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Does a general structure exist for adaptation/learning algorithms?

Ioan Doré Landau, Tudor-Bogdan Airimitoaie

Abstract— There are many parameter adaptation/learning
algorithms (PALA) used in adaptive control, system iden-
tification and neural networks (Nesterov, Conjugate gradi-
ents, Momentum back propagation, Averaged gradient, Inte-
gral+proportional+derivative, ...). For most of these algorithms
unfortunately there are no results available for the choice of the
various coefficients (weights) allowing to guarantee the stability
of the parameter estimator for any value of the learning rate
and for any initial conditions. All these algorithms are in fact
particular cases of a general structure for the PALA which
is introduced in this paper. This structure is characterized by
the presence of an embedded ARMA (Auto Regressive Moving
Average) filter. Taking into account the inherent feedback
structure of these adaptation/learning algorithms, the passivity
approach is used for addressing the stability issue. Conditions
which will assure the stability of this general structure will be
provided and then particularized for the specific algorithms
described in the paper. The impact of the MA and AR terms
of the embedded filter upon the performance of the algorithms
will be emphasized through simulation.

I. INTRODUCTION

With the booming of neural networks [1], [2], there was
an explosion of the number of adaptation/learning algorithms
which have been proposed. Some of these algorithms are
inspired from optimization techniques [3], [4]. In most of the
cases only a qualitative analysis of these “new” algorithms
is provided. The field becomes a kind of “fiddler’s par-
adise”. The papers [5] and [6] give a comprehensive review
of current used algorithms. For most of these algorithms,
unfortunately, there are no results available for the choice
of the various coefficients (weights) allowing to guarantee
the asymptotic stability of the parameter estimator for any
value of the learning rate and for any initial conditions of
the estimated parameters.

In fact, it can be shown that one has to deal with a dynamic
system with a feedback structure. This approach has been
developed in the field of adaptive control. See for example
[7], [8]. The paper will show that many adaptation/learning
algorithms (maybe all?) are particular forms of a general
structure for PALA characterized by the presence of an
embedded ARMA (poles-zeros) filter acting on the partial
gradient of a criterion to be minimized with respect to the pa-
rameters to be tuned. Taking into account the inherent feed-
back structure of the PALA (parameter aldaptation/learning
algorithms) and using passivity arguments, an answer can
be provided to the question of stability of the parameter
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estimator for any value of the adaptation gain/learning rate
and any initial conditions. The basic answer is that the
embedded filter should be characterized by a positive real
discrete time transfer function. The contributions of the paper
can be summarized as follows:

• A general form for the PALA algorithms is introduced
and conditions for assuring stability of the algorithms
for any positive value of the adaptation gain/learning
rate are provided.

• A review of a number of PALA from this unified
perspective is provided.

• A discrete time version of the I+P+D (integral + pro-
portional + derivative) algorithm is presented.

• A new PALA algorithm characterized by a 2nd order
ARIMA filter acting on the gradient is introduced.

• Illustration of the effect of the various coefficients
upon the performance of the algorithms is provided by
simulation.

II. REVISITING THE GRADIENT ALGORITHM – FEEDBACK
INTERPRETATION AND STABILITY ISSUES

A. Basic Gradient Algorithm

The aim of the gradient parameter adaptation/learning
algorithm is to drive the parameters of an adjustable model
in order to minimize a quadratic criterion in terms of the
prediction error (difference between real data and the output
of the model used for prediction). To formalize the problem,
following [5] and [6], one considers the discrete-time model
described by:

y(t+ 1) = −a1y(t)− a2y(t− 1)− . . .

