
HAL Id: hal-03738261
https://hal.science/hal-03738261

Submitted on 25 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimized Resource Allocation on Virtualized
Non-Uniform I/O Architectures

Dinh Ngoc Tu, Boris Teabe, Daniel Hagimont, Georges da Costa

To cite this version:
Dinh Ngoc Tu, Boris Teabe, Daniel Hagimont, Georges da Costa. Optimized Resource Allocation
on Virtualized Non-Uniform I/O Architectures. 22nd International Symposium on Cluster, Cloud
and Internet Computing (CCGrid 2022), May 2022, Taormina, Italy. pp.432-441, �10.1109/CC-
Grid54584.2022.00053�. �hal-03738261�

https://hal.science/hal-03738261
https://hal.archives-ouvertes.fr

Optimized Resource Allocation on Virtualized
Non-Uniform I/O Architectures

Tu Dinh Ngoc, Boris Teabe, Daniel Hagimont, Georges Da Costa
IRIT, Université de Toulouse, CNRS, Toulouse INP, UT3

Toulouse, France

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1109/CCGrid54584.2022.00053

Abstract—Nowadays, virtualization is a central element in data
centers as it allows sharing server resources among multiple
users across virtual machines (VM). These servers often follow
a Non-Uniform Memory Access (NUMA) architecture, consisting
of independent nodes with their own cache hierarchies and I/O
controllers. In this work, we investigate the impact of such an
architecture on network access.

As network devices are typically connected to one particular
NUMA node, this leads to a situation where device access on
one node is faster than another. This phenomenon is called Non-
Uniform I/O Access (NUIOA). This non-uniformity impacts the
performance of I/O applications that are not executed on the
correct NUMA node.

In this paper, we are interested in NUIOA effects in virtualized
environments. Our contribution in this work is twofold: 1) we
thoroughly study the impact of NUIOA on application perfor-
mance in VMs, and 2) we propose a resource allocation strategy
for VMs that reduces the impact of NUIOA. We implemented
our allocation strategy on the Xen hypervisor and carried out
evaluations with well-known benchmarks to validate our strategy.
The obtained results show that with our NUIOA allocation
scheme, we can improve the performance of application in VMs
by up to 20% compared to common allocation strategies.

Index Terms—I/O virtualization, NUMA, NUIOA

I. INTRODUCTION

Virtualization has become the key to increasing hosting
density and efficiency in modern datacenters by efficiently
and securely sharing the same set of hardware resources
among multiple users. Virtualized resources are managed by
a software called the hypervisor and exposed to users under
the form of virtual machines (VMs). Modern hypervisors
are capable of utilizing hardware features such as the I/O
memory management unit (IOMMU) [1] to grant VMs di-
rect access to a physical device, in a process called device
passthrough. When supported, device passthrough provides
VMs with the lowest virtualization overhead and the best
possible performance [2], and therefore is the focus of our
current work. On current server platforms, hardware com-
ponents are often connected to each other via a Peripheral
Component Interconnect Express bus, called PCIe for short.
Notable components connected using the PCIe bus include
network adapters, storage cards/adapters, GPUs and so on (see
Fig 1a for an example); PCIe has even been adapted as a
cluster interconnect bus, such as the Compute Express Link
(CXL) standard [3].

The cost of NUMA designs. On architectures where the
processor is connected to devices using a single bus link
(which is often the case for single-socket systems with uniform

Fig. 1. I/O in a server based on a a) UMA (i.e. non-NUMA) architecture; b)
NUMA architecture.

memory access, SMP), all CPU cores share the same I/O path
to a certain device (blue arrow on Fig 1a). However, with ever-
increasing demands for processing power and hosting density,
current servers can come with multiple processors, each with
its own CPU cores, memory hierarchy and I/O link organized
as an independent node (see Fig 1b). These nodes are then
linked with a fast NUMA interconnect, which can be PCIe
itself or a proprietary interconnect (e.g. Intel UPI). This inde-
pendent node architecture is often called Non-Uniform Mem-
ory Access (NUMA) [4], but its implications extend beyond
memory access, as we will demonstrate below. I/O devices
such as network cards and storage drives are most of the time
furnished with a single PCIe link, and as a result each device is
affiliated with a single NUMA node, which we call the home
node of that device. It follows that any communications (e.g.
register writes, interrupts, DMA operations) between a device
and a node that is not its home node (or remote node for short)
would suffer extra overhead, due to them needing to cross the
NUMA interconnect between nodes. This situation is called
Non-Uniform I/O Access [5], or NUIOA for short. NUIOA
not only affects I/O latency due to the longer signal path,
but may also affect the maximum available I/O bandwidth
when the workload is constrained by interconnect bandwidth.
Therefore, for I/O intensive workloads to achieve optimal
performance under NUIOA architectures, the tasks performing
I/O (in both kernel-mode and user-mode) need to be located
on the corresponding device’s home node (see Fig 1b).

Hypervisors are still (mostly) not NUIOA-ready. Cur-
rent OSes and hypervisors already support NUMA-aware
scheduling [6], [7], i.e. they take into account NUMA dis-
tance costs (between memory and CPU) when scheduling

https://doi.org/10.1109/CCGrid54584.2022.00053

multiple threads. However, NUIOA scheduling is far less
often explored; while hypervisors are capable of acquiring
home node information for each device (e.g. by using the
proximity domain information exposed by ACPI), they do not
use this information by default when scheduling VMs. As a
consequence, a VM configured with device passthrough might
be scheduled on a remote node, leading to lower performance
than one might expect. Thus, two VMs with the same charac-
teristics may have different I/O performance simply because
one VM has direct access to the device’s home node and
the other not, leading to a performance unpredictability. This
performance unpredictability is undesirable both in terms of
impacting the SLA provided to consumers, whether internal
(for private clouds) or external (for public clouds), and in terms
of resource utilization and VM density. Certain solutions like
OpenStack [8] make efforts to optimize their VMs for NUIOA;
however, they are limited to scheduling whole guests on the
corresponding home node, without targeting the applications
that live inside these VMs [9]. Evidently, it is desirable to have
an allocation strategy that takes into account NUIOA effects
and remedies the issues coming from remote I/O operations.

Our contribution in this paper is twofold: (1) we carry out an
exhaustive study of NUIOA impact on VM I/O performance;
and (2) based on our findings, we propose a novel VM resource
allocation strategy on NUIOA systems.

Study of NUIOA impact on performance. We first carried
out I/O performance evaluations of VMs hosted by the Xen
hypervisor. We experimented with various I/O workloads with
different resource allocation configurations under two types
of connections, namely Ethernet and InfiniBand. We focused
on three different aspects of performance impacts caused
by NUIOA architectures: (1) latency impacts caused by re-
mote NUIOA accesses; (2) interconnect bandwidth limitations
caused by neighboring workloads; and (3) the overhead caused
by virtual NUMA configurations on VM performance. We
found that as expected, I/O performance on VMs is optimal
when they are located on the corresponding device’s home
node; moreover, the impact of NUIOA is especially relevant
concerning high-speed networking, especially when coupled
with an efficient I/O stack.

