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Abstract

In the Random Subset Sum Problem, given n i.i.d. random variables X1, ..., Xn, we wish to
approximate any point z ∈ [−1, 1] as the sum of a suitable subset Xi1(z), ..., Xis(z) of them, up to
error ε. Despite its simple statement, this problem is of fundamental interest to both theoretical
computer science and statistical mechanics. More recently, it gained renewed attention for its
implications in the theory of Artificial Neural Networks. An obvious multidimensional generali-
sation of the problem is to consider n i.i.d. d-dimensional random vectors, with the objective of
approximating every point z ∈ [−1, 1]d. Rather surprisingly, after Lueker’s 1998 proof that, in
the one-dimensional setting, n = O(log 1

ε ) samples guarantee the approximation property with
high probability, little progress has been made on achieving the above generalisation.

In this work, we prove that, in d dimensions, n = O(d3 log 1
ε · (log 1

ε + log d)) samples suffice
for the approximation property to hold with high probability. As an application highlighting
the potential interest of this result, we prove that a recently proposed neural network model
exhibits universality : with high probability, the model can approximate any neural network
within a polynomial overhead in the number of parameters.

1 Introduction
In the Random Subset Sum Problem (RSSP), given a target value z, an error parameter ε ∈ R>0
and n independent random variables X1,X2, . . . ,Xn, one is interested in estimating the probability
that there exists a subset S ⊆ [n] for which∣∣∣z −∑

i∈S
Xi

∣∣∣ ≤ ε.
Historically, the analysis of this problem was mainly motivated by research on the average

case of its deterministic counterpart, the classic Subset Sum Problem, and the equivalent Number
Partition Problem. These investigations lead to a number of insightful results, mostly in the 80s and
90s [Lue82, KKLO86, Lue98]. In addition, research on the phase transition of the problem extended
to the early 2000s, with interesting applications in statistical physics [MM09, BCP01, BCMP04].

More recently, one of the results on the RSSP has attracted quite some attention. A simplified
statement for it would be
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Theorem 1 (Lueker, [Lue98]). Let X1, . . . ,Xn be i.i.d. uniform random variables over [−1, 1], and
let ε ∈ (0, 1). There exists a universal constant C > 0 such that, if n ≥ C log2

1
ε , then, with high

probability, for all z ∈ [−1, 1] there exists a subset Sz ⊆ [n] for which∣∣∣z −∑
i∈Sz

Xi

∣∣∣ ≤ ε.
That is, a rather small number (of the order of log 1

ε ) of random variables suffices to have a high
probability of approximating not only a single target z, but all values in an interval. In fact, this
result is asymptotically optimal, since each of the 2n subsets can cover at most one of two values
more than 2ε apart and, hence, we must have n = Ω(log 1

ε ). Also, the original work generalises the
result to a wide class of distributions.

Those features allowed Theorem 1 to be quite successful in applications. In the field of Machine
Learning, particularly, many recent works, such as [PRN+20, dCNV21, FB21, BLMG22, FTGB22,
WDM+21], leverage this result. We discuss those contributions in more detail in Section 2.

In this paper, we investigate a natural multidimensional generalisation of Theorem 1. Mainly,
we prove

Theorem 2 (Main Theorem). Given ε ∈ (0, 1) and d, n ∈ N, consider n independent d-dimensional
standard normal random vectors X1, . . . ,Xn. There exists a universal constant C > 0 for which, if

n ≥ Cd3 log2
1
ε
·
(

log2
1
ε

+ log2 d

)
,

then, with high probability, for all z ∈ [−1, 1]d there exists a subset Sz ⊆ [n] for which∥∥∥z −∑
i∈Sz

Xi

∥∥∥
∞
≤ ε.

Moreover, the approximations can be achieved with subsets of size n
6
√
d
.

We believe many promising applications of the RSSP can become feasible with this extension
of Theorem 1 to multiple dimensions. To illustrate this, we consider the Neural Network Evolution
(NNE) model recently introduced by [GLP+19]. It is natural to wonder whether their model is
universal, in the sense that, with high probability, it can approximate any dense feed-forward
neural network. While applying Theorem 1 to this end would yield exponential bounds on the
required overparameterization, in Section 6 we prove the universality of the model within polynomial
bounds. To broaden the scope of our result, we additionally provide some useful generalisations
in Appendix C. In particular, we extend it to a wide class of distributions, proving an analogous
extension to the one [Lue98] given for Theorem 1. Finally, in Appendices D and E we discuss a
discretization of our result and potential applications in the context of nondeterministic random
walks.

Organisation of the paper. After discussing related works in Section 2, we present a high
level overview of the difficulties posed by the problem and of our proof of Theorem 2 (Section 3).
We then introduce our notation in Section 4 in preparation for the presentation of our analysis
in Section 5. We follow up with an application of our result to the NNE model [GLP+19] and
conclude with some notes on the tightness of our analysis in Section 7. Finally, generalisations of
our results, further extensions, as well as all omitted proofs can be found in the Appendix.
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2 Related work
As remarked in the Introduction, the first studies of the RSSP were mainly motivated by average-
case analyses of the classic Subset Sum and Number Partition problems [KKLO86, Lue82, Lue98].
Both can be efficiently solved if the precision of the values considered is sufficiently low relative
to the size of the input set. In particular, [Mer98] applies methods from statistical physics to
indicate that this is a fundamental property of the problem: the amount of exact solutions for the
randomised version exhibits a phase transition when the precision increases relative to the sample
size. The work [BCP01] later confirmed formally the existence of a phase transition. [Lue82] shows
that the median of the minimum error in the RSSP is exponentially small when the target is near the
expected sum of the random variables. This work was followed by [Lue98], which proves Theorem 1.
Recently, [dCdG+22] provided a simpler alternative to the original proof. The discrete setting of
a variant of RSSP has also been recently studied in [CJRS22] which proves that an integral linear
combination (with coefficients in {−1, 0, 1}) of the sample variables can approximate a range of
target values.

In the last few years, Theorem 1 has been very useful in studying the Strong Lottery Ticket
Hypothesis, which states that Artificial Neural Networks (ANN) with random weights are likely
to contain an approximation of any sufficiently smaller ANN as a subnetwork. In particular, such
claim poses the deletion of connections (pruning) as a theoretically solid alternative to careful
calibration of their weights (training). [PRN+20] uses Theorem 1 to prove the hypothesis under
optimal overparameterization for dense ReLU neural networks. [dCNV21] extends this result to
convolutional networks and [FTGB22] further extends the latter to the class of equivariant networks.
Also, [BLMG22] applies Theorem 1 to construct neural networks that can be adapted to a variety
of tasks with minimal retraining.

3 Overview of our analysis

3.1 Insights on the difficulty of the problem

In d dimensions, since we need 2Θ(d log 1
ε

) hypercubes of radius ε to cover the set [−1, 1]d, we need
a sample of Ω(d log 1

ε ) vectors to be able to approximate (up to error ε) every vector in [−1, 1]d.
On the other hand, having n = O(d log 1

ε ) vectors is enough in expectation. To see it, it is
sufficient to consider subsets of the sample with n

2 vectors. There are
( n
n/2
)
≈ 2n−o(n) such subsets,

each summing to a random vector distributed as N (0, n2 · Id). Thus, given any z ∈ [−1, 1]d, each
of those sums has probability approximately εd(n2 )−

d
2 = 2−d log 1

ε
− d2 log n

2 of being at most ε far from
z. We can then conclude that the expected number of approximations is 2n−o(n) · 2−d log 1

ε
− d2 log n

2 ,
which is still of order 2n−o(n) provided that n ≥ Cd log 1

ε for a sufficiently large constant C.
It would thus suffice to prove concentration bounds on the expectation. The technical challenge

is handling the stochastic dependency between subsets of the sample, as pairs of those typically
intersect, with many random variables thus appearing for both resulting sums. The original proof
of Theorem 1 [Lue98] and the simplified one [dCdG+22] address dependencies in similar ways. Both
keep track of the fraction of values in [−1, 1] that can be approximated by a sum of a subset of the
first i random variables, X1, . . . ,Xi. Their core goal is to bound the proportional increase in this
fraction when an additional random variable Xi+1 is considered. As it turns out, the conditional
expectation of this increment can be bounded by a constant factor, regardless of the values of
X1, . . . ,Xi. Unfortunately, naively extending those ideas to d dimensions leads to an estimation
of this increment that is exponentially small in d. It is not clear to the authors how to make the

3



estimation depend polynomially on d without leveraging some knowledge of the actual values of
X1, . . . ,Xi. In fact, even which kind of assumption on the previous samples could work in this sense
is not totally clear.

As for other classical concentration techniques that might appear suitable at first, we remark
our failed attempts to leverage an average bounded differences argument [War16]. Specifically, we
could not identify any natural function related to the fraction of values that can be approximated,
which was also Lipschitz relative to the sample vectors. Moreover, both Janson’s variant of Chernoff
bound [Jan04] and a recent refinement of it [WRG17] seem to capture the stochastic dependence
of the subset sums too loosely for our needs.

3.2 Our approach

Our strategy to overcome the difficulties highlighted in the previous subsection consists in a second-
moment approach.

