Luca Becchetti 
  
Arthur C W Da Cunha 
  
Andrea Clementi 
  
Francesco D'amore 
  
Hicham Lesfari 
  
Emanuele Natale 
  
Luca Trevisan 
  
On the Multidimensional Random Subset Sum Problem

In the Random Subset Sum Problem, given n i.i.d. random variables X 1 , ..., X n , we wish to approximate any point z ∈ [-1, 1] as the sum of a suitable subset X i1(z) , ..., X is(z) of them, up to error ε. Despite its simple statement, this problem is of fundamental interest to both theoretical computer science and statistical mechanics. More recently, it gained renewed attention for its implications in the theory of Artificial Neural Networks. An obvious multidimensional generalisation of the problem is to consider n i.i.d. d-dimensional random vectors, with the objective of approximating every point z ∈ [-1, 1] d . In 1998, G. S. Lueker showed that, in the one-dimensional setting, n = O(log 1 ε ) samples guarantee the approximation property with high probability.

In this work, we prove that, in

samples suffice for the approximation property to hold with high probability. As an application highlighting the potential interest of this result, we prove that a recently proposed neural network model exhibits universality: with high probability, the model can approximate any neural network within a polynomial overhead in the number of parameters.

Introduction

In the Random Subset Sum Problem (RSSP), given a target value z, an error parameter ε ∈ R >0 and n independent random variables X 1 , X 2 , . . . , X n , one is interested in estimating the probability that there exists a subset S ⊆ [n] for which

z - i∈S X i ≤ ε.
Historically, the analysis of this problem was mainly motivated by research on the average case of its deterministic counterpart, the classic Subset Sum Problem, and the equivalent Number Partition Problem. These investigations lead to a number of insightful results, mostly in the 80s and 90s [START_REF] George | On the average difference between the solutions to linear and integer knapsack problems[END_REF][START_REF] Karmarkar | Probabilistic analysis of optimum partitioning[END_REF][START_REF] Lueker | Exponentially small bounds on the expected optimum of the partition and subset sum problems[END_REF]. In addition, research on the phase transition of the problem extended to the early 2000s, with interesting applications in statistical physics [START_REF] Mezard | Information, physics, and computation. Oxford graduate texts[END_REF][START_REF] Borgs | Phase transition and finitesize scaling for the integer partitioning problem[END_REF][START_REF] Borgs | Phase diagram for the constrained integer partitioning problem[END_REF].

More recently, one of the results on the RSSP has attracted quite some attention. A simplified statement for it would be Theorem 1 (Lueker,[START_REF] Lueker | Exponentially small bounds on the expected optimum of the partition and subset sum problems[END_REF]). Let X 1 , . . . , X n be i.i.d. uniform random variables over [-1, 1], and let ε ∈ (0, 1). There exists a universal constant C > 0 such that, if n ≥ C log 2 1 ε , then, with high probability, for all z ∈ [-1, 1] there exists a subset S z ⊆ [n] for which

z - i∈Sz X i ≤ 2ε.
That is, a rather small number (of the order of log 1 ε ) of random variables suffices to have a high probability of approximating not only a single target z, but all values in an interval. In fact, this result is asymptotically optimal, since each of the 2 n subsets can cover at most one of two values more than 2ε apart and, hence, we must have n = Ω(log 1 ε ). Also, the original work generalises the result to a wide class of distributions.

Those features allowed Theorem 1 to be quite successful in applications. In the field of Machine Learning, particularly, many recent works, such as [PRN + 20, dCNV21, FB21, BLMG22, FTGB22, WDM + 21], leverage this result. We discuss those contributions in more detail in Section 2.

In this paper, we investigate a natural multidimensional generalisation of Theorem 1. Mainly, we prove Theorem 2 (Main Theorem). Given ε ∈ (0, 1) and d, n ∈ N, consider n independent d-dimensional standard normal random vectors X 1 , . . . , X n . There exists a universal constant C > 0 for which, if

n ≥ Cd 3 log 2 1 ε • log 2 1 ε + log 2 d ,
then, with high probability, for all z ∈ [-1, 1] d there exists a subset S z ⊆ [n] for which

z - i∈Sz X i ∞ ≤ 2ε.
Moreover, the approximations can be achieved with subsets of size n 6 √ d . We believe many promising applications of the RSSP can become feasible with this extension of Theorem 1 to multiple dimensions. To illustrate this, we consider the Neural Network Evolution (NNE) model recently introduced by [GLP + 19]. It is natural to wonder whether their model is universal, in the sense that, with high probability, it can approximate any dense feed-forward neural network. While applying Theorem 1 to this end would yield exponential bounds on the required overparameterization, in Section 6 we prove the universality of the model within polynomial bounds. To broaden the scope of our result, we additionally provide some useful generalisations in Appendix C. In particular, we extend it to a wide class of distributions, proving an analogous extension to the one [START_REF] Lueker | Exponentially small bounds on the expected optimum of the partition and subset sum problems[END_REF] given for Theorem 1. Finally, in Appendices D and E we discuss a discretization of our result and potential applications in the context of nondeterministic random walks.

Organisation of the paper. After discussing related works in Section 2, we present a high level overview of the difficulties posed by the problem and of our proof of Theorem 2 (Section 3). We then introduce our notation in Section 4 in preparation for the presentation of our analysis in Section 5. We follow up with an application of our result to the NNE model [GLP + 19] and conclude with some notes on the tightness of our analysis in Section 7. Finally, generalisations of our results, further extensions, as well as all omitted proofs can be found in the Appendix.

Related work

As remarked in the Introduction, the first studies of the RSSP were mainly motivated by averagecase analyses of the classic Subset Sum and Number Partition problems [START_REF] Karmarkar | Probabilistic analysis of optimum partitioning[END_REF][START_REF] George | On the average difference between the solutions to linear and integer knapsack problems[END_REF][START_REF] Lueker | Exponentially small bounds on the expected optimum of the partition and subset sum problems[END_REF]. Both can be efficiently solved if the precision of the values considered is sufficiently low relative to the size of the input set. In particular, [START_REF] Mertens | Phase transition in the number partitioning problem[END_REF] applies methods from statistical physics to indicate that this is a fundamental property of the problem: the amount of exact solutions of the randomised version exhibits a phase transition when the precision increases relative to the sample size. The work [START_REF] Borgs | Phase transition and finitesize scaling for the integer partitioning problem[END_REF] later confirmed formally the existence of a phase transition.

The work of G. S. Lueker on the RSSP dates back to [START_REF] George | On the average difference between the solutions to linear and integer knapsack problems[END_REF]. In [START_REF] George | On the average difference between the solutions to linear and integer knapsack problems[END_REF], the author proves a weaker version of Theorem 1 and uses it as a tool to analyse the integrality gap of the onedimensional integer Knapsack problem, i.e., the additive gap between the optimal solution of the integer problem and that of its linear programming relaxation, when the inputs are sampled according to some probability distribution. Later, the same author provided a tighter result of the RSSP in [START_REF] Lueker | Exponentially small bounds on the expected optimum of the partition and subset sum problems[END_REF], which we stated in Theorem 1. Recently, [dCdG + 22] exhibited a simpler alternative to the original proof. [START_REF] Dyer | Probabilistic analysis of the multidimensional knapsack problem[END_REF] generalized the result of the RSSP from [START_REF] George | On the average difference between the solutions to linear and integer knapsack problems[END_REF] to tackle the multidimensional formulation of the Knapsack problem. In particular, it is proved that if the number of input variables is Θ(d log 1 ε ), then, with probability e -O(d) , there exists a subset approximating a given target in R d . Using the latter result as a black box, it is easy to see that one would require e O(d) log 1 ε input variables to increase the success probability to a constant value. The result in [START_REF] Dyer | Probabilistic analysis of the multidimensional knapsack problem[END_REF] has recently been improved by [START_REF] Borst | On the integrality gap of binary integer programs with gaussian data[END_REF], where tighter bounds on the integrality gap of the multidimensional Knapsack problem were obtained. More specifically, [START_REF] Borst | On the integrality gap of binary integer programs with gaussian data[END_REF] showed that, at the cost of an extra polynomial number of input random variables, the success probability of approximating a single target in the space can be increased to a constant value: this probability is achieved whenever the number of variables n satisfies the following relations: n ≥ d 9 4 and n = Θ(d 3 2 log 1 ε ). Both the analyses in [START_REF] Dyer | Probabilistic analysis of the multidimensional knapsack problem[END_REF] and [START_REF] Borst | On the integrality gap of binary integer programs with gaussian data[END_REF] employ the second moment method to estimate the probability that at least one subset approximating the target value exists. Following the same approach, in our work we refine the analysis for the second moment method technique. In order to prove Theorem 2, we show that n = Θ(d 2 log 1 ǫ ) variables yield constant probability that a subset approximating a single target exists. Our bound is better than that in [START_REF] Borst | On the integrality gap of binary integer programs with gaussian data[END_REF] for all approximation errors ε which are not exponentially small in the dimension of the space, that is,

ε = e -O(d 3 4
) . We also remark that the result in [START_REF] Borst | On the integrality gap of binary integer programs with gaussian data[END_REF] is generalised to all distributions whose convergence to a Gaussian is "fast enough", which is a wider class of distribution with respect to the one we provide in this work. Nevertheless, as we share the same approach of [START_REF] Borst | On the integrality gap of binary integer programs with gaussian data[END_REF], with the same arguments we can extend our results to a similar class of distributions. In a recent follow-up [START_REF] Borst | Integrality gaps for random integer programs via discrepancy[END_REF], weaker bounds on the multidimensional RSSP are exhibited, which hold for an even wider class of distributions. 1 In [START_REF] Borst | Integrality gaps for random integer programs via discrepancy[END_REF], the number of variables required to solve the problem is Θ(d 6 log 1 ε ). The discrete setting of a variant of the RSSP has also been recently studied in [START_REF] Chen | Average-case subset balancing problems[END_REF] which proves that an integral linear combination (with coefficients in {-1, 0, 1}) of the sample variables can approximate a range of target values.