NUIOA-aware VM allocation scheme. Our second con-
tribution is a NUIOA-aware VM allocation scheme (NUIOA
allocator for short) for combating NUIOA effects. The basic
idea behind our NUIOA-aware allocator is threefold. Firstly,
we ensure that each VM assigned with a device is also
provided with one part of the home node’s CPU and memory
resources. Secondly, we inform each VM of this association
between device and resources by exposing a virtual NUMA
(vNUMA) topology. Finally, we optimize the scheduling of
I/O applications in VMs by locating them on home nodes
to avoid any NUIOA effects while avoiding oversubscribing
or wasting resources. We experimented with our NUIOA-
aware allocation strategy on Xen; our results show that the
NUIOA allocator improves application performance by up to
20% compared to resource allocation strategies in Xen.

The remainder of our paper is organized as follows. In

Section II, we present the necessary background to understand
our contributions, including the basic forms of virtualization,
as well as the role of NUMA in virtualizing I/O devices. In
Section III, we study existing software and hardware solutions
that tackle the NUIOA problem, and discuss the various
tradeoffs relevant to each solution. Section IV presents an
evaluation of an I/O heavy application with multiple different
NUIOA setups; from our evaluation, we observe which factors
influenced NUIOA effects, and therefore I/O virtualization
performance. Section V builds on our aforementioned obser-
vations to establish our contribution, a NUIOA-aware VM
resource allocation strategy that involves a hypervisor-layer
NUIOA allocator and a workload scheduling methodology.
We also present the implementation of our resource allocation
strategy in detail, and provide some discussions on potential
venues for improvement. In Section VI, we show how our
NUIOA-aware VM resource allocation strategy minimizes the
NUIOA penalty of virtualized I/O in comparison to various
other setups, and discuss the potential overhead of our solu-
tion. Finally, Section VII concludes our paper.

II. BACKGROUND

In this section, we present concepts relevant to our con-
tribution, including virtualization and the importance of
NUMA/NUIOA topologies.

A. Virtualization

Virtualization technology allows the creation of multiple
virtual machines (VMs) on a single physical host using a
software called the hypervisor. Hypervisors distribute I/O
services (virtual storage, virtual networking, etc.) to VMs via
one of three main ways, ordered by increasing levels of per-
formance: by emulating a real hardware device; by providing
an optimized virtual I/O interface to the VM (also known as
paravirtualization); or by completely delegating access to a
physical device to the VM using device passthrough. In this
work, we focus on device passthrough in the context of NUMA
systems, the particularities of which we detail below.

B. NUMA and its relevance to I/O virtualization

Modern servers tend to use a NUMA architecture because it
allows increasing the number of cores and memory available
on the servers. A NUMA architecture consists of several
independent nodes, each containing a subset of CPU cores
and memory; an example of which is shown on Figure 1.

NUMA in virtualization. Hypervisors often use one of two
approaches for handling VM resources on NUMA architec-
tures: (1) memory interleaving and (2) vNUMA.

Memory interleaving is the default allocation strategy on
hypervisor such as Xen [10]. It consists of allocating the VM
memory by regions of 1 GB with a round-robin algorithm
on each NUMA node, then presenting a Uniform Memory
Architecture (UMA) to the VM.

vNUMA involves presenting to the VM a virtual NUMA
topology which maps its resources to virtual NUMA nodes. It
is supported by modern hypervisors such as Xen, VMware and

Hyper-V. vNUMA can take advantage of existing operating
systems’ NUMA awareness to improve VM guests’ CPU and
memory allocation locality.

Locality of devices and virtualization. With ever-
increasing performance of I/O devices and system buses such
as PCI Express, servers are often equipped with only a single
device of each I/O type. In other words, each server would
have one network adapter, one NVMe storage device, and so
on. Thus, I/O application performance both inside and outside
VMs depend on the locality of the application in regards to the
device it interacts with. By default, hypervisors do not relocate
applications depending on their NUIOA affinity, leading to
wasted performance in case of applications that perform direct
device I/O (e.g. userspace drivers, RDMA applications, etc.)
Moreover, some current hypervisors like Xen do not expose
device locality to guest OSes, therefore causing VMs to be
unaware of this association and unable to make the appropriate
scheduling decisions.

Studies on NUMA in virtualized environments mostly target
resource allocation of VMs on NUMA architectures [11], [12],
or the scheduling of VM vCPUs on NUMA [10], [13]. These
works focused mostly on CPU and memory locality and put
aside device locality. In our work, we focus on the question of
device locality and NUIOA in the context of virtualization.

III. RELATED WORK

Several research works have focused on the problem of
NUIOA management, both in virtualized and non-virtualized
environments. These works can be classified into two main
categories: software- and hardware-based implementations.
We detail examples of both implementation categories below.

A. Software solutions
Several studies propose software solutions to manage

NUIOA mainly in non-virtualized environments. The existing
state-of-the-art software solutions involve either (1) recom-
mending users to manually pin I/O-intensive applications to
their device’s home node to ensure locality; or (2) implement-
ing an automatic pinning mechanism [5], [14]–[17], combined
with migrating threads away from their home node as needed
for load balancing purposes [18]. Other studies investigate
the implementation of NUIOA-aware schedulers [18], [19]
that extend existing NUMA-aware schedulers to include PCIe
locality constraints. While these solutions can manage the
NUIOA problem, as we stated in Section I, some current
hypervisors like Xen do not expose NUIOA locality to VMs,
making these solutions inappropriate in a virtualized context.

Other works study I/O performance on NUMA architec-
tures, particularly by investigating the resource allocation of
VMs and its I/O services (e.g. privileged domains that provide
I/O to other VMs) [11], [12]. These works mostly focus on
colocating these privileged and user domains on the same
physical NUMA nodes to ensure locality for these services;
however, they do not study the problem of NUIOA in detail.

Existing systems like Red Hat Enterprise Linux or Open-
Stack provide recommendations for NUIOA performance op-
timization by allocating I/O-heavy VMs entirely on their

home node [9], [20]. While this solution ensures optimal
I/O performance, it also leads to processor/memory resource
contention in cases where multiple VMs share the same device,
where multiple I/O devices are connected to the same node, or
where one VM is connected to multiple different devices. In
other words, a simple 1:1 relation between VM:device restricts
the scalability of such a solution.

B. Hardware solutions

Various works propose hardware-level solutions for mitigat-
ing NUIOA effects. Works from VMware [17], Squyres [21],
and Moreaud et al. [22] propose a multihomed approach by
equipping each NUMA node with its separate I/O devices,
therefore ensuring that applications on each node will have
access to its own local devices. While effective at mitigating
NUIOA effects, this approach requires significant extra invest-
ment for each class of device (extra network cards, storage
devices, GPUs...), leading to higher costs, higher energy
consumption and lower hardware utilization. Additionally,
as pointed out by Smolyar et al. [23], installing multiple
devices is not a complete solution since it cannot ensure
optimal performance during thread migration, and increasing
I/O performance means that modern datacenters are trending
towards providing a single NIC/disk/GPU per server.

