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Models of category transfer do not have the ability to evolve over time. This feature constrains them to only account for participants' generalization patterns. Although they can model fewer processes, transfer models have repeatedly shown to be a useful tool for testing categorization theories and for precisely predicting participants' performance. In this study, we propose a statistical framework that allows transfer models to be applied to learning data. This framework is based on a segmentation/clustering technique, that is here specifically tailored for suiting category learning data. The adjusted technique is then applied to a well-known transfer model (the Generalized Context Model) on three novel experiments. More specifically, these experiments manipulate ordinal effects in category learning by contrasting rule-based vs. similarity-based orders in three contexts. The difference in performance across the three contexts, as well as the benefit of the rule-based order observed in two out of three experiments was almost entirely detected by the segmentation/clustering method. We conclude that our adjusted segmentation/clustering framework allows one to fit transfer models to learning, while apprehending essential information in categorization.

Introduction

Cognitive sciences have seen significant progress due to the conception and use of computational models [START_REF] Polk | Cognitive modeling[END_REF][START_REF] Sun | The Cambridge handbook of computational psychology[END_REF][START_REF] Busemeyer | What you learn is more than what you see: What can sequencing effects tell us about inductive category learning[END_REF][START_REF] Lieto | Cognitive design for artificial minds[END_REF].This is particularly true in categorization (Pothos and Wills, 2011;[START_REF] Wills | Models of categorization[END_REF], where models have been developed to better understand underlying mechanisms [START_REF] Reed | Pattern recognition and categorization[END_REF][START_REF] Hintzman | Minerva 2: A simulation model of human memory[END_REF][START_REF] Nosofsky | Rule-plus-exception model of classification learning[END_REF][START_REF] Love | Sustain: a network model of category learning[END_REF][START_REF] Kruschke | Models of categorization[END_REF] and, more recently, order effects [START_REF] Carvalho | A computational model of contextdependent encodings during category learning[END_REF]Mezzadri et al., 2022b). Following the learning vs. generalization distinction, computational models can be grouped into learning and transfer models. Learning refers to the formation of the categories through a trial-and-error process, whereas transfer refers to the ability to classify new stimuli. Learning models have the ability to adapt their predictions over time, which allows them to perform equally well on learning and transfer data. Examples of learning models are the Configural-Cue network model of classification learning [START_REF] Garner | A configural-cue network model of classification learning[END_REF], the Attention Learning COVEring map (ALCOVE) model of categorization [START_REF] Kruschke | Alcove: an exemplar-based connectionist model of category learning[END_REF], the Rule-plus-exception (RULEX) model of classification learning [START_REF] Nosofsky | Rule-plus-exception model of classification learning[END_REF], and SUSTAIN [START_REF] Love | Sustain: a network model of category learning[END_REF]. By contrast, transfer models generate predictions that do not evolve over time, which constraints them to only successfully account for classification performance during transfer. Examples of transfer models are the Generalized Context Model [START_REF] Nosofsky | Attention, similarity, and the identification-categorization relationship[END_REF] and the Ordinal General Context Model (Mezzadri et al., 2022b).

Although transfer models seem less powerful, as they account for fewer cognitive processes as compared to learning models (generalization vs. both learning and generalization processes), they have proven useful to precisely predict participants' performance in a variety of contexts [START_REF] Nosofsky | A formal psychological model of classification applied to natural-science category learning[END_REF][START_REF] Nosofsky | Tests of an exemplar-memory model of classification learning in a high-dimensional natural-science category domain[END_REF][START_REF] Rehder | Thirty-something categorization results explained: Attention, eyetracking, and models of category learning[END_REF][START_REF] Rouder | Comparing categorization models[END_REF][START_REF] Sanders | Training deep networks to construct a psychological feature space for a natural-object category domain[END_REF][START_REF] Smith | Thirty categorization results in search of a model[END_REF]. They also have been used to implement theories of cognitive processes, such as models based on exemplars vs. prototypes [START_REF] Minda | Comparing prototype-based and exemplar-based accounts of category learning and attentional allocation[END_REF]. For instance, [START_REF] Nosofsky | A formal psychological model of classification applied to natural-science category learning[END_REF] have recently tested the ability of a well-known exemplar model of categorization, the Generalized Context Model (GCM), to predict classification performance of rock categories. In this work, they showed that GCM provided accurate quantitative predictions of different training conditions applied to diverse rock categories.

We here propose a statistical framework that allows transfer models to be fit to learning data with the aim of extending the application of transfer models to category learning. The advantages of applying transfer models to learning data are numerous. First, this framework can allow transfer models to be applied to experiments that lack a transfer phase. This is the case for certain classification studies in which transfer items are not conceived [START_REF] Ashby | Complex decision rules in categorization: Contrasting novice and experienced performance[END_REF][START_REF] Feldman | Minimization of boolean complexity in human concept learning[END_REF][START_REF] Feldman | A catalog of boolean concepts[END_REF], but also the case in cognitive tasks designed for non-human animals in which reward for a correct behavior is always provided [START_REF] Moongathottathil-James | Do rats learn by paths or by turns when ex-ploring a maze? determining and predicting automatically the actions involved in the learning process[END_REF].

Second, this framework can allow a fruitful use of the learning phase of a classification task. As mentioned above, transfer models are only suitable for fitting transfer data. Yet, the transfer phase of a categorization experiment is generally short (amounting to a few blocks). Therefore, considering that a portion of the transfer phase is used for estimating the parameters, there are generally a few blocks left for testing the predictions of the model. Using the framework of the present study, parameter estimation can be performed on learning data, letting one to evaluate models on the whole transfer phase.

Finally, this method can give researchers the choice of fitting participants' generalization patterns individually or collectively. The main obstacle to individually fit participants in the transfer phase lies in the greater amount of individual data needed to accurately estimate the parameters (Mezzadri et al., 2022a). Since the use of our method would allow the estimation of the parameters on the learning phase (which generally includes enough observations to accurately estimate the parameters), a participant-by-participant fit would then be possible.

The statistical framework that we propose is based on a segmentation/clustering approach [START_REF] Picard | A segmentation/clustering model for the analysis of array cgh data[END_REF], originally applied to DNA data [START_REF] Davies | Array cgh technologies and their applications to cancer genomes[END_REF]. The segmentation/clustering model combines a segmentation model with a mixture model. The former divides the data into a finite number of segments and the latter assigns a label to each segment. In the case of classification data, each label is associated with a specific learning behavior/phase (e.g., random classification, perfect classification, etc.). From now on, the term "behavior" is preferred to "label" to facilitate interpretation in categorization. Partitioning the data into segments allows transfer models to adapt their predictions to each participant learning path, making it an individual fit. On the other hand, assigning a behavior to each segment allows the comparison between participants. Indeed, the method benefits from all the observations in estimating the parameters of each behavior making the estimation robust and interpretable through all individuals. To our knowledge, such a method has never been applied to cognitive models.