+ b1u(t) + b2u(t− 2) + . . . = θTϕ(t), (1)

where the unknown parameters ai and bi form the compo-
nents of the parameter vector θ:

θT = [a1, a2, . . . , ana
, b1, b2, . . . , bnB

] (2)

and

ϕT (t) = [−y(t),−y(t− 1), . . . , u(t), u(t− 1), . . .] (3)

is the measurement vector.1 The adjustable prediction model
will be described in this case by:

ŷ0(t+ 1) = ŷ[(t+ 1)|θ̂(t)] = θ̂T (t)ϕ(t), (4)

1u(t), y(t) ∈ R1, θ,ϕ ∈ Rn, n = na+nb, R
n is the real n-dimensional

Euclidean space



where ŷ0(t + 1) is termed the a priori predicted output
depending upon the values of the estimated parameter at
instant t given by:

θ̂T (t) = [â1(t), â2(t), . . . , ânA(t), b̂1(t), b̂2(t), . . . , b̂nB(t)].
(5)

It is very useful to consider also the a posteriori predicted
output computed on the basis of the new estimated parameter
vector at t+1, θ̂(t+1), which will be available somewhere
between t + 1 and t + 2. The a posteriori predicted output
will be given by:

ŷ(t+ 1) = ŷ[(t+ 1)|θ̂(t+ 1)] = θ̂T (t+ 1)ϕ(t). (6)

One defines an a priori prediction error as:

ε0(t+ 1) = y(t+ 1)− ŷ0(t+ 1) (7)

and an a posteriori prediction error as:

ε(t+ 1) = y(t+ 1)− ŷ(t+ 1) = (θ − θ̂(t+ 1))Tϕ(t). (8)

The objective is to find a recursive parameter adaptation
algorithm with memory. The structure of such an algorithm
is:

θ̂(t+1) = θ̂(t)+∆θ̂(t+1) = θ̂(t)+ f [θ̂(t), ϕ(t), ε0(t+1)]
(9)

The correction term f [θ̂(t), ϕ(t), ε0(t + 1)] must depend
solely on the information available at the instant (t+1) when
y(t+ 1) is acquired (last measurement y(t+ 1), θ̂(t), and a
finite amount of information at times t, t−1, t−2, . . . , t−n).
The correction term must enable to minimize the following
criterion at each step2

min
θ̂(t+1)

J(t+ 1) = [ε(t+ 1)]2 (10)

A solution can be provided by the gradient technique. The
corresponding PALA will have the form:

θ̂(t+1) = θ̂(t)−F▽θJ(t+1) = θ̂(t)−F
∂J(t+ 1)

δθ̂(t)
, (11)

where F = αI(α > 0) is the matrix adaptation gain/learning
rate (I - unitary diagonal matrix) and ∂J(t+1)/∂θ̂(t) is the
partial gradient of the criterion given in (10) with respect to
θ̂(t). At this stage it is interesting to point out already that
this is a dynamic system with input the gradient and output
the estimated parameter vector, i.e (11) can be expressed also
as:

θ̂(t+ 1) = HPAA(q
−1)▽θ J(t+ 1), (12)

where3 HPAA(q
−1) is a MIMO diagonal transfer operator

having identical terms. All the diagonal terms are identical
and are described in this case by:

Hii(q−1) =
1

1− q−1
. (13)

2Using the criterion minθ̂(t) J(t + 1) = [ε0(t + 1)]2 will not allow
to guarantee the stability of the PALA for any value of the adaptation
gain/learning rate. See [8] for details.

3The unit delay operator q−1 will be used for describing the system’s
behavior in the time domain and the complex variable z−1 will be used for
characterizing the system’s behavior in the frequency domain.

The estimated parameter vector θ̂ can be viewed as the
output of a discrete time integrator filter whose input is
the gradient (or in general a correcting term related to the
gradient). Note also that the operator (13) is characterized
by a positive real transfer function (it is a passive system).

From Eqs (10) and (11), one obtains (for details see [8]):

θ̂(t+ 1) = θ̂(t) + Fϕ(t)ε(t+ 1) (14)

where F is the matrix adaptation gain4. The algorithm has
memory (for ε(t + 1) = 0, θ̂(t + 1) = θ̂(t)). There are two
possible choices for the matrix adaptation gain/learning rate:
(i) F = αI; α > 0; (ii) F > 0 (positive definite matrices).
For the remaining of the paper we will use the option F =
αI . The term adaptation gain or learning rate is used for
characterizing α.

