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Abstract

Nowadays,  generating  omics  data  is  a  common  activity  for  laboratories  in  biology. 
Experimental  protocols  to  prepare  biological  samples  are  well  described,  and  technical 
platforms to generate omics data from these samples are available in most research institutes. 
Furthermore,  manufacturers  constantly  propose  technical  improvements,  simultaneously 
decreasing the cost of experiments and increasing the amount of omics data obtained in a 
single experiment. In this context, biologists are facing the challenge of dealing with large 
omics datasets, also called “big data” or “data deluge”. Working with omics data raises issues 
usually handled by computer scientists and thus cooperation between biologists and computer 
scientists has become essential to efficiently study cellular mechanisms in their entirety, as 
omics data promise. In this chapter, we define omics data, explain how they are produced, 
and finally, present some of their applications in fundamental and medical research.

Keywords
genomics, transcriptomics, proteomics, metabolomics, big data, computer science, 
bioinformatics
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1. Introduction

There are  different  types  of omics  data,  each  revealing  an aspect  of cell  complexity.  To 
illustrate this complexity, we propose in Figure 1 an analogy between the functions of a cell 
and that of a  factory.  The different  omics  data  types are  replaced there,  in their  specific 
context.  Cells  are  the  building  blocks  of  living  organisms.  They  can  be  pictured  as 
microscopic,  automated  factories,  made  up  of  thousands  of  biological  molecules  (or 
molecular components) that work together to perform specific functions. Basically, there are 
four main types of molecular components: DNA, RNA, proteins and metabolites. The whole 
population of one type of cellular component is named with the suffix -ome,  i.e. genome 
(DNA), transcriptome (RNA), proteome (proteins) and metabolome (metabolites) (Figure 1). 
The scientific fields, which aim at studying those respective populations, are named with the 
suffix -omics, i.e. genomics, transcriptomics, proteomics and metabolomics. The common 
point between the different type of omics data is that they all arise from high throughput 
experimental strategies that allow the simultaneous observation of all individual components 
that constitute either the genome, the transcriptome, the proteome or the metabolome (1).

The genome is made of DNA molecules, which are the carrier of genetic information. It can 
be imagined as the blueprint library of the cell (Figure 1). From a chemical point of view, 
DNA molecules are polymers (or sequences) of simpler chemical units called nucleotides. 
There  are  four  main  types  of  nucleotides:  Adenine  (A),  Thymine  (T),  Cytosine  (C)  and 
Guanine (G). DNA molecules are organized into chromosomes, which are compacted in the 
cell nucleus. The genome is directly connected to the transcriptome and the proteome (see 
next sections). The information to synthesize RNA molecules (transcriptome) and proteins 
(proteome) is  encoded in specific  regions  of  the DNA sequence called  genes  (Figure 1). 
Genes are made of successive nucleotides (clustered into codons), which correspond to amino 
acids, i.e. the molecules that constitute the proteins. The correspondence between nucleotides, 
codons and amino acids is known as the genetic code. To summarize, a genomics dataset thus 
contains the sequences of DNA molecules present in a cell (or a population of cells) and can 
be seen as a copy of the cell's blueprint library (its genome) written as a long sequence of A, 
T, C and G.

The transcriptome is made of RNA molecules. Multiple types exist and they can be roughly 
classified into messenger RNA (mRNA), ribosomal RNA (rRNA), transfer RNA (tRNA), and 
non-coding RNA (ncRNA). Transcriptomics datasets mainly focus on mRNAs, which are the 
intermediate messengers between the genome and the proteome (see previous paragraph). 
The transcriptome is thus intimately connected to the genome and the proteome (Figure 1). 
Notably,  the RNA polymerase is required to generate mRNA, reading the genome during 
transcription. In eucaryotes, mRNAs exit the nucleus to be used as templates by ribosomes (a 
macromolecular complex made of rRNA and proteins), to synthesize proteins by assembling 
amino acids (following the genetic code) during translation. Compared to the genome, the 
transcriptome  is  much  more  dynamic.  The  cell  population  of  mRNA  molecule  varies 
according to cell requirement in proteins and a transcriptomic dataset lists all sequences of 
mRNA present at a given time. They can be seen as snapshots of which parts of the genome 
are  currently  transcribed  and in  which  proportion.  Following up on the  genome analogy 
presented in Figure 1, mRNAs can be seen as active copies of the cell's blueprints that are 
more or less actively used.