Unlike the proofs for the single dimensional case, our argument, at first, analyses the probability
of approximating a single target value z ∈ [−1, 1]d. To this end, consider a sample of n independent
random vectors X1, . . . ,Xn and a family C of subsets of the sample. Let Y be the number of subsets
in C whose sum approximates z up to error ε.

For a single subset, it is not hard to estimate the probability with which a subset-sum
∑

i∈S Xi

lies close to z. This allows us to easily obtain good bounds on E [Y].
We, then, proceed to estimate the variance of Y, circumventing the obstacles mentioned in the

previous section by restricting the analysis to families of subsets with sufficiently small pairwise
intersections. While this restriction limits the maximum amount of subsets that are available, a
standard probabilistic argument allows us to prove the existence of large families of subsets with
the desired property, ensuring that E [Y] can be large enough for our purposes.

For each pair of subsets, S and T , we leverage the hypothesis on the size of intersections
to consider partitions S = SA ∪ SB and T = TC ∪ TB, with SA and TC being large, stochastically
independent parts, and the smaller parts SB and TB containing S∩T . The bulk of our analysis then
consists in deriving careful bounds on their reciprocal dependencies and consequent contributions
to the second moment of Y.

The resulting estimate allows us to apply Chebyshev’s inequality to Y, obtaining a constant
lower bound on Pr [Y ≥ 1]. That is, with conclude that with at least some constant probability
at least one of the subsets yields a suitable approximation of z. Finally, we employ a probability-
amplification argument in order to apply a union bound over all possible target values in [−1, 1]d.

4 Preliminaries
Notation Throughout the text we identify the different types of objects by writing their symbols
in different styles. This applies to scalars (e.g. x), real random variables (e.g. X), vectors (e.g.
x), random vectors (e.g. X), matrices (e.g. X). and tensors (e.g. X). In particular, for d ∈ N,
the symbol Id represents the d-dimensional identity matrix, where N refers to the set of positive
integers. Let n ∈ N. We denote the set {1, . . . , n} by [n], and given a set S employ the notation(S
n

)
to refer to the family of all subsets of S containing exactly n elements of S. Let x ∈ Rd.

The notation ‖x‖2 represents the euclidean norm of x while ‖x‖∞ denotes its maximum-norm.
Moreover, given r ∈ R>0 we denote the set {y ∈ Rd : ‖y − x‖∞ ≤ r} by Bd∞(x, r). We represent
the variance of an arbitrary random variable X by σ2

X and its density function by ϕX. Finally, the
notation log(·) refers to the binary logarithm. Let d, n ∈ N and ε ∈ R>0, and consider z ∈ [−1, 1]d
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and n independent standard normal d-dimensional random vectors X1, . . . ,Xn. Given S ⊆ [n] we
define the random variable

YS,ε,z,X1,...,Xn =

1 if ‖z −
∑

i∈S Xi‖∞ ≤ ε,
0 otherwise,

that we represent simply by YS when the other parameters are clear from context. Since we are
interested in studying families of subsets, we also define, for C contained in the power set of [n],
the random variable

YC,ε,z,X1,...,Xn =
∑
S∈C

YS ,

which we represent simply as Y.
We control the stochastic dependency among subsets by restricting to families of subsets with

small pairwise intersection. While this reduces how many subsets we can be considered, we can use
the probabilistic method to prove that large families are still available.

Lemma 3. For all n ∈ N and α ∈ (0, 1
2), there exists C ⊆

([n]
αn

)
with |C| ≥ 2

α2n
6 such that for all

S, T ∈ C, if S 6= T , then

|S ∩ T | ≤ 2α2n.

Notice that, while this amount is still exponential, it already imposes n = O( d
α2 log 1

ε ) if we are
to approximate all points in [−1, 1]d up to error ε.

5 Proof of the main result
As we frequently consider values relatively close to the origin, approximation of the normal distri-
bution by a uniform one is sufficient for many of our estimations.

Lemma 4. Let d ∈ N, ε ∈ (0, 1), σ ∈ R>0, and z ∈ [−1, 1]d. If X ∼ N (0, σ2 · Id), then

e−
2d
σ2 · (2ε)d(

2πσ2
) d

2
≤ Pr

[
X ∈ Bd∞(z, ε)

]
≤ (2ε)d(

2πσ2
) d

2
.

As a corollary, we bound the first moment of the random variable Y.

Corollary 5. Given d, n ∈ N, ε ∈ (0, 1), and α ∈ (0, 1
2), let X1, . . . ,Xn be independent standard

normal d-dimensional random vectors. Then, for all z ∈ [−1, 1]d and C ⊆
([n]
αn

)
, it holds that

e−
2d
αn

(2ε)d |C|
(2παn)

d
2
≤ E [Y] ≤ (2ε)d |C|

(2παn)
d
2
.

Proof. Let S ∈ C and, hence, |S| = αn. Since Xi ∼ N (0, Id) for all i ∈ [n], we have that∑
i∈S Xi ∼ N (0, αn · Id). Therefore, as Pr [YS = 1] = Pr

[∑
i∈S Xi ∈ Bd∞(z, ε)

]
, by Lemma 4, we

have that

e−
2d
αn

(2ε)d

(2παn)
d
2
≤ Pr [YS = 1] ≤ (2ε)d

(2παn)
d
2
,

and we can conclude the thesis by noting that E [Y] =
∑

S∈C Pr [YS = 1].
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We proceed by estimating the second moment of Y.

Lemma 6. Given d, n ∈ N, ε ∈ (0, 1), and α ∈ (0, 1
6 ], let X1, . . . ,Xn be independent d-dimensional

standard normal random vectors, z ∈ [−1, 1]d, and C ⊆
([n]
αn

)
. If n ≥ 81

α(1−2α) and any two subsets
in C intersect in at most 2α2n elements, then

Var [Y] ≤ (2ε)2d |C|2

(2παn)d
·
[
(1− 4α2)−

d
2 − e−

4d
αn

]
+ (2ε)d |C|

(2παn)
d
2
.

Proof. We have

Var [Y] =
∑
S,T∈C

Cov [YS ,YT ]

=
∑
S,T∈C

(
E [YS ·YT ]− E [YS ]E [YT ]

)
=
∑
S,T∈C

(
Pr [YS = 1,YT = 1]− Pr [YS = 1] Pr [YT = 1]

)
=

∑
S 6=T∈C

(
Pr [YS = 1,YT = 1]− Pr [YS = 1]2

)
+
∑
S∈C

Pr [YS = 1]
(
1− Pr [YS = 1]

)
.

We shall use Lemma 4 to estimate Pr [YS = 1], thus, the core of our argument is to bound
the joint probability Pr [YS = 1,YT = 1]. To this end, since Cov [YS ,YT ] increases monotonically
with |S ∩ T |, we fix S, T ∈ C with |S ∩ T | = 2α2n. Moreover, since YS is defined in terms of
the max-norm, we can analyse the associated event for each coordinate independently. So, we let
X1, · · · ,Xn ∼ N (0, 1) and z ∈ [−1, 1].

Consider the partitions S = SA ∪ SB and T = TC ∪ TB, with SB = TB = S ∩ T, and let

A =
∑
i∈SA

Xi, C =
∑
i∈TC

Xi, B =
∑
i∈S∩T

Xi.

In this way, we have
∑

i∈S Xi = A + B and
∑

i∈T Xi = C + B, with A,C independent random
variables distributed as N (0, σ2

A) and B ∼ N (0, σ2
B), where σ2

A = αn(1− 2α) and σ2
B = 2α2n.

With this setup, we have,

Pr [YS = 1,YT = 1] =
(

Pr
[
A + B ∈ (z − ε, z + ε), C + B ∈ (z − ε, z + ε)

])d
.

From the law of total probability, it holds that

Pr
[
A + B ∈ (z − ε, z + ε), C + B ∈ (z − ε, z + ε)

]
=
∫
R
ϕB(x) · Pr

[
A + x ∈ (z − ε, z + ε), C + x ∈ (z − ε, z + ε)

]
dx

=
∫
R
ϕB(x) · Pr

[
A ∈ (z − x− ε, z − x+ ε), C ∈ (z − x− ε, z − x+ ε)

]
dx

=
∫
R
ϕB(x) ·

(
Pr
[
A ∈ (z − x− ε, z − x+ ε)

])2
dx, (1)

where the last equality follows from the independence of A and C.
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Since A is a normal random variable with 0 average, by Claim 17, we have that∫
R
ϕB(x) ·

(
Pr
[
A ∈ (z − x− ε, z − x+ ε)

])2
dx ≤

∫
R
ϕB(x) ·

(
Pr
[
A ∈ (x− ε, x+ ε)

])2
dx

=
∫
R
ϕB(x) ·

(∫ x+ε

x−ε
ϕA(y) dy

)2

dx.