The use of a segmentation/clustering framework was preferred to simpler segmentation methods for two reasons. First, segmentation methods do not allow the attribution of a behavior to segments, which makes comparisons among participants' learning paths more difficult. While segmentation methods only rely on an individual fit, the segmentation/clustering framework is characterized by a dual individual/collective fit. As mentioned above, the method recovers the sequence of behaviors through an individual fit, but identifies these behaviors based on the set of collective data points (allowing comparisons among subjects). Second, the segmentation/clustering method allows a more accurate estimation of the parameters compared to segmentation methods. Indeed, the number of observations per segment in individuals who rapidly completed the experiment might be too small to accurately estimate the parameters with segmentation methods (Mezzadri et al., 2022b). By contrast the segmentation/clustering method allows parameters to be estimated on the set of segments associated to a common behavior, which generally includes a higher number of observations. We here apply the segmentation/clustering method to the Generalized Context Model [START_REF] Medin | Context theory of classification learning[END_REF][START_REF] Nosofsky | Attention, similarity, and the identification-categorization relationship[END_REF]. This model can account for a variety of category-learning phenomena, and has served as a general framework for a large number of significant models in categorization (e.g., [START_REF] Anderson | The adaptive nature of human categorization[END_REF][START_REF] Kruschke | Alcove: an exemplar-based connectionist model of category learning[END_REF][START_REF] Love | Sustain: a network model of category learning[END_REF]. Three novel experiments were conducted to evaluate the application of the segmentation/clustering method to the Generalized Context Model. These experiments only involve a learning phase. We manipulated the order of stimuli within a category to obtain variations of performance in the data. We focused on two specific within-category orders: rule-based, in which members of a same category are presented following a "principal rule plus exceptions" structure, and similarity-based, in which members of a same category are arranged in order to maximize the similarity between contiguous stimuli. Research has shown that the rule-based order facilitates learning as compared to the similarity-based order when the category structure itself favors the abstraction of a rule (Elio andAnderson, 1981, 1984;Mathy andFeldman, 2009, 2016;[START_REF] Mezzadri | Investigating interactions between types of order in categorization[END_REF]. Here, these two types of presentation order are studied in various contexts.

In Section 2, we provide a brief overview of the Generalized Context Model and describe the segmentation/clustering framework. In the same section, numerical simulations were used to validate the performance of the segmentation/clustering method, as well as to tune the parameters in the choice of the number of behaviors and change-points. In Section 3, we describe three novel experiments and provide a brief analysis of the data set. Finally in Section 4, we present the results of the application of the segmentation/clustering technique to the Generalized Context Model on our three data sets.

Segmentation/clustering framework

The segmentation/clustering technique [START_REF] Picard | A segmentation/clustering model for the analysis of array cgh data[END_REF] combines a segmentation model whose purpose is to detect abrupt changes within the data [START_REF] Hupé | Analysis of array cgh data: from signal ratio to gain and loss of dna regions[END_REF][START_REF] Olshen | Circular binary segmentation for the analysis of array-based dna copy number data[END_REF], with a mixture model which assigns a behavior to each early detected segment. The segmentation model provides a partition of the data into segments while accounting for the ordered structure of the data, whereas the mixture model allows the association of a common behavior to segments with similar features. We first provide a rapid description of the Generalized Context Model (GCM), to which the segmentation/clustering technique is applied. Then, we describe the segmentation/clustering model for a fixed number of change-points and behaviors. Finally, we address the selection of the number of change-points and behaviors, and we present numerical simulations assessing the reliability of the segmentation/clustering model.

Overview of the Generalized Context Model (GCM)

Since our experiments involve only two categories, the formulation of GCM is given for this particular case. According to GCM [START_REF] Medin | Context theory of classification learning[END_REF][START_REF] Nosofsky | Attention, similarity, and the identification-categorization relationship[END_REF], the probability of classifying a stimulus x as belonging to the set of positive stimuli (i.e., Category +) is given by the summed similarities of that stimulus to all positive learning stimuli, divided by the summed similarities of stimulus x to all learning stimuli of both categories (i.e., Category + and Category -):

P(+ | x) = a∈+∩L S(a, x) a∈+∩L S(a, x) + a∈-∩L S(a, x) , (1) 
where L represents the set of learning stimuli, + the set of positive stimuli, and -the set of negative stimuli. The term S(a, x) denotes the similarity between stimuli a and x, and it is computed as an exponentially decaying function of the distance between the two stimuli:

S(a, x) = e -c•d(a,x) p , (2) 
where d(a, x) is the distance between stimuli a and x, p a positive constant, and c a sensitivity parameter (c ≥ 0). The distance between stimuli a and x is computed by:

d(a, x) = D i=1 ω i • |a (i) -x (i) | r 1 r
, where ω i is the attention allocated to dimension i (ω i ≥ 0 and D i=1 ω i = 1), r a positive constant, a (i) and x (i) the feature values of stimuli a and x on dimension i, and D the number of dimensions (stimuli are embedded in a D-dimensional psychological space, in our case D = 4). The values of the constants p and r depend on the nature of the stimuli. Since our experiments involve highly distinguishable and separable-dimension stimuli [START_REF] Garner | A configural-cue network model of classification learning[END_REF][START_REF] Shepard | Attention and the metric structure of the stimulus space[END_REF][START_REF] Shepard | Toward a universal law of generalization for psychological science[END_REF], both constants are set equal to 1.

Here, we consider a simplified version of GCM in which the attention allocated to dimension i is fixed and equal to 1 D . As first investigation, we thought that considering a simpler version of GCM would allow us to study the potential of the segmentation/clustering technique, while limiting the complexity and computational cost of its application.

The likelihood of GCM on observations z 1 , . . . , z n is given by:

L (z 1 , . . . , z n ; c) = n i=1 P c + x i zi • P c -x i 1-zi ,
where n is the length of stimuli presented to a participant, x i the i-th stimulus, z i the classification response of stimulus x i (1 if classified into positive stimuli, and 0 if classified into negative stimuli), and c the sensitivity parameter of GCM.

Model

Let s ∈ S be a participant, and z s 1 , . . . , z s ns the participant's sequence of responses involving n s data points. Also, let Z s 1 , . . . , Z s ns be n s random variables such that z s i is a realization of Z s i (i = 1, . . . , n s ). We suppose that the process Z s 1 , . . . , Z s n is affected by K abrupt changes at unknown coordinates τ s = {τ s 1 , . . . , τ s K }, with the convention τ s 0 = 1 and τ s K+1 = n + 1. The K change-points define a partition of the observations into K + 1 segments S s 1 , . . . , S s K+1 such that:

S s k = z s t , t ∈ τ s k-1 , τ s k .
According to the segmentation/clustering model, the random variables Z s t follow a Bernoulli distribution of parameter the probability of classifying a stimulus x s t into positive stimuli (Category +) according to GCM (i.e., Equation 1):

Z s t ∼ B P c s k (+ | x s t ) , ∀t ∈ S s k ,
where c s k is the sensitivity parameter of GCM associated to the segment S s k . The peculiarity of this method lies on the fact that the parameter c s k can only take P values, c s k ∈ {θ 1 , . . . , θ P }. Therefore, P denotes the number of behaviors that can be assigned to segments, and θ 1 , . . . , θ P are the values associated to each behavior. Note that behaviors are shared among participants.

