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ABSTRACT

Automatic sports field registration aims at projecting a given
image taken with unknown camera parameters to a known 3D
coordinate system in order to obtain higher-level information
like the position and speed of players. Existing methods gen-
erally detect specific visual landmarks on the field and then
use an iterative refinement to get closer to the desired calibra-
tion. They are usually only compared in terms of precision
on a standard benchmark without considering other metrics.
However, execution speed is also important, mainly in the
context of live broadcast TV and sports analysis. This work
introduces a new automatic field registration method achiev-
ing excellent performance on the WorldCup Soccer bench-
mark, while neither depending on specific visible landmarks
nor any refinement, resulting in a very high execution speed
one-shot model. Finally, to complement the usual Soccer
benchmark, we introduce a new Swimming Pool registration
benchmark which is more challenging for the task at hand.
Code and dataset available at https://github.com/
njacquelin/sports field registration.

Index Terms— registration, real-time, sports, dataset

1. INTRODUCTION

Field registration designates the common method to align the
visible field in a frame to an absolute field template. It can
convert the position of players in an image into their position
in the field, inferring their speed and acceleration. As sports
fields are planar, this is a linear projection called homography.
To compute the homography matrix, one can map points from
the original image to positions on the template. This gives a
first projection, that requires refinement to fit more precisely
the image to the template. Automatic methods [1, 2, 3, 4, 5]
tend to decompose the task into a similar two-stage process:
first getting an initial projection, then several refinement steps
to get more precise results. This second stage takes much
longer, 96% of the total processing time according to [4].

Our work introduces an automatic field registration
method which does not need this costly refinement step.
It learns to segment the input image into a map that highlights

a specific (grid-like) pattern corresponding to points on the
3D field plane (see Fig. 2). Our approach can be applied to
any type of 2D sports field with TV streams or side stadium
view. While maintaining excellent precision on the Word-
Cup Soccer benchmark [6], it achieves an inference speed
of around 50 FPS on rather modest hardware (see Figure 2).
This is important as it is critical to calibrate a field in real
time, e.g. 1) for live-TV visualisation tools, or 2) for athletes
to get a quick feedback on their performance during training,
and 3) cameras positions and fields characteristics change
during shots and across competitions.

WordCup Soccer benchmark [6] is the only public dataset
that has been widely used in the literature, although some
private datasets have been introduced for registration [3, 4].
However, a soccer field is relatively simple in appearance:
a bi-axial symmetry with many unique visual local pat-
terns. Thus we introduce a more challenging benchmark for
Olympic swimming pool registration. Indeed, a swimming
pool contains many repetitive patterns at different places in
the pool (see Fig. 1) leading to ambiguities in the image and
making the registration difficult. Therefore, we hope this will
push forward the research on generic and robust sports field
registration methods.

In summary, our contributions are:
• a new benchmark for swimming pool registration with

new spatial and textural challenges,
• a new efficient sports field registration method that can

be applied to any type of sports and reaches high exe-
cution speed and state-of-the-art precision.

2. RELATED WORK

The first sport fields registration methods [7, 8] relied on lines
and circle detection using Hough Transforms [9]. The de-
tected patterns were used as keypoints and, combined with
RANSAC [10], enabled to compute a homography giving the
absolute position of the camera view on the field. Other meth-
ods [11, 12] relied on sparse human video annotation (e.g. one
frame per second of video) and used SIFT [13] to determine
the camera shift between calibrated frames and the others.

https://github.com/njacquelin/sports_field_registration
https://github.com/njacquelin/sports_field_registration


Table 1. Statistics of the RegiSwim500dataset. The races con-
tain important lighting, textural, and spatial variations.