The hypothesis on n implies that 2σ2
a ≥ 162, so, by Claim 18,

(∫ x+ε

x−ε
ϕA(y) dy

)2

≤

[∫ x+ε

x−ε

exp
(
− (x+ε)2

2σ2
A

)
+ exp

(
− (x−ε)2

2σ2
A

)
2
√

2πσ2
A

· exp
(
ε2

2σ2
A

)
dy

]2

= (2ε)2

2πσ2
A
·

exp
(
− (x+ε)2

σ2
A

)
+ exp

(
− (x−ε)2

σ2
A

)
+ 2 exp

(
−x2+ε2

σ2
A

)
4

· exp

(
ε2

σ2
A

)

= eε
2/σ2

A · 1√
2
· (2ε)2√

2πσ2
A

·
ϕA/

√
2(x+ ε) + ϕA/

√
2(x− ε) + 2e−ε2/σ2

A · ϕA/
√

2(x)
4

.

Moreover, it holds that∫
R
ϕB(x) ·

[
ϕA/

√
2(x+ ε) + ϕA/

√
2(x− ε) + 2e−ε2/σ2

A · ϕA/
√

2(x)
]

dx

= (ϕB ∗ ϕA/
√

2)(ε) + (ϕB ∗ ϕA/
√

2)(−ε) + 2e−ε2/σ2
A · (ϕB ∗ ϕA/

√
2)(0)

= ϕB+A/
√

2(ε) + ϕB+A/
√

2(−ε) + 2e−ε2/σ2
A · ϕB+A/

√
2(0)

= 2e−ε
2/σ2

B+A/
√

2 + 2e−ε2/σ2
A√

2πσ2
B+A/

√
2

≤ 4 · e−ε
2/σ2

A√
2πσ2

B+A/
√

2

,

here ∗ denotes the convolution operation, and the last inequality comes from the hypothesis α ≤ 1
6 ,

which implies that σ2
B+A/

√
2 ≤ σ

2
A.

Altogether, we have

Pr [YS = 1,YT = 1] ≤

eε2/σ2
A · 1√

2
· (2ε)2√

2πσ2
A

· e−ε
2/σ2

A√
2πσ2

B+A/
√

2


d

(2)

=

(2ε)2

2π
· 1√

2σ2
Aσ

2
B+A/

√
2


d

= (2ε)2d

(2παn)d
· (1− 4α2)−

d
2 ,
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where the last equality follows from recalling that σ2
B = 2α2n and σ2

A = αn (1− 2α), and, thus,
σ2

B+A/
√

2 = 2α2n+ αt
2 (1− 2α).

Finally, from this bound and from Lemma 4 we can conclude that

Var [Y] =
∑

S 6=T∈C

(
Pr [YS = 1,YT = 1]− Pr [YS = 1]2

)
+
∑
S∈C

Pr [YS = 1]
(
1− Pr [YS = 1]

)
≤

∑
S 6=T∈C

[
(2ε)2d

(2παn)d
· (1− 4α2)−

d
2 − (2ε)2d

(2παn)d
· e−

4d
αn

]
+
∑
S∈C

(2ε)d

(2παn)
d
2

[
1− e−

2d
αn · (2ε)d

(2παn)
d
2

]

≤ (2ε)2d |C|2

(2παn)d
·
[
(1− 4α2)−

d
2 − e−

4d
αn

]
+ (2ε)d |C|

(2παn)
d
2
.

Remark 7. In the proof of Lemma 6, after applying the law of total probability it is possible to
employ Lemma 4 to estimate the joint probability. While this simplifies the argument, doing so
would ultimately weaken the bound in Theorem 9 by a factor of d. In fact, in Section 7 we argue
that the estimation we provide is essentially optimal.

For our next result, recall that the existence of a suitable family of subsets is ensured by
Lemma 3.

Lemma 8. Given d, n ∈ N, ε ∈ (0, 1), and α ∈ (0, 1
6 ], let X1, . . . ,Xn be independent d-dimensional

standard normal random vectors, z ∈ [−1, 1]d, and C ⊆
([n]
αn

)
with |C| ≥ 2

α2n
6 . If any two subsets in

C intersect in at most 2α2n elements, α ≤ 1
6
√
d
, and

n ≥ 144d
α2

(
log 1

ε
+ log d+ log 1

α

)
,

then

Pr [Y ≥ 1] ≥ 1
3
.

Proof. By Chebyshev’s inequality, it holds that

Pr [Y ≥ 1] ≥ Pr

[∣∣Y− E [Y]
∣∣ < E [Y]

2

]

≥ 1− 4 ·Var [Y]
E [Y]2

.

Applying Corollary 5 and Lemma 6, we get that

4 ·Var [Y]
E [Y]2

≤ 4 · e
4d
αn · (2παn)d

(2ε)2d |C|2
·

(2ε)2d |C|2

(2παn)d
·
[
(1− 4α2)−

d
2 − e−

4d
αn

]
+ (2ε)d |C|

(2παn)
d
2


= 4 ·

 e
4d
αn

(1− 4α2)
d
2
− 1

+ 4e
4d
αn · (2παn)

d
2

(2ε)d |C|
.
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Since n ≥ 68d
α and α ≤ 1

6
√
d
, by Claim 15

4 ·

 e
4d
αn

(1− 4α2)
d
2
− 1

 ≤ 1
2
.

Furthermore, as n ≥ 144d
α2

(
log 1

ε + log d+ log 1
α

)
, |C| ≥ 2

α2n
6 , and α ≤ 1

6 , by Claim 16,

4e
4d
αn · (2παn)

d
2

(2ε)d |C|
≤ ε.

Applying an union bound, we amplify the last lemma to get our main result.

Theorem 9. Let ε ∈ (0, 1) and given d, n ∈ N let X1, . . . ,Xn be independent standard normal
d-dimensional random vectors and let α ∈

(
0, 1

6
√
d

]
. There exists a universal constant C > 0 such

that, if

n ≥ C d
2

α2 log 1
ε
·
(

log 1
ε

+ log d+ log 1
α

)
,

then, with probability

1− exp

− ln 2 ·

 n

C d
α2

(
log 1

ε + log d+ log 1
α

) − d log 1
ε


 ,

for all z ∈ [−1, 1]d there exists a subset Sz ⊆ [n] for which∥∥∥z −∑
i∈Sz

Xi

∥∥∥
∞
≤ ε.

Moreover, this remains true even when restricted to subsets of size αn.

Theorem 2 follows from Theorem 9 by setting α = 1
6
√
d
.

6 Application to Neural Net Evolution
In this section, we present an application of our main result on the multidimensional RSSP (see
Theorem 2) to a neural network model recently introduced in [GLP+19].

We first provide a description of their model in a setting relevant to our application. Then, we
prove that their model exhibits universality ; namely, with high probability, it can approximate any
neural network within a polynomial overhead in the number of parameters.
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6.1 The NNE model

The Neural Net Evolution (NNE) model [GLP+19] has been recently introduced as an alternative
approach to train neural networks, based on evolutionary methods. The aim is to provide a biolog-
ically inspired alternative to the backpropagation process behind ANNs [RHW86, GBC16], which
happens in evolutionary time, instead of lifetime.

The NNE model is inspired by a standard update rule in population genetics and, in [GLP+19],
it is shown to succeed in creating neural networks that can learn linear classification problems
reasonably well with no explicit backpropagation.

To define the NNE model, we first need to define random genotypes. Given a vector p ∈ [0, 1]n,
a random genotype x ∈ {0, 1}n is sampled by setting xi = 1 with probability pi, independently for
each i. Each entry xi indicates whether or not a gene is active.

Then, for each i, a random tensor Θ(i) ∈ R`×d×d is sampled. In the original version of the model
[GLP+19], each entry of the tensor is chosen independently and uniformly at random from [−1, 1]
with probability β, while is set to 0, otherwise. For the sake of our application, we here consider
a natural variant where the entries of the tensor are independently drawn from a standard normal
distribution.

Now, given a genotype x ∈ {0, 1}n, we define

Θx =
∑

i :xi=1
Θ(i). (3)

Each genotype is then associated with a feed-forward neural network, represented by a weighted
complete multipartite directed graph. The graph is formed by layers {Li}`i=0 of d nodes and two
consecutive layers are fully connected via a biclique whose edge weights are determined by the
tensor Θx in the following manner: for every i ∈ [`], the edge between the j-th node of layer Li−1
and the k-th node of layer Li has weight (Θx)ijk.

Eq. (3) tells us that if a gene is active then it gives a random contribution to each weight of the
genotype network.

The learning process in the NNE model works by updating the genotype probabilities p accord-
ing to some standard population genetics equations [Bür00, CLPV14]. In [GLP+19], it is proved
that the adopted update rule indirectly performs backpropagation and enables to decrease the loss
function of the networks.

6.2 Universality and RSSP

Let f : Rd → Rd be a feed-forward neural network of the form

f(y) = W` σ(W`−1 . . . σ(W1 y)), (4)

where Wi ∈ Rd×d is a weight matrix and σ : Rd → Rd is the ReLU (Rectified Linear Unit) activation
function that converts each coordinate yi of a given vector y ∈ Rd to max(0, yi).

The restrictions on the weight matrix sizes d × d aim only to ease presentation and can be
adapted to any arbitrary dimensions.

Let us construct a third-order tensor Θf ∈ R`×d×d by stacking the weight matrices W1, . . . ,W`.
We correspondingly denote f by fΘ. Conversely, every tensor Θ ∈ R`×d×d is associated with a
neural network fΘ in the form of Eq. (4) whose corresponding weight matrices are the tensor slices,
that is, Wm = (Θ) i=m

j,k∈[d]
for every m ∈ [`].