In addition to the spatial organization of the data into segments via the partition τ s , a secondary organization of the segments into behaviors is considered. In our context, behaviors code different learning performance (e.g., random classification, perfect classification, etc.), while the partition into segments allows the model to evolve. One can note that the parameter c s k is stationary on the segment S s k , meaning that observations on each segment are supposed independent.

Objective

The objective of the segmentation/clustering method is to infer from observed data (i.e., participants' responses) the coordinates of the change-points as well as the values associated to each behavior. More specifically, this method aims at finding τ s = {τ s 1 , . . . , τ s K } and θ = {θ 1 , . . . , θ P } for every s ∈ S such that the cost of the segmentation is minimal, given some observed data z s 1 , . . . , z s ns . The smallest segmentation cost given K change-points and P behaviors is as follows:

C KP = s∈S min τ s 1 ,...,τ s K K+1 k=1 C τ s k-1 :τ s k ,
where the quantity C τ s k-1 :τ s k represents the segmentation cost of the k-th segment of participant s (i.e., S s k ). We suppose that the segmentation cost of segment S s k is expressed by minus the log likelihood of GCM evaluated on S s k . Therefore, θ = {θ 1 , . . . , θ P } are determined by minimizing minus the log likelihood of GCM on the segment S s k . Note that the likelihood evaluated on S s k can be easily factorized since observations are supposed independent by GCM. In summary, the minimal cost of partitioning the observed data into K + 1 segments with P behaviors is the following:

C KP = s∈S min τ s 1 ,...,τ s K K+1 k=1 min c∈{θ1,...,θ P } -log L(S s k ; c) = s∈S min τ s 1 ,...,τ s K K+1 k=1 min c∈{θ1,...,θ P } j∈[τ s k-1 ,τ s k ) (z j -1) log P c (-| x j ) + -z j log P c (+ | x j ) .

Algorithm

We used the dynamic programming-expectation maximization (DP-EM) algorithm proposed by [START_REF] Picard | A segmentation/clustering model for the analysis of array cgh data[END_REF] to apply the segmentation/clustering model. This algorithm combines the dynamic programming (DP) algorithm used in segmentation models, with the expectation maximization (EM) algorithm used in mixture models. The principle of the DP-EM algorithm is the following: when the values associated to the P behaviors θ = {θ 1 , . . . , θ P } are known, the coordinates of the K change-points τ s = {τ s 1 , . . . , τ s K } are computed using the DP algorithm (for each s ∈ S), and once the coordinates of the K change-points τ s = {τ s 1 , . . . , τ s K } are estimated (for each s ∈ S), the EM algorithm is used to optimize the values associated to the P behaviors θ = {θ 1 , . . . , θ P }.

The algorithm is run for a fixed number of change-points K and behaviors P . The first step consists in associating a value θ p to each behavior p ∈ P, where P denotes the set of P behaviors. Given θ = {θ 1 , . . . , θ P }, the second step (DP algorithm) consists in finding the coordinates of the change-points τ s = {τ s 1 , . . . , τ s K } such that the segmentation cost associated to each participant is minimal:

C s KP = min τ s 1 ,...,τ s K K+1 k=1 min c∈{θ1,...,θ P } -log L(S s k ; c), ∀s ∈ S
The third step (EM algorithm) consists in selecting among all participants the segments associated to a specific behavior p, and optimizing its value θ p to minimize the segmentation cost of the segments associated to p:

θ p ∈ arg min c j:p z s j =p -log L (z j ; c) , ∀p ∈ P.
Finally, the second and third steps are iterated multiple times to ensure convergence. Since the values θ and τ s were stable after a few iterations, the number of iterations were set equal to 3.

Choice of the number of behaviors

The selection of the number of behaviors was carried out by means of the adaptive method proposed by [START_REF] Lavielle | Using penalized contrasts for the change-point problem[END_REF]. This method aims at finding the number of behaviors P with which the log likelihood ceases to increase significantly. Let us denote

J P = -log LP (τ , θ) = - max K=0,...,Kmax log L KP (τ , θ) ,
where τ are the estimated coordinates of the change-points, θ the estimated values associated to each behavior, and L KP (τ , θ) the likelihood of the model with K change-points at τ and P behaviors. The first step consists in computing JP as follows:

JP = J Pmax -J P J Pmax -J 1 × (P max -1) + 1.
This step allows one to normalize J P , ensuring that J1 = P max and JPmax = 1. The second step consists in computing D P such that:

D P = JP -1 -2 JP + JP +1 ,
for all P ∈ {2, . . . , P max -1}. The selected number of behaviors is then given by:

P =    max{P ∈ {2, . . . , P max -1} such that D P ≥ s} 1 if D P < s for all P
with s a threshold. We performed numerical simulations on classification data to tune the threshold s. Figure 1 shows the percentage of time that the method finds the correct number of behaviors as a function of s, with different numbers of behaviors (from 1 to 4). Details about the way simulations were run are included in the caption. We found that s = 0.1 maximizes the percentage of time that the method finds the correct number of behaviors, averaged across the selected number of behaviors P (from 1 to 4). One can note that s = 0.1 does not allow the method to find the correct number of behaviors when there is one behavior (P = 1). However, in our experiments it is reasonable to think that there are at least two behaviors (i.e., random and perfect classification) since most of the participants learned how to correctly classify the stimuli. Thus, the value s = 0.1 suits our context.

Choice of the number of change-points

Once the number of behaviors P has been chosen, the number of change-points K P can be estimated. Let V K be the variation of minus the log likelihood between change-points K -1 and K (with K = 1, . . . , K max ): Fig. 1: Numerical simulations for tuning the parameter s (choice of the number of behaviors). The graph shows the percentage of time that the method finds the correct number of behaviors as a function of s, on simulated data having different numbers of behaviors P (from 1 to 4). We run 50 simulations, for each number of behavior. The values of the sensitivity parameter c associated to each behavior were 15 when P = 1; 0.005 and 30 when P = 2; 0.005, 13, and 30 when P = 3; and 0.005, 7, 14, and 30 when P = 4. The same sequence of stimuli as in Experiment 2 was used to run the simulations. Data was generated such that each participant was affected by K = 1 change-point (equidistant from participant's first and last blocks). P max = K max = 5. The graph on the bottom shows the percentage of correct response, averaged across the previous graphs (P from 1 to 4). Dashed lines indicate the selected value for s.

V K = L K-1 P (τ , θ) -L K P (τ , θ).
The selection of the number of segments is given by:

K P =    max{K ∈ {1, . . . , K max } such that V K ≥ V } 0 if σ V < β (3)
where V is the mean of {V K , K = 1, . . . , K max }, σ V its standard deviation, and β ≥ 0 a tuning parameter. This method allows one to find the highest number of change-points associated with a significant decrease in minus the log likelihood. We conducted numerical simulations to both tune the parameter β and assess the efficacy of the method. Figure 2 shows the percentage of time that the method finds the correct number of change-points as a function of β, with simulated data having different number of change-points K (from 1 to 5). Details about the way simulations were run are included in the caption.

