Nuclear Criticality Safety Division Topical Meeting NCSD 2022

Embedded topical meeting at the SANS Annual Meeting

Integral experiments at sandia with molybdenum sleeves for testing ⁹⁵Mo cross sections in thermal energy spectrum

Nicolas Leclaire IRSN scientist

Outline

- Context
- Design of experiments
- Description of experiments with Mo sleeves
- Reproducibility, reference and sampling experiments
- Manufacturing of sleeves
- Predicted results: k_{eff} and experimental uncertainties
- Comparison to application case
- Feedback on nuclear data
- Conclusions

Context

- Molybdenum plays important role in NCS
 - Fission product (BUC)
 - e.g: found in reprocessing plants as a MoZr deposit including Pu and impregnated by dissolution solution
 - Naval and space reactors fuel
 - New research reactor fuel: UMo
- ⁹⁵Mo, ⁹⁶Mo and ⁹⁷Mo isotopes:
 - Main abundant isotopes in molybdenum
- ⁹⁵Mo has the largest capture cross section
- Few experiments involving molybdenum
 - French MIRTE (LCT-106) with 10 mm Mo screen not sensitive enough to ⁹⁵Mo capture around 45 eV (first resonance of ⁹⁵Mo)

Context

- Up to now, IRSN recommends to take margins in NCS calculations to bound the lack of experimental data to validate Mo cross sections
- Collaboration between IRSN and SNL to propose an integral experiment in 2015, approved by NCSP
 - Preliminary design report (CED-1) in 2018
 - Final design report (CED-2) end of 2020
- Material supply study analyzing costs in 2021
- Sleeves ordered by IRSN in April 2021 and delivered at Sandia November 2021

• Experiment planned for FY2022 Q4

Design of experiments

- Optimization of the experiments with French Prométhée workbench to maximize Mo sensitivities on k_{eff} and to match application cases remaining close to 1
 - Use of EGO, ECEGO algorithms
 - Bayesian approach with constraint on k_{eff}
- Surrogate function Sensitivity (pitch, R_{sleeves})
 - Random function
 - Interpolates calculated points
 - Gaussian predictor mean, sd:

$$\begin{split} & \mathsf{E}[\mathsf{Sens}(\mathsf{pitch},\,\mathsf{R}_{\mathsf{sleeves}})] \,=\,\mathsf{mean}(\mathsf{pitch},\,\mathsf{R}_{\mathsf{sleeves}}) \\ & \mathsf{Var}[\mathsf{Sens}(\mathsf{pitch},\,\mathsf{R}_{\mathsf{sleeves}})] \,=\,\mathsf{sd}(\mathsf{pitch},\,\mathsf{R}_{\mathsf{sleeves}})^2 \end{split}$$

06

04

0.8

1 (

0.2

0.0

% Convenient to estimate: E[Sens(pitch,water) > max{Sensitivity}]]+

Description of experiments with Mo sleeves

Use of 877 BUCCX rods

- 6.9 % ²³⁵U enriched
- Pitch (hexagonal): 1.55 cm
 - New grids to be manufactured
- Test zone with 397 rods surrounded by Mo sleeves
- Mo sleeves:
 - 0.762 mm thickness
 - External dia: 12.7 mm
 - Height: 50 cm (fissile column of rods)
 - Water can circulate inside sleeves

Reproducibility, reference and sampling experiments

- Reproducibility with complete dismantling of assembly and reassembly
 - Assessment of experimental uncertainties
- Sensitivity of k_{eff} to ⁹⁵Mo capture is low compared with sensitivity to main reactions (²³⁵U fission, ²³⁸U capture)
 - Reference experiments necessary to assess bias due to Mo cross sections
 - Hexagonal lattice with 12 rods on the side and 8 rods removed on each edge of the hexagon
- Sampling experiments
 - Assess impact of two lots of rods
 - Assess impact of rods' location

Manufacturing of sleeves

- 400 sleeves manufactured by the PLANSEE company end of May 2021 to September 2021
- Delivered to SNL November 2021
- Measured values (PLANSEE):
 - Height, external and internal diameters (very low uncertainties required by IRSN)
 - Content in AI, Cr, Cu, Fe, K, Ni, Si, C, H, N, O, Cd, Hg, Pb impurities lower than 40 μg/g and lower than 300 μg/g for W
 - Complementary measurements by Gary Harms (SNL)

