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Abstract

We introduce a context-agnostic unsupervised method to count periodicity in videos. Current methods estimate periodicity for a specific type of
application (e.g. some repetitive human motion). We propose a novel method that provides a powerful generalisation ability since it is not biased
towards specific visual features. It is thus applicable to a range of diverse domains that require no adaptation, by relying on a deep neural network
that is trained completely unsupervised. More specifically, it is trained to transform the periodic temporal data into some lower-dimensional latent
encoding in such a way that it forms a cyclic path in this latent space. We also introduce a novel algorithm that is able to reliably detect and count
periods in complex time series. Despite being unsupervised and facing supervised methods with complex architectures, our experimental results
demonstrate that our approach is able to reach state-of-the-art performance for periodicity counting on the challenging QUVA video benchmark.
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1. INTRODUCTION

We define periodicity as any phenomenon that happens mul-
tiple times in a similar way over time. Periodicity is ubiqui-
tous in real-world scenes and occurs at multiple scales. In elite
sports, the tracking of the athletes’ motion is a key issue and is
highly repetitive. In swimming, in particular, the stroke pace is
one of the most important metrics to determine a race quality
and infer other statistics (e.g. stroke amplitude, rate etc.). But
this task is challenging for many reasons. First, two succes-
sive repetitions may significantly differ (e.g. swimming strokes
rate and amplitude change during the race, as well as the swim-
mer’s position with respect to the camera). Second, the precise
beginning and end of a cycle is ambiguous. Finally, there ex-
ist other artifacts, such as the different sub-cycles that may be
mistakenly detected as cycles. Furthermore, the notion of pe-
riodicity is context-dependant: the same event in two different
sequences might be periodic or not depending on whether it is
repeated or not. Therefore, the signal must be studied globally
and not frame-wise.

Estimating periodicity is particularly challenging with videos
recorded under unconstrained conditions. Any spacial shift,
background noise or viewpoint change result in important vari-
ations in the captured signal, which often makes it hard to au-
tomatically detect the dominant cycle. Although these prob-

lems can be alleviated with recent machine learning methods
based on Convolutional Neural Networks (CNN) that are capa-
ble of extracting noise-robust abstract representations of an im-
age [1], those deep neural network models often require large
amounts of training data [2, 3, 4]. This issue is often cir-
cumvented by pre-training such networks on large annotated
datasets [5, 6], but then the model may be biased towards spe-
cific visual features which may not be relevant for the task at
hand and thus lead to a lower performance [7, 8]. To tackle the
periodicity counting problem in videos, state-of-the-art meth-
ods [9, 10, 11, 12] are trained on Kinetics [13], a videos dataset
of persons doing repetitive actions. Such pre-trained models are
thus domain specific to human gestures, and their performance
are likely to drop when used on less frequent domains, such
as astrophysics or medical videos. Thus, a new dataset is re-
quired to adapt the model, which is extremely time consuming
and costly. Moreover, not all periodicity problems concern reg-
ular videos of human activity: there are other types of complex
time series, like multi-source sensors monitoring air quality or
biophysical activities [14, 15, 16], and 4D MRI videos (i.e. 3D
images through time) of breathing lungs [17], active brains [18]
or beating hearts [19]. For these reasons, it is important to have
a domain-agnostic method.

This paper presents such a technique introducing a specific
training method adapted for temporal periodic data in general.
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Figure 1. The framework introduced in this paper. In Part I, a CNN is first trained in an unsupervised way on the data to analyze, as described in Section 3.1. Then,
it is used to extract an embedding for each image of a video. (1a) shows an example of the 2D PCA projection of these embeddings. The last 50 embeddings are
linked chronologically (in red), revealing the cyclic path. (1b) shows the input images whose embeddings correspond to the highlighted points in (1a). All of them
belong to different cycles but correspond to the same phase in the cycle, therefore the points are close in the latent space. In Part II, we chronologically concatenate
these embeddings to form a multi-variate signal. It is then reduced into a uni-variate temporal signal with PCA keeping only the first component. Finally, our Max
Detector algorithm is used to count the cycles on the signal, which corresponds to the number of cycles on the video. Best seen in color.