-

+

+

Fig. 1. Feedback structure of gradient adaptation/learning algorithm.

Consider Eq. (14), subtracting θ from both sides of (14)
and then multiplying with ϕ(t)T ) one gets:

ϕ(t)T θ̃(t+ 1) = ϕ(t)T θ̃(t) + ϕ(t)TFϕ(t)ε(t+ 1), (15)

where θ̃(t) = θ̂(t) − θ is the parameter error. Eqs (8) and
(15) define a feedback system shown in Fig. 1.

Since it is a feedback structure, stability of the system
is a key issue. Using passivity arguments (see [8]) it can be
shown that the feedback path is passive and since the feedfor-
ward transfer function is 1 (a particular strictly positive real
transfer function), the system will guarantee limt→∞ ε(t +
1) = 0 for any initial conditions θ(0), ε(0) and any value of
the adaptation gain α > 0 (or any positive definite matrix
F ). Furthermore, examining the equivalent feedback path one
observes that there is an embedded integrator filter which is
characterized by a positive real transfer function.

III. A GENERAL FORM FOR ADAPTATION/LEARNING
ALGORITHMS

For stability reasons, it is therefore crucial that the equiv-
alent feedback path be passive. However, passivity of the
equivalent feedback path can be guaranteed if one replaces

4For the effective implementation, ε(t + 1) is given by ε(t + 1) =
ε0(t+1)

1+ϕT (t)Fϕ(t)
.



the integrator filter (in fact a multi-input, multi-output fil-
ter) by any positive real transfer matrix5 (of appropriate
dimension) with a pole at z = 1, in order to have memory,
or without a pole at z = 1, if we do not want to have
memory. For details, see [8]. This allows on one hand to
generate an infinite number of adaptation/learning algorithms
and on the other hand it allows to analyze adaptation/learning
algorithms which have been generated from different points
of view. Therefore, one can consider to replace the integrator
by a more general passive linear system leading to a PALA
of the form ([8])

x(t+ 1) = Ax(t) +Bϕ(t)ε(t+ 1), (16)

θ̂(t+ 1) = Cx(t) +Dϕ(t)ε(t+ 1), (17)

where x(t) is the state of the passive linear filter and the
input is the inverse of the gradient, in our case ϕ(t)ε(t+1).
The system [A,B,C,D] is characterized also by the matrix
transfer function:

HPAA(z) = C(zI −A)−1B +D. (18)

The particular case of integral adaptation/learning corre-
sponds to: A = I , B = D = F , C = I .
The algorithm (16) and (17) can also be expressed as:

θ̂(t+ 1) = HPAA(q
−1)ϕ(t)ε(t+ 1). (19)

One has the following result:
Theorem 1 For the system described by Eqs (1) through (8)
using the PALA of Eqs (16) and (17) or of Eq. (19) one has
limt→∞ ε(t+ 1) = 0 for any initial conditions θ(0), ε(0) if
HPAA(q

−1) is a positive real transfer matrix6 with a pole at
z = 1.

The proof of Theorem 1 uses the results of [8, Theorem
3.1] for proving the passivity of the equivalent feedback path
and the results of [8, Theorem 3.2] to conclude upon the
stability of the full system.

For the purpose of this paper, it is convenient to partic-
ularize HPAA(q

−1) as a MIMO diagonal transfer operator
having identical terms. All the diagonal terms are identical
and are described by:

Hii(q−1) =
1 + c1q

−1 + c2q
−2 + ..+ cnC

q−nC

1− d1q−1 − d2q−2 − ..− dnD
q−nD

=
C(q−1)

D(q−1)
(20)

and the passivity condition of Theorem 1 implies that
Hii(z−1) should be a positive real transfer function with
a pole at z = 1 if we want memory. F is the adaptation
gain/learning rate which is a positive definite matrix. For

5A positive real discrete-time transfer matrix is characterized by the
following properties:

1) All elements of H(z) are analytic outside the unit circle (i.e. they
do not have poles in | z |> 1).