Solutions such as Mellanox SocketDirect NICs [24] and
IOctopus [23] propose to avoid NUIOA effects by connect-
ing the same device to multiple NUMA nodes through a
multi-interface hardware design combined with hardware-level
switching support. While promising, these solutions require
the use of multi-interface devices, which comes with additional
costs compared to single-slot hardware, and utilizes extra PCIe
slots that could otherwise be used with other devices.

C. Positioning of our work

Our work focuses on the problem of NUIOA scheduling,
which has yet to receive widespread attention compared to
(processor and memory-level) NUMA scheduling. In contrast
to other works on NUIOA, we propose an unique scheme for
optimizing resource allocation of I/O workloads that reduces
the effect of NUIOA without requiring hardware modifica-
tions, while preserving the scalability benefits of NUMA
architectures namely by not requiring I/O workloads to be
wholly allocated on a single NUMA home node.

IV. IMPACT OF NUIOA ON VM PERFORMANCE

A. Methodology

In this section, we first evaluated various I/O workloads to
see how NUIOA impacts application performance.

Hardware setup. Experiments ran on a cluster of Dell Pow-
erEdge R630 servers, the configurations of which are detailed
in Table I. Each server is equipped with two processors, and
is therefore divided into two NUMA nodes numbered 0 and
1; both the Ethernet and InfiniBand devices are connected to
node 0 of each server, or the home node.

Software setup. To measure I/O performance, we used the
Sockperf benchmark tool [25]. We used Sockperf in one of two

TABLE I
HARDWARE CONFIGURATIONS USED FOR NUIOA EVALUATIONS.

Component Characteristics
CPU 2x Intel Xeon E5-2630 v3 (8 cores per node)
Memory 128 GB (64 GB per node)
Ethernet adapter Intel 82599ES 10 Gbps (node 0)
InfiniBand adapter Mellanox MT27500 56 Gbps (node 0)
Storage 600 GB HDD

modes depending on what we wanted to examine: “latency
under load” mode which measures packet latency under a
certain network load level, and therefore is affected by NUIOA
latency; and “throughput” mode which measures the maximum
throughput delivered by the network card and is therefore
affected by NUIOA bandwidth effects. For the purposes of
virtual NUIOA evaluations, we deployed Sockperf on a VM
running Ubuntu 20.04 on top of Xen [26] version 4.11. Each
VM is equipped with 6 vCPUs, 8 GB of memory, and two
network interfaces: one Ethernet and one Infiniband, both
working in device passthrough mode. For each benchmark, the
VM connects to a secondary machine with the same hardware
configuration running bare-metal Linux.

Experiment details. As explained in Section I, NUIOA
effects originate from the need for I/O operations to cross
the NUMA interconnect. To see how these effects influence
I/O-heavy applications, we set up the following experiments:

1) NUIOA latency effects. In this experiment, we run
Sockperf in latency mode while varying the locality of
the VM with regards to the network device’s home node
in order to investigate how NUIOA affects I/O latencies.

2) NUIOA with bandwidth contention. In this experi-
ment, we discover how competing NUMA interconnect
traffic influences NUIOA effects on application perfor-
mance. We use a competing neighbor application to add
load to the interconnect.

3) vNUMA configurations. In this experiment, we study
the impact of NUMA configuration for the VM on I/O
performance with NUIOA.

We define the configurations we used for the aforementioned
experiments in Table II. Each row of the table corresponds
to a distinct VM resource configuration. For example, in
the first listed configuration named A0

Eth, we provisioned a
VM with its resources allocated on physical node 0 and a
passthrough Ethernet adapter, with no interfering neighbor;
moreover, we allocated the privileged domain (Xen Dom0)
entirely on node 0. Note that since our VMs use the devices in
passthrough mode, the privileged domain does not interfere in
the communication path with the devices. Thus, all the results
obtained would have been similar if the privileged domain
resources were allocated on node 1.

For each configuration, we measured median network la-
tency with Sockperf in both directions: reception (Rx) and
transmission (Tx) while varying the network load (message
size and rate). For the evaluation on Ethernet, we used the
default Linux TCP stack as it is the case with most appli-
cations. With InfiniBand configurations, we set up Sockperf

with libvma 9.0.2 [27] and MLNX OFED 4.9 drivers to take
advantage of the provided kernel-bypass features as is often
done for HPC workloads. We repeat each experiment five
times; as we observe low standard deviation among these runs,
we report the average results.

TABLE II
VARIOUS CONFIGURATIONS AND ASSOCIATED ACRONYMS. (SEE

SECTION IV-B)

Name Node Device Dom0 Neighbor
A0

Eth Node 0 Ethernet Node 0 No
A0

Ib Node 0 Infiniband Node 0 No
A1

Eth Node 1 Ethernet Node 0 No
A1

Ib Node 1 Infiniband Node 0 No
N0

Ib Node 0 Infiniband Node 0 Yes
vN0,1

Ib Nodes 0 & 1 Infiniband Node 0 No
U0,1
Ib Nodes 0 & 1 Infiniband Node 0 No

B. Experimental results

We consider one ideal configuration (A0
Eth on Ethernet

and A0
Ib on Infiniband) as the reference configuration ref ;

for each other configuration X , we calculate the performance
impact deg using the following formula for latency (lat) and
bandwidth (bw):

deglat =
latX − latref

latref
(1)

degbw =
bwref − bwX

bwref
(2)

with latX and bwX being the latency and bandwidth results
of configuration X , respectively.

32 480 992 1468

0
5

10
15

%
 D

eg

a)
 Ethernet

80000 mps

32 480 992 1468

b)
 Ethernet

100000 mps

32 480 992 1468

c)
 Ethernet

140000 mps

32 480 992 1468
Packet size (Bytes)

0
5

10
15

%
 D

eg

d)
 Infiniband

100000 mps

32 480 992 1468
Packet size (Bytes)

e)
 Infiniband

200000 mps

32 480 992 1468
Packet size (Bytes)

f)
 Infiniband

400000 mps

Rx Tx

Fig. 2. NUIOA latency effects on Sockperf performance for A0
Eth versus

A1
Eth and A0

Ib versus A1
Ib in function of messages per second (mps) and

packet size. Rx and Tx stand for reception and transmission respectively.

NUIOA latency effects. To assess the impact of the NUMA
interconnect distance on I/O performance, we compare the
network latency and bandwidth figures obtained when a sin-
gle VM is allocated on the home node versus when it is
allocated on the remote node. This corresponds to comparing
the performance of A0

Eth versus A1
Eth for Ethernet devices,

0

50

100

150

%
 C

PU

 Rx

80000 mps

 Rx

100000 mps

 Rx

140000 mps

32 480 992 1468
Packet size (Bytes)

0

50

100

150

%
 C

PU

 Tx

80000 mps

32 480 992 1468
Packet size (Bytes)

 Tx

100000 mps

32 480 992 1468
Packet size (Bytes)

 Tx

140000 mps

Local Remote

Fig. 3. CPU consumption for A0
Eth versus A1

Eth on Ethernet.

and A0
Ib versus A1

Ib for the InfiniBand device respectively.
Fig 2 presents NUIOA latency impacts on both Ethernet
and InfiniBand devices; similarly, Fig 4 presents NUIOA
bandwidth impacts.