We can use Theorem 2 to prove a notion of universality for the NNE model.
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Theorem 10. Let ε > 0 and n, d, ` ∈ N. Let F be the class of neural networks f : Rd → Rd of the
form given in Eq. (4) such that their corresponding tensor satisfies maxijk|(Θf )ijk| < 1. A constant
C > 0 exists such that, if n ≥ C(` · d · d)3 log 1

ε ·
(

log 1
ε + log(` · d · d)

)
, then, with high probability,

the tensors Θ(1), . . . ,Θ(n) associated to each gene are such that, for any f ∈ F , there is a genotype
x ∈ {0, 1}n which satisfies

max
i∈[`]
j,k∈[d]

∣∣∣(Θf )ijk − (Θx)ijk
∣∣∣ < ε.

We note that standard techniques (e.g., [PRN+20, dCNV21]) can be used to provide bounds on
the approximation of the output of neural networks, as well as translating Theorem 10 for general
network architectures (e.g., convolutional neural networks).

7 Tightness of analysis
In Lemma 3 we prove the existence of a suitable family of subsets via a probabilistic argument,
sampling their elements uniformly at random. The same argument also implies that the pairwise
intersections of almost all subsets is at least α2n

2 . In the next result, we assume such lower bound
and prove that our estimation of the joint probability Pr [YS = 1,YT = 1] in Lemma 6 (specifically,
in Eq. 2), is essentially tight. Namely, the next lemma implies that it is not possible to obtain a
high-probability bound on Y in Lemma 8.

Lemma 11. Given d, n ∈ N, ε ∈ (0, 1), and α ∈ (0, 1
2), let X1, . . . ,Xn be independent standard

normal d-dimensional random vectors and z ∈ [−1, 1]d. If any two subsets in C intersect in at least
α2n

2 elements and n ≥ 10
α(2−α) , then

Pr [YS = 1,YT = 1] ≥ (2ε)2d

(2παn)d
·

(
1− α2

4

)− d2
· exp

(
− 3d
αn

)
.

We can extend the above result by letting z lie in a wider range. This will be useful for the
generalisation section Appendix C.

Remark 12. If λ > 1 and z ∈ [−λ
√
n, λ
√
n]d, then we have

Pr [YS = 1,YT = 1] ≥ (2ε)2d

(2παn)d
·

(
1− α2

4

)− d2
· exp

(
−3λ2d

α

)
.
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A Tools
Below we list some standard tools we use, and prove some inequalities.

A.1 Concentration bounds

Theorem 13 (Chebyshev’s inequality). Let X be a random variable with finite expected value µ
and finite non-zero variance σ2. Then for any real number k > 0, it holds that

Pr
[
|X− µ| ≥ k

]
≤ σ2

k2 .

Lemma 14 (Chernoff-Hoeffding bounds [DP09]). Let X1,X2, . . . ,Xn be independent random vari-
ables such that

Pr [0 ≤ Xi ≤ 1] = 1
for all i ∈ [n]. Let X =

∑n
i=1 Xi and E [X] = µ. Then, for any δ ∈ (0, 1) the following holds:

1. if µ ≤ µ+, then Pr
[
X ≥ (1 + δ)µ+

]
≤ exp

(
− δ2µ+

3

)
;

2. if 0 ≤ µ− ≤ µ, then Pr
[
X ≤ (1− δ)µ−

]
≤ exp

(
− δ2µ+

2

)
.

A.2 Claims

Claim 15. Let d, n ∈ N and α ∈ R>0. If n ≥ 68d
α and α ≤ 1

6
√
d
, then

e
4d
αn · 1(

1− 4α2
) d

2
≤ 1 + 1

8
.

Proof. Since ex ≤ (1− x)−1 for x ≤ 1, for n ≥ 4d
α , it holds that

e
4d
αn ≤ 1

1− 4d
αn

= 1 + 4d
αn− 4d

.

Thus, having n ≥ 68d
α implies that

e
4d
αn ≤ 1 + 1

16
.

Moreover, by Bernoulli’s inequality, since α < 1
2 , it holds that,

1(
1− 4α2

) d
2
≤ 1

1− 2dα2 .

Altogether, we need that

1 + 1
16

1− 2dα2 ≤ 1 + 1
8
,

which holds for α ≤ 1
6
√
d
.
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Claim 16. Let d, n ∈ N, ε ∈ (0, 1), and α ∈ (0, 1
6). If n ≥ 144d

α2

(
log 1

ε + log d+ log 1
α

)
, then

4e
4d
αn

2
α2n

6

·
(
παn

2ε2

) d
2
≤ ε.

Proof. Consider the function

f(n) = nd

2
α2n

6

.

We have that

f ′(n) =
dnd−12

α2n
6 − α2 ln 2

6 · nd2
α2n

6

2
α2n

3

= nd−12
α2n

6

2
α2n

3

·

(
d− α2n ln 2

6

)
,

and, hence, f is non-increasing for n ≥ 6d
α2 ln 2 . Thus, since f

(
6d

α2 ln 2

)
=
(

6d
eα2 ln 2

)d
, it holds that

4e
4d
αn

2
α2n

6

·
(
παn

2ε2

) d
2

= 4e
4d
αn

2
α2n
12

·
(
πα

2ε2

) d
2
√

nd

2
α2n

6

≤ 4e
4d
αn

2
α2n
12

·
(
πα

2ε2

) d
2

√(
6d

eα2 ln 2

)d
= 4e

4d
αn

2
α2n
12

·
(

3πd
ε2eα ln 2

) d
2

<
8

2
α2n
12

·
(

6d
ε2α

) d
2

where the last inequality comes from noting that 6 > 3π
e ln 2 and that n ≥ 8d

α implies e
4d
αn < 2. This

is at most ε if

8
εd+1 ·

(
6d
α

) d
2
≤ 2

α2n
12 ,

or, equivalently,

n ≥ 12
α2

(
log 8 + (d+ 1) log 1

ε
+ d

2
log 1

α
+ d

2
log 6d

)
.

The thesis follows from the bounds d, n ≥ 1, ε ∈ (0, 1), and α < 1
6 .

Claim 17. Let A,B be two centred normal random variables, and let ϕB(x) be the density function
of B. Then, for any z ∈ R, for any ε > 0, it holds that∫

R
ϕB(x)

[
Pr
[
A ∈ (z − x− ε, z − x+ ε)

]]2
dx ≤

∫
R
ϕB(x)

[
Pr
[
A ∈ (−x− ε,−x+ ε)

]]2
dx.
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Proof. For any x, z ∈ R, let

h(x, z) = ϕB(x)
[
Pr
[
A ∈ (z − x− ε, z − x+ ε)

]]2
dx,

and let
H(z) =

∫
R
h(x, z) dx.

Let ϕA(x) be the density function of a. Since∣∣∣∣∣∂h(x, z)
∂z

∣∣∣∣∣ = 2
∣∣∣ϕB(x)Pr

[
A ∈ (z − x− ε, z − x+ ε)

] (
ϕA(z − x+ ε)− ϕA(z − x− ε)

)∣∣∣
≤ 2ϕB(x)Pr

[
A ∈ (z − x− ε, z − x+ ε)

] (
ϕA(z − x+ ε) + ϕA(z − x− ε)

)
,

h(x, z) meets the hypothesis of the Leibniz integral rule and we can write

dH(z)
dz

=
∫
R

∂h(x, z)
∂z

dx

= 2
∫
R
ϕB(x)Pr

[
A ∈ (z − x− ε, z − x+ ε)

] (
ϕA(z − x+ ε)− ϕA(z − x− ε)

)
dx

If we prove that such a function is zero in z = 0, positive for z < 0 and negative for z > 0, then we
have that the maximum of H is reached in z = 0.

