging (BPH) Algorithm in primal form

1: Initialization: Given a stopping tolerance TOL ě 0 and parameters m P p0, 1q and t min ą 0, choose a primal-dual starting point px 0 , w 0 q P N ˆN K . Compute p y 0 s P arg min xsPCs L s px s , w 0 s q for s " 1, . . . , S .

2: for k " 0, 1, . . . do

3:

Primal subproblems: solve

x k`1 2 s " arg min xsPCs " f s px s q `pw k s q J x s `tk 2 }x s ´xk s } 2 *
, for s " 1, . . . , S.

4:

Primal projection: x k`1 " P N rx k`1 2 s.

5:

Dual update: Compute w k`1 2 s " w k s `tk px k`1 2 s
´xk s q for s " 1, . . . , S .

6:

Stopping test: if L k px k`1 2 , w k`1 2 q ´Lpp y k , w k q ď TOL, stop and return px k , w k q.

7:

Dual projection: u k`1 " w k `tk px k`1 2 ´xk`1 q.

8:

Descent test: Compute

y k`1 s P arg min xsPCs L s px s , u k`1 s q for s " 1, . . . , S .
If Lpp y k , w k q ´Lpy k`1 , u k`1 q ď mpLpp y k , w k q ´Lk px k`1 2 , w k`1 2 qq, declare a serious step: set w k`1 " u k`1 , p y k`1 " y k`1 , and take t k`1 ě t min . Otherwise, declare a null step: set w k`1 " w k , p y k`1 " p y k and choose t k`1 P p0, t k q.

Convergence analysis of the Bundle Progressive Hedging

The primal and dual versions of the Bundle Progressive Hedging algorithm are equivalent because:

-Steps 3 and 4 of Algorithm 2 are equivalent to steps 3 and 4 of Algorithm 3, due to Lemma 4.2(i).

-Step 5 of Algorithm 2, the stopping test in dual terms, is equivalent to step 5 of Algorithm 3, due to Lemma 4.2(iii).

-Step 6 of Algorithm 2 is equivalent to step 6 of Algorithm 3, due to Lemma 4.2(ii).

-Step 7 of Algorithm 2 is equivalent to step 7 of Algorithm 3. Indeed, the descent test is exactly the same by using Lemma 4.2(iii). As for the construction of the model, in the dual version of the algorithm (Algorithm 2) it is explicitly done by using the serious step w k`1 , while in the primal case, Algorithm 3, it is implicitly performed by using the projection x k`1 in the quadratic term of the primal subproblem, and using w k`1 as the cost of the linear term of the objective of the subproblem.

Throughout this section, we assume the stopping tolerance is set to TOL " 0. By the stopping test in Algorithm 2, this means that when the test is triggered, it must hold that 0 ď ´φk w k pw k`1 2 q ď TOL " 0 , by Lemma A.1(i). With this setting, either Algorithm 2 stops after a finite number of iterations with φ k w k pw k`1 2 q " 0, or the algorithm runs indefinitely. In this case, two more options arise: either the serious subsequence is infinite (after each serious iterate, only a finite number of null iterations occur), or a last serious iterate is generated at iteration k´1, say ŵ " w k, and afterwards all iterates are declared null steps.

Cases of finite termination and infinite number of serious steps

We first consider the case of a finite termination. To this aim, it is useful to characterize the subdifferential of the dual function h in terms of primal information. Specifically, given a scenario s P t1, . . . , Su, each function h s pw s q defined in ( 5) is the maximum of a family of affine functions of w s , therefore it is convex [20, Chapter I, Proposition 2.1.2]. Furthermore, letting C s pw s q " tx s P C s : ´Ls px s , w s q " h s pw s qu , then according to [20, Chapter VI, Theorem 4.4.2], Bh s p ws q " co ¨ď xsPCsp wsq Bp´L s qpx s , ws q ' .