For Ethernet devices (first row of Fig 2), we observe
that these devices experience relatively consistent NUIOA
performance degradation, at around 7% for both transmission
and reception regardless of packet rate. This is explained by
the longer I/O path of Sockperf with Ethernet devices, which
involves the Linux kernel’s network stack and therefore serves
to mask NUIOA effects. In fact, without a kernel-bypass
solution, Sockperf on Ethernet shows little to no bandwidth
impact from NUIOA at any setting (see Fig 4a).

Concerning CPU usage with Ethernet (first row of Fig 3), we
observe fairly equal CPU consumptions between the two con-
figurations on the transmit path, with higher CPU usage while
sending 32-byte packets. Conversely, on the receive path, we
observe a small (approximately 5%) but consistent difference
in CPU consumption between the two configurations at packet
sizes higher than 32 bytes; this can be explained by the higher
cost of cross-node memory copies needed for packet reception.

In the case of InfiniBand networking, Sockperf communi-
cates directly with the device through the use of libvma-based
kernel-bypass; the optimized I/O path of libvma allows us to
observe NUIOA effects in more detail. Firstly, we observe
that Sockperf’s CPU consumptions under all configurations
are identical, since Sockperf on InfiniBand makes use of active
polling to minimize latency. Note that high-speed Ethernet
devices are still subject to the same NUIOA effects, especially
with optimized I/O stacks like DPDK (Data Plane Develop-
ment Kit) or libvma (Mellanox’s Messaging Accelerator). In
general, we observe an approximately 13% latency degradation
on the receive path, compared to 6-10% on the transmission
path. This is explained by an extraneous memory copy on
the Rx path resulting from zero-copy receives being disabled
in Sockperf. This justifies the lower Rx performance impact
with 32-byte packets. Regardless, we still observe an effect on
packet latency on the Tx path, which holds true regardless of

message size and rate, suggesting that this impact is inherent
to NUIOA and not dependent on memory bandwidth usage.

32 480 992 1468
Packet size (Bytes)

0
15
30

%
 D

eg

a)
 Ethernet

32 480 992 1468
Packet size (Bytes)

b)
 Infiniband

Rx Tx

Fig. 4. Socket-interconnect impact on Rx/Tx bandwidth.

vNUMA configurations. VMs that span multiple physical
NUMA nodes are typically unaware of the underlying physical
topology, and therefore are not able to make appropriate
scheduling decisions. Hypervisors can remedy this issue in
using one of two approaches as described in Section II: (1)
interleaving the memory of the VM between the allocated
nodes and presenting a UMA architecture to the VM (the
default on Xen); or (2) exposing a virtual NUMA topology
that mirrors the underlying topology used to allocate the VM’s
resources. In our experimental configurations, we allocated
50% of the VM’s resources on each physical NUMA node.

We started by comparing the default interleaved configura-
tion U0,1

Ib (i.e. without vNUMA) to the reference configuration
A0

Ib. The first row of Fig 5 shows the recorded latency.
We observe nearly the same or even worse performance
compared to the previous experiment (13% for Rx and 16%
for Tx) even though parts of the VM are located in the
network device’s home node. This is explained by the VM not
having knowledge of NUMA topologies nor of device locality,
resulting in I/O applications being scheduled on a remote node,
combined with remote NUMA accesses caused by the lack of
memory/CPU locality.

Next, we studied Sockperf performance on VMs with
vNUMA enabled (see configuration vN0,1

Ib of Table II). We
configured our VM with two virtual NUMA nodes, each
equipped with 4 GB of RAM and 3 vCPUs. We present our
results in the second row of Fig 5. We observe no performance
degradation on the Rx path compared to the reference con-
figuration, since the VM is capable of utilizing the vNUMA
topology to avoid remote memory accesses during packet
copies; however, the Tx path shows significant performance
degradation of up to 20%, in the same fashion as seen in
the UMA configurations presented above. We observe that in
this configuration, neither Xen nor the guest take into account
NUIOA effects while scheduling tasks; as a result, the Tx
thread of Sockperf is occasionally scheduled onto a remote
node, causing performance degradation.

C. Lessons learned
Following the aforementioned experiments, we list our

observations of I/O application performance running on VMs
under NUIOA conditions.

32 480 992 1468
0
5

10
15
20
25

%
 D

eg

a)
 Interleave

100000 mps

32 480 992 1468

b)
 Interleave

200000 mps

32 480 992 1468

c)
 Interleave

400000 mps

32 480 992 1468
Packet size (Bytes)

0
5

10
15
20
25

%
 D

eg

d)
 vNUMA

100000 mps

32 480 992 1468
Packet size (Bytes)

e)
 vNUMA

200000 mps

32 480 992 1468
Packet size (Bytes)

f)
 vNUMA

400000 mps

Rx Tx

Fig. 5. Impact of interleaved (U0,1
Ib) and vNUMA (vN0,1

Ib) configurations on
Sockperf latency compared to the reference A0

Ib.

corescoresmem

ctrlr

LLC

I/O Ctrlr

Network

M
em

ory

PCIe

corescores mem

ctrlr

LLC

I/O Ctrlr

M
em

ory

Hypervisor

I/O
processes

Normal

processes

Normal

processes

I/O
processes

I/O
processes

Normal

processes

VM1 VM2 VM3

H

H H H

Fig. 6. Overview of our NUIOA-aware allocation strategy. I/O processes of
each VM are allocated on the home node H (colored in blue)

1) As expected, I/O applications reach maximum perfor-
mance when they are located on the corresponding
device’s home node.

2) Performance impacts caused by NUIOA effects are most
notable with high-speed I/O, such as InfiniBand devices
with kernel-bypass libraries.

3) NUMA interconnect utilization by neighboring work-
loads has little impact on I/O performance.

4) While a UMA VM configuration can cause performance
degradation of I/O applications, vNUMA can serve to
improve performance under certain conditions (as seen
in the vNUMA Rx benchmarks).

V. NUIOA-AWARE VM RESOURCE ALLOCATION
STRATEGY

In this section, we present our resource allocation approach
for mitigating the impacts of NUIOA effects on I/O workloads.

Overview. Our allocation strategy relies on the observation
that ideally, the best resource allocation strategy for I/O
applications is to place all of them on their corresponding
home node. However, CPU and memory constraints (e.g.

physical core counts and memory module sizes limits) mean
that this strategy is not always applicable in practice. We work
around this issue by ensuring that each aforementioned VM is
allocated parts of the resources belonging to its device’s home
node. In other words, if a network device is connected to node
H then any VM with I/O applications using that device would
receive parts of the resources of node H , as illustrated in Fig 6.
Additionally, we ensure that I/O workloads are scheduled on
the correct node for its device to avoid any associated NUIOA
costs. We describe below our allocation strategy in detail.