#images #races images / s
Train Standard 226 6 1/3
Train Sequential 150 4 5
Train Merge 329 6 5 & 1/3
Test 174 3 5

Using more recent deep learning approaches, fully auto-
mated robust methods appeared. Homayounfar et al.[6] cre-
ated a segmentation map and used a Markov Random Field
and a SVM to compute the parameters of the cameras, which
determine the homography. Other works [1, 2, 3] used a
similar deep segmentation model approach using synthetic
datasets. They generated a set of synthetic field views with
varying camera angles, extracted features from them, and as-
sociated them to their homography (easy to obtain in a syn-
thetic environment). At inference time, they generated sim-
ilar features from real images, which they compared to their
database, giving a good initial homography. Then they ad-
justed this homography by comparing their input image to
their dataset template. In fact, the idea of refining an initial
result is present in all recent works of the domain, with dif-
ferent methods for the initialisation. For instance, Jiang et
al. [5] used a neural network to directly estimate the image
homography. They used another model to refine the matrix
by comparing the image and a template projected in the same
point of view. Other approaches are based on field keypoint
detection. Citraro et al.[14] used visual landmarks on the field
(mostly line intersections). The main limitation of using vis-
ible elements is that the image may not show enough visual
keypoints. Nie et al.[4] directly address this problem, creating
a generic template made of equally distributed points across
all the field, which is similar to our proposed approach. The
key difference is that in [4] each point is disconnected from
the others, despite spatial regularities.

3. A MORE CHALLENGING BENCHMARK

As CV techniques develop, the field registration task reaches
excellent performance on existing benchmarks, which does
not allow to compare the newest methods with significant
margins. To adapt to this rapid evolution of registration tech-
niques, we propose to study the unusual sport environment of
a swimming pool. As explained in Fig. 1, it contains many
challenges, namely positioning along the Y axis (A, B), po-
sitioning along the X axis (C, D) - both due to landmarks
repetitions - and unstable background (wavelets, reflections,
light problems etc.). The level of zoom and distance from the
pool also change a lot depending on the competitions. Finally,
swimmers occlude part of the landmarks. To articulate these
challenges, we introduce the RegiSwim500dataset, a swim-
ming pool registration benchmark containing 503 manually
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Fig. 1. Local appearance ambiguities of a swimming pool.
A1,2: 4 exact same lines at different places. B: 3 exact same
lines in the middle. Both A and B create line mismatch prob-
lems. C: the 15m and 35m markers are identical. D: an exam-
ple of 2 different camera view projections on the pool that dis-
play the exact same content, despite being at two completely
separate places of the pool. Best viewed in color.

annotated images of international events. The source videos
are included to enable the use of temporal information. Nu-
meric details of the dataset are summarized in Table 1. There
are two train sets: standard and sequential. The first one has
been created in a way similar to WorldCup Soccer and aims
to be generic. The second one has a temporally dense anno-
tation (5 frames per second), which can be used to train tem-
poral models. These two can be merged to create a bigger,
temporally heterogeneous dataset. Finally, the test set is also
densely annotated, as this makes no difference on a standard
benchmark perspective, but it allows also sequential models
evaluation. The github page gives an open link to the dataset.

4. REGISTRATION METHOD

To find the homography from a camera view to a standard top-
view, our method uses point associations: the model learns a
mapping between keypoint positions in the input image and
in a top-view template. The overall pipeline is explained in
Fig. 2. The main emphases of this work is computational effi-
ciency. Other methods [3] claim a fast inference speed but re-
quire powerful hardware which may not be accessible in prac-
tice. Our method uses a much smaller one-shot model (i.e.:
without iterative refinement) such that real-time registration
is possible with modest hardware (1080 GTX with 8GB).