The proteome is made of proteins, i.e. macromolecules made with one or several polymers of 
amino  acids.  Proteins  are  extraordinarily  diverse  in  their  three-dimensional  (3D) 
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conformations and associated functions. To illustrate this diversity, some proteins constitute 
the backbone of the cell  structure,  others detect  or transmit  external  or internal  chemical 
signals and a large portion of them (enzymes) catalyze chemical reactions of the metabolism 
(the whole set of chemical reactions sustaining the cell). Proteins are also responsible for the 
regulation  and  expression  (transcription  and  translation)  of  the  genetic  information  (see 
previous paragraph). Protein functions are closely linked to their 3D spatial conformation and 
all  processes  of  the  cells  are  based  on protein  activities  (Figure  1).  The proteome is  as 
dynamic as the transcriptome because the set of proteins present at a given time in a cell 
varies accordingly to the current state and function of this cell. Proteomics datasets give a 
snapshot of which proteins are present at a given moment in the life of the cell. Genomics, 
transcriptomics and proteomics resume the classical central dogma of biology, as first stated 
by Francis Crick in 1957. Even if it has been further detailed since, with for instance a better 
understanding  of  epigenomics,  it  still  effectively  summarizes  the  principal  flow  of 
information between the main molecular components of the cell:  DNA is transcribed into 
RNA which is translated into proteins.

To  end  this  description  of  omics  data  types,  we  believe  it  is  important  to  mention  the 
metabolome (Figure 1). The metabolome is made of metabolites, small molecules that are 
protein  substrates  in  chemical  reactions.  Nucleotides  and  amino  acids  cited  before,  are 
metabolites,  as  well  as  other  molecules  like  lipids  (forming  bi-layers  membranes  that 
compartmentalize the cell),  or ATP (a molecule used as intracellular  energy transfer).  To 
extend,  again,  the  analogy,  metabolites  can  be  seen  as  the  raw  materials  used  by  the 
automated microscopic factory (Figure 1). Metabolomics datasets peek into the population of 
metabolites  in  a  cell  at  a  given time.  Again,  it  is  important  to  specify that  if  each cited 
“omics” field give an assessment of its associated “ome” population, it is a quite “blurred” 
one. Everything is intertwined in a cell. Moreover, most omics studies give only an average 
observation on a population of cells. Multi-omics and single cells techniques are trying to 
overcome these limitations.

In this chapter, we detail the different types of files used for omics data and present examples 
of databases where they are stored. We introduce different methods for generating omics data 
and finally provide some applications of omics data in fundamental research, cancer research 
and pandemic response.
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2. What are omics data?
2.1. Results from high throughput studies written in multiple 

binary and text files …

To describe the files used to store omics information, it is necessary to consider genomics and 
transcriptomics on one side and proteomics and metabolomics on the other side. Indeed, these 
files are generated by different experimental techniques, which are respectively sequencing 
(for  genomics  and  transcriptomics)  and  mass  spectrometry  (for  proteomics  and 
metabolomics) (Figure 2). For each group, two types of files must be distinguished: the ones 
that are directly obtained after the applications of experimental protocols, i.e. the raw omics 
data  files,  and  the  ones  that  are  generated  by  downstream  informatic  analyses,  i.e. the 
processed omics data files (Figure 2). Experimental protocols and the informatic treatments 
applied to raw data files will be detailed in the next section. 