Moreover, since L s is differentiable with respect to w s , then B w p´L s qpx s , ws q " t´x s u, for any xs P C s p ws q, that is, any xs P C s that solves the problem in (5) for w s " ws . In other words, C s p ws q is exactly the set of maximizers of the problem in (5) for w s " ws . Therefore, Bh s p ws q " cot´x s : xs solves the problem in (5) for w s " ws u .

Theorem 5.1 (Finite termination of BPH). Let h : R nS Ñ R in (5) be the dual function associated with the primal problem (1). If Algorithm 2 stops after finitely many iterations, then x k and x k`1 2 are equal and both are a solution of primal problem (1), and w k and w k`1 2 are equal, and both are a solution of dual problem [START_REF] Bareilles | Randomized Progressive Hedging methods for multi-stage stochastic programming[END_REF].

Proof. If the algorithm stops, then φ k w k pw k`1 2 q " 0. Thus, the aggregate error and gradient defined in Lemma A.1 (stated in Appendix A) are null: E k " 0 and G k " 0. In particular, we also have that w k " w k`1 2 and x k " x k`1 2 . Then, from Lemma A.1(ii), we have that 0 P Bph `iN K qpw k q, that is, w k " w k`1 2 P N K is a dual solution.

Furthermore, since G k P Bφ k w k pw k`1 2 q, we have that G k ´xk P Bhpw k`1 2 q. Thus ´xk P Bhpw k`1 2 q, because G k " 0. It follows from ( 21) that for all s " 1, . . . , S, x k s P C s and it also solves min xsPCs L s px s , w k`1 2 q. Note that this means that x k is primal feasible. Hence, since w k`1 2 is a dual solution, then x k " x k`1 2 is a primal solution, as stated.

We continue with the analysis of an infinite serious subsequence, and show the generated primal and dual points asymptotically solve the primal and dual problems (1) and [START_REF] Bareilles | Randomized Progressive Hedging methods for multi-stage stochastic programming[END_REF]. Recall that the dual form of the BPH algorithm fits the framework [START_REF] Eckstein | Splitting Methods for Monotone Operators, with Applications To Parallel Optimization[END_REF]. In this case, the proper separation of isocost surfaces ( 8) is trivially satisfied because the function H :" h `iN K is convex. Regarding the error bound (9), the condition is equivalent to requiring that, for every v ě inf wPN K hpwq, there exists ε, ℓ ą 0, such that whenever w P N K , hpwq ď v, and x P R nS , with }x ´PN rxs} S ă ε, and the s´component x s solves the problem in [START_REF] Attouch | Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods[END_REF], there holds that

dpw, Sq ď ℓ}x} S , (22) 
where S is the set of minimizers of the dual problem.

Theorem 5.2 (Convergence of serious steps). Let h : R nS Ñ R in (5) be the dual function associated with the primal problem (1). Suppose, in addition, that the subdifferential error bound (22) is valid. In Algorithm 2, let K s :" tk : w k`1 was declared a serious stepu and recall that, by construction tt k u Ks is bounded below by t min ą 0. Assume, additionally, that tt k u Ks is bounded above by t max ą 0.

If the set K s is infinite, the following holds for k P K s .

(i) thpw k qu Ks monotonically converges to the dual optimal value h ˚, such that the sequence of functional errors tv k " hpw k q ´h˚u Ks converges to 0 with Q-linear rate: there exists r P p0, 1q, such that for all sufficiently large k P K s , v k`1 ď rv k .

(ii) The sequence of serious-step iterates tw k u Ks , as well as the intermediate points tw k`1 2 u Ks , converge to a minimizer w ˚of the dual problem (6) with R-linear rate: there exists r P p0, 1q, and c ą 0 such that for all sufficiently large k P K s ,

}w k ´w˚} ď c ? r k , }w k`1 2 ´w˚} ď cp2 ´?rq ? r k .
(iii) The primal sequences tx k u Ks and tx k`1 2 u Ks sub-sequentially converge to a solution of the primal problem [START_REF] Van Ackooij | Probabilistic optimization via approximate p-efficient points and bundle methods[END_REF]. The functional values tf px k qu Ks and tf px k`1 2 qu Ks sub-sequentially converge to the optimal value of problem (1).