With an adapted neural network architecture, it could even be
used outside of the video domain to study other types of multi-
variate time-series.

Our approach is summarized in Figure 1. It reduces a video
into a periodic 1D signal with an original deep learning method
and counts its repetitive patterns using a novel peak detection
algorithm based on various signal processing techniques. This
counting process is performed in a single step. It does not re-
quire to test different time-scales, or to use a sliding window
through the whole signal to process it completely. The com-
putational cost is therefore greatly reduced compared to other
methods based on transformer architectures [9] or multimodal
fusion models [11]. Our main contributions are the following:
• An unsupervised method to train a neural network with the

triplet loss to encode any kind of video (Section 3.1).
• An algorithm to count the periodic patterns in time-series

(Section 3.2).
• A framework combining these algorithms for automatic

periodicity counting in videos, based on the analysis of
a learnt embedding.

2. RELATED WORK

To analyse videos recorded under unconstrained conditions,
recent approaches use CNNs, as they are the current state of the
art for image classification [20], action recognition [21], objects
tracking in videos [22] and saliency detection [23]. They are
also used in periodicity detection [24, 9], which is very similar

to periodicity counting: the first classifies each frame of a video
as periodic or not (the PERTUBE dataset [24] typically is used
as a benchmark), whereas the latter operates on a periodic video
and counts the repetitions.

To specifically address periodicity counting in daily life
videos, Levy and Wolf [25] proposed a 3D CNN architecture:
the input is composed of 20 chronologically ordered images,
each separated by N frames in the timeline. In this way, the
temporal information is integrated into the input. They trained
the model in a supervised way on synthetic data to separate the
sequences on their temporal dimension. This feature-oriented
method is robust to colour and lighting variations, but one needs
to test several timescales (i.e. many different values of N) in or-
der to obtain good results. Also, as for supervised trained mod-
els, the performance directly depends on the dataset size and
quality.

Similar to our method, other works aim to reduce a video to
a one-dimensional signal. Polana and Nelson [26] detected the
pixels responsible for motion, and considered them as temporal
signals varying throughout the video. They extracted a signal
period by detecting the peaks on its Fourier Transform. Yang,
Zhang, and Peng [27] used a method based on pixel-wise joint
entropy to estimate the similarity between a reference image
and the other ones, resulting in a 1D temporal function.

Runia et al. [28], introduced another method to convert a
video into a 1D signal. They studied the main direction of the
foreground’s optical flow in order to create multiple 1D sig-
nals from its directional gradient components through a wavelet
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transform. Their paper also introduced the QUVA benchmark
dataset for periodicity counting in everyday videos.

More recently, Dwibedi et al. [9] proposed a complex archi-
tecture mixing CNNs and transformers [29], trained in a fully-
supervised fashion on the Countix dataset which they intro-
duced themselves. In their experiments, they also trained their
model on a considerable amount of synthetic data obtaining
impressive results, but unfortunately they did not publish this
dataset. This method achieves good results on public bench-
marks, but it is by far the most computationally expensive and
data dependant. Using the Countix dataset, Zhang et al. [11]
proposed a multi-modal approach relying on sound and sight to
improve the state-of-the-art on the Countix benchmark. They
did no evaluation it on QUVA, however.

The work of Yin et al. [12] shares some similarities with our
work, as it also extracts periodic features from a video with a
learning-based method, reduces it to a 1D signal, and counts the
repetitions with an algorithm relying on the Fourier transform.
However, their approach is not generalizable to other types of
data since it uses a neural network that is pre-trained on a large
annotated video dataset (Kinetics [13]) in a supervised way. As
such, they can only analyze conventional videos of 2D images
and the learnt visual features are domain dependant, which may
not give satisfactory results on other types of videos. In addi-
tion, the signal processing part of their method is quite different
from ours. To detect the dominant frequency, it uses a spe-
cific multi-threshold filter in the frequency domain with several
empirically determined thresholds, and then detects the peaks
in the reconstructed signal with the inverse Fourier transform.
Our model is trained unsupervised and end-to-end, and our ro-
bust peak detection algorithm operates on the original 1D signal
obtained from PCA.