2) The eventual poles of any element of H(z) on | z |= 1 are simple
and the associated residue matrix is a positive semidefinite Hermitian.

3) The matrix H(z) + HT (z−1) is a positive semidefinite Hermitian
for all | z |= 1, which are not a pole of H(z).

6Or equivalently the system [A,B,C,D] is passive.

the remaining of the paper it will be considered that F =
αI;α > 0. The explicit form of the algorithm is:

θ̂(t+ 1) = d1θ̂(t) + d2θ̂(t− 1) + ...+ dnD
θ̂(t− nD)

+ F [ϕ(t)ε(t+ 1) + c1ϕ(t− 1)ε(t) + c2ϕ(t− 2)ε(t− 1)

+ . . .+ cnC
ϕ(t− nC)ε(t− nC + 1)]. (21)

The algorithm given in Eq. (21) will be termed Auto Re-
gressive Moving Average (ARMA) adaptation/learning al-
gorithm and if it has an integrator, it will be termed
Auto Regressive with Integrator Moving Average (ARIMA)
adaptation/learning algorithm. One can see that the current
parameter estimates depend upon the previous parameter
estimations over a certain horizon (auto regressive) and upon
the current and past values of the gradient over a certain
horizon (moving average). The ARIMA adaptive/learning
algorithms are characterized by an embedded filter of the
form:

Hii(q−1) =
1 + c1q

−1 + c2q
−2 + ..+ cnC

q−nC

(1− q−1)(1− d′1q
−1 − d′2q

−2 − ..d′nD′ q
−n′

D )

=
C(q−1)

(1− q−1)D′(q−1)
=

C(q−1)

D(q−1)
(22)

where C(q−1)
D′(q−1) is a dynamic adaptation gain and the relation

with the coefficients of Eqs (20) and (21) is given by:

di = (d′i − d′i−1) ; i = 1, ...nD; d′0 = −1, d′nD
= 0 (23)

To implement the algorithm one needs a computable expres-
sion for ε(t+1). One defines7: ŷ0(t+1) = θ̂T0 (t)ϕ(t) where

θ̂0(t) = d1θ̂(t) + d2θ̂(t− 1) + . . .

+ F [c1ϕ(t− 1)ε(t) + c2ϕ(t− 2)ε(t− 1) + . . .] (24)

The a posteriori adaptation/prediction error can be written:

ε(t+ 1) = y(t+ 1)± θ̂T0 (t)ϕ(t)− θ̂T (t+ 1)ϕ(t)

= ε0(t+ 1)− [θ̂(t+ 1)− θ̂0(t)]
Tϕ(t)

= ε0(t+ 1)− ϕ(t)TFϕ(t)ε(t+ 1), (25)

which leads to:

ε(t+ 1) =
ε0(t+ 1)

1 + ϕT (t)Fϕ(t)
. (26)

For small adaptation gains the passivity/stability condition
can be relaxed using averaging [9]. Using the results of
[10], under the hypothesis of an input signal spanning all the
frequencies up to half of the sampling frequency, passivity
in the average will be assured if the frequency interval where
H is not positive real is smaller than the frequency interval
where H is positive real.

It will be shown subsequently on one hand, that a number
of well known adaptation/learning algorithms are particular
cases of the ARIMA adaptation/learning algorithm and on
the other hand, sufficient conditions for the stability of
these algorithms independently of the value of the adaptation
gain/learning rate will be provided.

7θ̂0(t) is the best prediction of θ(t+1) based on the information available
at instant t (can be denoted also as θ̂0(t) = θ̂(t+ 1/t)).