4.1. Template Heatmap

This work proposes a model that, given an input image of a
sports field, outputs a (W × H × D) heatmap of keypoints,
W and H being the width and height of the input image, D
being the keypoints encoding dimension. The keypoints do
not necessarily represent a visual landmark on the field: they
are spread regularly, creating a grid (Fig. 2, ”Grid Template”).
One unique aspect of this method is the way it encodes the
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Fig. 2. Top: data preparation. A generic template with regularly spaced keypoints is created. The template’s depth encodes the
keypoints’ position in the top-view frame. For each image in the dataset, a corresponding projection of the template is created.
Bottom: inference. The model generates a heatmap of keypoints. These keypoints have a known position in the image as well
as a known position in the absolute pool coordinate system, encoded in their depth. Using the RANSAC algorithm, they enable
the homography matrix estimation, giving the final projection of the input image in the top-view frame. Best viewed in color.

points. The depth vector is composed of two subsets: Xt and
Yt. They are one-hot vectors whose maxima index (xt, yt)
encode one line/column along the grid axis: a combination of
any value of xt and yt gives a node position in the top-view
frame (Fig. 2, ”Depth”).

Compared to having C channels for the C keypoints in the
template, as in [4], this method has speed benefits: it avoids
the depth to increase geometrically with the number of key-
points. A pair of one-hot vectors only linearly increases the
output depth, for the same level of encoding. This improves
the speed and scaling of the solution. For instance, a grid of
(15 × 7) contains 105 channels in [4] but only 22 in ours. In
addition, as each channel does not only represent one point,
but one line/column in the field, their semantic meaning is
more interesting and enables a better scene understanding.

4.2. Data Generation and Model Training

Once the top-view template is created, the data generation
can start using a dataset that contains images with their corre-
sponding homography matrix. The matrix is used to project
the template into the point of view of its image (Fig. 2, ”Pro-
jected Template”). With such projection only semantic infor-
mation has to be inferred.

Our approach relies on a UNet architecture [15], which
is widely used for image segmentation. The cross-entropy
loss is used to train the pixel-wise keypoints one-hot classi-
fication. As there is no ”background” class (which would be
over-representated in the data), this loss is only applied at the
ground truth keypoints location, using a mask. To ensures that
the keypoints are at the correct place, the binary cross-entropy
loss (BCE) is used. To do so, the ground truth (Truth) and out-

put (Out) heatmaps are flattened with a depth-wise MAX op-
eration. The 2D resulting heatmaps are compared, in order to
align the estimated ”blobs” with the expected ones. Formally:

Laxis
class = CrossEntropy(Out, Truth) ∗Masktruthkeypoints ,

Lpos = BCE(Maxdepth(Out),Maxdepth(Truth)) ,

Ltotal = Lx
class + Ly

class + λ · Lpos ,

with λ ∈ R being a weighting coefficient.

4.3. Post-Processing

To extract the keypoints’ absolute position from the heatmap,
one could study each pair of (X,Y) channels to verify if each
(x, y) point is represented. This results in a XG × YG ×
K complexity (XG and YG being the template grid resolu-
tion, and K the number of keypoints to be found). We pro-
pose a much faster algorithm whose complexity is in (XG +
YG) × K (the K operations are parallelizable). A depth-
wise MAX operation is applied to Out, the whole output, re-
sulting in Outflat, a 2D heatmap (the Max operation is ex-
tremely well optimized in processors and insignificant com-
pared to the rest). Its M local maxima are identified and if
they exceed a certain threshold, their (xm, ym) positions are
kept. On Out, the depth vectors at these (xm, ym) positions
are isolated. Their one-hot vectors return the index of their
most activated dimension, (xm

t , ymt ), the position on the top-
view template. Based on these ((xm, ym), (xm

t , ymt )) pairs,
RANSAC [10] can be used to compute the homography ma-
trix. This is formally described in the Algorithm 1.