Proof. Throughout, iterations parse k P K s . Items (i) and (ii) follow from Theorem 3.2, applied to the convex function h, which is 0´weakly convex, and M " N K . For item (iii), note that from Lemma A.1(iii), G k Ñ 0. Therefore, the primal update in Algorithm 2 and (13a) imply x k ´xk`1 2 Ñ 0. Since both sequences are bounded, because tx k`1 2 u belongs to a compact set and P N is continuous, then both sequences tx k u and tx k`1 2 u have the same accumulation points.

In particular, any accumulation point x ˚of these sequences belongs to N , and for all scenario s " 1, . . . , S, x s P C s , from Lemma 4.2(i). Furthermore, (13a) implies G ki ´xki P Bhpw ki`1 2 q, where tx ki u is a subsequence that converges to x ˚. Therefore, since Bh is outer semicontinuous, ´x˚P Bhpw ˚q. In particular, ´f px ki`1 2 q ´xw ki`1 2 , x ki`1 2 y S " hpw ki`1 2 q ě hpw ˚q `x´x ˚, w ki`1 2 ´w˚y S .

Taking the limit when i Ñ `8, it follows that ´f px ˚q ě hpw ˚q, because px ˚, w ˚q P N ˆN K . Therefore, weak duality implies ´f px ˚q " hpw ˚q, with x ˚being primal feasible. Hence, x ˚is primal optimal. Finally, sub-sequential convergence of tf px k qu and tf px k`1 2 qu to the optimal primal value f px ˚q follows from continuity.

To conclude, we show that when there are finitely many serious steps, the generated sequences also provide solutions for problems (1) and (6).

Tail of null steps

It remains to analyze the case when there is a last serious step p w, performed at iteration k " p k ´1. Accordingly, we let K n :" tk ą p k : w k was declared a null stepu denote the corresponding iteration index set. Note that for all k P K n , w k " p w.

Theorem 5.3 (Convergence of null steps). Let h : R nS Ñ R in (5) be the dual function associated with the primal problem (1). Suppose, in addition, that the subdifferential error bound (22) is valid. In Algorithm 2, recall that, by construction tt k u Kn Ñ 0 as

K n Q k Ñ `8.
If there is a last serious step p w, followed by a tail of nulls steps, then the following holds for Algorithm 2, and all k P K n .

(i) Both tw k`1 2 u Kn and tu k u Kn converge to p w, which is also a solution for the dual problem [START_REF] Bareilles | Randomized Progressive Hedging methods for multi-stage stochastic programming[END_REF]. Furthermore, the sequences thpw k`1 2 qu Kn and thpu k qu Kn converge to the optimal value of the dual problem [START_REF] Bareilles | Randomized Progressive Hedging methods for multi-stage stochastic programming[END_REF].

(ii) The primal sequences tx k u Kn and tx k`1 2 u Kn subsequentially converge to a solution of the primal problem. The corresponding functional values tf px k qu Kn and tf px k`1 2 qu Kn subsequentially converge to the optimal value of problem (1).

Proof. Throughout, iterations parse k P K n . To show item (i), we proceed as in [START_REF] Hiriart-Urruty | Convex Analysis and Minimization Algorithms I and II[END_REF]p. XV. 4.1.5], and prove that t k Ñ 0 implies w k`1 2 Ñ p w P N K . Since h is convex and finite, then there exists px 0 , r 0 q P R n ˆR such that the corresponding affine function xx 0 , ¨yS ´r0 bounds h from below. In view of the fact that for all k and w P R nS , φ k From [START_REF] Hiriart-Urruty | Convex Analysis and Minimization Algorithms I and II[END_REF], it follows that

φ k p w pw k`1 2 q `1 2t k }w k`1 2 ´p w} 2 S ď φ k p w p p wq " 0.
Combining the first estimate evaluated at w " w k`1 2 with the second estimate, there holds that xx 0 `xk , w k`1 2 y S ´pr 0 `hp p wqq `1 2t k }w k`1 2 ´p w} 2 S ď 0.