Zhang et al. [10] proposed an approach based on a context-
aware model. However, it is not designed to generalize to un-
seen domains: the method uses the Kinetics dataset [13], where
a separate model is trained for each sports type resulting in
excellent overall scores on public benchmarks. Finally, the
work of Feirrera et al. [30] is also context-specific: it uses hu-
man pose classification to count repetitions of workout routines.
This approach is suited but limited to the context of human mo-
tion repetition counting.

As most of these methods ([9, 11, 10, 12, 30]) are trained on
a human motion video dataset (Countix being built on top of
Kinetics), they are well adapted to human gestures and actions.
However, this makes them (i) specific to videos and not any
other type of input data and (ii) biased towards human motion.
On the contrary, we designed our method to be applicable to
any type of periodic data.

3. UNSUPERVISED PERIOD COUNTING

We introduce a novel unsupervised learning process, illus-
trated in Figure 1 Part 1, to encode a video in a way that high-
lights its periodic features. To that purpose, a CNN is trained
directly on the video to be analyzed. The resulting video em-
bedding is a periodic signal that is processed by a novel algo-
rithm to count its cycles.This new method does not follow the

0 20 40 60 80 100 120 140 160

2

0

2

0 50 100 150 200 250 300

2

0

2

0 50 100 150 200 250

2

0

2

0 50 100 150 200 250

0

2

4

A
m
p
li
tu
d
e

A
m
p
li
tu
d
e

A
m
p
li
tu
d
e

A
m
p
li
tu
d
e

Figure 2. Examples of 1D PCA projections of embeddings. The first three rows
show the result for different cycles durations, from 8 to 50 frames per cycle
(on average). The last row shows a more complex pattern containing 2 distinct
local maxima. In such cases, our Max Detector could count 2 cycles per pattern,
resulting in a false result, like mentioned in Section 4.3.

classical training/validation/test protocol. The different steps of
the pipeline are describes in detail in this section.

3.1. Latent Representation Learning
Before the model can be trained, one needs to group succes-

sive frames from the video. The frame at time index t is grouped
with the frames t + 1 and t − 1 forming a triplet. Each frame
belongs to 3 different groups (triplets) where it plays the 3 roles
t − 1, t and t + 1, except for the first and last frames (because
there is respectively no frame before it to be t − 1 and no frame
after it to be t + 1). With T frames in the video, there are T − 2
triplets in the end.

The output vector of the image at time index t is called φ(t).
The images need to be embedded by the CNN in such a way
that, in chronological order, they form a repetitive pattern in the
latent space, i.e. a loop. This is achieved by using a continuity
criterion and a periodicity criterion. The first forces the im-
ages’ successive embeddings to be temporally ordered along a
pseudo-linear path. The latter forces this path to contain repeti-
tive patterns.

To guarantee the continuity criterion, the triplet loss is used
as objective function:

L(A, P,N) = max(0, |φ(A) − φ(P)| − |φ(A) − φ(N)| + α) , (1)

where α ∈ R is the margin, A is the anchor, P is the positive
and N is the negative image. The purpose of the triplet loss is to
make the distance between the embeddings of A and N larger
than the distance between the ones of A and P up to a minimum
distance defined by α. Our approach defines the image at time
index t−1 as the anchor, t as the positive and t+1 as the negative.
The overall consequence of applying this training method to

3



/ Procedia Computer Science 00 (2022) 1–8 4

b)a) >margin

c)

φ(t+2)

φ(t+3)

φ(t+1)

φ(t)

φ(t-1) φ(t+1)

φ(t)

φ(t)
φ(t+2)

φ(t+1)

>margin

pseudo-linear path

Figure 3. Unsupervised learning of the pseudo-linear path using the Triplet
Loss. The anchor is at the center, the positive is on the smaller circle (not
necessarily the same size each time), and the negative is outside of the bigger
circle. a) The anchor is φ(t − 1): φ(t) and φ(t + 1) are separated. b) The anchor
is φ(t): φ(t) and φ(t + 1) are drawn together. When the training starts, the
negative can be at the other side of the big circle compared to the positive.
But this situation is no longer possible when the constraint is applied to all the
successive frames, as shown in c), after convergence: a pseudo-linear path is
naturally formed, as it is the only way to respect the constraints imposed by the
loss. Best seen in color.

each value of t in the video is that each φ(t) is “pulled towards”
its direct neighbors (φ(t − 1) and φ(t + 1)), and “pushed away”
from its 2nd degree neighbors (φ(t− 2) and φ(t + 2)). Therefore,
the positive embedding is “placed” between the anchor and the
negative one, with a tolerance of α, as explained in Figure 3.
This forces the creation of a pseudo-linear path chronologically
aligning the embeddings in the latent space.