Hypervisor-layer resource allocation. Our first contribu-
tion is a hypervisor-side allocator that ensures I/O-heavy VMs
are provided with resources backed by an appropriate NUMA
node. We first gather information about the system’s NUIOA
topology, including the relationship from each PCI device to
the NUMA node it is attached to. The system administrator
defines each VM as being I/O-heavy by configuring device
passthrough for that VM. For each such VM, we configure
its resources allocation using vNUMA to provide it with parts
of the NUMA node that its passthrough device is attached to.
If the VM is not declared as an I/O-heavy VM, we simply
fall back to the default allocation behavior. Otherwise, given
a VM with a memory size of m and n vCPUs, we calculate
the memory and CPU resources mH and nH allocated to the
VM on its home node H using the following formulas:

mH =

⌊
Mf

H ∗m
Mf

⌋
(3)

nH =

⌊
Nf

H ∗ n
Nf

⌋
(4)

where Mf
H and Nf

H are the free memory and CPU resources
of the home node, and Mf and Nf are the free memory and
CPU resources of the whole server, respectively. In short, the
proportion of NUMA home node resources allocated to each
I/O VM is proportional to the VM’s total size.

NUIOA workload scheduling. As we observed in Sec-
tion IV, simply configuring the VM with vNUMA is in-
sufficient to ensure optimal I/O performance. Instead, both
hypervisor and VM levels of scheduling need to be NUIOA-
aware. We first identify I/O-heavy workloads running on
the host; we propose three approaches for identifying these
workloads, the details of which are described in Section V-A.
After identifying I/O-heavy workloads, we ensure that they are
prioritized to run on the I/O home node whenever possible.

A. Implementation
We implemented our NUIOA-aware allocator on Ubuntu

20.04 and Debian 10 running on top of Xen 4.11. Our
prototype consists of a set of userspace tools for topology and
workload discovery. These tools interact directly with existing
libraries hypervisors and OS interfaces, meaning they can be
easily reused across different hypervisor technology stacks, or
integrated into virtualization platforms such as OpenStack.

Hypervisor-layer implementation. On the hypervisor, our
allocator mainly involves detecting existing resources and their

relative topologies. For example, for each device concerned by
NUIOA allocation, we examine its hardware topology, includ-
ing IOMMU group information as exposed by the hypervisor
as well as the affinity to its home NUMA node. Next, we
correlate the association of NUIOA devices to VMs, also using
existing hypervisor APIs. We can directly detect Xen device
passthrough by using Xen’s libxl facilities, or detect VFIO
(Virtual Function I/O)-based device passthrough by probing
open VFIO device files, then cross-referencing them with their
IOMMU group information.

VM implementation. Upon VM boot, we first gather
information about the virtual PCI topology, in order to discover
the NUMA node affinities of each NUIOA passthrough device.
Following our observations in Section IV that kernel-bypass
solutions are most impacted by NUIOA effects both in terms
of latency and throughput, we therefore focus our detection
of I/O-heavy applications on detecting the presence of the
aforementioned kernel-bypass platforms:

1) If a workload relies on libraries that perform direct
device communication (e.g. libvma), we automatically
assume this workload to be NUIOA-prone. Detection of
these libraries is simply done by scanning each process’s
memory mapping (i.e. /proc/pid/maps)

2) We use techniques similar to hypervisor-layer NUIOA
detection on I/O applications. Namely, DPDK appli-
cations can utilize kernel drivers such as UIO, VFIO
or specific drivers (e.g. mlx4-core) for direct hardware
communication; these drivers are detectable using the
same technique as previously described.

Once we identify any NUIOA-prone workloads running on
the system, we configure vNUMA on the VMs hosting these
workloads, and then assign them a NUIOA affinity using OS-
level tools like numactl. To maximize resource usage across all
NUMA nodes while avoiding oversubscribing a single NUMA
node when hosting many I/O applications, we use a soft-
affinity scheme, where the NUIOA-prone workload is pinned
to its home node when there’s sufficient resources (free CPU
time, free memory) to fit the workload in question. Otherwise,
the workload is allowed to span multiple NUMA nodes and
make use of the resources it requested.

B. Discussion

As stated in Section II, vNUMA is the main mechanism
for exposing NUMA/NUIOA topology information to VMs.
This topology information is prone to changes during the
lifetime of the VM, either for resource utilization fairness and
optimizations implemented by the hypervisor (e.g. CPU load
balancing, VM live migration, memory ballooning), or by the
use of certain communication mechanisms (e.g. page flipping).
However, existing hypervisors and guest OSes are not designed
to handle changes to their NUMA topologies, often requiring
a reboot and redetection of the exposed topology.

To avoid the issue of topology changes, our approaches
could be combined with those of Bui et al. [13] and Gauthier
et al. [10] that propose dynamic vNUMA mechanisms which
can be updated during VM execution. In particular, as a

VM’s underlying topology is changed by these operations, the
hypervisor can provide the VM with topology updates that
trigger reevaluation of workloads running inside the VM for
NUIOA properties, and relocate them if necessary.

VI. EVALUATION

This section covers the evaluation of our NUIOA-aware
allocation strategy. Our goal is to estimate the impact of our
strategy on application performance. For this, we used a set
of benchmarks as described in Table III. We examined several
VM allocation schemes with regards to NUMA topologies:

1) VM fully allocated on the device’s home node (our best-
case, reference configuration);

2) VM fully allocated on the remote node (noted Remote);
3) VM split between both the home and remote nodes

(noted UMA);
4) VM split between both the home and remote nodes,

vNUMA enabled (noted vNUMA);
5) VM split between both the home and remote nodes,

vNUMA enabled, with our NUIOA-aware allocation
(noted NUIOA-aware).

We provided the VM used in our experiment with 6 vCPU,
8 GB of RAM; additionally, we allocated the privileged
domain’s resources entirely on the machine’s node 0. If not
otherwise specified, our experimental environment (software
and hardware) is identical to that of Section IV.

TABLE III
LIST OF BENCHMARKS USED FOR NUIOA EVALUATION.

Benchmark (metric) Description
Sockperf See Section IV.
(Latency, Bandwidth)
Perftest [28] Generate a synthetic stream of RDMA
(Latency) operations: read, send, write, atomic.
Memcached [29] Remote client sending request
(Transactions per second) to an in-memory key-value store.