First case: z = 0. Then

dH(0)
dz

= 2
∫
R
ϕB(x)Pr

[
A ∈ (x− ε, x+ ε)

] (
ϕA(x− ε)− ϕA(x+ ε)

)
dx (5)

= 2
∫
R
ϕB(x)Pr

[
A ∈ (x− ε, x+ ε)

]
ϕA(x− ε) dx

− 2
∫
R
ϕB(x)Pr

[
A ∈ (x− ε, x+ ε)

]
ϕA(x+ ε) dx

= 2
∫
R
ϕB(x)Pr

[
A ∈ (x− ε, x+ ε)

]
ϕA(x− ε) dx

− 2
∫
R
ϕB(y)Pr

[
A ∈ (y − ε, y + ε)

]
ϕA(y − ε) dx (6)

= 0,

where in Eq. (5) we exploited the symmetry of the integrand functions, Eq. (6) we substituted in
the second integral y = −x and used again symmetry.
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Second case: z > 0. Then

dH(z)
dz

= 2
∫
R
ϕB(x)Pr

[
A ∈ (z − x− ε, z − x+ ε)

] (
ϕA(z − x+ ε)− ϕA(z − x− ε)

)
dx

= 2
∫ −z
−∞

ϕB(x)Pr
[
A ∈ (z − x− ε, z − x+ ε)

] (
ϕA(z − x+ ε)− ϕA(z − x− ε)

)
dx

+ 2
∫ +z

−z
ϕB(x)Pr

[
A ∈ (z − x− ε, z − x+ ε)

] (
ϕA(z − x+ ε)− ϕA(z − x− ε)

)
dx

+ 2
∫ +∞

+z
ϕB(x)Pr

[
A ∈ (z − x− ε, z − x+ ε)

] (
ϕA(z − x+ ε)− ϕA(z − x− ε)

)
dx

= 2
∫ +∞

+z
ϕB(x)Pr

[
A ∈ (z + x− ε, z + x+ ε)

] (
ϕA(z + x+ ε)− ϕA(z + x− ε)

)
dx (7)

+ 2
∫ +∞

+3z
ϕB(x)Pr

[
A ∈ (z − x− ε, z − x+ ε)

] (
ϕA(z − x+ ε)− ϕA(z − x− ε)

)
dx

+ 2
∫ +3z

+z
ϕB(x)Pr

[
A ∈ (z − x− ε, z − x+ ε)

] (
ϕA(z − x+ ε)− ϕA(z − x− ε)

)
dx

+ 2
∫ +z

−z
ϕB(x)Pr

[
A ∈ (z − x− ε, z − x+ ε)

] (
ϕA(z − x+ ε)− ϕA(z − x− ε)

)
dx

= 2
∫ +∞

+z
ϕB(x)Pr

[
A ∈ (z + x− ε, z + x+ ε)

] (
ϕA(z + x+ ε)− ϕA(z + x− ε)

)
dx

− 2
∫ +∞

+z
ϕB(2z + x)Pr

[
A ∈ (z + x− ε, z + x+ ε)

] (
ϕA(z + x+ ε)− ϕA(z + x− ε)

)
dx (8)

− 2
∫ +z

−z
ϕB(x− 2z)Pr

[
A ∈ (z − x− ε, z − x+ ε)

] (
ϕA(z − x+ ε)− ϕA(z − x− ε)

)
dx (9)

+ 2
∫ +z

−z
ϕB(x)Pr

[
A ∈ (z − x− ε, z − x+ ε)

] (
ϕA(z − x+ ε)− ϕA(z − x− ε)

)
dx

= 2
∫ +∞

+z

(
ϕB(x)− ϕB(2z + x)

)
Pr
[
A ∈ (z + x− ε, z + x+ ε)

] (
ϕA(z + x+ ε)− ϕA(z + x− ε)

)
dx

(10)

+ 2
∫ +z

−z

(
ϕB(x)− ϕB(x− 2z)

)
Pr
[
A ∈ (z − x− ε, z − x+ ε)

] (
ϕA(z − x+ ε)− ϕA(z − x− ε)

)
dx,

(11)

where in Eq. (7) we substituted x′ = −x and used the symmetry of the integrand functions, in
Eqs. (8) and (9) we substituted x′ = x − 2z and x′ = 2z − x, respectively, and used again the
symmetry. The expression in Eq. (10) is negative as ϕB(x) > ϕB(2z + x) and ϕA(z + x + ε) <
ϕA(z + x − ε) for x ≥ z; the expression in Eq. (11) is negative as ϕB(x) > ϕB(x − 2z) and
ϕA(z − x+ ε) < ϕA(z − x− ε) for x ∈ (−z, z).
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Third case: z < 0. This case is similar to the previous one: with the same arguments, we obtain

dH(z)
dz

= 2
∫ +z

−∞

(
ϕB(x)− ϕB(2z + x)

)
Pr
[
A ∈ (z + x− ε, z + x+ ε)

] (
ϕA(z + x+ ε)− ϕA(z + x− ε)

)
dx

(12)

+ 2
∫ −z

+z

(
ϕB(x)− ϕB(x− 2z)

)
Pr
[
A ∈ (z − x− ε, z − x+ ε)

] (
ϕA(z − x+ ε)− ϕA(z − x− ε)

)
dx.

(13)

The expression in Eq. (12) is positive as ϕB(x) > ϕB(2z+x) and ϕA(z+x+ ε) > ϕA(z+x− ε) for
x ≤ z; the expression in Eq. (13) is positive as ϕB(x) > ϕB(x−2z) and ϕA(z−x+ε) < ϕA(z−x−ε)
for x ∈ (z,−z).

Claim 18. For all x ∈ R, c ∈
(

0, 1
162

)
, and ε ∈ (0, 1), it holds that

(∫ ε

−ε
e−c(x+s)2 ds

)2

≤

(∫ ε

−ε

e−c(x+ε)2 + e−c(x−ε)
2

2
ecε

2 ds

)2

.

Proof. Let

fx(s) = e−c(x+s)2
.

Since ∫ ε

−ε

e−c(x+ε)2 + e−c(x−ε)
2

2
ecε

2 ds =
∫ ε

−ε
ms+ e−c(x+ε)2 + e−c(x−ε)

2

2
ecε

2 ds

for any m ∈ R, we choose it to be the angular coefficient of the line passing through fx(−ε) and
fx(ε), and prove the stronger result

e−c(x+s)2 ≤ e−c(x+ε)2 − e−c(x−ε)2

2ε
s+ e−c(x+ε)2 + e−c(x−ε)

2

2
ecε

2 (14)

for all s ∈ (−ε, ε). In fact, the right hand side of Eq. (14) is the equation for the line passing by
the extrema of fx in (−ε, ε) lifted by a factor of ecε2 . Therefore, the results holds trivially if fx
is convex in the entire range (−ε, ε), which is true when |x| > 1 + 1√

2c . Moreover, the factor ecε2

ensures the result for x = 0, so, we follow with the analysis of the case x ∈
(

0, 1 + 1√
2c

]
and the

remaining case x ∈
[
−1− 1√

2c , 0
)

follows by symmetry.

Dividing both side of Eq. (14) by e−c(x+s)2 , we obtain

1 ≤ e2csx+cs2

[
e−cε

2
s

ε
· e
−2cεx − e2cεx

2
+ e−2cεx + e2cεx

2

]
(15)

= e2csx+cs2

[
−e
−cε2

s

ε
sinh(2cεx) + cosh(2cεx)

]
.
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Let g(x) be the right hand side of this inequality. Then

g′(x) = 2csg(x) + 2cεe2csx+cs2

[
−e
−cε2

s

ε
cosh(2cεx) + sinh(2cεx)

]

= 2ce2csx+cs2

cosh(2cεx)
(
s− se−cε2

)
+ sinh(2cεx)

(
ε− s2

ε
e−cε

2

) .
If s ∈ [0, ε), then s ≥ se−cε

2 and ε ≥ ε2

ε e
−cε2 ≥ s2

ε e
−cε2 , hence g′(x) ≥ 0. Since g(0) ≥ 1, this

ensures Eq. (15).
The sub-case s ∈ (−ε, 0) offers much more resistance. To analyse it we exploit that x ∈(

0, 1 + 1√
2c

)
implies that cx ≤

√
2c for c < 1

2 and make extensive use of Taylor’s theorem to
approximate the exponential functions.

We start by rewriting Eq. (15) as

εe−2csx−cs2 ≤ e2cεx
(
ε

2
− s

2
e−cε

2
)

+ e−2cεx
(
ε

2
+ s

2
e−cε

2
)
. (16)

By Taylor’s theorem, there exist λ1, λ2 ∈ [0, 2cεx] ⊆ [0, 2
√

2cε], λ3 ∈ [0,−2csx] ⊆ [0, 2
√

2cε],
λ4 ∈ [0, cs2], λ5 ∈ [0, cε2] such that

e+2cεx = 1 + 2cεx+ 2c2ε2x2 + 4
3
c3ε3x3eλ1 ,

e−2cεx = 1− 2cεx+ 2c2ε2x2 − 4
3
c3ε3x3eλ2 ,

e−2csx = 1− 2csx+ 2c2s2x2 − 4
3
c3s3x3eλ3 ,

e−cs
2 = 1− cs2 + c2s4

2
e−λ4 , (17)

e−cε
2 = 1− cε2 + c2ε4

2
e−λ5 , (18)

where we used second order approximations for the first three terms and first order approximations
for the last two. Plugging those in Eq. (16) we obtain

εe−cs
2
(

1− 2csx+ 2c2s2x2 − 4
3
c3s3x3eλ3

)
≤
(

1 + 2cεx+ 2c2ε2x2 + 4
3
c3ε3x3eλ1

)(ε
2
− s

2
e−cε

2
)

+
(

1− 2cεx+ 2c2ε2x2 − 4
3
c3ε3x3eλ2

)(ε
2

+ s

2
e−cε

2
)
.