To guarantee the periodicity criterion we rely on the property
of CNNs that two similar inputs will have similar outputs unless
explicitly trained otherwise [31]. With periodic videos, if one
cycle has a period T , then the images at time indexes t and t +T
will have the same phase in the cycle and look alike. Therefore,
the images have an embedding close to the other images corre-
sponding to the same phase in the cycle. This cyclic behavior
is illustrated in Figure 1, images 1a) and 1b).

The resulting model closely fits the data it was trained on.
Therefore, to get the most adapted latent space representation
for a video, a model needs to be specifically trained on it (and
no other videos). This requires some training time, but, as ex-
plained in Section 4.1, it is not too expensive.

The training process has been presented using frames as a
temporal unit, but it can be enriched by other information. In
Section 4.2, we show that adding the optical flow to a frame
gives better results (i.e. frame t is enriched with the optical flow
between frames t and t + 1). In this case, we concatenate the 3
image channels (RGB) to the 2 optical flow channels (direction
& magnitude) resulting in 5 ×W × H temporal unit tensors (W
and H being the width and height of the video). This section
presented a way to fit a latent space to a video, but it also works
for other complex time series. Similarly to adding the optical
flow, which is the variation of a frame with respect to the next
one, one could add the gradient between successive temporal
vectors to augment the information encoded by the model.

t-1 tmaxtmax-T tmax+T
t+1 t+1+T

t+2

Time
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Figure 4. Illustration of Max Detector. Starting from the global maximum’s
index tmax, the algorithm shifts by one period T and finds the maximum’s index
t+1 in a window of 10% of T (in red, exaggerated for a better understanding).
This window makes Max Detector robust to period variations. Starting from
t+1, this is repeated to find t+2, t+3 and so on until reaching the signal’s end. A
first iteration goes from tmax to the end of the signal and a second from tmax to
t = 0. Best seen in color.

3.2. Cycle Counting

After training, the images in the video are embedded in the
latent space in such a way that they form a cyclic pattern. The
next step, illustrated in Figure 1, Part 2, is to count these cycles.

In order to effectively work in the frequency domain and ap-
ply common signal processing techniques, the model’s output
vectors have to be transformed into a one-dimension signal. To
do so, the embedding vectors of the M images are chronolog-
ically “stacked” to form a matrix like in Figure 1, 2a). This
is, if the latent space has D dimensions, the resulting matrix
is of size D × M. A PCA projection is applied to the matrix
in order to keep the features combination with the most impor-
tance. By only keeping the 1st element of the PCA, it results
in a 1 × M temporal signal S with periodic information, i.e. a
recurring pattern like in Figure 2, corresponding to a repetition
in the video.

The subsequent algorithm uses the Fourier Transform to de-
tect the signal’s F main frequencies. These candidate frequen-
cies will all be tested by our proposed algorithm named Max
Detector explained in the following.

The main goal of Max Detector is to detect the maximum of
each cycle in S , and to save their time indices in a list named
MaxList. These maxima will be used to distinguish and count
the cycles. We name fi the current analyzed frequency (one of
the F detected by the Fourier transform), Max Listi its corre-
sponding maxima list, and Ti its corresponding period. Max
Detector starts by finding the signal S global maximum’s time
index, which is added to Max Listi. We suppose the neighbour
cycle maxima are approximately one period away from each
other. Therefore, to find the next maximum, one creates a time
window by shifting of Ti ± 10% from the current maximum.
In this window, the local maximum is located and its time in-
dex is added to the list Max Listi. This operation is performed
again from this new local maximum, until reaching the signal’s
edge. This procedure is repeated twice, each time starting from
the global maximum: once forward towards the end, and once
backward to the beginning of the signal. This is graphically
explained in Figure 3.1 and formally explained in Algorithm 1.
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Algorithm 1 Max Detector: creation of candidate lists
MaxListm
Require: signal S, fm,m ∈ (1, ..., F)