IV. A REVIEW OF VARIOUS ADAPTATION/LEARNING
ALGORITHMS

A. “Integral + Proportional” Parameter Adaptation Algo-
rithm

A first particularization of the above results is obtained
for the integral + proportional adaptation/learning algorithm
[11], [8], [12], [13], [14]. The algorithm is in general written
under the form:

θ̂I(t+ 1) = θ̂I(t) + FIϕ(t)ε(t+ 1) ; FI > 0 (27)

θ̂P (t+ 1) = Fpϕ(t)ε(t+ 1) ; (28)

θ̂(t+ 1) = θ̂I(t+ 1) + θ̂P (t+ 1), (29)

where FI is called the integral adaptation gain and Fp

the proportional adaptation gain. The a priori adjustable
predictor has the form:

ŷ0(t+ 1) = θ̂TI (t)ϕ(t); y(t+ 1) = θ̂T (t+ 1)ϕ(t) (30)

The a posteriori adaptation (prediction) error is given by:

ε(t+ 1) =
ε0(t+ 1)

1 + ϕ(t)T (FI + FP )ϕ(t)
(31)

The associated state-space representation (16) and (17) of the
embedded filter is obtained with: A = I ; B = FI ; C =
I ; D = FI+FP which corresponds to an associated transfer
matrix:

HPAA(z
−1) =

1

1− z−1
FI + FP (32)

The associated passivity conditions on the matrices FI and
Fp resulting from the use of the “positive real lemma” take
the form [8]:

FI > 0; FP = βFI ; β ≥ −0.5 (33)

For the case of diagonal matrices with identical terms, the
embedded transfer operator can be alternatively expressed as
Eq. (22).

Proportional + Integral PALA with positive proportional
gain leads to the improvement of the convergence of the
adaptation error. Small negative proportional adaptation gain
improves in general the convergence of the parameters. This
is illustrated in [8, pg. 93], [15], [14] among other references.

B. “Integral+Proportional+Derivative” parameter adapta-
tion algorithm

This algorithm has been introduced in [11] with a con-
tinuous time formulation. The corresponding discrete-time
structure of the algorithm is as follows:

θ̂(t+ 1) = θ̂I(t+ 1) + θ̂P (t+ 1) + θ̂D(t+ 1) (34)

where θ̂I(t + 1) and θ̂P (t + 1) are given by Eqs (27) and
(28), respectively, and θ̂D(t+ 1) is given by:

θ̂D(t+ 1) = FD[ϕ(t)ε(t+ 1)− ϕ(t− 1)ε(t)]. (35)

For the case of diagonal matrices with identical terms, the
embedded transfer operator can be alternatively expressed as:

Hii(q−1) =
αI

1− q−1
+ αP + αD(1− q−1), (36)

which can be reformulated as Eq. (22). The a priori predicted
output is given by:

ŷ0(t+1) = θ̂T0 (t)ϕ(t); θ̂0(t) = θ̂I(t)−FDϕ(t−1)ε(t)] (37)

and the a posteriori adaptation (prediction) error is given by:

ε(t+ 1) =
ε0(t+ 1)

1 + ϕ(t)T (FI + FP + FD)ϕ(t)
. (38)

C. Averaged gradient algorithms
The basic idea is to use an average of the current and of

previous gradients over a certain horizon (see [16], [17]). A
general formulation in the present context can be:

θ̂(t+1) = θ̂(t)+F

n∑
i=0

ciϕ(t− i)ε(t+1− i); c0 = 1. (39)

The associated embedded adaptation filter will be:

H(q−1) =
1 + c1q

−1 + c2q
−2 + . . .

(1− q−1)
. (40)

Of course the ci should be chosen such that the transfer
function associated to the transfer operator given in Eq. (40)
is positive real.

Note that I+P and I+P+D adaptation/learning algorithms
(see Eq. (36)) for FI = αII, FP = αP I, FD = αDI can
be viewed as a particular form of this algorithm with c1 =
−(αP+2αD)
αI+αP+αD

, c2 = αD

αI+αP+αD
and F = (αI +αP +αD)I =

αI . To compute the a posteriori adaptation error, one uses
Eqs (21) and (26) for nD = 1, d1 = 1, nC = n.