In the last few years, Theorem 1 has been very useful in studying the Strong Lottery Ticket Hypothesis, which states that Artificial Neural Networks (ANN) with random weights are likely to contain an approximation of any sufficiently smaller ANN as a subnetwork. In particular, such claim poses the deletion of connections (pruning) as a theoretically solid alternative to careful 1 [BDHT22] considers Gaussian or uniform input random variables, and extends its result to distributions that converge quickly to Gaussian ones. In [START_REF] Borst | Integrality gaps for random integer programs via discrepancy[END_REF], the authors solve the RSSP for input random vectors whose entries follow uniform distributions on finite, discrete sets, and for input log-concave random vectors (i.e., when the density function of these vectors is a log-concave function).

calibration of their weights (training).

[PRN + 20] uses Theorem 1 to prove the hypothesis under optimal overparameterization for dense ReLU neural networks. [START_REF] Da Cunha | Proving the Lottery Ticket Hypothesis for Convolutional Neural Networks[END_REF] extends this result to convolutional networks and [START_REF] Ferbach | A general framework for proving the equivariant strong lottery ticket hypothesis[END_REF] further extends the latter to the class of equivariant networks. Also, [START_REF] Burkholz | On the existence of universal lottery tickets[END_REF] applies Theorem 1 to construct neural networks that can be adapted to a variety of tasks with minimal retraining.

3 Overview of our analysis 

( n 2 ) -d 2 = 2 -d log 1 ε -d 2 log n
2 of being at most ε far from z. We can then conclude that the expected number of approximations is 2

n-o(n) • 2 -d log 1 ε -d 2 log n
2 , which is still of order 2 n-o(n) provided that n ≥ Cd log 1 ε for a sufficiently large constant C. It would thus suffice to prove concentration bounds on the expectation. The technical challenge is handling the stochastic dependency between subsets of the sample, as pairs of those typically intersect, with many random variables thus appearing for both resulting sums. The original proof of Theorem 1 [START_REF] Lueker | Exponentially small bounds on the expected optimum of the partition and subset sum problems[END_REF] and the simplified one [dCdG + 22] address dependencies in similar ways. Both keep track of the fraction of values in [-1, 1] that can be approximated by a sum of a subset of the first i random variables, X 1 , . . . , X i . Their core goal is to bound the proportional increase in this fraction when an additional random variable X i+1 is considered. As it turns out, the conditional expectation of this increment can be bounded by a constant factor, regardless of the values of X 1 , . . . , X i . Unfortunately, naively extending those ideas to d dimensions leads to an estimation of this increment that is exponentially small in d. It is not clear to the authors how to make the estimation depend polynomially on d without leveraging some knowledge of the actual values of X 1 , . . . , X i . In fact, even which kind of assumption on the previous samples could work in this sense is not totally clear.

As for other classical concentration techniques that might appear suitable at first, we remark our failed attempts to leverage an average bounded differences argument [START_REF] Warnke | On the method of typical bounded differences[END_REF]. Specifically, we could not identify any natural function related to the fraction of values that can be approximated, which was also Lipschitz relative to the sample vectors. Moreover, both Janson's variant of Chernoff bound [START_REF] Janson | Large deviations for sums of partly dependent random variables: Large Deviations for Dependent Random Variables[END_REF] and a recent refinement of it [WRG17] seem to capture the stochastic dependence of the subset sums too loosely for our needs.

Our approach

Our strategy to overcome the difficulties highlighted in the previous subsection consists in a secondmoment approach.

Unlike the proofs for the single dimensional case, our argument, at first, analyses the probability of approximating a single target value z ∈ [-1, 1] d . To this end, consider a sample of n independent random vectors X 1 , . . . , X n and a family C of subsets of the sample. Let Y be the number of subsets in C whose sum approximates z up to error ε.

For a single subset, it is not hard to estimate the probability with which a subset-sum i∈S X i lies close to z. This allows us to easily obtain good bounds on E [Y].

We, then, proceed to estimate the variance of Y, circumventing the obstacles mentioned in the previous section by restricting the analysis to families of subsets with sufficiently small pairwise intersections. While this restriction limits the maximum amount of subsets that are available, a standard probabilistic argument allows us to prove the existence of large families of subsets with the desired property, ensuring that E [Y] can be large enough for our purposes.

For each pair of subsets, S and T , we leverage the hypothesis on the size of intersections to consider partitions S = S A ∪ S B and T = T C ∪ T B , with S A and T C being large, stochastically independent parts, and the smaller parts S B and T B containing S ∩T . The bulk of our analysis then consists in deriving careful bounds on their reciprocal dependencies and consequent contributions to the second moment of Y.

The resulting estimate allows us to apply Chebyshev's inequality to Y, obtaining a constant lower bound on Pr [Y ≥ 1]. That is, we conclude that with at least some constant probability at least one of the subsets yields a suitable approximation of z. Finally, we employ a probabilityamplification argument in order to apply a union bound over all possible target values in [-1, 1] d .

Preliminaries

Notation Throughout the text we identify the different types of objects by writing their symbols in different styles. This applies to scalars (e.g. x), real random variables (e.g. X), vectors (e.g. x), random vectors (e.g. X), matrices (e.g. X). and tensors (e.g. X). In particular, for d ∈ N, the symbol I d represents the d-dimensional identity matrix, where N refers to the set of positive integers. Let n ∈ N. We denote the set {1, . . . , n} by [n], and given a set S employ the notation S n to refer to the family of all subsets of S containing exactly n elements of S. Let x ∈ R d . The notation x 2 represents the euclidean norm of x while x ∞ denotes its maximum-norm. Moreover, given r ∈ R >0 we denote the set {y ∈ R d : yx ∞ ≤ r} by B d ∞ (x, r). We represent the variance of an arbitrary random variable X by σ 2 X and its density function by ϕ X . Finally, the notation log(•) refers to the binary logarithm. Let d, n ∈ N and ε ∈ R >0 , and consider z ∈ [-1, 1] d and n independent standard normal d-dimensional random vectors X 1 , . . . , X n . Given S ⊆ [n] we define the random variable We control the stochastic dependency among subsets by restricting to families of subsets with small pairwise intersection. While this reduces how many subsets we can be considered, we can use the probabilistic method to prove that large families are still available.

Y S,ε,z,X 1 ,...,Xn =    1 if z -i∈S X i ∞ ≤ ε, 0 otherwise,
Lemma 3. For all n ∈ N and α ∈ (0, 1 2 ), there exists C ⊆ [n] αn with |C| ≥ 2

α 2 n 6 such that for all S, T ∈ C, if S = T , then |S ∩ T | ≤ 2α 2 n.
Notice that, while this amount is still exponential, it already imposes n = Ω( d α 2 log 1 ε ) if we are to approximate all points in [-1, 1] d up to error ε.

Proof of the main result

As we frequently consider values relatively close to the origin, approximation of the normal distribution by a uniform one is sufficient for many of our estimations.

Lemma 4. Let d ∈ N, ε ∈ (0, 1), σ ∈ R >0 , and z ∈ [-1, 1] d . If X ∼ N (0, σ 2 • I d ), then e -2d σ 2 • (2ε) d 2πσ 2 d 2 ≤ Pr X ∈ B d ∞ (z, ε) ≤ (2ε) d 2πσ 2 d 2
.

As a corollary, we bound the first moment of the random variable Y.

Corollary 5. Given d, n ∈ N, ε ∈ (0, 1), and α ∈ (0, 1 2 ), let X 1 , . . . , X n be independent standard normal d-dimensional random vectors. Then, for all z ∈ [-1, 1] d and C ⊆ [n] αn , it holds that

e -2d αn (2ε) d |C| (2παn) d 2 ≤ E [Y] ≤ (2ε) d |C| (2παn) d 2 
.