MaxList = ∅

for m in (1, ..., F) do
MaxListm = ∅

Tm = 1/ fm
tmax
0 = argmax S (t)
MaxListm ← MaxListm ∪ tmax

i
tmax
i = tmax

0
while tmax

i − Tm ≥ 0 do
ti = tmax

i − Tm

Wi = (ti − 0.1 · Tm , ti + 0.1 · Tm)
tmax
i = argmaxt∈Wi

S (t)
MaxListm ← MaxListm ∪ tmax

i
end while
tmax
i = tmax

0
while tmax

i + Tm < length(S ) do
ti = tmax

i + Tm

Wi = (ti − 0.1 · Tm , ti + 0.1 · Tm)
tmax
i = argmaxt∈Wi

S (t)
MaxListm ← MaxListm ∪ tmax

i
end while
MaxList ← MaxList ∪ MaxListm

end for
return MaxList

Once the F different frequencies have been processed, there
are F different candidate lists Max Listi. Each list is evaluated
individually and the best solution is retained. To evaluate a Max
Listi, each of its local maxima will be compared to their local
region accordingly to equation 2. This score computes the pro-
portion of elements in Max Listi that correspond to the local
maximum in half a period centered on them.

S core i =
1
Li

Max List i∑
k

[
S [k] = max

(
S [k −

T
4

: k +
T
4

]
)]
,

(2)
Li being the number of elements in Max Listi (i.e. its length),
k representing the different local maxima indices. As a result,
a list that contains each and every local maxima of the signal
separated by approximately T has a score of 1. On the contrary,
the more incorrect maxima a list contains, the lower its score is.

The list with the highest score is kept , whose number of ele-
ments represent the number of cycles in the signal and therefore
the number of repetitions on the video.

4. EXPERIMENTS AND RESULTS

To compare our method with the current state of the art, we
used the QUVA [28] and Countix [9] benchmarks. QUVA is
composed of 100 videos showing between 4 and 63 repetitions.
The videos are very diverse and recorded in real-life situations,
often with camera motion and background variation. Countix
contains a similar visual variety. It is the first large video repe-
tition dataset, containing more than 8000 clips showing 2 to 73

repetitions. The metrics used for performance comparison are
the Mean Absolute Error (MAE) and the Off-By-One Accuracy
(OBOA), defined as:

MAE =
1
N

N∑
i

|ci − ĉi|

ci
OBOA =

1
N

N∑
i

[|ci − ĉi| ≤ 1] ,

where ci is the true count and ĉi is our model estimation on
the same video i and N is the number of videos in the dataset.
The OBOA, introduced in [28], counts the proportion of correct
predictions with a tolerance of 1. This margin serves to reduce
the importance of rounding mistakes, as ambiguous cycle cut-
offs can happen at both ends of the video.

Each model was trained independently on one video at a
time. This means that for a dataset of 100 videos like QUVA,
100 different models have been trained and evaluated for each
experiment (except said otherwise). The following sections de-
scribe the experiments performed on the two benchmarks and
the results obtained with the two metrics.

4.1. CNN Architecture

During our test phase, we did not notice a significant dif-
ference of performances using different CNN architectures (we
tried VGG19 and VGG11 [32], results shown in Table 2). We
also designed a straightforward CNN model with fewer layers
than VGG11 as it would train better on the few images of the
video clips. Our custom model is composed of 6 layers of 3× 3
convolutions with ReLU activation [33], each layer doubling
the number of filters (starting at 4, finishing at 128) and 2 × 2
max pooling [34] after each layer, and a final global average
pooling giving a 32 dimensions output vector.

For each study, we trained a model for 30 epochs with a batch
size of 16, a learning rate of 10−3 and the Adam optimizer [35].
Under these conditions, the training took about 1.1 times the
total duration of a video using a NVIDIA GTX 1080 GPU.