Furthermore, the left-hand side of the above inequality can be rewritten as

1 2t k }w k`1 2 ´p w `tk px 0 `xk q} 2 S `Rpt k q,
where Rpt k q " xx 0 `xk , p wy S ´pr 0 `hp p wqq ´1 2 t k }x 0 `xk } 2 S . Thus, 1 2 }w k`1 2 ´p w `tk px 0 `xk q} 2 S `tk Rpt k q ď 0.

Note that the sequence tx k`1 2 u belongs to a compact set (Lemma 4.2(i)), and from the continuity of the projection operator P N , tx k u is a bounded sequence. Since t k Ñ 0 whenever K n Q k Ñ `8, then tRpt k qu kPKn remains bounded. Therefore, taking the limit as K n Q k Ñ `8 in the above estimate, we obtain w k`1 2 Ñ p w. Since P N K is continuous, then u k Ñ p w. In particular, w k`1 2 ´uk Ñ 0.

Furthermore, the continuity of h implies that hpw k`1 2 q Ñ hp p wq, and hpu k q Ñ hp p wq. Hence, since px k , u k q P N ˆN K , it holds that φ k p w pu k q " hpu k q ´hp p wq `xx k , u k y S Ñ 0, as

K n Q k Ñ `8.
Moreover, to prove that φ k p w pw k`1 2 q Ñ 0, we show that φ k p w pw k`1 2 q ´φk p w pu k q Ñ 0. Indeed, φ k p w pw k`1 2 q ´φk p w pu k q " hpw k`1 2 q ´hpu k q `xx k , w k`1 2 ´uk y S Ñ 0, as

K n Q k Ñ `8,
since hpw k`1 2 q ´hpu k q Ñ 0, tx k u kPKn is bounded, and w k`1 2 ´uk Ñ 0. In view of Lemma A.1(i), since tt k u kPKn is bounded, then E k Ñ 0 and G k Ñ 0. Moreover, from Lemma A.1(i), it follows that 0 P Bph `iN K qp p wq, that is, p w P N K is a solution of the dual problem, and hp p wq is its optimal value.

Regarding item (ii), since tt k u kPKn is bounded above by t k and G k Ñ 0, this means that t k G k Ñ 0. Combined with the identity t k G k " p w ´wk`1 2 from (13a) and ( 20), we see that

x k ´xk`1 2 Ñ 0, as K n Q k Ñ `8.
The remaining assertions follows as in the proof of Theorem 5.2(iii), now taking k P K n .

Final remarks

We have introduced a new projective bundle method that, when applied to multistage programs, exploits parallelism and generates a serious subsequence converging with linear rate. The resulting Bundle Progressive Hedging, both in primal (Algorithm 3) and dual (Algorithm 2) forms, preserves the main features of the Progressive Hedging algorithm by T. Rockafellar and R. Wets, [START_REF] Rockafellar | Scenarios and policy aggregation in optimization under uncertainty[END_REF]. In particular, both methods solve separate scenario subproblems per iteration. These subproblems are strongly convex, thanks to the addition of a quadratic term related to an approximate augmented Lagrangian of the problem. Furthermore, the PH algorithm and its bundle BPH variant both use projections onto N and N K to respectively ensure feasibility in the primal and dual spaces.

Besides these similarities, our proposal adds features typical from the bundle methodology to measure the quality of the approximation of the augmented Lagrangian of the full problem. By contrast, the original PH method uses the dual information obtained with an approximate Lagrangian without further ado.

Thanks to the bundle techniques, it is possible to dynamically adjust the augmentation parameter in the PH algorithm without impairing its convergence. Figure 1 gives a simple, yet illustrative, instance of a randomly generated linear problem with 50 scenarios. The impact of keeping t k fixed along the iterative procedure is clear. With t k " t 0 , the PH approach only reaches a good accuracy if the parameter is sufficiently large (t 0 " 100, named "very large t" in the figure). The BPH method, with its adaptive adjustment of stepsizes, seems less sensitive to the initial value of t 0 .