Proof. Let S ∈ C and, hence, |S| = αn. Since X i ∼ N (0, I d ) for all i ∈ [n], we have that

i∈S X i ∼ N (0, αn • I d ). Therefore, as Pr [Y S = 1] = Pr i∈S X i ∈ B d ∞ (z, ε) , by Lemma 4, we have that e -2d αn (2ε) d (2παn) d 2 ≤ Pr [Y S = 1] ≤ (2ε) d (2παn) d 2 
, and we can conclude the thesis by noting that

E [Y] = S∈C Pr [Y S = 1].
We proceed by estimating the second moment of Y.

Lemma 6. Given d, n ∈ N, ε ∈ (0, 1), and α ∈ (0, 1 6 ], let X 1 , . . . , X n be independent d-dimensional standard normal random vectors, z ∈ [-1, 1] d , and C ⊆ [n] αn . If n ≥ 81 α(1-2α
) and any two subsets in C intersect in at most 2α 2 n elements, then

Var [Y] ≤ (2ε) 2d |C| 2 (2παn) d • (1 -4α 2 ) -d 2 -e -4d αn + (2ε) d |C| (2παn) d 2
.

Proof. We have

Var [Y] = S,T ∈C Cov [Y S , Y T ] = S,T ∈C E [Y S • Y T ] -E [Y S ] E [Y T ] = S,T ∈C Pr [Y S = 1, Y T = 1] -Pr [Y S = 1] Pr [Y T = 1] = S =T ∈C Pr [Y S = 1, Y T = 1] -Pr [Y S = 1] 2 + S∈C Pr [Y S = 1] 1 -Pr [Y S = 1] .
We shall use Lemma 4 to estimate Pr [Y S = 1], thus, the core of our argument is to bound the joint probability Pr

[Y S = 1, Y T = 1]. To this end, since Cov [Y S , Y T ] increases monotonically with |S ∩ T |, we fix S, T ∈ C with |S ∩ T | = 2α 2 n.
Moreover, since Y S is defined in terms of the max-norm, we can analyse the associated event for each coordinate independently. So, we let

X 1 , • • • , X n ∼ N (0, 1) and z ∈ [-1, 1]. Consider the partitions S = S A ∪ S B and T = T C ∪ T B , with S B = T B = S ∩ T, and let A = i∈S A X i , C = i∈T C X i , B = i∈S∩T X i .
In this way, we have i∈S X i = A + B and i∈T

X i = C + B, with A, C independent random variables distributed as N (0, σ 2 A ) and B ∼ N (0, σ 2 B ), where σ 2 A = αn(1 -2α) and σ 2 B = 2α 2 n. With this setup, we have, Pr [Y S = 1, Y T = 1] = Pr A + B ∈ (z -ε, z + ε), C + B ∈ (z -ε, z + ε) d .
From the law of total probability, it holds that

Pr A + B ∈ (z -ε, z + ε), C + B ∈ (z -ε, z + ε) = R ϕ B (x) • Pr A + x ∈ (z -ε, z + ε), C + x ∈ (z -ε, z + ε) dx = R ϕ B (x) • Pr A ∈ (z -x -ε, z -x + ε), C ∈ (z -x -ε, z -x + ε) dx = R ϕ B (x) • Pr A ∈ (z -x -ε, z -x + ε) 2 dx, (1) 
where the last equality follows from the independence of A and C. Since A is a normal random variable with 0 average, by Claim 17, we have that

R ϕ B (x) • Pr A ∈ (z -x -ε, z -x + ε) 2 dx ≤ R ϕ B (x) • Pr A ∈ (x -ε, x + ε) 2 dx = R ϕ B (x) • x+ε x-ε ϕ A (y) dy 2 dx.
The hypothesis on n implies that 2σ 2 a ≥ 162, so, by Claim 18,

x+ε x-ε ϕ A (y) dy 2 ≤ x+ε x-ε exp -(x+ε) 2 2σ 2 A + exp -(x-ε) 2 2σ 2 A 2 2πσ 2 A • exp ε 2 2σ 2 A dy 2 = (2ε) 2 2πσ 2 A • exp -(x+ε) 2 σ 2 A + exp -(x-ε) 2 σ 2 A + 2 exp -x 2 +ε 2 σ 2 A 4 • exp ε 2 σ 2 A = e ε 2 /σ 2 A • 1 √ 2 • (2ε) 2 2πσ 2 A • ϕ A/ √ 2 (x + ε) + ϕ A/ √ 2 (x -ε) + 2e -ε 2 /σ 2 A • ϕ A/ √ 2 (x) 4 .
Moreover, it holds that

R ϕ B (x) • ϕ A/ √ 2 (x + ε) + ϕ A/ √ 2 (x -ε) + 2e -ε 2 /σ 2 A • ϕ A/ √ 2 (x) dx = (ϕ B * ϕ A/ √ 2 )(ε) + (ϕ B * ϕ A/ √ 2 )(-ε) + 2e -ε 2 /σ 2 A • (ϕ B * ϕ A/ √ 2 )(0) = ϕ B+A/ √ 2 (ε) + ϕ B+A/ √ 2 (-ε) + 2e -ε 2 /σ 2 A • ϕ B+A/ √ 2 (0) = 2e -ε 2 /σ 2 B+A/ √ 2 + 2e -ε 2 /σ 2 A 2πσ 2 B+A/ √ 2 ≤ 4 • e -ε 2 /σ 2 A 2πσ 2 B+A/ √ 2
, here * denotes the convolution operation, and the last inequality comes from the hypothesis α ≤ 1 6 , which implies that

σ 2 B+A/ √ 2 ≤ σ 2 A . Altogether, we have Pr [Y S = 1, Y T = 1] ≤    e ε 2 /σ 2 A • 1 √ 2 • (2ε) 2 2πσ 2 A • e -ε 2 /σ 2 A 2πσ 2 B+A/ √ 2    d (2) =    (2ε) 2 2π • 1 2σ 2 A σ 2 B+A/ √ 2    d = (2ε) 2d (2παn) d • (1 -4α 2 ) -d 2 ,
where the last equality follows from recalling that σ 2 B = 2α 2 n and σ 2 A = αn (1 -2α), and, thus,

σ 2 B+A/ √ 2 = 2α 2 n + αt 2 (1 -2α).
Finally, from this bound and from Lemma 4 we can conclude that

Var [Y] = S =T ∈C Pr [Y S = 1, Y T = 1] -Pr [Y S = 1] 2 + S∈C Pr [Y S = 1] 1 -Pr [Y S = 1] ≤ S =T ∈C (2ε) 2d (2παn) d • (1 -4α 2 ) -d 2 - (2ε) 2d (2παn) d • e -4d αn + S∈C (2ε) d (2παn) d 2 1 -e -2d αn • (2ε) d (2παn) d 2 ≤ (2ε) 2d |C| 2 (2παn) d • (1 -4α 2 ) -d 2 -e -4d αn + (2ε) d |C| (2παn) d 2
.

Remark 7. In the proof of Lemma 6, after applying the law of total probability it is possible to employ Lemma 4 to estimate the joint probability. While this simplifies the argument, doing so would ultimately weaken the bound in Theorem 9 by a factor of d. In fact, in Section 7 we argue that the estimation we provide is essentially optimal.

For our next result, recall that the existence of a suitable family of subsets is ensured by Lemma 3.

Lemma 8. Given d, n ∈ N, ε ∈ (0, 1), and α ∈ (0, 1 6 ], let X 1 , . . . , X n be independent d-dimensional standard normal random vectors, z ∈ [-1, 1] d , and C ⊆ [n] αn with |C| ≥ 2 α 2 n 6 . If any two subsets in C intersect in at most 2α 2 n elements, α ≤ 1 6 √ d , and n ≥ 144d α 2 log 1 ε + log d + log 1 α , then Pr [Y ≥ 1] ≥ 1 3 .
Proof. By Chebyshev's inequality, it holds that

Pr [Y ≥ 1] ≥ Pr Y -E [Y] < E [Y] 2 ≥ 1 - 4 • Var [Y] E [Y] 2 .
Applying Corollary 5 and Lemma 6, we get that

4 • Var [Y] E [Y] 2 ≤ 4 • e 4d αn • (2παn) d (2ε) 2d |C| 2 •   (2ε) 2d |C| 2 (2παn) d • (1 -4α 2 ) -d 2 -e -4d αn + (2ε) d |C| (2παn) d 2   = 4 •   e 4d αn (1 -4α 2 ) d 2 -1   + 4e 4d αn • (2παn) d 2 (2ε) d |C| . Since n ≥ 68d α and α ≤ 1 6 √ d , by Claim 15 4 •   e 4d αn (1 -4α 2 ) d 2 -1   ≤ 1 2 . Furthermore, as n ≥ 144d α 2 log 1 ε + log d + log 1 α , |C| ≥ 2 α 2 n
6 , and α ≤ 1 6 , by Claim 16, 4e

4d αn • (2παn) d 2 (2ε) d |C| ≤ ε.
Applying an union bound, we amplify the last lemma to get our main result.