D. The Nesterov algorithm
The Nesterov algorithm [3], [5] has been developed in the

field of optimization in order to improve under certain con-
ditions the convergence rate of the basic gradient algorithm.
Based on [5], the Nesterov algorithm can be written in the
present context as :

θ̂(t+ 1) = ρ(t) + αϕ(t)ε(t+ 1), (41)

ρ(t) = θ̂(t) + β[θ̂(t)− θ̂(t− 1)]. (42)

Combining Eqs (41) and (42), one gets:

θ̂(t+ 1) = (1 + β)θ̂(t)− βθ̂(t− 1) + αϕ(t)ε(t+ 1). (43)

This is equivalent to say that θ̂(t + 1) is the output of a
MIMO diagonal transfer operator and the diagonal terms are
characterized by

Hii(q−1) =
α

1− (1 + β)q−1 + βq−2

=
α

(1− q−1)(1− βq−1)
, (44)

whose input is ϕ(t)ε(t+1). This transfer operator has a pole
at z = 1 assuring the memory of the algorithm. However, in
order to lead to a stable algorithm Hii should be a positive
real transfer operator. Basic calculus allows to find that the
positive real condition (which implies also the stability of
the algorithm for any finite learning rate) is −1 ≤ β ≤ 0.33
(see [11, pg. 160] for details).

To implement the algorithm, one uses Eqs (24) and (26)
with d1 = 1 + β; d2 = −β; ci = 0; i = 1, 2, ..; F = αI .



E. Momentum back propagation algorithm

This algorithm has been proposed in [18], [19]. Following
[6], it can be expressed as:

θ̂(t+ 1) = θ̂(t) +m[θ̂(t)− θ̂(t− 1)]

+ (1−m)αϕ(t)ε(t+ 1), (45)

where m is called momentum and it can be rewritten as:

θ̂(t+ 1) = (1 +m)θ̂(t)−mθ̂(t− 1)

+ (1−m)αϕ(t)ε(t+ 1). (46)

Comparing with the Nesterov algorithm given in Eq. (43), it
results that the only difference is the term (1−m) multiplying
the adaptation gain/learning rate. The equivalent filter is the
one of Eq. (44) except that the numerator is (1−m)α instead
of α. The same conditions are imposed on m in order to
guarantee the passivity of the embedded filter: −1 ≤ m ≤
0.33. Implementation is similar to the Nesterov algorithm
except that β = m and α = (1−m)α.

F. Conjugate gradient algorithm

Conjugate gradient methods [20], [21], [4] are efficient
methods for large scale optimization problems. Following
[6], this algorithm can be expressed as follows:

θ̂(t+ 1) = θ̂(t) + αd(t), (47)

d(t) = βd(t− 1) + ϕ(t)ε(t+ 1); d(0) = ϕ(0)ε(1). (48)

Combining Eqs (47) and (48), one gets:

θ̂(t+ 1) = (1 + β)θ̂(t)− βθ̂(t− 1) + αϕ(t)ε(t+ 1). (49)

Eq. (49) has the same form as the Nesterov algorithm and
same passivity/stability condition applies.

V. SECOND ORDER ARIMA ALGORITHM (NEW)

The algorithms presented above can be divided into two
classes: 1) ARI (Integral adaptation, Nesterov, Momentum
back propagation, Conjugate gradient) and 2) IMA (I+P,
I+P+D, Averaged gradient).

The general form for the ARIMA adaptation/learning al-
gorithms and the examination of various existing algorithms
done above suggests to introduce a new algorithm (which
can be viewed as a combination of the Nesterov/Conjugate
gradient algorithms with the average gradient/I+P+D type
algorithms):

θ̂(t+ 1) = d1θ̂(t) + d2θ̂(t− 1) + F [ϕ(t)ε(t+ 1)

+ c1ϕ(t− 1)ε(t) + c2ϕ(t− 2)ε(t− 1)]. (50)

Taking
d1 = (1 + d′1); d2 = −d′1, (51)

one assures the presence of an integrator. The weights
d′1, c1, c2 should be chosen such that the transfer function:

H(q−1) =
1 + c1q

−1 + c2q
−2

1− d1q−1 − d2q−2
(52)

be positive real.