Genomics and transcriptomics raw data files are essentially nucleotide sequence files. In that 
respect, the FASTA and the FASTQ text formats are commonly used. FASTA was created by 
Lipman  and  Pearson  in  1985  as  an  input  for  their  software  (2) and  became  a  de  facto 
standard,  without  any  clear  statement  acknowledging  it  (3).  This  probably  explains  the 
absence of a common file extension (e.g. .fasta, .fna, .faa) even if FASTA is a unified file 
type. FASTA files contains one or several sequences. A sequence begins with a description 
line starting with the character “>”. NCBI databases (see next sections) have unified rules to 
write this line1. Subsequent lines contain the sequence itself splitted into multiples blocks of 
60 to 80 characters (one per line). With nucleic acid sequences, the sequence lines are a series 
of A/T/C/G/U characters, representing the nucleic acids: adenine, thymine, cytosine, guanine, 
and uracil (the latter replacing thymine in RNA). FASTQ is the file format for the raw data 
generated by the sequencer in genomics and transcriptomics (Figure 2). The first two lines 
are similar as with FASTA file:  identification line starts with “@” instead of “>” and the 
second line contains the nucleic sequence, but a quality score is associated with each position 
of the sequence (i.e. each letter in the sequence line). This score is called “Phred score”, and 
it codes the probability of error in the identification of this nucleotide (3). It goes from 0 to 62 
and is coded in ASCII symbols. This allows to code any score using a single symbol, keeping 
the same length as the sequence line. FASTA and FASTQ files can be opened with any text  
editor software.  FASTQ files are mainly lists of short sequences called “reads” (between 50 
to  200 nucleic  acids),  which  need  to  be  processed  (aligned  or  assembled)  to  be  further 
analyzed. Alignment data files are one type of processed data. Indeed, reads in FASTQ files 
can be aligned to  a  reference  genome sequence to  allow further  analyses  (see below for 
pipeline description and example of applications). The text file format used in this case is the 
SAM2 (sequence alignment and mapping) format (4, 5). It can be further compacted into its 
binary equivalent, which are BAM or CRAM formats (6).

The  file  formats  for  proteomics  and  metabolomics  data  are  not  as  homogeneous  as  for 
genomics  and  transcriptomics.  At  least  seventeen  types  of  formats  exist  for  mass 
spectrometry files (see below)  (7). Each machine manufacturer created its own, adapted to 
proprietary software to read and analyze it, thus multiplying formats. In an effort to facilitate 
data exchange and to avoid data loss (in case of no more readable old file formats), HUPO (8) 

1 https://www.ncbi.nlm.nih.gov/genbank/fastaformat/ 
2 Sequence Alignment/Map Format Specification
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and PSI3 created the open-source mzML4 format (XML text file with specific tag syntax) in 
2011 (9). In the main databases that host mass spectrometry results files, most of the files are 
in the RAW format, developed by Thermo Scientific. These binary files contain retention 
time, intensity, and mass-to-charge ratios (see later sections). Software like Peaks, Mascot, 
MaxQuant or Progenesis (10, 11) use these files to identify proteins present in the sample and 
to quantify them. Results from these analyses are shared through two other text file formats: 
mzIdentML5 and mzTab6.

Note that many other file formats exist.  One of the most critical  for omics data analyses 
concerns the annotations of features on a DNA, RNA or protein sequence. They are shared 
through the General Feature Format (GFF7) that is a text file with nine tabulated separated 
fields: sequence, source of the annotation, feature, start of the feature on the sequence, end of 
the feature, score, strand, phase and attributes.

2.2. … and shared through multiple public databases

The set of public biological databases hosting omics data is large and constantly evolving. 
Omics terminology started being regularly used in the 2000s. Between 1991 and 2016 (25 
years) more than 1,500 “molecular biology” databases were presented in publications, with a 
proliferation rate of more than 100 new databases each year (12). These numbers are only the 
visible part of existing databases. How many have been created without being published? 
Around 500 of those databases are roughly co-occurrent with the apparition of the World 
Wide  Web,  the  very  internet  application  allowing  the  creation  of  online  databases.  The 
availability of molecular biology databases decreased by only 3.8% per year from 2001 to 
2016  (12). This shows a sustained motivation from the community to create and maintain 
public platforms to share data. But it also highlights that this motivation comes more from a 
shared need for easy access to data rather than a supervised effort to coordinate approaches 
and unify sources. Such efforts indeed exist, for example the ELIXIR project started in 2013 
as an effort to unify all European centers and core bioinformatics resources into a single,  
coordinated  infrastructure  (13).  This  notably  produces  the  ELIXIR Core  Data  Resources 
(created in 2017), a set of selected European databases, meeting defined requirements and the 
website  “bio.tools”,  i.e. a  comprehensive  registry  of  available  software  programs  and 
bioinformatics  tools.  The  United  States  National  Center  for  Biotechnology  Information 
(NCBI8) databases are also main references.