Theorem 9. Let ε ∈ (0, 1) and given d, n ∈ N let X 1 , . . . , X n be independent standard normal d-dimensional random vectors and let α ∈ 0,

1 6 √ d . There exists a universal constant C > 0 such that, if n ≥ C d 2 α 2 log 1 ε • log 1 ε + log d + log 1 α ,
then, with probability

1 -exp     -ln 2 •    n C d α 2 log 1 ε + log d + log 1 α -d log 1 ε        , for all z ∈ [-1, 1] d there exists a subset S z ⊆ [n] for which z - i∈Sz X i ∞ ≤ 2ε.
Moreover, this remains true even when restricted to subsets of size αn.

Theorem 2 follows from Theorem 9 by setting α = 1 6 √ d .

Application to Neural Net Evolution

In this section, we present an application of our main result on the multidimensional RSSP (see Theorem 2) to a neural network model recently introduced in [GLP + 19]. We first provide a description of their model in a setting relevant to our application. Then, we prove that their model exhibits universality; namely, with high probability, it can approximate any neural network within a polynomial overhead in the number of parameters.

The NNE model

The Neural Net Evolution (NNE) model [GLP + 19] has been recently introduced as an alternative approach to train neural networks, based on evolutionary methods. The aim is to provide a biologically inspired alternative to the backpropagation process behind ANNs [RHW86, GBC16], which happens in evolutionary time, instead of lifetime.

The NNE model is inspired by a standard update rule in population genetics and, in [GLP + 19], it is shown to succeed in creating neural networks that can learn linear classification problems reasonably well with no explicit backpropagation.

To define the NNE model, we first need to define random genotypes. Given a vector p ∈ [0, 1] n , a random genotype x ∈ {0, 1} n is sampled by setting x i = 1 with probability p i , independently for each i. Each entry x i indicates whether or not a gene is active.

Then, for each i, a random tensor Θ (i) ∈ R ℓ×d×d is sampled. In the original version of the model [GLP + 19], each entry of the tensor is chosen independently and uniformly at random from [-1, 1] with probability β, while it is set to 0, otherwise. For the sake of our application, we here consider a natural variant where the entries of the tensor are independently drawn from a standard normal distribution. Now, given a genotype x ∈ {0, 1} n , we define

Θ x = i : x i =1 Θ (i) . ( 3 
)
Each genotype is then associated with a feed-forward neural network, represented by a weighted complete multipartite directed graph. The graph is formed by layers {L i } ℓ i=0 of d nodes and two consecutive layers are fully connected via a biclique whose edge weights are determined by the tensor Θ x in the following manner: for every i ∈ [ℓ], the edge between the j-th node of layer L i-1 and the k-th node of layer L i has weight (Θ x ) ijk .

Eq. (3) tells us that if a gene is active then it gives a random contribution to each weight of the genotype network.

The learning process in the NNE model works by updating the genotype probabilities p according to some standard population genetics equations [START_REF] Bürger | The mathematical theory of selection, recombination, and mutation[END_REF][START_REF] Chastain | Algorithms, games, and evolution[END_REF]. In [GLP + 19], it is proved that the adopted update rule indirectly performs backpropagation and enables to decrease the loss function of the networks.

Universality and RSSP

Let f : R d → R d be a feed-forward neural network of the form

f (y) = W ℓ σ(W ℓ-1 . . . σ(W 1 y)), (4) 
where W i ∈ R d×d is a weight matrix and σ : R d → R d is the ReLU (Rectified Linear Unit) activation function that converts each coordinate y i of a given vector y ∈ R d to max(0, y i ).

The restrictions on the weight matrix sizes d × d aim only to ease presentation and can be adapted to any arbitrary dimensions.

Let us construct a third-order tensor Θ f ∈ R ℓ×d×d by stacking the weight matrices W 1 , . . . , W ℓ . We correspondingly denote f by f Θ . Conversely, every tensor Θ ∈ R ℓ×d×d is associated with a neural network f Θ in the form of Eq. (4) whose corresponding weight matrices are the tensor slices, that is,

W m = (Θ) i=m j,k∈[d] for every m ∈ [ℓ].
We can use Theorem 2 to prove a notion of universality for the NNE model.

Theorem 10. Let ε > 0 and n, d, ℓ ∈ N. Let F be the class of neural networks f : R d → R d of the form given in Eq. (4) such that their corresponding tensor satisfies

max ijk |(Θ f ) ijk | < 1. A constant C > 0 exists such that, if n ≥ C(ℓ • d • d) 3 log 1 ε • log 1 ε + log(ℓ • d • d)
, then, with high probability, the tensors Θ (1) , . . . , Θ (n) associated to each gene are such that, for any f ∈ F, there is a genotype x ∈ {0, 1} n which satisfies

max i∈[ℓ] j,k∈[d] (Θ f ) ijk -(Θ x ) ijk < 2ε.
We note that standard techniques (e.g., [PRN + 20, dCNV21]) can be used to provide bounds on the approximation of the output of neural networks, as well as translating Theorem 10 for general network architectures (e.g., convolutional neural networks).

Tightness of analysis

In Lemma 3 we prove the existence of a suitable family of subsets via a probabilistic argument, sampling their elements uniformly at random. The same argument also implies that the pairwise intersections of almost all subsets is at least α 2 n 2 . In the next result, we assume such lower bound and prove that our estimation of the joint probability Pr [Y S = 1, Y T = 1] in Lemma 6 (specifically, in Eq. 2), is essentially tight. Namely, the next lemma implies that it is not possible to obtain a high-probability bound on Y in Lemma 8.

Lemma 11. Given d, n ∈ N, ε ∈ (0, 1), and α ∈ (0, 1 2 ), let X 1 , . . . , X n be independent standard normal d-dimensional random vectors and z ∈ [-1, 1] d . If any two subsets in C intersect in at least α 2 n 2 elements and n ≥ 10 α(2-α) , then

Pr [Y S = 1, Y T = 1] ≥ (2ε) 2d (2παn) d • 1 - α 2 4 -d 2 • exp - 3d αn .
We can extend the above result by letting z lie in a wider range. This will be useful for the generalisation section Appendix C.

Remark 12. If λ > 1 and z ∈ [-λ √ n, λ √ n] d , then we have Pr [Y S = 1, Y T = 1] ≥ (2ε) 2d (2παn) d • 1 - α 2 4 -d 2 • exp - 3λ 2 d α .
[WRG17] Yuyi Wang, Jan Ramon, and Zheng-Chu Guo. 

A Tools

Below we list some standard tools we use, and prove some inequalities.

A.1 Concentration bounds

Theorem 13 (Chebyshev's inequality). Let X be a random variable with finite expected value µ and finite non-zero variance σ 2 . Then for any real number k > 0, it holds that

Pr |X -µ| ≥ k ≤ σ 2 k 2 .
Lemma 14 (Chernoff-Hoeffding bounds [START_REF] Doerr | Analyzing randomized search heuristics: Tools from probability theory[END_REF]). Let X 1 , X 2 , . . . , X n be independent random variables such that

Pr [0 ≤ X i ≤ 1] = 1 for all i ∈ [n]. Let X = n i=1 X i and E [X] = µ.
Then, for any δ ∈ (0, 1) the following holds: Proof. Since e x ≤ (1x) -1 for x ≤ 1, for n ≥ 4d α , it holds that

1. Pr X ≥ (1 + δ)µ ≤ exp -δ 2 µ + 3 ; 2. Pr X ≤ (1 -δ)µ ≤ exp -δ 2 µ + 2 .

A.2 Claims

e 4d αn ≤ 1 1 -4d αn = 1 + 4d αn -4d .
Thus, having n ≥ 68d α implies that

e 4d αn ≤ 1 + 1 16 .
Moreover, by Bernoulli's inequality, since α < 1 2 , it holds that, 1

1 -4α 2 d 2 ≤ 1 1 -2dα 2 .
Altogether, we need that

1 + 1 16 1 -2dα 2 ≤ 1 + 1 8 , which holds for α ≤ 1 6 √ d .
Claim 16. Let d, n ∈ N, ε ∈ (0, 1), and α ∈ (0,

1 6 ). If n ≥ 144d α 2 log 1 ε + log d + log 1 α , then 4e 4d αn 2 α 2 n 6 • παn 2ε 2 d 2 ≤ ε.
Proof. Consider the function

f (n) = n d 2 α 2 n 6
.