Figure 1: Accuracy in the primal solution for the PH and the BPH algorithms (the ordinate reports the negative of the number of digits obtained at a given iteration). Both methods were run for the same random instance with 50 scenarios, taking initial proximal stepsizes t 0 P t1, 10, 100u. The values of t k are maintained fixed to t 0 with the PH variant, yielding good accuracy only for the largest value t 0 " 100. With BPH, t k varies according to the serious/null step rules and the performance is more stable.

With the bundle approach, optimality primal and dual certificates are available, based on the aggregate information constructed along iterations (the PH algorithm, by contrast, measures distance to the primal-dual set of minimizers). However, those enhancements require additional evaluations of the dual functions at each iteration. This involves a new set of computations, that can be done in parallel and are similar to the PH subproblems, barring the quadratic term in [START_REF] Eckstein | Asynchronous Projective Hedging for Stochastic Programming[END_REF].

The projective bundle method in Section 3 is general and can be used to extend existing approaches to the weakly convex setting. As often in bundle methods, the crucial point is the ability to show that, when the method enters an infinite loop of null steps, the family of model functions drives iterates to the last generated serious point. The stumbling block lies in the suitable definition of the models, as it was done in [START_REF]Composite Proximal Bundle Method[END_REF] for Taylor models in composite optimization, or in Section 4 for the particular dual function [START_REF] Attouch | Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods[END_REF].

A.1 Technical results preliminary to Theorem 3.2

Similarly to [4], the first step is to exploit the model convexity to transport the model subgradient to an approximate subgradient of the "convexified" function associated to weak convexity. Then, a Brøndsted-Rockafellar's like relation makes the connection with the objective function in [START_REF] Bonnans | Numerical Optimization: Theoretical and Practical Aspects[END_REF]. The corresponding results are gathered in the following statement, listing several technical relations. None of those relations involves the projection step, they can be shown following the arguments in [4, Proposition 5.4 and Lemma 5.6], applied to the function H " h `iM .

Lemma A.1 (Transportation of subgradients, descent, theoretical sequence). Let h : R N Ñ R Y t`8u and M satisfy (A1)´(A2). Consider solving problem (7) applying the model-based proximal scheme in [START_REF] Eckstein | Splitting Methods for Monotone Operators, with Applications To Parallel Optimization[END_REF]. If the models φ k w k are of type 1QA with parameter q ď ρ, as in Definition 3.1, the following holds for all k.

(i) The aggregate error

E k :" ´tk }G k } 2 ´φk w k pw k`1 2 q satisfies E k ě 0. (ii) G k P B E k H w k pw k q where H w k p¨q denotes the "convexified" function hp¨q `iM p¨q `ρ 2 } ¨´x} 2
If (A3) holds, and the proximal stepsizes t k are bounded, t k P rt min , t max s, then (iii) the sequences of model subgradient and errors tG k u and tE k u converge to 0 as k Ñ 8, and (iv) condition (13c) is equivalent to

hpw k`1 q `m t max ´}w k`1 2 ´wk } 2 `tk E k ¯ď hpw k q . (23) 
If, in addition, (A5) holds, then (v) there exists a theoretical auxiliary sequence tz k u such that }z k ´wk } ď ? ℓE k and Dg k P Bhpz k q and ν k P N M pz k q, }g k `νk } ď b ´}w k`1 2 ´wk } `}w k ´zk } ¯, for b ą 0 . (24)