Given the “raw” nature of omics dataset, they are stored in archive data repositories: raw data 
from scientific articles, shared on databases easily accessible for reproducibility. Except for 
the Sequence Read Archive (SRA), the databases cited here are mixed ones: they host raw 
archive  data  and knowledge  extracted  from them.  For  genomics  dataset,  NCBI database 
Genome  (14) and EMBL-EBI (member of ELIXIR) database Ensembl  (15) are references. 
They organize genome sequences together with annotations and include sequence comparison 
and visual exploration tools. Transcriptomics data can be deposited into several databases, 
like Gene Expression Omnibus (GEO) (16) initially dedicated to microarrays datasets, which 
is structured into samples forming datasets. Tools are available to query and download gene 

3 HUPO Proteomics Standards Initiative
4 mzML 1.1.0 Specification | HUPO Proteomics Standards Initiative
5 mzIdentML | HUPO Proteomics Standards Initiative
6 mzTab Specifications | HUPO Proteomics Standards Initiative
7 GFF/GTF File Format
8 NCBI
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expression profiles. The Sequence Read Archive (SRA)  (17) accepts raw sequencing data. 
PRIDE (18) is a reference database for mass spectrometry-based proteomics data. Raw files 
containing spectra are available with associated identification and quantification information. 
For metabolomic data,  MetaboLights  (19) is  an archive data repository and a knowledge 
database. It lists metabolite structures, functions, locations alongside reference raw spectra. 
Those databases are generalist references, and many more specialized databases exist: 89 new 
databases  are  reported  in  the  2021 NAR database  issue and a  dozen of  them are  omics 
specific  (20).  For  example,  AtMAD  is  a  repository  for  large-scale  measurements  of 
associations between omics in  Arabidopsis thaliana and Aging Atlas gathers aging related 
multi-omics  data  (21,  22).  Finally,  noteworthy  is  the  existence  of  general-purpose  open 
repositories  like  Zenodo9,  which  allow  researchers  to  deposit  articles,  research  datasets, 
source codes,  and any other research-related digital  information.  Researchers thus receive 
credit  by  making  their  work  more  easily  findable  and  reusable,  and  hence  support  the 
application of the FAIR (findable, accessible, interoperable, reusable) data principles10.

Consistent  efforts  are  made  to  cross  reference  biological  components  (genes,  proteins, 
metabolites)  through  the  diversity  of  databases.  Each  database  represents  terabytes  and 
petabytes of biological information (43 000 Terabytes of sequences data just for SRA11), and 
the scale of the network they form though cross reference is hard to conceptualize. This is the 
“big data'' in biology and even more are generated every day.

9 https://zenodo.org/
10 https://www.go-fair.org/fair-principles/
11 NCBI Insights : The wait is over… NIH's Public Sequence Read Archive is now open access on the cloud 
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3. How to generate omics data?

Genomics started in 1977 with the application of the gel-based sequencing method developed 
by Sanger, to sequence for the first time the whole genome of a virus: the phage phiX. Only 
13 years later, in 1990, the human genome project began, aiming at sequencing the 3 billion 
bases of the human genome, using capillary sequencing (23). More than ten years and almost 
3 billion dollars later,  this  titanic  task was accomplished  (24).   When we think of omics 
analyses,  microarray  technology  remains  emblematic  (25).  In  the  2000s,  the  microarray 
represented  the  keystone  of  a  discipline  then  called  “post-genomics”  (26).  Behind  this 
terminology, the idea was that once the genomes are entirely sequenced, new studies could be 
performed to understand their functioning. Microarrays thus emerged as a promising tool to 
monitor  gene  expression.  They allow the  quantification  of  the abundances  of  transcripts, 
which  are  associated  with  several  thousand  of  different  genes,  simultaneously.  Briefly, 
microarrays are slides, made of glass, on which probes have been attached. These probes are 
small DNA molecules, which have the particularity of being specific to one (and only one) 
gene. The experiment then consists of extracting mRNA molecules from a population of cells 
and  transcribing  them  into  complementary  DNA  (cDNA),  labeled  with  a  fluorescent 
molecule. These cDNAs are then hybridized on the glass slide and end up attached to the 
probes which are specific to them. They create a local fluorescent signal there. The higher the 
amount of mRNA, the more fluorescent signal is measured at each probe location position. 
Microarray  have  been  used  to  successfully  study  many  biological  processes,  some 
fundamental such as the cell cycle  (27), and others directly related to health issues such as 
human cancer  (28). It thus paved the road to new applications for sequencing technologies 
(see below).