One can observe that the method provides a correct answer in every case and simulation, for any β ≤ 15. We decided to take β = 10. Figure 3 shows minus the log likelihood as a function of the number of change-points, with simulated data having different number of change-points K (from 1 to 5) and β = 10. The percentage of time the method found the correct number of change-points is included in the graph. The method allowed us to find the correct number of change-points in every simulation (amounting to 50 per selected number of change-points).

Numerical simulations

Classification data are particularly complex. Indeed, predictions of GCM (and of categorization models in general) are expressed in terms of probability, while classification data are expressed in terms of binary responses (1 when participants classified stimuli into positive stimuli, and 0 otherwise). Therefore, intrinsic noise within the data can be very high. Numerical simulations were conducted to assess the reliability of the segmentation/clustering technique on classification data, specifically.

Simulations were run with a fixed number of change-points K and behaviors P . Figure 4 shows the error of the segmentation/clustering technique in detecting the coordinates of the change-points (Figure A) and the value of the sensitivity parameter c (Figure B), when P = 3, K = 2, and c = 0.2, 7, and 19 for the first, second, and third segment, respectively. In Figure 4A, the coordinates of the two change-points were estimated with a high accuracy (±1 block for the first change-point, and ± half a block for the second change-point).

In Figure 4B, the lowest value of the sensitivity parameter c were estimated with a medium accuracy, while the highest values were estimated with a high accuracy. This is not surprising since the predictions of the model are in the surrounding of 0.5 when the sensitivity parameter is close to 0, increasing the noise within the data. Note that values of c equal to or greater than 20 result in perfect classification (when the number of blocks is small). Since participants met the learning criterion after the successfully completion of 4 The graph shows the percentage of time that the method finds the correct number of change-points as a function of β, on simulated data having different numbers of change-points K (from 1 to 5). We run 50 simulations, for each number of change-points. Data was simulated using two behaviors, P = 2. The values of the sensitivity parameter c associated to the two behaviors were 0.005 and 15. The same sequence of stimuli as in Experiment 2 was used to run the simulations. Data was generated such that each participant was affected by K change-points (from 1 to 5) equidistant from participant's first and last blocks. K max = 10. Dashed lines indicate the selected value for β. q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 100% q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 100% q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 100% q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 100% q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 100% Correct K = 5 For each number of change-points, we run 50 simulations. In each one of the 50 simulations, the method found the same result indicated with dash lines. This means that the method (with β = 10) found the correct number of change-points 100% of the time, in each case.
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blocks, the difference between c = 20 and c > 20 would not be noticeable in a such a short time window. Therefore, we limited the sensitivity parameter to be smaller than 20. Simulations with different number of behaviors and change-points gave similar results. B). In A, the error is expressed in terms of number of blocks. In B, the relative error is defined as c-ĉ c . The number of behaviors P was set equal to 3, the number of change-points K was set equal to 2, and the values of the sensitivity parameter c were set equal to 0.2, 7, and 19 for the first, second, and third segment, respectively. The same sequence of stimuli as in Experiment 2 was used to run the simulations. Data was generated such that the K = 2 change-points affecting participants' progression were equidistant from participant's first and last blocks.

Experiments

In the current section, we describe three novel experiments, in which presentation order is manipulated. The experimental procedure was approved by the local ethics committee (CERNI, Dossier 2018-3) of Université de Franche-Comté and the experiments were performed in accordance with relevant guidelines and regulations. Informed consent was obtained from all participants prior to participation.

Experiment 1

This experiment is closely based on that of [START_REF] Mathy | A rule-based presentation order facilitates category learning[END_REF], modified in several ways to keep consistency across all three experiments. In particular, while [START_REF] Mathy | A rule-based presentation order facilitates category learning[END_REF] only manipulated the order of positive stimuli (i.e., members of Category +), here we control the order of both positive and negative stimuli (i.e., members of both categories). In addition, in the present study only one concept was administered to participants instead of two concepts as in [START_REF] Mathy | A rule-based presentation order facilitates category learning[END_REF].

Participants

The participants were 68 freshmen and sophomores at the Université de Franche-Comté (France), who received course credit in exchange for their participation.

Choice of concept studied

Each participant was administered a concept defined over four Boolean dimensions. According to the classification of [START_REF] Feldman | A catalog of boolean concepts[END_REF], this concept is called 12 4[8] (Figure 5, on the top) to indicate that it is the 12 th in a set of 4-dimensional concepts consisting of 8 positive stimuli. The choice of a fourdimensional concept is justified by the fact that the number of items to be classified (2 4 = 16) is large enough to allow the detection of effects of presentation order, but small enough to allow its memorization.

This concept has interesting properties: i) it is moderately complex, and ii) it is characterized by a substructure made of several well-defined subcategories (for a detailed description of the properties see [START_REF] Mathy | A rule-based presentation order facilitates category learning[END_REF]). This substructure made of subcategories is more detectable by considering the compressed formula of the studied concept 12 4[8] ∼ = a (bc) + ad (bc + b c). We use here a standard notation [START_REF] Feldman | Minimization of boolean complexity in human concept learning[END_REF][START_REF] Feldman | A catalog of boolean concepts[END_REF], in which a refers to negation (¬) of feature a (a and a are the two dimension values that can be taken by dimension A ), ab refers to the conjunction (∧) of a and b, and a + b to their disjunction (∨). The ∼ = symbol indicates that any other concept isomorphic to this formula can be labelled 12 4 [8] .

The substructure made of subcategories in concept 12 4[8] is represented in Figure 5 in the middle (the figure only shows the subcategories of the positive stimuli). Subcategory 1 represents six of the eight members of the concept (P 1 , P 3 , P 4 P 6 , P 7 and P 8 ), corresponding to the first disjunctive clause a (bc) in the compressed formula. These six items can collectively be represented by a verbal expression such as "all a except bc". By contrast, Subcategories 2 and 3 consist of one object each (P 2 for Subcategory 2 and P 5 for Subcategory 3) and correspond to the expansion of the second clause in the compressed formula (abc d and ab cd , respectively). Therefore, Subcategory 1 plays the role of a salient "rule", while Subcategories 2 and 3 play the role of "exceptions". Following [START_REF] Mathy | A rule-based presentation order facilitates category learning[END_REF], we hypothesize that grouping 12 4[8] into these particular subcategories is beneficial to learning.