The latter becomes

ε
(

1− e−cs2
)

+ 2csεx
(
e−cs

2 − e−cε2
)

+ 2c2εx2
(
ε2 − s2e−cs

2
)

+ 4
3
c3εx3

(
ε2eλ1

(
ε

2
− s

2
e−cε

2
)
− ε2e−λ2

(
ε

2
+ s

2
e−cε

2
)

+ s3eλ3−cs2

)
≥ 0

Now, notice that

ε2eλ1

(
ε

2
− s

2
e−cε

2
)
− ε2e−λ2

(
ε

2
+ s

2
e−cε

2
)
≥ 0,
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as ε
2 −

s
2e
−cε2 ≥ ε

2 + s
2e
−cε2 since −ε ≤ s < 0, and ε2eλ1 ≥ ε2 ≥ ε2e−λ2 . Furthermore, observe that

s3eλ3−cs2 ≥ 2s3 as s < 0 and λ3 ≤ 2
√

2cε ≤ 1
2 if c ≤ 1

32 . Thus, the inequality is true if

ε
(

1− e−cs2
)

+ 2csεx
(
e−cs

2 − e−cε2
)

+ 2c2εx2
(
ε2 − s2e−cs

2
)

+ 8
3
c3s3εx3 ≥ 0.

Applying Eqs. (17) and (18), the latter inequality yields that

ε

(
cs2 − c2s4

2
e−λ4

)
+ 2csεx

(
cε2 − cs2 − c2ε4

2
e−λ5 + c2s4

2
e−λ4

)

+ 2c2εx2

(
ε2 − s2 + cs4 − c2s6

2
e−λ4

)
+ 8

3
c3s3εx3

= εcs2 − c2s4ε

2
e−λ4 − c3sε5xe−λ5 + c3s5εxe−λ4 +

(
2c3s4εx2 − c4s6εx2e−λ4

)
+ 8

3
c3s3εx3

+ 2c2εx
(
ε2 − s2

)
(x+ s) .

Now observe that (
2c3s4εx2 − c4s6εx2e−λ4

)
≥ 0

as c < 1, s ≤ ε ≤ 1, e−λ4 < 1; −c3sε5xe−λ5 > 0 as s < 0;

εcs2 − c2s4ε

2
e−λ4 + c3s5εxe−λ4 + 8

3
c3s3εx3 ≥ cs2ε− c2s2ε3

2
− c2√2cs2ε4 − 8

3
c3s2ε2x3

> cs2ε− c2s2ε3

2
− c2√2cs2ε4 − 6c

√
2cs2ε2 (19)

= cs2ε

(
1− cε2

2
− c2√2cε3 − 6

√
2cε

)

≥ cs2ε

(
1− c

2
− c2√2c− 6

√
2c
)

(20)

≥ cs2ε

5
, (21)

where in Eq. (19) we used that cx ≤
√

2c, in Eq. (20) that ε ≤ 1, and in Eq. (21) we used i)
c2√2c ≤ c

2 when c ≤ 1
3√2

, ii) c <
√

2c since c < 1 and iii) 1− 7
√

2c ≥ 1
5 , whenever c ≤ 1

162 .
Going back to the inequality, we now have that

cs2ε

5
+ 2c2εx

(
ε2 − s2

)
(x+ s) .

If x ≥ |s| the latter is positive, otherwise it becomes

cs2ε

5
+ 2c2εx

(
ε2 − s2

)
(x+ s) ≥ cs2ε

5
+ 2c2εx2

(
ε2 − s2

)
− 2c2εs2

(
ε2 − s2

)
≥ cs2ε

5
− 2c2εs2 + 2c2εx2

(
ε2 − s2

)
≥ cs2ε

(
1
5
− 2c

)
,

which is positive for c < 1
10 .
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Claim 19. For all x ∈ R, c ∈
(

0, 1
10

)
, and ε ∈ (0, 1), it holds that

(∫ x+ε

x−ε
exp

(
−cy2

)
dy

)2

≥
∫ x+ε

x−ε
exp

(
−c(x− ε)2

)
dy ·

∫ x+ε

x−ε
exp

(
−c(x+ ε)2

)
dy. (22)

Proof. We can express Eq. (22) as[∫ x+ε

x−ε
exp

(
−cy2

)
dy

]2

−

[∫ x+ε

x−ε
exp

(
−c(x2 + ε2)

)
dy

]2

=

[∫ x+ε

x−ε
exp

(
−cy2

)
− exp

(
−c(x2 + ε2)

)
dy

]
·

[∫ x+ε

x−ε
exp

(
−cy2

)
+ exp

(
−c(x2 + ε2)

)
dy

]
≥ 0,

which holds if and only if∫ +ε

−ε
exp

(
−c(x+ s)2

)
ds ≥

∫ +ε

−ε
exp

(
−c(x2 + ε2)

)
ds. (23)

The result is immediate for x = 0, so we assume x > 0 and the claim follows by symmetry. Let

fx(s) = exp(−c(x+ s)2).

We provide distinct arguments depending on whether x is small or large.

Case x ∈ (0, 1). Since we assume c < 1
8 and ε < 1, we have for any x ≤ 1 that fx is concave in

(−ε, ε). That is,

fx(s) ≥ fx(ε)− fx(−ε)
2ε

s+ fx(ε) + fx(ε)
2

,

for all s ∈ (−ε, ε). Thus,∫ ε

−ε
fx(s) ds ≥

∫ ε

−ε

fx(ε)− fx(−ε)
2ε

s+ fx(ε) + fx(−ε)
2

ds

=
∫ ε

−ε

fx(ε) + fx(−ε)
2

ds

=
∫ ε

−ε
exp

(
−c(x2 + ε2)

)
· exp (−2cxε) + exp (2cxε)

2
ds

≥
∫ ε

−ε
exp

(
−c(x2 + ε2)

)
ds.

Case x ≥ 1. The integral on the right hand side of Eq. (23) has the same value for any affine
integrand rx for which rx(0) = exp

(
−c(x2 + ε2)

)
. Thus, proving that fx(s) ≥ rx(s), for all

s ∈ (−ε, ε), concludes the proof.
In particular, we can choose

rx(s) = f ′x(0) · s+ exp
(
−c(x2 + ε2)

)
.
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Since

f ′x(s) = −2c(x+ s) exp
(
−c(x+ s)2

)
,

we aim to show that

exp
(
−c(x+ s)2

)
≥ −2csx exp

(
−cx2

)
+ exp

(
−c(x2 + ε2)

)
for s ∈ (−ε, ε). Dividing by exp(−c(x2 + s2)) and rearranging, we obtain

exp(−2csx) + 2csx exp
(
cs2
)
− exp

(
−c
(
ε2 − s2

))
≥ 0. (24)

Now, if s ≥ 0, we have that

exp(−2csx) + 2csx exp(cs2)− exp(−c(ε2 − s2)) ≥ 1− 2csx+ 2csx(1 + cs2)− exp(−cε2) (25)
= 1 + 2c2s3x− exp(−cε2)
≥ 2c2s3x

≥ 0,

where in Eq. (25) we used that ey ≥ 1 + y.
Now consider the sub-case s < 0. By Taylor’s theorem,

exp(y) = 1 + y + y2

2
+ exp(ξ1) · y3

6
and

exp(y) = 1 + y + exp(ξ2) · y2

2
,

for some ξ1, ξ2 ∈ [0, y]. Letting ` = −s ∈ (0, 1), we have

exp(2c`x) ≥ 1 + 2c`x+ (2c`x)2

2
+ (2c`x)3

6
and

exp(c`2) ≤ 1 + c`2 + exp(c`2)(c`2)2

2

≤ 1 + c`2 +

(
1 + 3(c`2)

)
(c`2)2

2
.

since ey ≤ 1 + 3y for 0 ≤ y ≤ 1. Finally, applying this to Eq. (24), we have

exp(−2csx) + 2csx exp
(
cs2
)
− exp

(
−c
(
ε2 − s2

))
≥ exp(2c`x)− 2c`x exp

(
c`2
)
− 1

≥ 1 + 2c`x+ (2c`x)2

2
+ (2c`x)3

6
− 2c`x

(
1 + c`2 + c2`4(1 + 3c`2)

2

)
− 1

= 2c2`2x2 + 4
3
c3`3x3 − 2c`x

(
c`2 + c2`4(1 + 3c`2)

2

)

= 2c2`2x(x− `) + c3`3x

(
4
3
x2 − `2(1 + 3c`2)

)
.
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The latter is non negative for x ≥ 1 and c ≤ 1
9 , since ` = −s ≤ ε < 1, so that 4

3x
2 − `2(1 + 3c`2) ≥

4
3 − 1− 1

3 = 0.

B Proofs omitted

B.1 Proof of Lemma 3

If α ≥ 1
2 , then 2α2n ≥ αn, and the result holds trivially. So we assume α < 1

2 .
Let k be any integer, and let C = {C1, C2, . . . , Ck}, with each Ci drawn uniformly from the

collection of subsets of [n] with size αn. Given i, j ∈ [k], if i 6= j, then

E
[
|Ci ∩ Cj |

]
=
∑
a∈[n]

Pr
[
a ∈ Ci ∩ Cj

]
=
∑
a∈[n]

Pr [a ∈ Ci] · Pr
[
a ∈ Cj

]
= α2n.

By the multiplicative form of Chernoff bounds (see Lemma 14), it holds that

Pr
[
|Ci ∩ Cj | > 2α2n

]
≤ exp

(
−α

2n

3

)
.