4.2. Ablation Study

Our initial baseline CNN model just takes one image as input
(Variation “1 img” of Table 2). To improve performances, we
enriched the input with the optical flow between two consecu-
tive frames, similar to Zhou et al. [37], as mentioned in Section
3.1. The new input is therefore made of an image concatenated
with the optical flow from this image to the next one. This vari-
ation is named “flow” in Table 2.

To show the importance of our training policy, we used com-
mon CNN models trained on Imagenet [2] to do the embedding,
with only one image as an input, as required by these archi-
tectures (they were not retrained on the cyclic videos images).
The obtained embeddings did not give easily exploitable cyclic
curves, resulting in bad performance. With our training policy,
however, the different CNN architectures all reached compa-
rable results, our shallow model being better than the deeper
ones. For all lines in Table 2 not stating a specific architecture,
we used our custom shallow CNN.

In the Max Detector algorithm, we compare F different fre-
quencies. As shown in Table 2, we studied the performance ob-
tained for different values of F. The QUVA benchmark does not
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Table 2. Results of different variations of our approach on the QUVA dataset.
Pretrained models did not perform well at embedding the images in a cyclic
manner. The same architectures, trained using our method, give much better
results. Different architectures do not change the results.

Variations MAE±σ ↓ OBOA ↑
1 img + F=4 0.388± 0.512 0.43

VGG19 (pretrained) + F=4 0.758± 0.812 0.21
VGG11 (pretrained) + F=4 0.783± 0.761 0.17

VGG19 + flow + F=4 0.252± 0.400 0.60
VGG11 + flow + F=4 0.241± 0.367 0.62

flow + F=2 0.291± 0.445 0.59
flow + F=5 0.239± 0.335 0.62
flow + F=7 0.244± 0.328 0.61

flow + F=10 0.378± 0.710 0.57
flow + Scholkmann et al. [38] 0.307± 0.408 0.51

flow + F=4 0.231± 0.326 0.64

provide a specific evaluation protocol, so we used cross valida-
tion on QUVA with 50/30/20 splits (i.e. random splits with said
sizes were created to evaluate different values of the parameter
F without changing anything else, in particular the temporal in-
put signal). The results were the same for the different splits:
between 4 an 7, F seems to have little impact on the result,
F = 4 being the optimum. On the other hand, Countix has a
training dataset, which we used to compute the best value for
F. The results were similar between 2 and 7 again, obtaining an
optimum for F=2.

Finally, we measured the importance of Max Detector, so we
used another automatic peak detection algorithm, described in
[38] by Scholkmann et al. It counts the cycles of the same sig-
nal as our Max Detector, but performs significantly worse. This
shows the effectiveness of our algorithm and the importance of
a more specialized algorithm for periodicity counting.

4.3. Results and Discussions

Table 1 shows the results compared to other supervised and
unsupervised methods. On QUVA, our model has the best MAE
and OBOA of all the unsupervised methods. This is achieved
with no prior bias or complex model, which demonstrates the
efficiency of our framework. Moreover, even compared to su-
pervised models, it is outperformed by only one model with a
small margin.

Regarding Countix, we would like to highlight a few major
weaknesses of the dataset. First, many clips with only 2 repe-
titions are cutting out parts of the periodic actions (at the start
or the end of the video), resulting in no fully repeated move-
ment. Moreover, the shortest video is 0.2s, which corresponds
to 6 frames at 30 fps. In our opinion, such video clips are too
short to contain distinct repetitions. In addition, the choice to
keep the same train/validation/test splits as originally in Kinet-
ics seems questionable, each action category being represented
in both the train/validation set and test sets. To create a more
context agnostic dataset, it would be preferable to have specific
test categories missing from the train/validation split to chal-
lenge the generalisation of the method. On Countix, our unsu-
pervised method gives an OBOA better than Zhang et al. [11]
and is only outperformed by Dwibedi et al. [9]. The MAE is
slightly worse than the supervised methods, but not by a big
margin. In fact, the difference between our score and Dwibedi
et al.’s equals the difference between them and Zhang et al.