3.1. High throughput sequencing technologies

From  2007,  new  methods  called  next  generation  sequencing  (NGS)  (29) helped  to 
considerably reduce cost, technical difficulties, and duration of the process. 

Illumina is the currently predominant NGS method (Figure 3). After extraction,  the DNA 
molecules are sequenced by synthesis (SBS) on a flow cell. Thanks to sequence adaptors, 
each DNA molecule is amplified by bridge amplification as a cluster of copies on the flow 
cell. The reading of the flow cell is based on optical detection: each time a DNApol adds a 
new nucleotide,  a  flash  of  light  is  detected.  NGS advantage,  compared  to  older  Sanger 
techniques,  is  to  allow massive  parallel  sequencing of  large  numbers  of  short  sequences 
(between 50 to 250 nucleotides) called “reads”. The limit of this technique is the size of the 
fragments, but Illumina technology has very high fidelity (very low error rate).

MinIon of Oxford Nanopore is another well-established NGS technology (30). It is based on 
electronic detection through a nanopore (Figure 3). When there is an electric potential around 
a  membrane  (measurable  as  a  voltage  between  the  two  sides),  the  passage  of  a 
macromolecule  through  a  nanopore  (a  modified  biological  protein  canal)  triggers  small 
changes  in  this  electric  potential.  The  changes  are  distinctive  in  function  of  the  current 
nucleotide  in  the  nanopore.  So,  the  succession  of  electronic  potential  variation  can  be 
associate  as  the  nucleotide  sequence.  This  is  the  fundamental  concept  behind  MinIon 
technology and the main advantage is the length of the sequenced molecules. Without the 
technical necessity of flow cells, the sequence passing through the nanopore can be very long 
(order of magnitude of a thousand instead of a hundred base pairs)  (31). But given that the 
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physical  signal detected is small  variations of an electric potential,  the sequencing is less 
reliable (higher error rate). Depending on the fidelity of the sequencing or the size of the 
sequence needed, SBS and nanopores based techniques are complementary.

The  sequencing  machine  output  is  a  group  of  FASTQ  files  (see  previous  section).  For 
genomic data, fragments must be assembled to obtain a single sequence of the genome. For 
transcriptomic data, fragments can be aligned on a reference genome to observe which genes 
are transcribed at a given time (transcriptome de novo assembly is also possible but still very 
challenging).  Therefore,  to  extract  information  from  the  FASTQ  files  produced  by  the 
sequencer,  two main processing steps are  needed.  The numerous small  sequences  (reads) 
stored in the file must be aligned to a reference genome (mapping), then the count of reads 
aligned to a gene sequence gives an estimation of its level of transcription (quantification). 
Dozens of bioinformatic tools have been developed over the years for mapping (STAR (31), 
TopHat (32), HISAT2, Salmon (33)) and quantification (FeatureCounts (34), Cufflinks (35)). 
Benchmarking studies highlight similar performance for most of them (36–38). Interestingly 
TopHat2 exhibits an alignment recall on simulated malaria data that varies from under 3% 
using defaults to over 70% using optimized parameters  (39). This underlines the impact of 
parameter  optimization  on  result  quality.  Quantification  tools  generate  a  text  file 
summarizing the level of transcription of each gene in each condition into a matrix of counts.