Stimuli

Stimulus items varied along four Boolean dimensions (Shape, Color, Size, and Filling pattern). Rotation and permutation were randomized for each participant, meaning that dimension A could correspond to Shape, or Color, or Size, or Filling pattern depending on the participant, and that features within dimensions were randomly drawn and permuted (for instance, a = blue and a = red, or a = red and a = blue, or a = green and a = red, etc.). The [START_REF] Feldman | A catalog of boolean concepts[END_REF]. Positive stimuli are indicated with black circles, while negative stimuli are indicated with white circles. The notation 12 4[8] refers to the fact that this concept is the 12 th in the Feldman's list of 4-dimensional concepts consisting of 8 positive stimuli. In the middle, the substructure made of subcategories in concept 12 4 [8] . To avoid overburden the figure, only subcategories of the positive stimuli are shown. On the bottom, an example of the 2 4 = 16 stimulus items presented to participants. The items varied along four Boolean dimensions (Shape, Color, Size, and Filling pattern). To make the figure more readable, we illustrated plain and striped items instead of cross-hatched and striped items.

choice of two values for each feature was randomly chosen among these features: triangle, square, or circle for Shape; blue, pink, red, or green for Color; small or big for Size; and hatched or cross-hatched for Filling pattern. Overall, the combination of these four separable dimensions [START_REF] Garner | A configural-cue network model of classification learning[END_REF] formed 16 single unified items (e.g., a small hatched red square, a big cross-hatched blue circle, etc.).

Ordering of stimuli

We used two types of presentation orders: a rule-based order and a similaritybased order. These were the orders that best facilitated learning in Mathy and Feldman's study (2009). Presentation order was a between-subject manipulation. One type of presentation order was randomly chosen for a given participant beforehand and then applied across the blocks. Negative stimuli were randomly intermingled with positive stimuli and a variable presentation across blocks was considered, meaning that each new block (although constrained to a given order type) was newly randomized. Because categories were randomly alternated and a variable presentation across blocks was used, we refer to the context of this experiment as Random-Variable.

Unlike the study by [START_REF] Mathy | A rule-based presentation order facilitates category learning[END_REF], the negative stimuli were also grouped into subcategories. Subcategory 2 within the negative stimuli was defined by the negation of (bc) on the a feature (i.e., a bc) and included items N 2 and N 6 . Subcategory 1 within the negative stimuli was defined by the negation of d (bc + b c) on the a feature (i.e., a(d (bc + b c)) ) and included the rest of the negative items (N 1 , N 3 , N 4 , N 5 , N 7 , and N 8 ). Therefore, the negative subcategories were simply regarded as an inversion of the positive subcategories.

In the rule-based order, the positive items were randomly drawn from Subcategory 1 until all 6 stimuli were presented. Likewise for the negative items belonging to Subcategory 1. These were followed by the positive items in Subcategory 2 and Subcategory 3 (the item in Subcategory 2 was presented strictly before the item in Subcategory 3), and by the negative items belonging to Subcategory 2 (in random order). Thus in the rule-based order, all members of the biggest subcategory were presented first (in random order) and separated from exceptional members, in order to promote the abstraction of the simplest rules by participants. The presentation within subcategories was randomized to obey a rule-abstraction process that is supposed to impede stimulus singularity.

In the similarity-based order, the first item was randomly selected and subsequent items were randomly chosen from those maximally similar to the previous item until the set of stimuli was exhausted. The negative stimuli were also similarity-based ordered and ties were resolved randomly. Similarity was computed on a trial-by-trial basis so as to maximize inter-item similarity locally, a method which did not guarantee a maximized inter-item similarity over an entire block, but which offered a greater number of possible orders. Similarity between two stimuli x and y was computed using:

s xy = D i=1 1 {xi=yi} ,
which allows the count of the common features shared by the two stimuli. In the above formula, x i and y i are the feature values of stimuli x and y on dimension i and D represents the dimension of the space in which items are embedded (which is four in our experiment). The most important aspect of this procedure is that the ordering does not necessarily respect the subcategory boundaries targeted in the rule-based order, as similarity steps can cross in and out of subcategories. For instance, the stimulus P 1 can be followed by stimulus P 2 .

Procedure

There was no warm-up session (such as learning a simple one-dimensional concept) so that participants would not think that the task consisted in searching for simplistic rules. However, participants were briefly instructed before the task began. Each participant was asked to learn a single 12 4[8] concept following either a rule-based order or a similarity-based order (half of the participants were assigned to the rule-based order).

The task was computer-driven and participants were tested individually during a one-hour single session (including briefing and debriefing). Participants sat approximately 60 cm from a computer on which stimulus items were presented one at a time in the upper part of the screen. They learned to sort the stimulus items using two keys, and successful learning was encouraged by means of a progress bar. The positive and negative categories were associated with the up and down keys respectively, and by two category pictures on the right hand side of the screen. A virtual frame for the categories faced the frame that encompassed the stimulus on its left. The frame for the categories displayed a schoolbag at the top, and a trash can at the bottom (to match the response keys). Each time a response key was pressed, the corresponding picture was displayed for two seconds along with feedback, while the opposite picture was hidden for two seconds. After each response, feedback indicating a correct or incorrect classification was given at the bottom of the screen for two seconds. The two category pictures reappeared whenever a new stimulus was presented.

The participants scored one point for each correct response which was shown on the progress bar. To regulate the learning process, each response had to be given in less than eight seconds (resulting in a maximum of 10 seconds between two stimuli when the participants got a 'Too late' message that lasted two seconds). If the response was given too late, the participants would lose three points on the progress bar. This was thought to prevent the participants from skipping the most difficult stimuli without any penalty. The number of empty boxes in the progress bar was 4×2 D (D = number of dimensions, which was equal to four in our study). One empty box was filled whenever a correct response was given, but the progress bar was reset in case of an incorrect response. This criterion was identical to the one used by [START_REF] Shepard | Learning and memorization of classifications[END_REF] in their first experiment and by [START_REF] Mathy | A rule-based presentation order facilitates category learning[END_REF]. Consequently, participants had to correctly classify stimuli on four consecutive blocks of 2 D stimuli to be allowed to stop the experiment. This required participants to correctly classify all the stimuli (including those considered as exceptions) and intentionally limit them from adopting strategies such as providing partial solutions.

Experiment 2

Experiment 2 was designed to investigate the effect of a constant presentation across blocks. We hypothesized that such an order could facilitate both the perception of commonalities within categories (when two stimuli of the same category are presented repeatedly and contiguously) and the perception of contrasts between categories (when two stimuli of different categories are presented repeatedly and contiguously), which would lead to form an abstraction. From an exemplar point of view, constant orders were thought to limit the number of temporal associations between stimuli, which should therefore reinforce the limited set of associations between the memory traces. In this experiment, we used the same concept, stimuli, and types of orders as in Experiment 1.

Participants

The participants were 22 freshmen and sophomores at the Université de Franche-Comté (France), who received course credit in exchange for their participation.

Procedure

The procedure was similar to Experiment 1, except that a constant presentation across blocks was considered. This procedure can presumably help participants perceive sub-patterns of responses (e.g., -+ ++) that can be used to classify instances blindly. For instance, after noticing that a + + + patterns occurs after a "large red hatched square", this pattern can be used as a cue to correctly classify three instances in a row without paying attention to the stimuli. This is the reason why this condition was tested with a small sample of participants. The number of participants per type of presentation order was balanced. Because categories were randomly alternated and a constant presentation across blocks was used, we refer to the context of this experiment as Random-Constant.