A. Result analysis

Sockperf. Our first evaluation aims to validate our allocator
strategy with Sockperf. Like as shown in Section IV, we used
the benchmark to measure both network latency and band-
width. Figs 7 and 8 respectively show the latency degradation
on InfiniBand and Ethernet networking; Figs 9 and 10 show
bandwidth figures for both interfaces. The left side of each
figure shows the performance degradation on the Rx path (i.e.
the VM is receiving packets); conversely, the right side of each
figure corresponds to the Tx path. We note that when using
the InfiniBand interface, the performance degradation % Deg
under our NUIOA-aware allocator is lower than that of other
VM allocation schemes on both the Rx and Tx paths. For
instance, performance degradations reach approximately 20%
at 200000 and 400000 messages per second with the vNUMA
configuration, compared to below 3% under our strategy. On
the other hand, workloads using Ethernet adapters with kernel
I/O (Fig 7) show more variability and less overall performance
impact. While our allocation strategy shows little improvement

32 480 992 1468
0
5

10
15
20

%
 D

eg

100000 mps

32 480 992 1468

100000 mps

32 480 992 1468
0
5

10
15
20

%
 D

eg

200000 mps

32 480 992 1468

200000 mps

32 480 992 1468
Packet size (Bytes)

 Rx

0
5

10
15
20

%
 D

eg

400000 mps

32 480 992 1468
Packet size (Bytes)

 Tx

400000 mps

Remote UMA vNUMA NUIOA-aware

Fig. 7. Sockperf latency evaluation on InfiniBand networking.

over other allocation schemes, it remains comparable to that of
our best-case configuration, showing that our NUIOA allocator
causes little to no performance degradation on this particular
workload. Note that the UMA allocation scheme garners a
performance impact on many configurations since the lack of
NUMA-awareness causes remote memory accesses between
the application and guest kernel; however, UMA allocation is
a very common configuration for large VMs, and is in fact the
default on Xen when vNUMA is not configured.

Figs 9 and 10 present the bandwidth results under our
NUIOA allocator compared to other allocation schemes. Sim-
ilarly to our latency results presented above, we note from
Fig 9 that our allocation strategy shows nearly zero bandwidth
degradation on InfiniBand networking, while on the Ethernet
device (Fig 10) the impact of the NUIOA-aware strategy is
lower, yet our scheme remains competitive with our reference.

Perftest RDMA. Perftest [28] is a software suite for
benchmarking the performance of RDMA verbs over RDMA-
capable network interfaces such as InfiniBand and RoCE.
We evaluated the performance of all four main operations:
send (destination node chooses data location), RDMA read,
RDMA write and RDMA atomic fetch+add over two operation
directions: transmit (Tx) where the VM-under-test initiates the
RDMA operation, as well as receive (Rx) where the VM-
under-test responds to the RDMA operation. Fig 11 shows
the results obtained from Perftest. We observe that receiving
RDMA writes causes a higher degradation than receiving
RDMA reads, whereas the degradation is generally compa-
rable when transmitting different types of RDMA operations.

32 480 992 1468

0
5

10
15
20

%
 D

eg

80000 mps

32 480 992 1468

80000 mps

32 480 992 1468

0
5

10
15
20

%
 D

eg

100000 mps

32 480 992 1468

100000 mps

32 480 992 1468
Packet size (Bytes)

 Rx

0
5

10
15
20

%
 D

eg

140000 mps

32 480 992 1468
Packet size (Bytes)

 Tx

140000 mps

Remote UMA vNUMA NUIOA-aware

Fig. 8. Sockperf latency evaluation on Ethernet networking.

32 480 992 1468
Packet size (Bytes)

0
10
20
30

%
 D

eg

 Rx

32 480 992 1468
Packet size (Bytes)

Tx
Remote UMA vNUMA NUIOA-aware

Fig. 9. Sockperf bandwidth results on InfiniBand networking.

Nevertheless, in all cases, our NUIOA allocator shows iden-
tical performance to the reference configuration, while other
configurations show anywhere from 3-10% of degradation.

FIO. We assessed the impact of our allocation strategy
with a file system performance benchmark named fio [30].
This benchmark is used to compute throughput for a realistic
workload on an active disk. We deployed fio on our test
VM configured with a infiniband device, and the benchmark
performs IO requests to the remote machine with the data
loaded into the ramdisk in order to not have the disk latency as
a bottleneck. Therefore, all I/O requests use the network as it is
the case with distributed file systems. The results obtained are
presented in Fig 12. We can observe that our NUIOA-aware
allocator shows almost identical performance to the reference
configuration, while other configurations show anywhere from
3-7% of performance degradation.

Memcached benchmarks. Memcached is a popular in
memory key-value store that can be used as a temporary
object cache. Being an in-memory database, Memcached is

32 480 992 1468
Packet size (Bytes)

0
10
20
30

%
 D

eg

a) Rx

32 480 992 1468
Packet size (Bytes)

b) Tx
Remote UMA vNUMA NUIOA-aware

Fig. 10. Sockperf bandwidth results on Ethernet networking.

atomic read send write
Operation

0

5

10

15

%
 D

eg

a) Rx

atomic read send write
Operation

b) Tx

Remote UMA vNUMA NUIOA allocator

Fig. 11. Perftest evaluation results.

mostly CPU- and memory-intensive; we therefore used the
program to demonstrate that our NUIOA-aware allocation
strategy can be used for all classes of applications, including
CPU- and memory-heavy ones. We configured Memcached
to listen over the Infiniband interface for any requests, then
used the Memaslap load generator client on another physical
machine to stress the Memcached server. Fig 13 presents the
performance degradation % Deg for each VM configuration
compared to our reference configuration. We note that putting
Memcached on the remote note presents nearly no perfor-
mance penalty; however, running Memcached on a UMA or
vNUMA VM causes a staggering 30% slowdown. This implies
that the penalty caused by these configurations come from
NUMA remote accesses themselves rather than any NUIOA
effect, and that even vNUMA is by itself insufficient to stop
this overhead. Regardless, our NUMA affinity-based strategy
ensures similar performance as long as Memcached fits on
one NUMA node, further stressing the importance of NUMA-
aware workload scheduling.

B. Scalability evaluation

In this section, we demonstrate the ability of our allocation
strategy to identify I/O-heavy workloads and schedule them on
their home nodes when colocated with other applications in
the same VM. Using our allocation strategy, we compare the
obtained results in two scenarios: a) when running Sockperf
alone, and b) when colocating the Sockperf VM with another
VM hosting several instances of Sysbench’s CPU benchmark.
Table IV presents the results with each line representing an
execution scenario: the first column contains the number of
running instances of Sysbench; the second column presents
the resulting Sockperf latency increase compared to when it
is executed alone; and the last column shows the average

Remote UMA vNUMA NUIOA-aware
0

5

10

15

%
 D

eg

Fig. 12. Fio evaluation results.

Remote UMA vNUMA NUIOA-aware
0

10

20

30

%
 D

eg

Fig. 13. Memcached evaluation results.

QPS (Query Per Second) for all Sysbench instances. We
observe that the performance degradation of Sockperf is close
to zero in all scenario, regardless of how many Sysbench
instances were running. This implies that regardless of the
Sysbench VM’s CPU activity, our workload detector correctly
identified I/O-heavy workloads running inside the VM and
applied the correct affinity settings. Moreover, the performance
of Sysbench is not impacted, further demonstrating that our
allocation strategy does not hurt other running workloads.