Finally, for the event of interest, we have that

Pr

 ⋂
i 6=j∈[k]

{
|Ci ∩ Cj | ≤ 2α2n

} = 1− Pr

 ⋃
i 6=j∈[k]

{
|Ci ∩ Cj | > 2α2n

}
≥ 1−

(
k

2

)
exp

(
−α

2n

3

)

≥ 1− 2
α2t

3 · exp

(
−α

2n

3

)
(26)

> 0,

where in Eq. (26) we have chosen k = 2
α2n

6 .

B.2 Proof of Lemma 4

By the distribution of X,

Pr
[
X ∈ Bd∞(z, ε)

]
=
∫
Bd∞(z,ε)

1(
2πσ2

) d
2
· exp

(
−
‖x‖22
2σ2

)
dx.

Since Bd∞(z, ε) ⊆ Bd∞(0, 2) and for all x ∈ Rd it holds that ‖x‖2 ≤
√
d · ‖x‖∞, and, thus,

exp
(
−2d
σ2

)
≤ exp

(
−
‖x‖22
2σ2

)
≤ 1.

The thesis follows by noting that the hypercube Bd∞(z, ε) has measure (2ε)d.
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B.3 Proof of Lemma 11

Inheriting the setup from the proof of Lemma 6 and proceeding analogously we obtain that σ2
A =

αn
(

1− α
2

)
and σ2

B = α2n
2 . We diverge from that argument after Eq. (1). Preserving equality for

a bit longer, we have that(
Pr [YS = 1,YT = 1]

) 1
d =

∫
R
ϕB(x) ·

(
Pr
[
A ∈ (z − x− ε, z − x+ ε)

])2
dx

=
∫
R
ϕB(x) ·

(∫ z−x+ε

z−x−ε
ϕA(y) dy

)2

dx.

The hypothesis on n implies that 2σ2
a ≥ 10, so, by Claim 19,(∫ z−x+ε

z−x−ε
ϕA(y) dy

)2

≥ (2ε)2 · ϕA(z − x− ε) · ϕA(z − x+ ε)

= (2ε)2

2πσ2
A
· exp

(
−(z − x− ε)2

2σ2
A

)
· exp

(
−(z − x+ ε)2

2σ2
A

)

= e−ε
2/σ2

A · 1√
2
· (2ε)2√

2πσ2
A

· 1√
πσ2

A

· exp

(
−(z − x)2

σ2
A

)

= e−ε
2/σ2

A · 1√
2
· (2ε)2√

2πσ2
A

· ϕA/
√

2(z − x).

Then, as before, we can reduce the main integral to a convolution. Namely, it holds that∫
R
ϕB(x) · ϕA/

√
2(z − x) dx = ϕB+A/

√
2(z)

= 1√
2πσ2

B+A/
√

2

· exp

− z2

2σ2
B+A/

√
2

 .

Altogether, we have that

(
Pr [YS = 1,YT = 1]

) 1
d ≥ (2ε)2

2π
· 1√

2σ2
Aσ

2
B+A/

√
2

· exp

− ε2

σ2
A
− z2

2σ2
B+A/

√
2


= (2ε)2

2παn
· 1√

1− α2

4

· exp

− 1
αn
·

(
2ε2

2− α
+ 2z2

2 + α

) .

where the last equality follows from recalling that σ2
B = α2n

2 and σ2
A = αn

(
1− α

2

)
, which implies

that σ2
B+A/

√
2 = α2n

2 + αn
2

(
1− α

2

)
. Finally, the hypotheses z ∈ [−1, 1], ε ∈ (0, 1), and α ∈

(
0, 1

2

)
imply that 2ε2

2−α + 2z2

2+α < 3.
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B.4 Proof of Theorem 9

Let n = k · 144d
α2

(
log 1

ε + log d+ log 1
α

)
with k ∈ N. By Lemma 8, for any z ∈ [−1, 1]d, the

probability than no subset-sum is sufficiently close to z is at most
(

2
3

)k
. Leveraging the fact that

it is possible to cover [−1, 1]d by 1
εd

hypercubes of radius ε, we can ensure that the probability of
failing to approximate any z is, by the union bound, at most

1
εd
·
(

2
3

)k
= 2−k log 3

2 +d log 1
ε

= exp

− ln 2 ·
n− 144d2

α2 log 3
2

log 1
ε

(
log 1

ε + log d+ log 1
α

)
144d

α2 log 3
2

(
log 1

ε + log d+ log 1
α

)
 .

Thus, we can conclude the result for

n ≥ 144
log 3

2
· d

2

α2 log 1
ε
·
(

log 1
ε

+ log d+ log 1
α

)
.

C Generalisation of our result
If the target value z lies in the hypercube [−λ

√
n, λ
√
n]d, for some λ > 1√

n
, we have slightly different

bounds for the expectation and for the variance of Y. In particular, Corollary 5 would give

e−
2λ2d
α

(2ε)d |C|
(2παn)

d
2
≤ E [Y] ≤ (2ε)d |C|

(2παn)
d
2
. (27)

On the other hand, as the proof of Lemma 6 never uses that z ∈ [−1, 1]d but only exploits the
bound on the expectation, it would yield

Var [Y] ≤ (2ε)2d |C|2

(2παn)d

[
(1− 4α2)−

d
2−e

− 4λ2d
α

]
+ (2ε)d |C|

(2παn)
d
2
. (28)

We focus on the case λ = 1
2
√

α
17d when n > 68d

α (which implies λ
√
n > 1). Thus, we have a new

estimation for the probability to hit a single value.

Lemma 20. Given d, n ∈ N, ε ∈ (0, 1), and α ∈ (0, 1
6 ], let X1, . . . ,Xn i.d.d. following N (0, Id),

z ∈ [−λ
√
n, λ
√
n]d, with λ = 1

2
√

α
17d , and C ⊆

([n]
αn

)
. If any two subsets in C intersect in at most

2α2n elements, α ≤ 1
6
√
d
, and

n ≥ 144d
α2

(
log 1

ε
+ log d+ log 1

α

)
,

then

Pr [Y ≥ 1] ≥ 1
3
.
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Proof. By Chebyshev’s inequality, it holds that

Pr [Y ≥ 1] ≥ Pr

[∣∣Y− E [Y]
∣∣ < E [Y]

2

]

≥ 1− 4 ·Var [Y]
E [Y]2

.

Notice that 4λ2d
α = 1

17 . Hence, using Eqs. (27) and (28), we get that

4 ·Var [Y]
E [Y]2

≤ 4 · e
1

17 · (2παn)d

(2ε)2d |C|2
·

(2ε)2d |C|2

(2παn)d
·
[
(1− 4α2)−

d
2 − e−

1
17

]
+ (2ε)d |C|

(2παn)
d
2


= 4 ·

 e
1

17

(1− 4α2)
d
2
− 1

+ 4e
1

17 · (2παn)
d
2

(2ε)d |C|
.

Note that Claim 15 holds exactly as it is for the ratio

e
1

17

(1− 4α2)
d
2

obtaining the same bound for n ≥ 68d
α and α ≤ 1

6
√
d
, which yields

4 ·

 e
1

17

(1− 4α2)
d
2
− 1

 ≤ 1
2
.

Furthermore, also Claim 16 is true replacing e
4d
αn by e

1
17 . Thus, as n ≥ 144d

α2

(
log 1

ε + log d+ log 1
α

)
and α ≤ 1

6 , Claim 16 implies that

4e
1

17 · (2παn)
d
2

(2ε)d |C|
≤ ε.

We remark that we cannot let λ be asymptotically greater than
√

α
d otherwise our method fails.

Indeed, by Remark 12, the term 4Var[Y]
E[Y]2 is at least

4 ·

 e
4λ2d
α
− 3λ2d

α(
1− α2

4

) d
2
− 1

 .

The latter is greater than or equal to 1 if λ ≥
√

α
d since e

λ2d
α ≥ 1 + λ2d

α .
We are ready to state our first generalised version of Theorem 9.
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Theorem 21. For given d and ε ∈ (0, 1), let X1, . . . ,Xn be n independent standard normal d-
dimensional random vectors and let α ∈ (0, 1

6
√
d
]. There exist two universal constants C > δ > 0

such that, if

n ≥ C d
2

α2

(
log 1

ε
+ log d+ log 1

α

)2
,

the following holds with probability at least

1− exp

− ln 2 ·

 n

δ d
α2

(
log 1

ε + log d+ log 1
α

) − d log 1
ε


 :

for all z ∈
[
−λ
√
n, λ
√
n
]d, with λ = 1

2
√

α
17d , there exists a subset Sz ⊆ [n], such that∥∥∥z −∑

i∈Sz

Xi

∥∥∥
∞
≤ ε.

Moreover, the property above remains true even if we restrict to subsets of size αn.