This algorithm can be also interpreted as an Integral +
Proportional + Filtered derivative algorithm, i.e the associ-
ated transfer operator has the form

H(q−1) =
αI

1− q−1
+ αP + αD

(1− q−1)

(1− d′1q
−1)

, (53)

with:

αI > 0; αP > −0.5αI ; αD > 0; − 1 < d′1 < 1. (54)

From Eq. (54), one obtains the equivalent coefficients
c1, c2, d

′
1 used in Eq. (22). The expression of the a posteri-

ori adaptation/prediction error is given by Eqs (24) and (26)
particularized for nC = nD = 2.

VI. SIMULATION RESULTS

The second order ARIMA algorithm has been chosen to
illustrate the properties of the various PALA algorithms. The
system under consideration is characterized by

S =
q−2 + 0.5q−3

1− 1.5q−1 + 0.7q−2
, (55)

whose input is a PRBS with N = 255 samples and its
parameters will be estimated.

A. Performance

For a given adaptation gain α = 0.1, the performance of
the adaptation will be evaluated with respect to the choice
of the coefficients c1, c2, d′1. To asses the performance, the
following indicators will be used:
The sum of the squared a posteriori prediction errors:

Jε(N) =

N∑
t=0

ε2(t+ 1). (56)

The sum of the parametric distance:

JD(N) =

N∑
0

D(t+ 1),

D(N) =
{
[θ − θ̂(t)]T [θ − θ̂(t)]

}1/2

. (57)

Table I summarizes the performance of the 2nd order
ARIMA algorithm and of the various particular cases. The
table provides the best performance for each configuration.
Fig. 2 shows the evolution of the parametric distance. Clearly
the 2nd order ARIMA algorithm provides a significant per-
formance improvement with respect to the various particular
cases.

Algorithm c1 c2 d′1 JD(N) Jε(N)

Integral 0 0 0 46.99 13.32
Conj.Gr/Nest.. 0 0 0.5 37.86 12.09

I+D 0 0.99 0 34.41 11.95
I+P 0.667 0 0 40.45 12.45

I+P+D/Av.Gr −0.05 0.99 0 34.475 11.87
ARIMA 2 −0.5 0.4 0.7 29.42 9.67

TABLE I
PERFORMANCE OF 2ND ORDER ARIMA ALGORITHM.
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Fig. 2. Evolution of the parametric distance D(N).

B. Stability

Two set of coefficients are considered. As shown in Fig. 3
for the configuration c1 = 0.667; c2 = 0; d′1 = 0, the
corresponding embedded filter is positive real. For the second
configuration c1 = −0.5; c2 = 0.4; d′1 = 0.7, the embedded
filter is not positive real in the region up to 0.17fs but the
positive real condition on the average is satisfied for small
adaptation gains. Simulations have shown that for the first
configuration the algorithm is stable for an adaptation gain
of 0.1 and 1000 while for the second case, the algorithm
is stable and converges towards the exact values of the
parameters for an adaptation gain of 0.1 (see Table I) but the
adaptation process is unstable for an adaptation gain/learning
rate of 1000.
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Fig. 3. Phase of the embedded filter for two configurations.

VII. CONCLUSION

A parameter adaptation/learning algorithm characterized
by the presence of an embedded IIR (ARMA) filter has
been introduced. The positive realness of the embedded filter
transfer function guarantees the stability of the algorithm
for any positive value of the adaptation gain/learning rate.
The parameter adaptation/learning algorithms reviewed in
this paper appear to be particular cases of this algorithm.
For some choices of the embedded filter parameters, the
performances are improved with respect to the performance

of the parameter adaptation/learning algorithm reviewed in
the paper.
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