Experiment 3

This experiment explores the effect of blocking negative and positive stimuli. In [START_REF] Mathy | A rule-based presentation order facilitates category learning[END_REF] and in earlier studies (Elio andAnderson, 1981, 1984), negative stimuli were interleaved with positive stimuli in order to emulate an ordinary random presentation. More recently, [START_REF] Mezzadri | Investigating interactions between types of order in categorization[END_REF] have investigated interactions between various order manipulations including interleaving vs. blocking (in which positives and negatives are segregated) with a relatively simple concept. Here, we explore the effect of interleaved vs. blocked presentation using a more complex concept. One hypothesis is that when stimuli are blocked the perception of the commonalities within categories is favored in the rule-based order, hence resulting in faster learning. However, the perception of contrasts between categories might be enhanced because of the immediate juxtaposition of positives and negatives. It is thus difficult to decide between the opposite effects of blocked vs. interleaved presentations without knowing exactly the type of category being studied [START_REF] Busemeyer | What you learn is more than what you see: What can sequencing effects tell us about inductive category learning[END_REF]. Here, because we use a difficult concept with highly discriminable categories (in which the stimuli are dissimilar both within and between categories), a blocked presentation should result in better performance using a rule-based presentation. Again, the same concept, stimuli, and types of orders as in Experiment 1 were used.

Participants

The participants were 46 freshmen and sophomores at the Université de Franche-Comté (France), who received course credit in exchange for their participation.

Procedure

The procedure was similar to Experiment 2, except for the use of a fullyblocked presentation (the positive stimuli were always presented first, followed by the negative ones, (Clapper andBower, 1994, 2002)) as well as the introduction of random blocks. Because a fully-blocked presentation did not guarantee learning (participants could have pressed the correct keys without looking at the stimuli), training blocks were alternated with random blocks separated by a pause of 5 seconds. Across random blocks, stimuli were randomly presented and a feedback was provided to participants after each trial. Because categories were blocked and a constant presentation across blocks was used, we refer to the context of this experiment as Blocked-Constant. Again, half of the participants were assigned to the rule-based order.

Data analysis

We used both the Kaplan-Meier and Cox models to study the influence of presentation order (rule-based vs. similarity-based) on learning speed. Here, we only summarize the results while detailed information about the analyses are given in Appendix A. We found that participants in the rule-based order learned the categories faster than participants in the similarity-based order. More specifically, the Kaplan-Meier analysis showed a beneficial effect of the rule-based order in Experiments 2 and 3, whereas the Cox model found the same beneficial effect of the rule-based order on the three experiments viewed as an ensemble. Also, participants in Experiments 2 and 3 met the learning criterion sooner than participants in Experiment 1.

Results

Here, we present the results of the application of the segmentation/clustering technique to Experiments 1-3 using GCM as underlying model. The method for selecting the number of behaviors with s = 0.1 found 4 behaviors in Experiment 1 and 2, and 3 behaviors in Experiment 3 (see Figure 7, top). The method for selecting the number of change-points with β = 10 found 1 change-point for all three experiments (see Figure 7, bottom).

The values of the sensitivity parameter c associated to each behavior of Experiments 1-3 are shown in Table 1A. Because values of c equal to or greater than 20 resulted in perfect classification with a small number of blocks (as mentioned in the previous subsection), the upper bound of the sensitivity parameter was set equal to 20. The lower the value of the sensitivity parameter, the smaller the proportion of correct responses per block. Therefore, in Experiments 1 and 2 there were 4 learning regimes (low, medium, high, and perfect/almost perfect classification), whereas in Experiment 3 there were 3 learning regimes (low, high, and perfect/almost perfect classification).

Figure 8 (on the top) shows the result of the application of the segmentation/clustering technique with 4 behaviors and 1 change-point to 3 participants of Experiment 2. The results on the remaining participants of Experiment 2, as well as those of Experiments 1 and 3 are shown in Appendix B. Figure 8 (on the bottom) shows the density function of the coordinate of the changepoint (in terms of block number) in Experiments 1-3. One can observe that change-points in Experiment 1 have a higher coordinate than those in Experiments 2 and 3 (the average coordinate is 359, 259, and 228 stimuli in Experiments 1-3, respectively). The two-sided Wilcoxon-Mann-Whitney test shows that the difference was significant (p = .006 between Experiments 1 and 2, and p < .001 between Experiments 1 and 3). This is coherent with the finding that participants in Experiments 2 and 3 met the learning criterion sooner than participants in Experiment 1 (see Appendix A).

Two analyses were performed to determine whether the influence of presentation order can also be found in segmentation/clustering results. The first analysis investigated a potential relation between learning path and presentation order, where by learning path we mean the sequence of behaviors exhibited by participants. Table 1B shows the number of participants N as a function of presentation order and learning path in Experiments 1-3. One can observe that participants having a high or perfect/almost perfect ending regime (i.e., 3 or 4) in Experiments 2 and 3 are more in the rule-based order than in the similarity-based order. Inversely, participants having a medium ending regime (i.e., 2) are more in the similarity-based order than in the rule-based order. For instance, in Experiment 3 the number of participants having a learning q q q q q q q q q q q q q q q q Experiment 3 Experiment 2 3with β = 10. The values for s and β were found through numerical simulations (see Sections 2.5 and 2.6).

q q q q q q q q qq q q q q qq q q qq q q q q qq q q q q q q q q qqqq q qq qq q path 1-3 is 18 in the rule-based order vs. 13 in the similarity-based order. However, the Fisher's exact tests at a 5%-level were not significant (p = .71 in Experiment 1, p = .31 in Experiment 2, and p = .14 in Experiment 3). This is probably due to the limited number of participants.

The second analysis examined the coordinate of the change-points, as a function of presentation order and learning path. Participants whose performance worsened over time showing a negative learning path (amounting to 2 in Experiment 1, and 2 in Experiment 3) were removed from the analysis. Ta-Table 1: Values of the sensitivity parameter c associated to each behavior in Experiments 1-3 (Table A); and number of participants N and average coordinate of the change-point (expressed in terms of number of stimuli and denoted by T ) as a function of presentation order and learning path in Experiments 1-3 (Table B). By learning path we mean the sequence of behaviors exhibited by participants. We remind that 4 behaviors were found in Experiments 1 and 2, and 3 behaviors in Experiment 3. ble 1B shows the average coordinate of the change-points (expressed in terms of number of stimuli, and denoted by T ), as a function of presentation order and learning path in Experiments 1-3. One can observe that the average coordinate of the change-points is higher in participants in the similarity-based order than in those in the rule-based order (except for learning path 2-4 in Experiment 2). A one-sided Wilcoxon-Mann-Whitney test at a 5%-level was conducted to assess whether this difference is significant. The test was only significant in Experiment 3 (p = .066 in Experiment 1, p = .19 in Experiment 2, and p = .049 in Experiment 3). Although the test was not significant in Experiment 2 as found in our previous analysis, the segmentation/clustering technique still captured main tendencies within the data.