Proof. Items (i)´(iv) follow directly from [4, Proposition 5.4(i)-(iv)] applied to h `iM . Item (v) follows from [4, Lemma 5.6] applied to h `iM . Indeed, apply [START_REF] Robinson | Linear convergence of epsilon-subgradient descent methods for a class of convex functions[END_REF]Theorem 2] to the function H w k and the pair of points pG k , w k q such that G k P B E k H w k pw k q, it follows that there exists

d k such that }d k } ď ? E k and G k ´1 ? ℓ d k P BH w k pw k `?ℓd k q,
where ℓ ą 0 is the constant of condition (A5). Defining z k :" w k `?ℓd k , we have that }z k ´wk } ď ? ℓE k , and BH w k pz k q " Bph `iM qpz k q `ρ? ℓd k . Therefore, for g k M :" G k `p1 `ρℓq ? ℓ ´1d k , it holds that g k M P Bph `iM qpz k q " Bhpz k q `NM pz k q. Thus, there exists g k P Bhpz k q and ν k P N M pz k q such that g k M " g k `νk . Moreover, from the definition of g k M , d k , and (13a), we also have

}g k `νk } ď }G k } `p1 `ρℓq ? ℓ ´1}d k } " 1
t k }w k ´wk`1 2 } `p1 `ρℓqℓ ´1}z k ´wk } ď 1 tmin }w k ´wk`1 2 } `p1 `ρℓqℓ ´1}z k ´wk } , then condition [START_REF] Lions | Augmented Lagrangian Methods for the Solution of Variational Problems[END_REF] holds for b :" maxtt ´1 min , p1 `ρℓqℓ ´1u.

Lemma A.2. Let h : R N Ñ R Y t`8u and M satisfy (A1)´(A3), and that the stepsizes t k remain in rt min , t max s. Then the following holds:

(i) thpw k qu monotonically converges to some value h P R.

(ii) w k`1 ´wk Ñ 0, z k`1 ´zk Ñ 0 and g k `νk Ñ 0, as k Ñ `8.

Suppose, in addition, (A4) and (A5) hold. Then (iii) thpz k qu and thpw k qu both converge to h ˚, where h ˚P R is a critical value (i.e., h ˚" hpwq for some w P S).

(iv) Defining pk P P S pz k q, for all k sufficiently large, the distance from z k to S can be estimated as

}z k ´p k } 2 ď 2ℓ 2 b 2 a phpw k q ´hpw k`1 qq `2ℓ 2 b 2 }w k ´zk } 2 .
(v) For the functional value errors v k :" hpw k q ´h˚, it holds that v k`1 ď 2ℓb 2 a pv k ´vk`1 q `2ℓb 2 }w k ´zk } 2 `Θk , where Θ k :" hpw k q ´hpz k q `ρ 2 }p k ´zk } 2 .

Proof. The following proof is an adaptation of the proof of [4, Lemma 4.2], taking into consideration the extra projection step in the present setting. To see item (i), notice that, since M is convex, then P M is a non-expansive operator, and together with w k P M, imply }w k`1 ´wk } " }P M pw k`1 2 q ´PM pw k q} ď }w k`1 2 ´wk } Combined with [START_REF] Li | Calculus of the exponent of Kurdyka-Lojasiewicz inequality and its applications to linear convergence of first-order methods[END_REF], it yields for some constant a ą 0 hpw k`1 q `ap}w k`1 ´wk } 2 `εk q ď hpw k q (25) which, in particular, implies that the sequence of function values of tw k u is non-increasing. Since h is bounded below on M, monotonicity of thpw k qu implies that hpw k q Ñ h, for some h P R. Note that inequality [START_REF] Lions | Splitting Algorithms for the Sum of Two Nonlinear Operators[END_REF] corresponds to [4, (2a)] for ε k " t min E k .

For item (ii), observe that (25) also implies, combined with the fact that hpw k`1 q ´hpw k q Ñ 0, that w k`1 ´wk Ñ 0. Note that w k`1 2 ´wk Ñ 0 follows similarly from [START_REF] Li | Calculus of the exponent of Kurdyka-Lojasiewicz inequality and its applications to linear convergence of first-order methods[END_REF]. Together with Lemma A.1(v), imply g k `νk Ñ 0.