Table 2. Quantitative results on Soccer World Cup and RegiSwim500datasets. Best in bold. Real-time methods underlined.
Method Benchmark IOUavg

part IOUmed
part IOUavg

whole IOUmed
whole FPS Memory - GPU

Citraro et al.[14] WorldCup 93.9 95.5 - - 9 NA - Titan RTX
Sha et al.[3] WorldCup 94.2 95.4 83.2 84.6 250 48GB - Titan RTX
Chen et al.[2] WorldCup 94.5 96.1 89.4 93.8 2 16GB - NA
Jiang et al.[5] WorldCup 95.1 96.7 89.8 92.9 0.74 8GB - 1080 GTX
Nie et al.[4] WorldCup 95.9 97.1 91.6 93.4 2 8GB - 1080 GTX
Ours, soccer field WorldCup 94.6 95.9 81.2 86.0 50 8GB - 1080 GTX
Ours, swimming pool RegiSwim500 83.3 94.7 72.6 91.5 50 8GB - 1080 GTX

Algorithm 1 Fast identification of keypoints on a heatmap.
Det returns the position of the local maxima in the heatmap.
The correspondence table Tab associates to each channel an
absolute position in the field template.
Require: Model Output Out, Threshold T , maxima detector

Det, Correspondence Table Tab
Pairs← ∅
Outflat ←Maxdepth(Out)
Max List← Det(Outflat)
for (xm, ym) in Max List do

if Outflat[x
m, ym] < T : SKIP

depth vector ← Out[xm, ym]
Xt, Yt ← depth vector
xm
t ← Tab(argmax(Xt))

ymt ← Tab(argmax(Yt))
Pairs← Pairs ∪ ((xm, ym), (xm

t , ymt ))
end for
Homography Matrix← RANSAC(Pairs)
return Homography Matrix

5. RESULTS

The model was trained for 150 epochs with Adam optimizer
[16]. The learning rate started at 1e−3 for 50 epochs and then
decreased to 1e−4 for the remaining 100 epochs, with a batch
size of 16. Coefficient λ is set to 2. For soccer, the grid size
chosen is (15×7) and for swimming it is (11×11). Our metric
is the Intersection Over Union (IOU) between binary masks
of the ground truth top view and the estimated homography.
This is either done with only the visible field (IOUpart) or
using the whole field (IOUwhole). The average and median
of these metrics are computed on the test dataset. Results are
shown in Table 2.

Although our approach does not quite attain the top results
from the literature (see Table 2), it is still among the best ones.
This is remarkable, considering it contains no refinement pro-
cess while all the other methods do. However, this impacts the
IOUwhole metric, where the slightest shift on the visible side
of the field has big repercussions on the other side. Nonethe-
less, this second metric can be considered less interesting for
real-world applications, such as placing the players on a field,

as they must be visible on image to be detected in the first
place. These results might be improved using methods such
as self-training on unlabelled data.

Regarding speed, our model is one of the only two exceed-
ing real time (> 25 FPS), although it has been tested on the
least powerful hardware according to benchmarks [17, 18].
Looking in the details, one can even argue that our model
is faster than Sha et al.[3] on the same hardware. Indeed,
our architecture is a subset of theirs, to which they add 2
more CNNs, a Spatial Transformer Network, and an exhaus-
tive search among field templates. All these additional steps
have a significant time cost and our method might be faster
by up to this amount. The model’s speed could be increased
even more using distillation [19] to train a more condensed,
shallower and faster version of UNet.

Naturally, for our more challenging RegiSwim500dataset,
the performance is lower. Our model handles correctly Y-axis
challenges (A and B in Fig 1) and lighting problems, mostly
because of the grid density and distribution, which prevents
focusing on a single part of the image. The big difference
between the mean and median result is due to multiple left-
right inversions: images with an IOU score of 0, reducing
the mean but not the median as they are a minority. These
are quite difficult to prevent in a pool (challenges C and D in
Fig. 1). This first baseline clearly shows the challenges and
limitations raised by this new benchmark.

6. CONCLUSION

This work introduces an efficient and precise method for auto-
matic sports fields registration, which reaches very good per-
formance and real-time inference speed. The RegiSwim500

dataset has been introduced and made publicly available in or-
der to improve the registration challenge. Future works will
include ways to optimize even more the model’s inference
speed, and new methods to increase its precision.
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