We have that

f ′ (n) = dn d-1 2 α 2 n 6 -α 2 ln 2 6 • n d 2 α 2 n 6 2 α 2 n 3 = n d-1 2 α 2 n 6 2 α 2 n 3 • d - α 2 n ln 2 6 ,
and, hence, f is non-increasing for n ≥ 6d α 2 ln 2 . Thus, since f 6d

α 2 ln 2 = 6d eα 2 ln 2 d , it holds that 4e 4d αn 2 α 2 n 6 • παn 2ε 2 d 2 = 4e 4d αn 2 α 2 n 12 • πα 2ε 2 d 2 n d 2 α 2 n 6 ≤ 4e 4d αn 2 α 2 n 12 • πα 2ε 2 d 2 6d eα 2 ln 2 d = 4e 4d αn 2 α 2 n 12 • 3πd ε 2 eα ln 2 d 2 < 8 2 α 2 n 12 • 6d ε 2 α d 2
where the last inequality comes from noting that 6 > 3π e ln 2 and that n ≥ 8d α implies e 4d αn < 2. This is at most ε if

8 ε d+1 • 6d α d 2 ≤ 2 α 2 n 12 , or, equivalently, n ≥ 12 α 2 log 8 + (d + 1) log 1 ε + d 2 log 1 α + d 2 log 6d .
The thesis follows from the bounds d, n ≥ 1, ε ∈ (0, 1), and α < 1 6 .

Claim 17. Let A, B be two centred normal random variables, and let ϕ B (x) be the density function of B. Then, for any z ∈ R, for any ε > 0, it holds that

R ϕ B (x) Pr A ∈ (z -x -ε, z -x + ε) 2 dx ≤ R ϕ B (x) Pr A ∈ (-x -ε, -x + ε) 2 dx. Proof. For any x, z ∈ R, let h(x, z) = ϕ B (x) Pr A ∈ (z -x -ε, z -x + ε) 2 dx,
and let

H(z) = R h(x, z) dx.
Let ϕ A (x) be the density function of a. Since

∂h(x, z) ∂z = 2 ϕ B (x)Pr A ∈ (z -x -ε, z -x + ε) ϕ A (z -x + ε) -ϕ A (z -x -ε) ≤ 2ϕ B (x)Pr A ∈ (z -x -ε, z -x + ε) ϕ A (z -x + ε) + ϕ A (z -x -ε) ,
h(x, z) meets the hypothesis of the Leibniz integral rule and we can write

dH(z) dz = R ∂h(x, z) ∂z dx = 2 R ϕ B (x)Pr A ∈ (z -x -ε, z -x + ε) ϕ A (z -x + ε) -ϕ A (z -x -ε) dx
If we prove that such a function is zero in z = 0, positive for z < 0 and negative for z > 0, then we have that the maximum of H is reached in z = 0.

First case: z = 0. Then

dH(0) dz = 2 R ϕ B (x)Pr A ∈ (x -ε, x + ε) ϕ A (x -ε) -ϕ A (x + ε) dx (5) = 2 R ϕ B (x)Pr A ∈ (x -ε, x + ε) ϕ A (x -ε) dx -2 R ϕ B (x)Pr A ∈ (x -ε, x + ε) ϕ A (x + ε) dx = 2 R ϕ B (x)Pr A ∈ (x -ε, x + ε) ϕ A (x -ε) dx -2 R ϕ B (y)Pr A ∈ (y -ε, y + ε) ϕ A (y -ε) dx (6) = 0,
where in Eq. ( 5) we exploited the symmetry of the integrand functions, Eq. ( 6) we substituted in the second integral y = -x and used again symmetry.

Second case: z > 0. Then

dH(z) dz = 2 R ϕ B (x)Pr A ∈ (z -x -ε, z -x + ε) ϕ A (z -x + ε) -ϕ A (z -x -ε) dx = 2 -z -∞ ϕ B (x)Pr A ∈ (z -x -ε, z -x + ε) ϕ A (z -x + ε) -ϕ A (z -x -ε) dx + 2 +z -z ϕ B (x)Pr A ∈ (z -x -ε, z -x + ε) ϕ A (z -x + ε) -ϕ A (z -x -ε) dx + 2 +∞ +z ϕ B (x)Pr A ∈ (z -x -ε, z -x + ε) ϕ A (z -x + ε) -ϕ A (z -x -ε) dx = 2 +∞ +z ϕ B (x)Pr A ∈ (z + x -ε, z + x + ε) ϕ A (z + x + ε) -ϕ A (z + x -ε) dx (7) + 2 +∞ +3z ϕ B (x)Pr A ∈ (z -x -ε, z -x + ε) ϕ A (z -x + ε) -ϕ A (z -x -ε) dx + 2 +3z +z ϕ B (x)Pr A ∈ (z -x -ε, z -x + ε) ϕ A (z -x + ε) -ϕ A (z -x -ε) dx + 2 +z -z ϕ B (x)Pr A ∈ (z -x -ε, z -x + ε) ϕ A (z -x + ε) -ϕ A (z -x -ε) dx = 2 +∞ +z ϕ B (x)Pr A ∈ (z + x -ε, z + x + ε) ϕ A (z + x + ε) -ϕ A (z + x -ε) dx -2 +∞ +z ϕ B (2z + x)Pr A ∈ (z + x -ε, z + x + ε) ϕ A (z + x + ε) -ϕ A (z + x -ε) dx (8) -2 +z -z ϕ B (x -2z)Pr A ∈ (z -x -ε, z -x + ε) ϕ A (z -x + ε) -ϕ A (z -x -ε) dx (9) + 2 +z -z ϕ B (x)Pr A ∈ (z -x -ε, z -x + ε) ϕ A (z -x + ε) -ϕ A (z -x -ε) dx = 2 +∞ +z ϕ B (x) -ϕ B (2z + x) Pr A ∈ (z + x -ε, z + x + ε) ϕ A (z + x + ε) -ϕ A (z + x -ε) dx (10) + 2 +z -z ϕ B (x) -ϕ B (x -2z) Pr A ∈ (z -x -ε, z -x + ε) ϕ A (z -x + ε) -ϕ A (z -x -ε) dx, ( 11 
)
where in Eq. ( 7) we substituted x ′ = -x and used the symmetry of the integrand functions, in Eqs. ( 8) and (9) we substituted x ′ = x -2z and x ′ = 2zx, respectively, and used again the symmetry. The expression in Eq. ( 10) is negative as ϕ B (x) > ϕ B (2z + x) and ϕ A (z + x + ε) < ϕ A (z + xε) for x ≥ z; the expression in Eq. ( 11) is negative as

ϕ B (x) > ϕ B (x -2z) and ϕ A (z -x + ε) < ϕ A (z -x -ε) for x ∈ (-z, z).
Third case: z < 0. This case is similar to the previous one: with the same arguments, we obtain

dH(z) dz = 2 +z -∞ ϕ B (x) -ϕ B (2z + x) Pr A ∈ (z + x -ε, z + x + ε) ϕ A (z + x + ε) -ϕ A (z + x -ε) dx (12) + 2 -z +z ϕ B (x) -ϕ B (x -2z) Pr A ∈ (z -x -ε, z -x + ε) ϕ A (z -x + ε) -ϕ A (z -x -ε) dx. ( 13 
)
The expression in Eq. ( 12) is positive as ϕ B (x) > ϕ B (2z + x) and ϕ A (z + x + ε) > ϕ A (z + xε) for x ≤ z; the expression in Eq. ( 13) is positive as

ϕ B (x) > ϕ B (x-2z) and ϕ A (z -x+ε) < ϕ A (z -x-ε) for x ∈ (z, -z).
Claim 18. For all x ∈ R, c ∈ 0, 1 162 , and ε ∈ (0, 1), it holds that

ε -ε e -c(x+s) 2 ds 2 ≤ ε -ε e -c(x+ε) 2 + e -c(x-ε) 2 2 e cε 2 ds 2 . Proof. Let f x (s) = e -c(x+s) 2 . Since ε -ε e -c(x+ε) 2 + e -c(x-ε) 2 2 e cε 2 ds = ε -ε ms + e -c(x+ε) 2 + e -c(x-ε) 2 2 e cε 2 ds
for any m ∈ R, we choose it to be the angular coefficient of the line passing through f x (-ε) and f x (ε), and prove the stronger result

e -c(x+s) 2 ≤ e -c(x+ε) 2 -e -c(x-ε) 2 2ε s + e -c(x+ε) 2 + e -c(x-ε) 2 2 e cε 2 (14) 
for all s ∈ (-ε, ε). In fact, the right hand side of Eq. ( 14) is the equation for the line passing by the extrema of f x in (-ε, ε) lifted by a factor of e cε 2 . Therefore, the results holds trivially if f x is convex in the entire range (-ε, ε), which is true when |x| > 1 + 1 √ 2c . Moreover, the factor e cε 2 ensures the result for x = 0, so, we follow with the analysis of the case x ∈ 0, 1 + 1 √ 2c and the remaining case x ∈ -1 -1 √ 2c , 0 follows by symmetry. Dividing both side of Eq. ( 14) by e -c(x+s) 2 , we obtain

1 ≤ e 2csx+cs 2 e -cε 2 s ε • e -2cεx -e 2cεx 2 + e -2cεx + e 2cεx 2 ( 15 
)
= e 2csx+cs 2 -e -cε 2 s ε sinh(2cεx) + cosh(2cεx) .