Item (iii) follows directly from [4, Lema 4.2 (iii)], because this original result does not depend directly on [START_REF] Lions | Augmented Lagrangian Methods for the Solution of Variational Problems[END_REF]. In particular, since g k `νk Ñ 0 and hpz k q Ñ h ˚, we can apply the error bound to obtain, for all sufficiently large k,

}z k ´p k } ď ℓ}g k `νk } . ( 26 
)
Regarding item (iv), from ( 24) and ( 25), there holds

}g k `νk } 2 ď b 2 p}w k`1 2 ´wk } `}w k ´zk }q 2 ď 2b 2 }w k`1 2 ´wk } 2 `2b 2 }w k ´zk } 2 ď 2b 2 a phpw k q ´hpw k`1 qq `2b 2 }w k ´zk } 2 , (27) 
and the results follows from [START_REF] Luo | Error bounds and convergence analysis of feasible descent methods: a general approach[END_REF]. The final item (v) is just [4, Lema 4.2 (v)].

A.2 Proof of Theorem 3.2

The results of global convergence and local rate of convergence are similar to [4,Theorem 5.7], now taking into account the projection step (13b). First, let tz k u be defined as in Lemma A.1(v), and consider the sequence of functional errors tv k u, defined in Lemma A.2(v). Then, there exist constants C 1 , C 2 ą 0, such that for all sufficiently large k, there holds hpw k q ´hpz k q ď C 1 pv k ´vk`1 q (28) and }w k ´zk } 2 ď C 2 pv k ´vk`1 q .

Indeed, these two estimates directly follow from the proof of [4,Theorem 5.7]. Estimate [START_REF] Oliveira | Bundle Methods in the XXIst century: A bird's-eye view[END_REF] comes from the definition of z k , and the descent condition [START_REF] Li | Calculus of the exponent of Kurdyka-Lojasiewicz inequality and its applications to linear convergence of first-order methods[END_REF], while estimate (28) follows from the E k ´subgradient inequality of H w k for G k and (29). The proof of item (i) in Theorem 3.2 is exactly the same as for [4,Theorem 4.3(i)], due to the fact that it depends on Lemma A.2. Indeed, use [START_REF] Norkin | Generalized-differentiable functions[END_REF], [START_REF] Oliveira | Bundle Methods in the XXIst century: A bird's-eye view[END_REF], and Lemma A.2(iv) in the estimate of Lemma A.2(v), and then rearrange terms to deduce (i) for r " M {p1 `M q P p0, 1q, and M " C 1 `ℓb 2 p2 `ρℓqp1{a `C2 q.

To deduce Theorem 3.2(ii), we can apply [4, Lemma 4.1], using [START_REF] Lions | Splitting Algorithms for the Sum of Two Nonlinear Operators[END_REF] (which is exactly the same as [4, (2a)]) and item (i). Therefore, tw k u converges to some w ˚with a R´linear rate: for all sufficiently large k, }w k ´w˚} ď c ? r k , where c " ? v 0 ? a p1 ´?rq .

The fact that w ˚is critical can be similarly proven as in the original analysis, using Lemma A.1(v) and the fact that the subdifferential Bh is an upper semicontinuous multi-function.

Regarding the sequence of intermediate points, for all k, }w k`1 2 ´w˚} ď }w k`1 2 ´wk } `}w k ´w˚}

In the right-hand side, the second term is bounded by c ? r k , therefore it only remains to bound the first one. From ( 25) and the fact that ε k , v k ě 0, it follows that }w k`1 2 ´wk } 2 ď 1 a phpw k q ´hpw k`1 qq " 1 a pv k ´vk`1 q ď 1 a v k

From (ii), it holds that }w k`1 2 ´wk } 2 ď v 0 a r k Therefore, }w k`1 2 ´w˚} ď cp2 ´?rq ? r k , which concludes the proof of Theorem 3.2.
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  w pwq " hpwq ´hp p wq `xx k , wy S , there holds xx 0 `xk , wy S ´pr 0 `hp p wqq ď φ k p w k pwq.
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