Discussion

Although models of category generalization are the simplest kind of models in the field of categorization, they have repeatedly shown to successfully predict participants' performance during transfer, and still serve as an essential tool for investigating cognitive processes. However, these models are not able to adapt their predictions over time, which precludes them from fitting learning data without a suitable statistical framework. Here, we address this issue by proposing a statistical method for applying transfer models to learning data. Our first contribution includes the tailoring of the segmentation/clustering technique to allow transfer models to evolve over time. This technique arranges contiguous learning data into segments and associates a behavior to each segment. Each behavior is related to a specific set of parameters of the transfer model. Because different behaviors are generally related to different sets of parameters, the transfer model is then allowed to adapt its predictions from one segment to another. The peculiarity of the segmentation/clustering model as compared to classical segmentation models is that behaviors are shared among participants. This allows both a better estimation of the parameters of the model (segments have greater sizes) and a more accurate comparison among participants (same behaviors are available for each participant).

The advantages that arise from using this method are the following: i) to extend the application of transfer models to tasks in which a transfer phase is not conceived or in which feedback is always provided, ii) to allow a fruitful use of the learning phase by estimating the parameters of the model on the last learning segment, and iii) to allow transfer data to be individually fit, since parameters can be estimated on the last learning segment.

Our second contribution includes three novel experiments that investigate the impact of rule-based vs. similarity-based orders on learning speed in specific contexts. While within-category order (rule-based vs. similarity-based) was the main manipulation of interest, Experiment 1 combined a random alternation between categories with a variable presentation across blocks, Experiment 2 combined a random alternation between categories with a constant presentation across blocks, and Experiment 3 combined fully-blocked categories with a constant presentation across-blocks. Using survival analysis techniques, the rule-based order was found to be more beneficial than the similarity-based order in Experiments 2 and 3. Again, this is not surprising since a rule-plus-exceptions pattern emerges from the category structure itself. In addition, the contexts Random-Constant and Blocked-Constant were found to yield faster learning as compared to the context Random-Variable.

Our third contribution includes the application of the segmentation/clustering technique to a common transfer model (the Generalized Context Model, GCM) on our three experiments. The method found 4 learning regimes (low, medium, high, and perfect/almost perfect classification) in Experiments 1 and 2, and 3 learning regimes (low, high, and perfect/almost perfect classification) in Experiment 3. This might reflect the fact that the higher variability within Experiments 1 and 2 (both categories and across-blocks presentation were randomized in Experiment 1; only categories were randomized in Experiment 2; neither one nor the other were randomized in Experiment 3) might have strengthened the difficulty level of the task, yielding to an additional medium learning regime. The method also found 1 change-point in each experiment, meaning that participants moved from one learning regime to another during the task. By analyzing the coordinate of the change-points as a function of the experiment, we found that change-points in Experiment 1 have a higher coordinate than those in Experiments 2 and 3. This mirrors the finding that participants in Experiment 1 met the learning criterion later than those in Experiments 2 and 3. The analysis of the coordinate of the change-points as a function of presentation order (rule-based vs. similarity-based) showed that in Experiment 3 participants in the similarity-based order were characterized by change-points with a higher coordinate as compared to participants in the rule-based order. This means that the segmentation/clustering method partially detected the benefit (in terms of learning speed) of the rule-based order over the similarity-based order that has been observed in Experiments 2 and 3. We can conclude that our framework allowed a simplified interpretation of the learning curves in terms of learning regimes, while capturing main tendencies within the data.

Perspectives and limitations

As first application of the segmentation/clustering technique to a transfer model, we preferred to consider a simplified version of GCM in which the attention allocated to each dimension was fixed. Because of the promising nature of these first results, we plan to extend the application of the segmentation/clustering technique to the full version of GCM, as well as to other transfer models (e.g., Mezzadri et al.'s Ordinal General Context Model).

By applying the segmentation/clustering technique to learning data we supposed that observations within a same segment are independent. If segments are sufficiently short, this hypothesis might be reasonable. However, a proper investigation of whether and when this hypothesis matches the reality is needed.

Table 2: Mean inter-item similarity (Table A) and number of participants who did not complete the task (Table B), as a function of presentation order and experiment. The maximal inter-item similarity is 3 in all experiment, since two contiguous four-dimensional items cannot have more than 3 features in common. The term "unsuccessful" participants refers to those individuals who did not meet the learning criterion. 

A Data Analysis

The mean inter-item similarity for each presentation order and experiment is given in Table 2A. As expected, the average inter-item similarity was higher for the similarity-based order than for the rule-based order in all experiments. One can note that in Experiment 3 blocking greatly increased the mean inter-item similarity. Figure 9 (on the top) shows the average number of blocks that participants took to meet the learning criterion, as a function of presentation order and experiment (graphs showing all participants were plotted separately from the ones with successful participants alone). One can note that on average in Experiment 2 and Experiment 3 participants in the rule-based condition completed the task faster than participants in the similarity-based condition.

Two survival analysis techniques were performed to study the influence of presentation order (rule-based vs. similarity-based) on the time required by participants to complete the task: the Kaplan-Meier survival curves and the Cox proportional-hazards model. Survival analysis techniques were preferred to other analyses because of their ability to take into account participants who did not meet the learning criterion. The number and presentation order of participants who did not complete the task are shown in Table 2B. None of the participants were removed from the analyses. Although the participants' learning progression was not statistically analyzed, we include a graph (Figure 9, on the bottom) that shows the average percentage of correct responses among participants within a same condition as a function of block number over the course of the experiments. Again, a faster progression in the rule-based condition as compared to the similarity-based condition can be observed in Experiment 2 and Experiment 3. -based q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q Experiment 3

Experiment Graphs showing all participants were plotted separately from the ones with successful participants alone. The term "successful" participants refers to those individuals who met the learning criterion. On the bottom, average percentage of correct responses among participants within the same presentation order, as a function of block number. In Experiment 3, only performance across random blocks are plotted. 

A.1 Kaplan-Meier survival curves

The Kaplan-Meier estimator ((Kaplan and Meier, 1958)) allows one to estimate the expected duration of time until an event of interest occurs. Our event of interest is the time at which participants met the learning criterion. Figure 10 shows the survival probability for each type of presentation order, as a function of block number and experiment. The survival probability shows how participants assigned to a given condition are likely to continue the task (and consequently, to not meet the learning criterion). A log-rank test was performed to evaluate the difference between survival curves. The log-rank test was significant in Experiment 2 and Experiment 3 (p-value = 0.0051 in Experiment 2, and p-value = 0.04 in Experiment 3). This shows that learning was faster in the rule-based order as compared to the similarity-based order in both Experiment 2 and Experiment 3.