Let g(x) be the right hand side of this inequality. Then

g ′ (x) = 2csg(x) + 2cεe 2csx+cs 2 - e -cε 2 s ε cosh(2cεx) + sinh(2cεx) = 2ce 2csx+cs 2   cosh(2cεx) s -se -cε 2 + sinh(2cεx) ε - s 2 ε e -cε 2   .
If s ∈ [0, ε), then s ≥ se -cε 2 and ε ≥ ε 2 ε e -cε 2 ≥ s 2 ε e -cε 2 , hence g ′ (x) ≥ 0. Since g(0) ≥ 1, this ensures Eq. ( 15).

The sub-case s ∈ (-ε, 0) offers much more resistance. To analyse it we exploit that x ∈ 0, 1 + 1 √ 2c

implies that cx ≤ √ 2c for c < 1 2 and make extensive use of Taylor's theorem to approximate the exponential functions.

We start by rewriting Eq. ( 15) as

εe -2csx-cs 2 ≤ e 2cεx ε 2 - s 2 e -cε 2 + e -2cεx ε 2 + s 2 e -cε 2 . ( 16 
)
By Taylor's theorem, there exist

λ 1 , λ 2 ∈ [0, 2cεx] ⊆ [0, 2 √ 2cε], λ 3 ∈ [0, -2csx] ⊆ [0, 2 √ 2cε], λ 4 ∈ [0, cs 2 ], λ 5 ∈ [0, cε 2 ] such that e +2cεx = 1 + 2cεx + 2c 2 ε 2 x 2 + 4 3 c 3 ε 3 x 3 e λ 1 , e -2cεx = 1 -2cεx + 2c 2 ε 2 x 2 - 4 3 c 3 ε 3 x 3 e λ 2 , e -2csx = 1 -2csx + 2c 2 s 2 x 2 - 4 3 c 3 s 3 x 3 e λ 3 , e -cs 2 = 1 -cs 2 + c 2 s 4 2 e -λ 4 , (17) 
e -cε 2 = 1 -cε 2 + c 2 ε 4 2 e -λ 5 , (18) 
where we used second order approximations for the first three terms and first order approximations for the last two. Plugging those in Eq. ( 16) we obtain

εe -cs 2 1 -2csx + 2c 2 s 2 x 2 - 4 3 c 3 s 3 x 3 e λ 3 ≤ 1 + 2cεx + 2c 2 ε 2 x 2 + 4 3 c 3 ε 3 x 3 e λ 1 ε 2 - s 2 e -cε 2 + 1 -2cεx + 2c 2 ε 2 x 2 - 4 3 c 3 ε 3 x 3 e λ 2 ε 2 + s 2 e -cε 2 .
The latter becomes

ε 1 -e -cs 2 + 2csεx e -cs 2 -e -cε 2 + 2c 2 εx 2 ε 2 -s 2 e -cs 2 + 4 3 c 3 εx 3 ε 2 e λ 1 ε 2 - s 2 e -cε 2 -ε 2 e -λ 2 ε 2 + s 2 e -cε 2 + s 3 e λ 3 -cs 2 ≥ 0 Now, notice that ε 2 e λ 1 ε 2 - s 2 e -cε 2 -ε 2 e -λ 2 ε 2 + s 2 e -cε 2 ≥ 0, as ε 2 -s 2 e -cε 2 ≥ ε 2 + s 2 e -cε 2 since -ε ≤ s < 0, and ε 2 e λ 1 ≥ ε 2 ≥ ε 2 e -λ 2
. Furthermore, observe that s 3 e λ 3 -cs 2 ≥ 2s 3 as s < 0 and

λ 3 ≤ 2 √ 2cε ≤ 1 2 if c ≤ 1 32 . Thus, the inequality is true if ε 1 -e -cs 2 + 2csεx e -cs 2 -e -cε 2 + 2c 2 εx 2 ε 2 -s 2 e -cs 2 + 8 3 c 3 s 3 εx 3 ≥ 0.
Applying Eqs. ( 17) and ( 18), the latter inequality yields that

ε cs 2 - c 2 s 4 2 e -λ 4 + 2csεx cε 2 -cs 2 - c 2 ε 4 2 e -λ 5 + c 2 s 4 2 e -λ 4 + 2c 2 εx 2 ε 2 -s 2 + cs 4 - c 2 s 6 2 e -λ 4 + 8 3 c 3 s 3 εx 3 = εcs 2 - c 2 s 4 ε 2 e -λ 4 -c 3 sε 5 xe -λ 5 + c 3 s 5 εxe -λ 4 + 2c 3 s 4 εx 2 -c 4 s 6 εx 2 e -λ 4 + 8 3 c 3 s 3 εx 3 + 2c 2 εx ε 2 -s 2 (x + s) . Now observe that 2c 3 s 4 εx 2 -c 4 s 6 εx 2 e -λ 4 ≥ 0 as c < 1, s ≤ ε ≤ 1, e -λ 4 < 1; -c 3 sε 5 xe -λ 5 > 0 as s < 0; εcs 2 - c 2 s 4 ε 2 e -λ 4 + c 3 s 5 εxe -λ 4 + 8 3 c 3 s 3 εx 3 ≥ cs 2 ε - c 2 s 2 ε 3 2 -c 2 √ 2cs 2 ε 4 - 8 3 c 3 s 2 ε 2 x 3 > cs 2 ε - c 2 s 2 ε 3 2 -c 2 √ 2cs 2 ε 4 -6c √ 2cs 2 ε 2 (19) = cs 2 ε 1 - cε 2 2 -c 2 √ 2cε 3 -6 √ 2cε ≥ cs 2 ε 1 - c 2 -c 2 √ 2c -6 √ 2c (20) ≥ cs 2 ε 5 , (21) 
where in Eq. ( 19) we used that cx ≤ √ 2c, in Eq. (20) that ε ≤ 1, and in Eq. ( 21) we used i)

c 2 √ 2c ≤ c 2 when c ≤ 1 3 √ 2 , ii) c < √ 2c since c < 1 and iii) 1 -7 √ 2c ≥ 1 5 , whenever c ≤ 1 162 .
Going back to the inequality, we now have that

cs 2 ε 5 + 2c 2 εx ε 2 -s 2 (x + s) .
If x ≥ |s| the latter is positive, otherwise it becomes

cs 2 ε 5 + 2c 2 εx ε 2 -s 2 (x + s) ≥ cs 2 ε 5 + 2c 2 εx 2 ε 2 -s 2 -2c 2 εs 2 ε 2 -s 2 ≥ cs 2 ε 5 -2c 2 εs 2 + 2c 2 εx 2 ε 2 -s 2 ≥ cs 2 ε 1 5 -2c ,
which is positive for c < 1 10 .

Claim 19. For all x ∈ R, c ∈ 0, 1 10 , and ε ∈ (0, 1), it holds that

x+ε x-ε exp -cy 2 dy 2 ≥ x+ε x-ε exp -c(x -ε) 2 dy • x+ε x-ε exp -c(x + ε) 2 dy. ( 22 
)
Proof. We can express Eq. ( 22) as

x+ε x-ε exp -cy 2 dy 2 - x+ε x-ε exp -c(x 2 + ε 2 ) dy 2 = x+ε x-ε exp -cy 2 -exp -c(x 2 + ε 2 ) dy • x+ε x-ε exp -cy 2 + exp -c(x 2 + ε 2 ) dy ≥ 0,
which holds if and only if

+ε -ε exp -c(x + s) 2 ds ≥ +ε -ε exp -c(x 2 + ε 2 ) ds. ( 23 
)
The result is immediate for x = 0, so we assume x > 0 and the claim follows by symmetry. Let

f x (s) = exp(-c(x + s) 2 ).
We provide distinct arguments depending on whether x is small or large.

Case x ∈ (0, 1). Since we assume c < 1 8 and ε < 1, we have for any x ≤ 1 that f x is concave in (-ε, ε). That is,

f x (s) ≥ f x (ε) -f x (-ε) 2ε s + f x (ε) + f x (ε) 2 , for all s ∈ (-ε, ε). Thus, ε -ε f x (s) ds ≥ ε -ε f x (ε) -f x (-ε) 2ε s + f x (ε) + f x (-ε) 2 ds = ε -ε f x (ε) + f x (-ε) 2 ds = ε -ε exp -c(x 2 + ε 2 ) • exp (-2cxε) + exp (2cxε) 2 ds ≥ ε -ε exp -c(x 2 + ε 2 ) ds.
Case x ≥ 1. The integral on the right hand side of Eq. ( 23) has the same value for any affine integrand r x for which r x (0) = exp -c(x 2 + ε 2 ) . Thus, proving that f x (s) ≥ r x (s), for all s ∈ (-ε, ε), concludes the proof.