TABLE IV
PERFORMANCE IMPACT ON SOCKPERF WITH VARYING NUMBER OF

SYSBENCH INSTANCES

No. instances Sysbench Sockperf slowdown (%) Sysbench QPS
1 0.59 685.12
2 0.55 684.68
4 0.93 683.55

C. Overhead of NUIOA-aware allocation

While our NUIOA-aware allocation strategy causes minimal
application overhead as seen from our evaluations, it remains
that our NUIOA allocator can introduce several issues involv-
ing both performance and administration overhead aspects:

• System operators must define a VM as an I/O-heavy
VM. This can be done semi-automatically using the
approaches described in Section V-A, or by the user
simply by offering different classes of VMs (e.g. CPU-
heavy, memory-heavy, I/O-heavy).

• Our soft-affinity pinning strategy only kicks in when
there exists sufficient free resources on the workload’s
home node, deferring to the VM scheduler otherwise.
Techniques such as scheduler-level soft affinity [31] can
be used in the guest to prioritize scheduling I/O-extensive
workloads on the home node.

• Our allocator requires enabling vNUMA on each I/O-
heavy VM, which may introduce performance penalties to

both I/O and non-I/O applications. However, as discussed
in Section V-B, our allocator can be combined with
dynamic vNUMA solutions to reduce this penalty.

VII. CONCLUSION

In this paper, we studied in detail the various effects of
NUIOA on I/O performance using multiple different workload
and device types.

We thoroughly evaluated the impact of NUIOA on applica-
tion performance in VMs and showed that current systems still
experience performance impacts caused by NUIOA, with up
to a 20% increase in latency and 10% decrease in bandwidth.
We provide recommendations to resolve this issue.

We proposed a NUIOA-aware allocation strategy that dis-
tributes VMs over multiple physical NUMA nodes while
informing VMs of NUIOA affinities, and showed that our
scheme improves I/O performance similar to an optimal behav-
ior, therefore preventing the 20% impact on various operations
compared to the default VM allocation strategies.

ACKNOWLEDGMENTS

This work is supported by the French Agence nationale de
la recherche under the ANR WalkIn (ANR-20-CE25-0005)
and ANR PicNic (ANR-20-CE25-0013) projects. Experiments
presented in this paper were carried out using the Grid’5000
testbed, supported by a scientific interest group hosted by Inria
and including CNRS, RENATER and several Universities as
well as other organizations (see https://www.grid5000.fr).

REFERENCES

[1] I. Advanced Micro Devices, “IOMMU Architectural Specification.”
https://kib.kiev.ua/x86docs/AMD/IOMMU/48882-2.00.pdf, 2021.

[2] M. Mahalingam, “I/O Architectures for Virtualization.” http://
download3.vmware.com/vmworld/2006/tac0080.pdf, 2021.

[3] S. V. Doren, “Abstract - hoti 2019: Compute express link,” in 2019
IEEE Symposium on High-Performance Interconnects (HOTI). Los
Alamitos, CA, USA: IEEE Computer Society, aug 2019, pp. 18–18.
[Online]. Available: https://doi.ieeecomputersociety.org/10.1109/HOTI.
2019.00017

[4] C. Lameter, “An overview of non-uniform memory access,” Communi-
cations of the ACM, vol. 56, no. 9, pp. 59–54, 2013.

[5] B. Goglin and S. Moreaud, “Dodging non-uniform i/o access in
hierarchical collective operations for multicore clusters,” in Proceedings
of the 2011 IEEE International Symposium on Parallel and Distributed
Processing Workshops and PhD Forum, ser. IPDPSW ’11. USA:
IEEE Computer Society, 2011, p. 788–794. [Online]. Available:
https://doi.org/10.1109/IPDPS.2011.222

[6] F. Gaud, B. Lepers, J. Funston, M. Dashti, A. Fedorova, V. Quéma,
R. Lachaize, and M. Roth, “Challenges of memory management on
modern numa systems,” Commun. ACM, vol. 58, no. 12, p. 59–66,
Nov. 2015. [Online]. Available: https://doi.org/10.1145/2814328

[7] Libnuma, “A NUMA API for LINUX*.” http://developer.amd.com/
wordpress/media/2012/10/LibNUMA-WP-fv1.pdf, 2013.

[8] T. Rosado and J. Bernardino, “An overview of openstack architecture,”
in Proceedings of the 18th International Database Engineering &
Applications Symposium, ser. IDEAS ’14. New York, NY, USA:
Association for Computing Machinery, 2014, p. 366–367. [Online].
Available: https://doi.org/10.1145/2628194.2628195

[9] OpenStack, “ I/O (PCIe) based NUMA scheduling,” https://specs.
openstack.org/openstack/nova-specs/specs/kilo/implemented/input-
output-based-numa-scheduling.html, 2021.

[10] G. Voron, G. Thomas, V. Quéma, and P. Sens, “An interface to
implement numa policies in the xen hypervisor,” in Proceedings of the
Twelfth European Conference on Computer Systems, ser. EuroSys ’17.
New York, NY, USA: Association for Computing Machinery, 2017, p.
453–467. [Online]. Available: https://doi.org/10.1145/3064176.3064196

[11] D. Mvondo, B. Teabe, A. Tchana, D. Hagimont, and N. De Palma,
“Closer: A new design principle for the privileged virtual machine os,”
in 2019 IEEE 27th International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems (MASCOTS),
2019, pp. 49–60.

[12] B. Teabe, A. Tchana, and D. Hagimont, “Billing system cpu time on
individual vm,” in 2016 16th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGrid), 2016, pp. 493–496.

[13] B. Bui, D. Mvondo, B. Teabe, K. Jiokeng, L. Wapet, A. Tchana,
G. Thomas, D. Hagimont, G. Muller, and N. DePalma, “When
extended para - virtualization (xpv) meets numa,” in Proceedings of
the Fourteenth EuroSys Conference 2019, ser. EuroSys ’19. New
York, NY, USA: Association for Computing Machinery, 2019. [Online].
Available: https://doi.org/10.1145/3302424.3303960

[14] D. Berrangé, “Openstack performance optimization: Numa, largepages
& cpu pinning,” https://www.linux-kvm.org/images/0/0b/03x03-
Openstackpdf.pdf, 2014.

[15] Y. Ren, T. Li, D. Yu, S. Jin, and T. Robertazzi, “Design, implementation,
and evaluation of a numa-aware cache for iscsi storage servers,” IEEE
Transactions on Parallel and Distributed Systems, vol. 26, no. 2, pp.
413–422, 2015.

[16] W. Rödiger, T. Mühlbauer, A. Kemper, and T. Neumann, “High-
speed query processing over high-speed networks,” Proc. VLDB
Endow., vol. 9, no. 4, p. 228–239, Dec. 2015. [Online]. Available:
https://doi.org/10.14778/2856318.2856319

[17] V. T. Publications, “Tuning vCloud NFVfor data plane intensive
workloads, Open Stack Edition.” https://docs.vmware.com/en/VMware-
vCloud-NFV-OpenStack-Edition/3.0/vmwa-vcloud-nfv30-
performance-tunning.pdf, 2019.