	Height (mm)	External diameter (mm)	Sleeve thickness (mm)	Internal diameter (mm)	Holes diameter (mm)
Measured values	497.878 ± 0.094	12.730 ± 0.021	0.771±0.045	11.187±0.080	5.079 ± 0.023
Specification values	498 ± 1.5	12.7 ± 0.1	0.762 ± 0.076	11.176	5.08 ± 0.127

Evaluation of experimental uncertainties

- First estimate
 - Main uncertainty comes from the sleeves' thickness and gap sleeve/BUCCX rod
 - Total uncertainty estimated to be 72 pcm at 1σ level

	1σ uncertainty (systematic)	Variation	(k _{eff} (+variation)- k _{eff} (-variation))/2	∆k _{eff} (1σ)
Estimated uncertainty due to 7uPCX rods				55
Sleeves Thickness (cm) – keeping mass constant	0.0013	0.00762	168	29
Sleeves density (g/cm³)	0.01/√3	0.01	12	7
Gap sleeve/rod (cm)	0.0002	0.002	362	36
Total				72

Predicted k_{eff}

- ENDF/B-VII.0: k_{eff} = 1.00350 ± 0.00020
- ENDF/B-VII.1, ENDF/B-VIII.0, JEFF-3.1.1 and JEFF-3.3 results consistent
- Results with ⁹⁵Mo are ~200 pcm higher than ENDF/B-VII.0 results, except for JEFF-3.1.1

Comparison to application case

- UPuMoZr industrial case featuring dissolution residues of French reprocessing plant dissolver
 - Bounding composition
 - Density: 2.6 g/cm³
 - Representative of fuel burnt up to 50 GWd/t heavy metal
 - Slightly differs on the ⁹⁵Mo percentage and more on other isotopes

Element	U	Pu	Мо	Zr
Contents in wt. % (approx.)	6	2	63	28
Isotope	²³⁵ U	²³⁸ U		
Enrichment in wt. %	1	99		
Isotope	²³⁹ Pu	²⁴⁰ Pu	²⁴¹ Pu	²⁴² Pu
Content in wt. %	57	25	16	2

Isotope	⁹² Mo	⁹⁵ Mo	⁹⁶ Mo	⁹⁷ Mo	⁹⁸ Mo	¹⁰⁰ Mo
Contents in wt. %	1	21	3	23	25	27
(application case)						
Sandia experiment	14.84	15.92	16.68	9.55	24.13	9.63

Comparison to application case

- Integral sensitivity to ⁹⁵Mo total cross section:
 - Application case: $-0.1335 \pm 3.47 \times 10^{-4}$
 - Sandia experiments: -0.0843 ± 3.31×10⁻⁴
- Comparison of k_{eff} sensitivity to ⁹⁵Mo total cross section
 - Close in shape: sensitivity at the same energy (thermal bump) and first resonance of ⁹⁵Mo at 45 eV addressed
 - Slightly less sensitive than industrial case but better agreement than for previous MIRTE experiments (LCT-106)

Feedback on nuclear data

- Quite low uncertainty on ⁹⁵Mo capture cross section in thermal energy range
- However, 30 % of the prior uncertainty due to ⁹⁵Mo capture cross section
- New measurements at J-PARC (2020) and at n-tof, GELINA, RPI on enriched samples will help improving nuclear data
 - New resonance parameters and covariance data with multichannel Rmatrix SAMMY software

	Overall uncertainty	Propagated uncertainty due to ⁹⁵ Mo (n, γ) – Using TSURFER		
44 group ENDF/B-VII.0	1026 ± 0.200	328 ± 0.05		
56 group ENDF/B-VII.1	720 ± 0.226	314 ± 0.06		

Conclusions

- New experiments using Mo sleeves designed and accepted by US/DOE NCSP will be performed at SNL in 2022 Q4
- 5 experiments planned including:
 - Reference experiments: nuclear data feedback
 - Reproducibility experiments: check evaluation of experimental uncertainties
 - Sampling experiments: check positioning of rods' uncertainty
- Experiments will provide feedback on ⁹⁵Mo nuclear data in thermal energy range in keeping with new differential measurements of Mo and new assessment of cross sections

Acknowledgements

IRSN would like to thank the NCSP for reviewing the design of this experimental program and Sandia partners for their support in the definition of the program and the measurement of molybdenum sleeves. Special thanks to Gary Harms who reviewed the paper and without whom this work would not have been made possible.

Questions