In addition, we observed a behavior in most of the “OBOA
failure” cases (i.e. where |ci− ĉi| ≥ 2). Our Max Detector some-
times counts 2 repetitions instead of 1 for each cyclic pattern,
therefore doubling the prediction compared to the ground truth.
Indeed, a lot of ambiguity in the cycles count exist, the most
usual being the “double action” that can be counted as either
one or two periods. For instance, on a freestyle swimming clip,
the annotated ground truth cycle can either be one “left and right
arm movement” or only one “arm movement” depending on the
labeller. Such ambiguity can often not be managed by context-
agnostic methods, which will “guess” the answer between N
and 2×N cycles when it occurs. This partly explains the differ-
ence between our score and supervised method’s score, which
are specifically trained to correctly choose in these ambiguous
contexts. This problem artificially increases the MAE in an
“unsymmetrical” way. If the truth is 10 repetitions, but our
model gives 5, MAE = 0.5. If it is the opposite, MAE = 2.
We could use the Normed MAE (NMAE) as a new metric, as it
does not cause this “unsymmetrical” issue:

NMAE =
1
N

N∑
i

|ci − ĉi|

max(ci, ĉi)

On QUVA and Countix, the NMAE of our method is respec-
tively 0.158 and 0.345.

Table 1. Results for different methods of periodicity counting methods. Bold: the best result of a category. Underlined: the second best. Our unsupervised method
reaches comparable performances to the best fully-supervised models. This proves the overall interest of our method.

Method Unsupervised QUVA : MAE±σ ↓ QUVA : OBOA ↑ Countix : MAE±σ ↓ Countix : OBOA ↑
Levy and Wolf [25] 0.482± 0.615 0.45 - -

Yin et al. [12] 0.199 ± 0.335 - - -
Dwibedi et al. [9] 0.322 0.66 0.364 0.697
Zhang et al. [11] - - 0.307 0.511
Pogalin et al [36] X 0.389± 0.376 0.49 - -
Runia et al [28] X 0.232± 0.344 0.62 - -

Our method, F=4 X 0.231± 0.326 0.64 0.495 ± 0.769 0.517
Our method, F=2 X 0.291± 0.445 0.59 0.419 ± 0.496 0.545
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Figure 5. 4D MRI video analyzed by our method. This is a proof of concept of the method’s generalisation to different input types. Left: 2D slices of 3D input
images (for display purpose) at different moments. The blood pulses through the artery. Right: the 1D PCA (blue) and peak detection of our model (red). As MRI
contain very little noise, the periodic pattern is perfectly smooth. Better seen in color.

4.4. Application to 4D videos

Many applications in medical imaging deeply rely on 4D
videos (i.e. 3D images through time), acquired with Magnetic
Resonance Imaging (MRI) for instance. However, state-of-the-
art periodicity counting methods cannot analyze them as their
model can only input regular videos with 2D images. They
could circumvent the problem by individually processing each
2D slice of the 3D images, but doing so contextual data is lost
and many model inferences would be required. In the end, one
count per slice would be obtained and further post-processing
methods would be needed to determine the final result.

On the other hand, our method can perform 4D video anal-
ysis with no loss of context, as the model is created with the
data itself. Adapting the CNN architecture is straightforward
in this case: the 2D convolutions are replaced by 3D convo-
lutions. The remaining training method is unchanged and the
results obtained by our approach are as good as for conven-
tional videos. Figure 5 gives an example of a 4D MRI video,
from the results of [39], showing a beating heart. The 1D signal
obtained by our method is extremely smooth and easy to inter-
pret. Although further quantitative evaluation would need to be
done, these promising results represent a proof of concept that
the method is able to generalize well to other types of data.

5. CONCLUSION

We introduced a framework to count repetitions in periodic
videos. This method is outside of the usual training set - vali-
dation set - testing set paradigm, as the training is unsupervised
and directly done on the test data. We believe that such an un-
supervised approach may be of increasing importance in the
future for different applications, in order to reduce the need for
big datasets and complex architectures.

Despite being unsupervised and based on a shallow model,
our method gives results comparable to state-of-the-art super-
vised techniques with complex architectures. Due to its na-
ture, it can work on any kind of video, even the ones that differ
considerably from daily life (aeronautics, medical, astrophysics

etc.). Moreover, with an appropriate neural network architec-
ture, it can also perform well on other temporal data, such as
4D videos, biological sensors, and audio.
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