3.2. Mass spectrometry technologies

Since the first use of a mass spectrometer for protein sequencing in 1966 by Biemann12, the 
improvement  of  mass  spectrometer  is  closely  linked  to  proteomics  and  metabolomics 
development (40). Metabolites and proteins cannot be read as templates like DNA or RNA, 
and so they neither can be amplified or sequenced by synthesis. To access their sequence, the 
main tool is the mass spectrometer. In the classical bottom-up approach, proteins are digested 
into  small  peptides,  which  pass  through  a  chromatography  column.  They  are  then 
sequentially sprayed as ions into the spectrometer. Migration through the spectrometer allows 
separation of the peptides according to their mass-to-charge ratio. For each fraction exiting 
the  column,  an  abundance  is  calculated.  In  a  data  dependent  acquisition  (DDA),  a  few 
peptides with an intensity superior to a given threshold are isolated one at the time. They are 
fragmented, and additional spectra (mass-to-charge ratio and intensity) are generated for each 
fragmented ion.  In a Data Independent Acquisition (DIA), a spectrum is generated for all 
fractions coming out of the chromatography column. Obtained spectra are combination of 
spectra corresponding to each peptide present in each original fractions. Comparison with a 
peptide spectrum library generated in silico is therefore required to allow the deconvolution 
of  those  complex  spectra.  All  this  information  (abundances  in  fractions,  mass-to-charge 
ratios, intensities) is stored into .raw files, which can only be read by dedicated software  (see 
section 1-1).

12 HUPO - Proteomics Timeline
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3.3. Single cell strategies

Most omics experiments are bulked, they are an average measure done on a population of 
cells,  which  is  more  or  less  homogeneous.  Single  cell  omics  allow  a  more  precise 
measurement, highlighting the plasticity of the cell system. Single cell techniques started with 
manual  separation  of a single-cell  under a  microscope in 2009  (41) and quickly evolved 
toward techniques allowing the parallel sequencing of thousands of cells  (42). Plates based 
techniques use flow cytometry to separate isolated cells into the different wells of a plate, 
allowing processing of hundreds of cells. The introduction of nanometric droplets to separate 
isolated  cells  allowed  the  parallel  processing  of  thousands  of  cells  thanks  to  individual 
barcoding (43, 44). Cells isolated from tissues are mixed with microparticles in a buffer that 
forms droplets in oil. Most droplets are empty, but some contain both a microparticle and a 
cell. After cell lysis, oligonucleotide primers on the microparticles allow the capture of the 
cell mRNA (by oligo-dT and polyA tail complementarity). Primers on the same microparticle 
are barcoded, thus creating a cell tag on each sequence. Amplification and sequencing can be 
bulked without losing the cell of origin for each transcript. Several bioinformatics tools are 
specialized for single cell transcriptomics data  (45). For example, Cell Ranger and Loupe 
Browser are respectively four pipelines (mapping, quantification and downstream analysis) 
and a visualization tool developed by 10XGenomics (44). Single cell transcriptomics data are 
challenging for bioinformatic analysis because of their high level of technical noise and the 
multi-factorial  variability between cells  (45). Transcriptomics is the more advanced single 
cell omics but single cell genomics is also used in SNP and copy number variation screening 
(see section 3-2).

Proteomics and metabolomics data are still challenging to obtain at a single cell level: one 
cell yields only 250–300 pg (46) of proteins when MS in-depth measurement still necessitates 
population scale  yield.  But thanks to innovations in sample preparation and experimental 
design,  single cell  proteomics assessments scaled up from a few hundred to more than a 
thousand identified proteins in just four years (47).

10
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4. Which applications for omics data?
4.1. In fundamental research

Describing biological systems implies to identify,  quantify,  and functionally connect their 
individual  molecular  components.  Given  the  diversity  of  cellular  components  and  their 
multiple interlocking functions, the large scale of omics data empowers the characterization 
of biological systems. As stated before, each type of “omics” is an assessment of a specific 
subpopulation of molecular components. Mining omics data thus allows bulk identification of 
the  nature  (sequence  and  structure),  location,  function  and  abundance  of  molecular 
components in those subpopulations.