In particular, we can choose

r x (s) = f ′ x (0) • s + exp -c(x 2 + ε 2 ) . Since f ′ x (s) = -2c(x + s) exp -c(x + s) 2 , we aim to show that exp -c(x + s) 2 ≥ -2csx exp -cx 2 + exp -c(x 2 + ε 2 )
for s ∈ (-ε, ε). Dividing by exp(-c(x 2 + s 2 )) and rearranging, we obtain

exp(-2csx) + 2csx exp cs 2 -exp -c ε 2 -s 2 ≥ 0. (24) 
Now, if s ≥ 0, we have that

exp(-2csx) + 2csx exp(cs 2 ) -exp(-c(ε 2 -s 2 )) ≥ 1 -2csx + 2csx(1 + cs 2 ) -exp(-cε 2 ) (25) = 1 + 2c 2 s 3 x -exp(-cε 2 ) ≥ 2c 2 s 3 x ≥ 0,
where in Eq. ( 25) we used that e y ≥ 1 + y. Now consider the sub-case s < 0. By Taylor's theorem,

exp(y) = 1 + y + y 2 2 + exp(ξ 1 ) • y 3 6 and exp(y) = 1 + y + exp(ξ 2 ) • y 2 2 ,
for some ξ 1 , ξ 2 ∈ [0, y]. Letting ℓ = -s ∈ (0, 1), we have

exp(2cℓx) ≥ 1 + 2cℓx + (2cℓx) 2 2 + (2cℓx) 3 6 and exp(cℓ 2 ) ≤ 1 + cℓ 2 + exp(cℓ 2 )(cℓ 2 ) 2 2 ≤ 1 + cℓ 2 + 1 + 3(cℓ 2 ) (cℓ 2 ) 2 2 .
since e y ≤ 1 + 3y for 0 ≤ y ≤ 1. Finally, applying this to Eq. ( 24), we have

exp(-2csx) + 2csx exp cs 2 -exp -c ε 2 -s 2 ≥ exp(2cℓx) -2cℓx exp cℓ 2 -1 ≥ 1 + 2cℓx + (2cℓx) 2 2 + (2cℓx) 3 6 -2cℓx 1 + cℓ 2 + c 2 ℓ 4 (1 + 3cℓ 2 ) 2 -1 = 2c 2 ℓ 2 x 2 + 4 3 c 3 ℓ 3 x 3 -2cℓx cℓ 2 + c 2 ℓ 4 (1 + 3cℓ 2 ) 2 = 2c 2 ℓ 2 x(x -ℓ) + c 3 ℓ 3 x 4 3 x 2 -ℓ 2 (1 + 3cℓ 2 ) .
The latter is non negative for x ≥ 1 and c ≤ 1 9 , since ℓ = -s ≤ ε < 1, so that 4

3 x 2 -ℓ 2 (1 + 3cℓ 2 ) ≥ 4 3 -1 -1 3 = 0.
B Proofs omitted B.1 Proof of Lemma 3

If α ≥ 1 2 , then 2α 2 n ≥ αn, and the result holds trivially. So we assume α < 1 2 . Let k be any integer, and let C = {C 1 , C 2 , . . . , C k }, with each C i drawn uniformly from the collection of subsets of [n] with size αn. Given i, j ∈ [k], if i = j, then C i ∩ C j follows a hypergeometric distribution H(n, αn, αn), which has mean α 2 n. As argued in [Doe11, Theorem 1.17], the known Chernoff bounds (Lemma 14) hold for hypergeometric distributions. Hence,

Pr |C i ∩ C j | > 2α 2 n ≤ exp - α 2 n 3 .
Finally, for the event of interest, we have that

Pr    i =j∈[k] |C i ∩ C j | ≤ 2α 2 n    = 1 -Pr    i =j∈[k] |C i ∩ C j | > 2α 2 n    ≥ 1 - k 2 exp - α 2 n 3 ≥ 1 -2 α 2 t 3 • exp - α 2 n 3 (26) > 0,
where in Eq. ( 26) we have chosen k = 2 α 2 n 6 .

B.2 Proof of Lemma 4

By the distribution of X, . Leveraging the fact that it is possible to cover [-1, 1] d by 1 ε d hypercubes of radius ε, we can ensure that the probability of failing to approximate any z, up to error 2ε, is, by the union bound, at most

Pr X ∈ B d ∞ (z, ε) = B d ∞ (z,ε) 1 2πσ 2 d 2 • exp - x 2 2 2σ 2 dx. Since B d ∞ (z, ε) ⊆ B d ∞ (0, 2) and for all x ∈ R d it holds that x 2 ≤ √ d • x ∞ ,
1 ε d • 2 3 k = 2 -k log 3 2 +d log 1 ε = exp   -ln 2 • n -144d 2 α 2 log 3 2 log 1 ε log 1 ε + log d + log 1 α 144d α 2 log 3 2 log 1 ε + log d + log 1 α    .
Thus, we can conclude the result for

n ≥ 144 log 3 2 • d 2 α 2 log 1 ε • log 1 ε + log d + log 1 α .

C Generalisation of our result

If the target value z lies in the hypercube [-λ √ n, λ √ n] d , for some λ > 1 √ n , we have slightly different bounds for the expectation and for the variance of Y. In particular, Corollary 5 would give

e -2λ 2 d α (2ε) d |C| (2παn) d 2 ≤ E [Y] ≤ (2ε) d |C| (2παn) d 2 . ( 27 
)
On the other hand, as the proof of Lemma 6 never uses that z ∈ [-1, 1] d but only exploits the bound on the expectation, it would yield

Var [Y] ≤ (2ε) 2d |C| 2 (2παn) d (1 -4α 2 ) -d 2 -e -4λ 2 d α + (2ε) d |C| (2παn) d 2 . ( 28 
)
We focus on the case λ = 1 2 α 17d when n > 68d α (which implies λ √ n > 1). Thus, we have a new estimation for the probability to hit a single value.

Lemma 20. Given d, n ∈ N, ε ∈ (0, 1), and α ∈ (0, 1 6 ], let X 1 , . . . ,

X n i.d.d. following N (0, I d ), z ∈ [-λ √ n, λ √ n] d , with λ = 1 2 α 17d
, and C ⊆ [n] αn . If any two subsets in C intersect in at most

2α 2 n elements, α ≤ 1 6 √ d
, and

n ≥ 144d α 2 log 1 ε + log d + log 1 α , then Pr [Y ≥ 1] ≥ 1 3 .
Proof. By Chebyshev's inequality, it holds that

Pr [Y ≥ 1] ≥ Pr Y -E [Y] < E [Y] 2 ≥ 1 - 4 • Var [Y] E [Y] 2 .
Notice that 4λ 2 d α = 1 17 . Hence, using Eqs. ( 27) and (28), we get that

4 • Var [Y] E [Y] 2 ≤ 4 • e 1 17 • (2παn) d (2ε) 2d |C| 2 •   (2ε) 2d |C| 2 (2παn) d • (1 -4α 2 ) -d 2 -e -1 17 + (2ε) d |C| (2παn) d 2   = 4 •   e 1 17 (1 -4α 2 ) d 2 -1   + 4e 1 17 • (2παn) d 2 (2ε) d |C| .
Note that Claim 15 holds exactly as it is for the ratio We remark that we cannot let λ be asymptotically greater than α d otherwise our method fails. Indeed, by Remark 12, the term 4Var

[Y] E[Y] 2 is at least 4 •     e 4λ 2 d α -3λ 2 d α 1 -α 2 4 d 2 -1     .
The latter is greater than or equal to 1 if λ ≥ α d since e λ 2 d α ≥ 1 + λ 2 d α . We are ready to state our first generalised version of Theorem 9.

Theorem 21. For given d and ε ∈ (0, 1), let X 1 , . . . , X n be n independent standard normal ddimensional random vectors and let α ∈ (0,

1 6 √ d ]. There exist two universal constants C > δ > 0 such that, if n ≥ C d 2 α 2 log 1 ε + log d + log 1 α 2 ,
the following holds with probability at least

1 -exp     -ln 2 •    n δ d α 2 log 1 ε + log d + log 1 α -d log 1 ε        : for all z ∈ -λ √ n, λ √ n d , with λ = 1 2 α 17d , there exists a subset S z ⊆ [n], such that z - i∈Sz X i ∞ ≤ 2ε.
Moreover, the property above remains true even if we restrict to subsets of size αn.

Proof.

