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ON THE CONFORMAL GROUP OF A GLOBALLY HYPERBOLIC SPACETIME

The groups of causal and conformal automorphisms of globally hyperbolic spacetimes (gh-spacetimes for short) are studied. In two-dimensions it is shown that all directed, simply connected gh-spacetimes are causally isomorphic. We work out the consequences of this fact, and we obtain a (partial) classification of the causal automorphism group and the conformal group of a two-dimensional gh-spacetime. A generalization is presented for locally conformally flat gh-spacetimes.

Introduction

In General Relativity, conformal mappings are important since they preserve the causal structure (up to time orientation) and lightlike geodesics up to parametrization (cf. [?] and references therein). In [START_REF] Zeeman | [END_REF] Zeeman has shown that the group of causal automorphisms of Minkowski spacetime (of dimension > 2) coincides with the group G generated by orthochronous Lorentz transformations, space-time translations and dilatations. Later, in [7] (applying results of [4]) D. Malament has generalized these results to arbitrary smooth time orientable Lorentzian manifolds M having dimension > 2. More precisely, he showed that any causal automorphism of M is automatically a conformal automorphism, provided it is past and future distinguishing.

While there are many results concerning the conformal group of a compact Lorentzian manifold (e.g. [START_REF] Melnick | The conformal group of a compact simply connected Lorentzian manifold[END_REF]), there is as yet no general result concerning the group of conformal automorphisms of a spacetime.

In this paper we address this problem using back and forth method (reminiscient of model theory). We obtain a partial result, namely for two-dimensional globally hyperbolic spacetimes. In particular, we isolate an order-theoretic condition that is satisfied by spacetimes causally isomorphic to two-dimensional Minkowski spacetime.

This note is organized as follows: In section 2 we lay out some background notation and introductory results; in section 3 we introduce and prove the main Theorem. In the appendix we recall the 'back and forth' construction from model theory.

Preliminaries

2.1. Order theory. Let (X, ≺) be a partially ordered set, with the order relation denoted by ≺. Recall that ≺, being a binary relation, is a subset of the Cartesian product X × X. Being an order relation, ≺ is a reflexive, transitive and antisymmetric relation on X. If A is a subset of X, the induced order on A is the binary relation ≺ | A := (A × A)∩ ≺. Clearly, ≺ | A is an order relation on A. Given (partially) ordered sets X, Y , a partial isomorphism X →Y is an order isomorphism A → B with A ⊂ X, B ⊂ Y are equipped with the induced orders from X and Y respectively.

The set {x ∈ C| a ≺ x ≺ b} will be denoted by [a, b], and is called the Alexandrov interval with endpoints a, b. For a spacetime M, an interval [a, b] is also called a (closed) causal diamond. By a pattern we mean a finite set, equipped with a strict order relation.

2.2.

Corresponding notions in the context of spacetime physics. The causality relation in the context of spacetime physics is denoted by ≺: x ≺ y iff x ∈ J -(y) where J -(y) is the past causal cone of y; note that y ∈ J -(y). We will also make use of the relation ≪: x ≪ y (Chronology) iff x ∈ I -(y) (x belongs to the open past lightcone of y). The relation ≪ is transitive and irreflexive; it follows in particular that ≪ is antisymmetric. The relation ≪ is then a strict order.

Let X ⊂ M be a finite set. Then X is a strict pattern if for all x, y ∈ X, x ̸ = y, 

↠ c → a ↠ c (2.3.1) b ≪ c → a ≪ c (2.3.2) b||c → c ⊀ a (2.3.3)
2.4. Types and quantifier-free types. Consider the language L := {≪, ↠}.

We observe that the relation x ≺ y can be expressed as x ≪ y or x ↠ y, modulo the following additional axiom not(x ≪ y & x ↠ y).

To see this, observe that x ↠ y ↔ (x ≺ y & x ̸≪ y), and the required equivalence simply follows. An L-type (or simply a type) t is a set of finitely consistent (i.e. any finite subset of t is consistent) L-formula. A quantifier free type t ′ is finitely consistent set of quantifier free L-formulas.