Genomics data are making the genome sequences of thousands of species accessible. The 
first direct application of these resources is the annotation of genomic features onto those 
genomic sequences. Protein-coding genes, tRNA and rRNA genes, pseudogenes, transposons, 
single  nucleotide  polymorphisms,  repeated  regions,  telomeres,  centromeres…  Genomic 
features  are  numerous,  and  DNA  sequences  alone  can  be  enough  to  recognize  patterns 
specific to some of them. For example, specific tools exist to detect protein-coding genes, 
like  Augustus13 (48).  The  annotation  can  be  based only on sequence  patterns  or  also on 
comparison with another sequence. Comparative genomics,  i.e. the comparison of genome 
sequences,  allows  the  transfer  of  knowledge  for  homologs  genes  (evolutionarily  related 
genes) between species. Bioinformatics tools exist to infer evolutionary relationships between 
genes based on their sequence similarity  (49). Understanding the evolution of the genome 
helps  to  understand the  dynamics  behind phenotypic  convergence,  population  evolutions, 
speciation  events  and  natural  selection  processes.  For  example,  the  study  of  17  marine 
mammals' genomes offered insight into the macroevolutionary transition of marine mammal 
lineages from land to water (50).

Transcriptomics  data give insight  on the levels  of gene transcription.  The resulting count 
matrix (see previous section) is mainly used to carry out differential  expressions analysis 
(DEA) of genes between conditions. Conditions differ by the variation of a single factor: a 
mutation,  different  medium or a stimulus.  Basic DEA is a multi-step workflow  (51) that 
allows the detection of statistically significant variations in expression across conditions. The 
final  goal  is  to  deduce  insight  on  the  gene's  functions  from  the  observed  variations. 
Transcriptomics  data  are  also  used  to  increase  the  quality  of  genome  annotation.  The 
presence of hypothetical genes can be verified by their transcription, the exact structure of 
known genes can be refined (size of UTRs and exons, Figure 1) and previously undetected 
genes can be observed (52).

Proteomics data allows the identification and quantification of proteome. Proteome does not 
totally  correlate  with  transcriptome.  RNA can  be  spliced  (assembly  of  the  mRNA from 
exons,  not  always  the  same  and  in  the  same  order)  and  proteins  undergo  several  post-
translational modifications (minor changes in the chemical structure of the protein) and re-
localization  (53).  Cellular  pathways and phenotypes thus cannot be fully understood only 
through  transcriptomics  assessments.  Proteomics  completes  the  information  given  by 
genomics and transcriptomics by describing the central dogma third -ome (Figure 1).

Multi-omics analysis, taking advantage of several omics insights in the same experimental 
approach, comes with several challenges. Generating several types of omics data comes with 
a significant investment in time, skilled manpower and money (1). Even if generated in the 
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same experimental approach, omics data are heterogeneous by nature,  thus complexifying 
their  integration.  If  challenging,  multi-omics datasets  are also a step toward the systemic 
description of biological systems (54).

4.2. In medical research

An early  application  of  genomics  in  medical  research  is  the  Genome-Wide  Association 
Studies (GWAS). By comparing genome sequences from a large population of individuals 
(both  healthy  and  sick),  GWAS  highlight  SNPs  (single-nucleotide  polymorphism) 
significantly  more  frequent  in  individuals  with  the  disease.  Correlation  does  not  mean 
causality, but GWAS can give a first clue of the metabolic pathways or cellular components 
involved in the disease (55). This strategy has proven to be efficient in the case of “common 
complex diseases”.  Unlike  Mendelian  diseases  (which  are  rarer),  the  heritability  (genetic 
origin) of these diseases depends on hundreds of SNPs with small effect sizes, which GWAS 
studies  help  identify  (56).  Alzheimer’s  disease  and  cancers  are  examples  of  “common 
complex diseases” whose genetic underpinnings has been explored through GWAS (55, 57).

Most cancers emerge from the successive alteration of cells functioning (by accumulation of 
mutations), leading to abnormal growth causing tumors and metastasis. Multi-omics studies 
can highlight the underlying molecular mechanisms of cancer development,  better explain 
resistance to  treatment  and help  classify cancer  types.  Screening cohorts  of patients  help 
assess  alleles  associated  with  the  development  of  certain  types  of  cancer.  The  different 
subtypes for breast cancer are a well-documented example (58).