Let

n 144d α 2 log 1 ε +log d+log 1 α = k ≥ 1 with k ∈ N. By Lemma 20, for any z ∈ [-λ √ n, λ √ n] d ,
the probability than no subset-sum is sufficiently close to z is at most

2 3 k . Leveraging the fact that it is possible to cover [-λ √ n, λ √ n] d by λ √ n ε d
hypercubes of radius ε, we can ensure that the probability of failing to 2ε-approximate any z is, by the union bound, at most

λ √ n ε d • 2 3 k = 2 -k log 3 2 +d log 1 ε + 1 2 log n+log λ = exp   -ln 2 • n -144d 2 α 2 log 3 2 log 1 ε + 1 2 log n + log λ log 1 ε + log d + log 1 α 144d α 2 log 3 2 log 1 ε + log d + log 1 α    ≤ exp   -ln 2 • n -144d 2 α 2 log 3 2 log 1 ε + 1 2 log n log 1 ε + log d + log 1 α 144d α 2 log 3 2 log 1 ε + log d + log 1 α    (29) since λ < 1. Consider n 2 -144d 2 2α 2 log 3 2 log n log 1 ε + log d + log 1 α . Let k = k ′ log 1 ε + log d + log 1 α , which means that n = 144k ′ d α 2 log 1 ε + log d + log 1 α 2 . Then n 2 - 144d 2 2α 2 log 3 2 log n log 1 ε + log d + log 1 α = 144d 2α 2 log 1 ε + log d + log 1 α k ′ log 1 ε + log d + log 1 α - d log 3 2 log 144 log 3 2 + log k ′ + log d + 2 log 1 α + 2 log log 1 ε + log d + log 1 α   ≥ 144d 2α 2 log 1 ε + log d + log 1 α k ′ log 1 ε + log d + log 1 α -2d 8 + log k ′ + log d + 2 log 1 α + 2 log log 1 ε + log d + log 1 α   If k ′ = 17d, we have that k ′ log 1 ε + log d + log 1 α -2d 8 + log k ′ + log d + 2 log 1 α + 2 log log 1 ε + log d + log 1 α ≥ 4d log 1 ε + log d + log 1 α -log log 1 ε + log d + log 1 α + 13d log d + 13d log 1 α -16d -2d log c -3d log d -4d log 1 α = 10d log d + 9d log 1 α -16d -2d log 17 ≥ 0, as α ≤ 1 6 . Thus, for n ≥ 17•144d 2 α 2 log 1 ε + log d + log 1 α 2
, we have that the expression in Eq. ( 29) is at most exp

  -ln 2 • n -288d 2 α 2 log 3 2 log 1 ε log 1 ε + log d + log 1 α 288d α 2 log 3 2 log 1 ε + log d + log 1 α    .
We have the thesis by setting δ = 288 log 3 2 and C = 17 • 144.

Our analysis, that relies on fixed subset sizes, easily extends Theorem 21 for non-centred and non-unitary normal random vectors.

Corollary 22. Let σ > 0 and ε ∈ (0, σ). Given d, n ∈ N let X 1 , . . . , X n be independent normal d-dimensional random vectors with X i ∼ N (v, σ 2 • I d ), for any vector v ∈ R d . Furthermore, let α ∈ 0, 1 6 √ d . There exist two universal constants C > δ > 0 such that, if n ≥ C d 2 α 2 log σ ε + log d + log 1 α 2 , 29 
then, with probability

1 -exp     -ln 2 •    n δ d α 2 log σ ε + log d + log 1 α -d log σ ε        , for all z ∈ [-σλ √ n, σλ √ n] d + αnv, with λ = 1 2 α 17d
, there exists a subset S z ⊆ [n] for which

z - i∈Sz X i ∞ ≤ 2ε.
Moreover, this remains true even when restricted to subsets of size αn.

Proof. Simply apply Theorem 21 to the random vectors X i -v σ with error ε σ .

Following the line of [START_REF] Lueker | Exponentially small bounds on the expected optimum of the partition and subset sum problems[END_REF], we also observe that our results extend to a wider class of probability distributions.

Definition 23. Consider any two random variables X and Y having the same codomain, and let ϕ X (x), ϕ Y (x) be their probability density functions. We say that X contains Y with probability p if a constant p ∈ (0, 1] exists such that ϕ X (x) = p • ϕ Y (x) + (1p)f (x) for any function f (x).

If X contains Y with probability p, we can describe the behaviour of X as follows: with probability p, draw Y; with probability 1p, draw something else. An adapted version of our result holds for random variables containing Gaussian distributions. 

D Discrete setting

We believe that it should not be hard to adapt our proof to several discrete distributions, in order to obtain results similar to those discussed in the Related Work section. We also note that our Theorem 2 already implies an analogous discrete result. Suppose that we quantise our random vectors by truncating them to the ⌊log 1 δ ⌋-th binary place, obtaining vectors Xi such that Xi -X i ∞ < δ. For any z ∈ [-1, 1] d , Theorem 2 guarantees that w.h.p. there is a subset of indices I ⊆ [n] such that z -i∈I X i ∞ < ε and, hence, by the triangular inequality, z -i∈I Xi ∞ < nδ + 2ε. As a special case (δ = 2ε), we have the following:

Corollary 25 (Discretization of Theorem 2). Given d ∈ N, ε ∈ (0, 1), let X1 , . . . , Xn be independent standard normal d-dimensional vectors truncated to the ⌊log 1 ε ⌋-th binary place. There exists a universal constant C > 0 such that, if n ≥ Cd 3 log 1 ε log 1 ε + log d , then, with high probability, for all vectors ẑ with entries in {kε} ⌈-1 ε ⌉≤k≤⌊ 1 ε ⌋ there exists a subset S z ⊆ [n] for which ẑ -i∈Sz Xi ∞ ≤ 2ε(n + 1).

Moreover, the approximation can be achieved with subsets of size n 6 √

d .

E Connection with non-deterministic random walks

Consider a discrete-time stochastic process whose state space is R d which starts at the origin. At the first step, the process "branches" in two processes, one of which keeps still, while the other moves by the vector X 1 . Recursively, given any time i and any process, at the next time step the process branches in two other processes, one of which keeps still, while the other moves by the vector X i+1 . In this setting, when X i+1 are sampled from a standard multivariate normal distribution, our results imply that the resulting process is space filling: the process eventually gets arbitrarily close to each point in R d . This should be contrasted with the fact that a Brownian motion is transient in dimension d ≥ 3 [START_REF] Mörters | Brownian motion[END_REF]. The above process can also be interpreted as a multi-dimensional version of nondeterministic walks as introduced in [START_REF] Élie De Panafieu | Combinatorics of nondeterministic walks of the dyck and motzkin type[END_REF] in the context of the analysis of encapsulations and decapsulations of network protocols, where the i-th N -step is {X i , 0}.

  that we represent simply by Y S when the other parameters are clear from context. Since we are interested in studying families of subsets, we also define, for C contained in the power set of [n], the random variable Y C,ε,z,X 1 ,...,Xn = S∈C Y S , which we represent simply as Y.

Claim 15 .

 15 Let d, n ∈ N and α ∈ R >0 . If n ≥ 68d α and α ≤

Corollary 24 .

 24 Let σ > 0, ε ∈ (0, σ), and let p ∈ (0, 1] be a constant.Given d, n ∈ N let Y 1 , . . . , Y n be independent d-dimensional random vectors containing d-dimensional normal random vectors X ∼ N (v, σ 2 • I d ) with probability p, where v is any vector in R d . Furthermore, let α ∈ 0, 1 6 √ d . There exist two universal constants C > δ > 0 such that, if exists a subset S z ⊆ [n] for which z -i∈Sz X i ∞ ≤ 2ε. Moreover, this remains true even when restricted to subsets of size αpn 2 . 30 Proof. With a simple application of the Chernoff bound, we have that at least pn 2 random vectors are normal random vectors with probability 1e -pn 8 . Conditional on this event, we can apply Corollary 22 to the pn 2 normal random vectors. Since Pr [A, B] ≥ Pr [A | B] Pr [B] for any two events A, B, and 2δ d α 2 log σ ε + log d + log 1 α ≥ 8, the thesis holds with probability at least
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B.3 Proof of Lemma 11

Inheriting the setup from the proof of Lemma 6 and proceeding analogously we obtain that σ 2 A = αn 1 -α 2 and σ 2 B = α 2 n 2 . We diverge from that argument after Eq. (1). Preserving equality for a bit longer, we have that

The hypothesis on n implies that 2σ 2 a ≥ 10, so, by Claim 19,

Then, as before, we can reduce the main integral to a convolution. Namely, it holds that

Altogether, we have that

where the last equality follows from recalling that σ 2 B = α 2 n 2 and σ

Finally, the hypotheses z ∈ [-1, 1], ε ∈ (0, 1), and α ∈ 0, 1 2 imply that 2ε 2 2-α + 2z 2 2+α < 3.