[18] A. Banerjee, R. Mehta, and Z. Shen, “Numa aware i/o in
virtualized systems,” in Proceedings of the 2015 IEEE 23rd Annual
Symposium on High-Performance Interconnects, ser. HOTI ’15.
USA: IEEE Computer Society, 2015, p. 10–17. [Online]. Available:
https://doi.org/10.1109/HOTI.2015.17

[19] L. Shelton, “High performance I/O with NUMA systems in Linux.”
2013.

[20] Red Hat, Inc., “libvirt NUMA Tuning,” https://access.redhat.com/
documentation/en-us/red hat enterprise linux/7/html/virtualization
tuning and optimization guide/sect-virtualization tuning
optimization guide-numa-numa and libvirt#sect-Virtualization
Tuning Optimization Guide-NUMA-VCPU Pinning.

[21] J. Squyres, “Process and memory affinity: why do you care? High Per-
formance Computing Networking.” http://blogs.cisco.com/performance/
process-and-memory-affinity-why-do-you-care, 2013.

[22] S. Moreaud, B. Goglin, and R. Namyst, “Adaptive MPI multirail tuning
for non-uniform input/output access,” in European MPI Users’ Group
Meeting. Springer, 2010, pp. 239–248.

[23] I. Smolyar, A. Markuze, B. Pismenny, H. Eran, G. Zellweger,
A. Bolen, L. Liss, A. Morrison, and D. Tsafrir, “Ioctopus: Outsmarting
nonuniform dma,” in Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 101–115. [Online].
Available: https://doi.org/10.1145/3373376.3378509

[24] NVIDIA, “NVIDIA Mellanox Socket Direct Adapters,” https://www.
nvidia.com/en-us/networking/ethernet/socket-direct/, 2021.

[25] M. N. B. marking Utility, “Mellanox Technologies,” https://github.com/
Mellanox/sockperf, 2021.

[26] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” SIGOPS Oper. Syst. Rev., vol. 37, no. 5, p. 164–177,
Oct. 2003. [Online]. Available: https://doi.org/10.1145/1165389.945462

[27] Libvma, “Libvma.” https://github.com/Mellanox/libvma, 2021.
[28] Perftest, “Perftest Package.” https://community.mellanox.com/s/article/

perftest-package, 2013.
[29] A. Soliman, Getting Started with Memcached. Packt Publishing, 2013.
[30] fio, “File system performance benchmarking.” https://docs.gitlab.com/

ee/administration/operations/filesystem benchmarking.html, 2021.
[31] Oracle, “Soft Affinity - When Hard Partitioning Is Too Much,”

https://blogs.oracle.com/linux/post/soft-affinity-when-hard-partitioning-
is-too-much, 2019.

https://kib.kiev.ua/x86docs/AMD/IOMMU/48882-2.00.pdf
http://download3.vmware.com/vmworld/2006/tac0080.pdf
http://download3.vmware.com/vmworld/2006/tac0080.pdf
https://doi.ieeecomputersociety.org/10.1109/HOTI.2019.00017
https://doi.ieeecomputersociety.org/10.1109/HOTI.2019.00017
https://doi.org/10.1109/IPDPS.2011.222
https://doi.org/10.1145/2814328
http://developer.amd.com/wordpress/media/2012/10/LibNUMA-WP-fv1.pdf
http://developer.amd.com/wordpress/media/2012/10/LibNUMA-WP-fv1.pdf
https://doi.org/10.1145/2628194.2628195
https://specs.openstack.org/openstack/nova-specs/specs/kilo/implemented/input-output-based-numa-scheduling.html
https://specs.openstack.org/openstack/nova-specs/specs/kilo/implemented/input-output-based-numa-scheduling.html
https://specs.openstack.org/openstack/nova-specs/specs/kilo/implemented/input-output-based-numa-scheduling.html
https://doi.org/10.1145/3064176.3064196
https://doi.org/10.1145/3302424.3303960
https://www.linux-kvm.org/images/0/0b/03x03-Openstackpdf.pdf
https://www.linux-kvm.org/images/0/0b/03x03-Openstackpdf.pdf
https://doi.org/10.14778/2856318.2856319
https://docs.vmware.com/en/VMware-vCloud-NFV-OpenStack-Edition/3.0/vmwa-vcloud-nfv30-performance-tunning.pdf
https://docs.vmware.com/en/VMware-vCloud-NFV-OpenStack-Edition/3.0/vmwa-vcloud-nfv30-performance-tunning.pdf
https://docs.vmware.com/en/VMware-vCloud-NFV-OpenStack-Edition/3.0/vmwa-vcloud-nfv30-performance-tunning.pdf
https://doi.org/10.1109/HOTI.2015.17
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_tuning_and_optimization_guide/sect-virtualization_tuning_optimization_guide-numa-numa_and_libvirt#sect-Virtualization_Tuning_Optimization_Guide-NUMA-VCPU_Pinning
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_tuning_and_optimization_guide/sect-virtualization_tuning_optimization_guide-numa-numa_and_libvirt#sect-Virtualization_Tuning_Optimization_Guide-NUMA-VCPU_Pinning
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_tuning_and_optimization_guide/sect-virtualization_tuning_optimization_guide-numa-numa_and_libvirt#sect-Virtualization_Tuning_Optimization_Guide-NUMA-VCPU_Pinning
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_tuning_and_optimization_guide/sect-virtualization_tuning_optimization_guide-numa-numa_and_libvirt#sect-Virtualization_Tuning_Optimization_Guide-NUMA-VCPU_Pinning
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_tuning_and_optimization_guide/sect-virtualization_tuning_optimization_guide-numa-numa_and_libvirt#sect-Virtualization_Tuning_Optimization_Guide-NUMA-VCPU_Pinning
http://blogs.cisco.com/performance/process-and-memory-affinity-why-do-you-care
http://blogs.cisco.com/performance/process-and-memory-affinity-why-do-you-care
https://doi.org/10.1145/3373376.3378509
https://www.nvidia.com/en-us/networking/ethernet/socket-direct/
https://www.nvidia.com/en-us/networking/ethernet/socket-direct/
https://github.com/Mellanox/sockperf
https://github.com/Mellanox/sockperf
https://doi.org/10.1145/1165389.945462
https://github.com/Mellanox/libvma
https://community.mellanox.com/s/article/perftest-package
https://community.mellanox.com/s/article/perftest-package
https://docs.gitlab.com/ee/administration/operations/filesystem_benchmarking.html
https://docs.gitlab.com/ee/administration/operations/filesystem_benchmarking.html
https://blogs.oracle.com/linux/post/soft-affinity-when-hard-partitioning-is-too-much
https://blogs.oracle.com/linux/post/soft-affinity-when-hard-partitioning-is-too-much

	Introduction
	Background
	Virtualization
	NUMA and its relevance to I/O virtualization

	Related work
	Software solutions
	Hardware solutions
	Positioning of our work

	Impact of NUIOA on VM performance
	Methodology
	Experimental results
	Lessons learned

	NUIOA-aware VM resource allocation strategy
	Implementation
	Discussion

	Evaluation
	Result analysis
	Scalability evaluation
	Overhead of NUIOA-aware allocation

	Conclusion
	References