Proof. Let n
144d
α2

(
log 1

ε
+log d+log 1

α

) = k ≥ 1 with k ∈ N. By Lemma 20, for any z ∈ [−λ
√
n, λ
√
n]d,

the probability than no subset-sum is sufficiently close to z is at most
(

2
3

)k
. Leveraging the fact

that it is possible to cover [−λ
√
n, λ
√
n]d by

(
λ
√
n
ε

)d
hypercubes of radius ε, we can ensure that

the probability of failing to approximate any z is, by the union bound, at most(
λ
√
n

ε

)d
·
(

2
3

)k
= 2−k log 3

2 +d
(

log 1
ε

+ 1
2 logn+log λ

)

= exp

− ln 2 ·
n− 144d2

α2 log 3
2

(
log 1

ε + 1
2 log n+ log λ

)(
log 1

ε + log d+ log 1
α

)
144d

α2 log 3
2

(
log 1

ε + log d+ log 1
α

)


≤ exp

− ln 2 ·
n− 144d2

α2 log 3
2

(
log 1

ε + 1
2 log n

)(
log 1

ε + log d+ log 1
α

)
144d

α2 log 3
2

(
log 1

ε + log d+ log 1
α

)
 (29)

since λ < 1. Consider n
2 −

144d2

2α2 log 3
2

log n
(

log 1
ε + log d+ log 1

α

)
. Let k = k′

(
log 1

ε + log d+ log 1
α

)
,
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which means that n = 144k′d
α2

(
log 1

ε + log d+ log 1
α

)2
. Then

n

2
− 144d2

2α2 log 3
2

log n
(

log 1
ε

+ log d+ log 1
α

)
= 144d

2α2

(
log 1

ε
+ log d+ log 1

α

)[
k′
(

log 1
ε

+ log d+ log 1
α

)

− d

log 3
2

(
log 144

log 3
2

+ log k′ + log d+ 2 log 1
α

+ 2 log
(

log 1
ε

+ log d+ log 1
α

))
≥ 144d

2α2

(
log 1

ε
+ log d+ log 1

α

)[
k′
(

log 1
ε

+ log d+ log 1
α

)

−2d

(
8 + log k′ + log d+ 2 log 1

α
+ 2 log

(
log 1

ε
+ log d+ log 1

α

))
If k′ = 17d, we have that

k′
(

log 1
ε

+ log d+ log 1
α

)
− 2d

(
8 + log k′ + log d+ 2 log 1

α
+ 2 log

(
log 1

ε
+ log d+ log 1

α

))

≥ 4d

(
log 1

ε
+ log d+ log 1

α
− log

(
log 1

ε
+ log d+ log 1

α

))
+ 13d log d+ 13d log 1

α

− 16d− 2d log c− 3d log d− 4d log 1
α

= 10d log d+ 9d log 1
α
− 16d− 2d log 17 ≥ 0,

as α ≤ 1
6 . Thus, for n ≥ 17·144d2

α2

(
log 1

ε + log d+ log 1
α

)2
, we have that the expression in Eq. (29)

is at most

exp

− ln 2 ·
n− 288d2

α2 log 3
2

log 1
ε

(
log 1

ε + log d+ log 1
α

)
288d

α2 log 3
2

(
log 1

ε + log d+ log 1
α

)
 .

We have the thesis by setting δ = 288
log 3

2
and C = 17 · 144.

Our analysis, that relies on fixed subset sizes, easily extends Theorem 21 for non-centred and
non-unitary normal random vectors.

Corollary 22. Let σ > 0 and ε ∈ (0, σ). Given d, n ∈ N let X1, . . . ,Xn be independent normal
d-dimensional random vectors with Xi ∼ N (v, σ2 · Id), for any vector v ∈ Rd. Furthermore, let
α ∈

(
0, 1

6
√
d

)
. There exist two universal constants C > δ > 0 such that, if

n ≥ C d
2

α2

(
log σ

ε
+ log d+ log 1

α

)2
,
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then, with probability

1− exp

− ln 2 ·

 n

δ d
α2

(
log σ

ε + log d+ log 1
α

) − d log σ
ε


 ,

for all z ∈ [−σλ
√
n, σλ

√
n]d + αnv, with λ = 1

2
√

α
17d , there exists a subset Sz ⊆ [n] for which∥∥∥z −∑

i∈Sz

Xi

∥∥∥
∞
≤ ε.

Moreover, this remains true even when restricted to subsets of size αn.

Proof. Simply apply Theorem 21 to the random vectors Xi−v
σ with error ε

σ .

Following the line of [Lue98], we also observe that our results extend to a wider class of proba-
bility distributions.

Definition 23. Consider any two random variables X and Y having the same codomain, and let
ϕX(x), ϕY(x) be their probability density functions. We say that X contains Y with probability p if
a constant p ∈ (0, 1] exists such that ϕX(x) = p · ϕY(x) + (1− p)f(x) for any function f(x).

If X contains Y with probability p, we can describe the behaviour of X as follows: with prob-
ability p, draw Y; with probability 1 − p, draw something else. An adapted version of our result
holds for random variables containing Gaussian distributions.

Corollary 24. Let σ > 0, ε ∈ (0, σ), and let p ∈ (0, 1] be a constant. Given d, n ∈ N let Y1, . . . ,Yn

be independent d-dimensional random vectors containing d-dimensional normal random vectors
X ∼ N (v, σ2 · Id) with probability p, where v is any vector in Rd . Furthermore, let α ∈

(
0, 1

6
√
d

)
.

There exist two universal constants C > δ > 0 such that, if

n ≥ 2C d2

pα2

(
log σ

ε
+ log d+ log 1

α

)2
,

then, with probability

1− 2 exp

− ln 2 ·

 pn

2δ d
α2

(
log σ

ε + log d+ log 1
α

) − d log σ
ε


 ,

for all z ∈
[
−σλ

√
pn
2 , σλ

√
pn
2

]d
+ αpn

2 v, with λ = 1
2
√

α
17d , there exists a subset Sz ⊆ [n] for which∥∥∥z −∑

i∈Sz

Xi

∥∥∥
∞
≤ ε.

Moreover, this remains true even when restricted to subsets of size αpn
2 .
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Proof. With a simple application of the Chernoff bound, we have that at least pn
2 random vectors

are normal random vectors with probability 1 − e−
pn
8 . Conditional on this event, we can apply

Corollary 22 to the pn
2 normal random vectors. Since Pr [A,B] ≥ Pr [A |B] Pr [B] for any two

events A,B, and 2δ d
α2

(
log σ

ε + log d+ log 1
α

)
≥ 8, the thesis holds with probability at least

1− exp

− ln 2 ·

 pn

2δ d
α2

(
log σ

ε + log d+ log 1
α

) − d log σ
ε


− exp

[
−pn

8

]

≥ 1− 2 exp

− ln 2 ·

 pn

2δ d
α2

(
log σ

ε + log d+ log 1
α

) − d log σ
ε


 .

D Discrete setting
We believe that it should not be hard to adapt our proof to several discrete distributions, in order to
obtain results similar to those discussed in the Related Work section. We also note that our Theorem
2 already implies an analogous discrete result. Suppose that we quantise our random vectors by
truncating them to the blog 1

δ c-th binary place, obtaining vectors X̂i such that ‖X̂i −Xi‖∞ < δ.
For any z ∈ [−1, 1]d, Theorem 2 guarantees that w.h.p. there is a subset of indices I ⊆ [n] such
that ‖z −

∑
i∈I Xi‖∞ < ε and, hence, by the triangular inequality, ‖z −

∑
i∈I X̂i‖∞ < nδ + ε. As

a special case (δ = ε), we have the following:

Corollary 25 (Discretization of Theorem 2). Given d ∈ N, ε ∈ (0, 1), let X̂1, . . . , X̂n be indepen-
dent standard normal d-dimensional vectors truncated to the blog 1

εc-th binary place. There exists
a universal constant C > 0 such that, if n ≥ Cd3 log 1

ε

(
log 1

ε + log d
)

, then, with high probability,
for all vectors ẑ with entries in {kε}d− 1

ε
e≤k≤b 1

ε
c there exists a subset Sz ⊆ [n] for which∥∥∥ẑ −∑

i∈Sz

X̂i

∥∥∥
∞
≤ ε(n+ 1).

Moreover, the approximation can be achieved with subsets of size n
6
√
d
.

E Connection with non-deterministic random walks
Consider a discrete-time stochastic process whose state space is Rd which starts at the origin. At
the first step, the process “branches” in two processes, one of which keeps still, while the other
moves by the vector X1. Recursively, given any time i and any process, at the next time step the
process branches in two other processes, one of which keeps still, while the other moves by the vector
Xi+1. In this setting, when Xi+1 are sampled from a standard multivariate normal distribution, our
results imply that the resulting process is space filling: the process eventually gets arbitrarily close
to each point in Rd. This should be contrasted with the fact that a Brownian motion is transient in
dimension d ≥ 3 [MP10]. The above process can also be interpreted as a multi-dimensional version
of nondeterministic walks as introduced in [PLW19] in the context of the analysis of encapsulations
and decapsulations of network protocols, where the i-th N -step is {Xi,~0}.

30


	Introduction
	Related work
	Overview of our analysis
	Insights on the difficulty of the problem
	Our approach

	Preliminaries
	Proof of the main result
	Application to Neural Net Evolution
	The NNE model
	Universality and RSSP

	Tightness of analysis
	Acknowledgements
	Tools
	Concentration bounds
	Claims

	Proofs omitted
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Lemma 11
	Proof of Theorem 9

	Generalisation of our result
	Discrete setting
	Connection with non-deterministic random walks