Single cell genomics is the only way of characterizing rare cellular types such as cancer stem 
cells  (59). Single cell omics data are also used to follow the rapid evolution of cancer cells 
population inside tumors. Understanding and describing cancer cell population dynamics is 
crucial:  the  characteristic  accelerated  rate  of  mutation  can  be  the  cause  of  treatment 
resistance. Omics data specific to cancer cell lines are shared on specific databases driven and 
maintained by global  consortium such as The Cancer  Genome Atlas  Program14 (over 2.5 
petabytes of genomic, epigenomic, transcriptomic, and proteomic data) or the International 
Cancer Genomics Consortium (60).

Omics data proved to be a priceless resource in pandemic response. The virus Severe Acute 
Respiratory Syndrome Coronavirus 2 (SARS-CoV2) causing the covid 19 disease quickly 
spread around the world, causing more than 6 million deaths (as of Mars 2022) and a global 
health crisis. Its RNA sequence was obtained in January 2020 and allowed the development 
of detection kits and later RNA based vaccines. Since the beginning of the pandemic the 
genomic  evolution  of  the  virus  is  followed  almost  in  real  time,  as  new  variants  (with 
mutations affecting mostly the spike protein of the virus envelope) are sequenced. Variant 
profiling allows the World Health Organization to closely monitor variants of concern. The 
precise characterization of the virus structure opens the research of therapeutic targets. Multi-
omics studies helped specify the Covid19 biomarkers, pathophysiology, and risk factors (61).

Getting omics data  in brain tissues studies is  promising but challenging because of brain 
specificity. Indeed, except in a few specific diseases where in vivo resections are performed 
(brain  tumours,  surgically-treated  epilepsy…),  human  brain  samples  are  collected  post-
mortem, when the less stable  molecules  populations  are already significantly altered.  For 
example, studies of the brain transcriptome are deeply impacted. On the other hand, some 

14 https://www.cancer.gov/tcga
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omics studies target peripheral fuilds (e.g. plasma, cerebro-spinal fluid…) with the aim to 
find  biomarkers  but  the  relationships  between  observations  in  peripheral  fluids  and 
pathophysiological  mechanisms  in  the  brain  are  far  from  clear.  Moreover,  the  brain  is 
organized as a network of intricate substructures, constituted of several cell types (glial cells 
and different neuron types) with distinct function and thus different omics landscape  (62). 
Nonetheless, multi-omics exploratory studies are describing complex diseases in a systematic 
paradigm, highlighting diversity of cellular dysregulations linked to complex pathologies like 
Alzheimer’s disease for example (57).  
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5. Conclusion
Genomics, transcriptomics, proteomics and metabolomics are arguably the most developed 
and used omics, but they are not the only ones.  Other omics describe other sides of the 
functioning  of  the  cell,  which  require  intricate  relationships  between  omics  levels.  For 
example, epigenomics describes the transitory chemical modifications of DNA, lipodomics 
looks at  the lipidic  sub-population of metabolites  (Figure 1).  Omics diversity  mirrors the 
complexity  of  cell  systems.  With  the  constant  improvement  of  measurement  techniques, 
possibilities  to  assess  ever  larger  subsystems  of  the  cells  are  increasing.  Omics  datasets 
generation is paired with the development of software, essential tools to generate, read, and 
analyze them. By design, computer science is therefore omnipresent in modern “big data” 
biology. The need for more gold standard analysis pipelines and file formats grows with the 
scale and complexity of produced datasets.
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Figure captions
Figure 1. The four main -omes and an analogy of their functions. The genome designates 
all  cell’s  DNA  molecules.  The  transcriptome,  the  proteome  and  the  metabolome  refer 
respectively to the cell’s whole set of RNA, proteins or metabolites at a given time.
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Figure 2. Omics data are assessments of -omes populations. Raw omics data are generated 
through  sequencing  (for  DNA  and  cDNA)  or  mass  spectrometry  (for  proteins  and 
metabolites). 

Figure 3.  Illumina and MinIons sequencing technologies. Illumina  is  a  sequencing by 
synthesis  technology  that  allows  massive  parallel  sequencing  of  small  DNA  molecules. 
MinIon is a nanopore based technology that allows the sequencing of longer DNA molecules.

19
Machine Learning for Brain Disorders, Chapter 10


	Keywords
	Acknowledgements
	References
	Figure captions