A.2 Cox proportional-hazards model

The Cox model [START_REF] Cox | Regression models and life-tables[END_REF] Fig. 11: Results of the application of the Cox model as a function of presentation order and context. In this analysis, Experiments 1-3 have been aggregated together to determine the effect of the three contexts. Hazard ratios and their 95% confidence intervals are showed for each condition in the middle of the graph. Statistical significance of the Wald test is showed for each condition on the right side of the graph.

of the Cox model as a function of presentation order and context. The graph shows that contexts Random-Constant and Blocked-Constant increased participants' hazard ratio as compared to the reference condition (i.e., context Random-Variable). This means that these contexts were found to help participants to meet the learning criterion faster. The impact of both contexts was found significant (p-value < 0.001 for both the Random-Constant and Blocked-Constant contexts). By contrast, the similarity-based order reduced participants' hazard ratio as compared to the rule-based order. This impact was found significant (p-value < 0.001), showing that learning was slower in the similarity-based condition.

B Application to the segmentation/clustering technique to Experiments 1-3

Figures 12, 13, and 14 show the result of the application of the segmentation/clustering technique to Experiments 1-3, respectively.
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Fig. 2 :

 2 Fig.2: Numerical simulations for tuning the parameter β (choice of the number of change-points). The graph shows the percentage of time that the method finds the correct number of change-points as a function of β, on simulated data having different numbers of change-points K (from 1 to 5). We run 50 simulations, for each number of change-points. Data was simulated using two behaviors, P = 2. The values of the sensitivity parameter c associated to the two behaviors were 0.005 and 15. The same sequence of stimuli as in Experiment 2 was used to run the simulations. Data was generated such that each participant was affected by K change-points (from 1 to 5) equidistant from participant's first and last blocks. K max = 10. Dashed lines indicate the selected value for β.

Fig. 3 :

 3 Fig.3: Numerical simulations when β = 10. The graph shows minus the log likelihood as a function of the number of change-points, on simulated data having different numbers of change-points K (from 1 to 5). For each number of change-points, we run 50 simulations. In each one of the 50 simulations, the method found the same result indicated with dash lines. This means that the method (with β = 10) found the correct number of change-points 100% of the time, in each case.

Fig. 4 :

 4 Fig. 4: Error of the segmentation/clustering technique in detecting the coordinate of the change-points (Figure A) and the value of the sensitivity parameter c (FigureB). In A, the error is expressed in terms of number of blocks. In B, the relative error is defined as c-ĉ c . The number of behaviors P was set equal to 3, the number of change-points K was set equal to 2, and the values of the sensitivity parameter c were set equal to 0.2, 7, and 19 for the first, second, and third segment, respectively. The same sequence of stimuli as in Experiment 2 was used to run the simulations. Data was generated such that the K = 2 change-points affecting participants' progression were equidistant from participant's first and last blocks.

Fig. 5 :

 5 Fig.5: Illustration of the concept and stimulus items of Experiment 1. On the top, the concept 12 4[8] according to Feldman's classification[START_REF] Feldman | A catalog of boolean concepts[END_REF]. Positive stimuli are indicated with black circles, while negative stimuli are indicated with white circles. The notation 12 4[8] refers to the fact that this concept is the 12 th in the Feldman's list of 4-dimensional concepts consisting of 8 positive stimuli. In the middle, the substructure made of subcategories in concept 12 4[8] . To avoid overburden the figure, only subcategories of the positive stimuli are shown. On the bottom, an example of the 2 4 = 16 stimulus items presented to participants. The items varied along four Boolean dimensions (Shape, Color, Size, and Filling pattern). To make the figure more readable, we illustrated plain and striped items instead of cross-hatched and striped items.

Fig. 6 :

 6 Fig. 6: Choice of the number of change-points. Fig. 7: Chosen number of behaviors (top) and change-points (bottom), for Experiments 1-3. On the top, number of behaviors as a function of s. The value s = 0.1 (i.e., the dashed lines) determines the number of chosen behaviors. On the bottom, minus the log likelihood as a function of the number of changepoints. Dashed lines indicate the number of chosen change-points determined by Equation 3 with β = 10. The values for s and β were found through numerical simulations (see Sections 2.5 and 2.6).

Fig. 8 :

 8 Fig. 8: Results of the application of the segmentation/clustering technique. On the top, visualization of the segmentation/clustering method with P = 4 behaviors and K = 1 change-point to Experiment 2. To make the graph more readable, only 3 participants (Participants 1, 11, and 20) among the 22 were selected. The remaining participants of Experiment 2, as well as those of Experiments 1 and 3 are shown in Appendix B. On the bottom, density function of the coordinate of the change-point (in terms of block number) in Experiments 1-3.

Fig. 9 :

 9 Fig.9: Participants' learning time and progression as a function of presentation order in Experiments 1-3. On the top, average number of blocks taken by participants to meet the learning criterion, as a function of presentation order. Graphs showing all participants were plotted separately from the ones with successful participants alone. The term "successful" participants refers to those individuals who met the learning criterion. On the bottom, average percentage of correct responses among participants within the same presentation order, as a function of block number. In Experiment 3, only performance across random blocks are plotted.

Fig. 10 :

 10 Fig. 10: Kaplan-Meier survival curves for each presentation order as a function of block number in Experiments 1-3. Transparent areas represent the 95% confidence intervals. p-values of the log-rang test assessing the difference between survival curves of participants in the rule-based and similarity-based orders are showed on the bottom-left side of each graph.

Fig. 12 :

 12 Fig. 12: Result of the application of the segmentation/clustering technique with P = 4 behaviors and K = 1 change-point to Experiment 1 (participants 1-24).

Fig. 12 :

 12 Fig. 12: Result of the application of the segmentation/clustering technique with P = 4 behaviors and K = 1 change-point to Experiment 1 (participants 25-48).

Fig. 12 :

 12 Fig. 12: Result of the application of the segmentation/clustering technique with P = 4 behaviors and K = 1 change-point to Experiment 1 (participants 49-68).

Fig. 13 :

 13 Fig. 13: Result of the application of the segmentation/clustering technique with P = 4 behaviors and K = 1 change-point to Experiment 2.

Fig. 14 :

 14 Fig. 14: Result of the application of the segmentation/clustering technique with P = 3 behaviors and K = 1 change-point to Experiment 3 (participants 1-24).

Fig. 14 :

 14 Fig. 14: Result of the application of the segmentation/clustering technique with P = 3 behaviors and K = 1 change-point to Experiment 3 (participants 25-46).

  is a survival analysis technique that allows one to simultaneously account for multiple variables. Therefore, this analysis allows us to additionally examine the impact of context (Random-Variable in Experiment 1 vs. Random-Constant in Experiment 2 vs. Blocked-Constant in Experiment 3) on learning speed, while investigating our main manipulation of interest (rule-based vs. similarity-based). Figure11illustrates the result

	Context	Random-Variable (N=68)	reference		
		Random-Constant (N=22)	2.62 (1.51 -4.57)			<0.001 ***
		Blocked-Constant (N=46)	2.88 (1.80 -4.60)			<0.001 ***
	Order	Rule-based (N=68)	reference		
		Sim.-based (N=68)	0.44 (0.28 -0.67)			<0.001 ***
	# Events: 94; Global p-value (Log-Rank): 4.7637e-07		
	AIC: 776.51; Concordance Index: 0.69 0.1	0.5	1	2	5
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