Conformal transformations.

A conformal diffeomorphism ϕ : M → N where (M, g M ) and (N , g N ) are two n-dimensional pseudo-Riemannian manifolds of signature (p, q), 0

≤ p ≤ q, p + q = n is a C ∞ -diffeomorphism φ : M → N such that φ * (g N ) = e ψ g M ,
for some arbitrary function ψ : M → R.

3. Causal isomorphisms of globally hyperbolic spacetimes

3.1. General considerations. Let M, N be globally hyperbolic spacetimes. A causal isomorphism f : M → N is a bijective map satisfying ∀x, y ∈ M, x ≺ y ↔ f (x) ≺ f (y)
Let M, N be globally hyperbolic spacetimes, and let a, b be points in M, N respectively.

We have: 

O 0 ∩ O 1 ∩ • • • ∩ O n ̸ = ∅ ←→ O ′ 0 ∩ O ′ 1 ∩ • • • ∩ O ′ n ̸ = ∅ where O i is one of I + (a i ), I -(a i ), a ⊥ i (respectively O i is one of I + (b i ), I -(b i ), b ⊥ i )
, and, for all I, J ⊂ {0, 1, . . . , n},

(3.2.2) ∃x i∈I a i ↠ x & j∈J x ↠ a j ←→ ∃y i∈I b i ↠ y & j∈J y ↠ b j
Before proceeding to the proof of this Theorem, let us show the following:

3.3. Lemma. Keep the above notation and hypotheses (conditions 3.2.1 and

3.2.2). Assume that c ∈ M satisfies [ i∈I a i ↠ c & j∈J c ↠ a j ]
for some I, J ⊂ {0, 1, . . . , n}, and that, furthermore:

c ∈ O i 0 ∩ O i 1 ∩ • • • ∩ O i k , for some open sets O i ℓ where O i is one of I + (a i ℓ ), I -(a i ℓ ), a ⊥ i ℓ , ℓ = 0, 1, . . . , k, i ℓ ∈ {0, 1, . . . , n}.
Then, we have:

∃d[ i∈I b i ↠ d & j∈J d ↠ b j ] & d ∈ O ′ i 0 ∩ O ′ i 1 ∩ • • • ∩ O ′ i k , with O ′ i ℓ , ℓ = 0, 1, . . . , k are such that O i ℓ = I ± (a i ℓ ) ↔ O ′ i ℓ = I ± (b i ℓ ) & O i ℓ = a ⊥ i ℓ ↔ O ′ i ℓ = b ⊥ i ℓ .
Proof. We may suppose that I ∩ J = ∅ (otherwise c = a m for some m ∈ I ∩ J and it suffices to take d = b m ).

Observe then that I, J and {i

0 , i 1 , . . . , i k } are disjoint. Recall that {x ∈ M|x ↠ e Or e ↠ x} = M \ (I + (e) ∪ I -(e) ∪ e ⊥ )}.
Let us consider the case |I| = 1, |J| = 0, I = {a s } for simplicity; the other case can be treated similarly.

Then, as

a s ↠ c, c ∈ M \ (I + (a s ) ∪ I -(a s ) ∪ a ⊥ s ) =: F; it follows that c ∈ F ∩ O i 0 ∩ O i 1 ∩ • • • ∩ O i k . On the other hand, if F ′ ∩O ′ i 0 ∩O ′ i 1 ∩• • •∩O ′ i k = ∅ where F ′ = N \(I + (b s )∪I -(b s )∪b ⊥ s ) we get O ′ i 0 ∩O ′ i 1 ∩• • •∩O ′ i k ⊂ (I + (b s ) ∪ I -(b s ) ∪ b ⊥ s .
It can now be seen that the latter implies that there are relations among {b i ℓ , b s , ℓ = 0, 1, . . . , n} which are nonexistent among {a i ℓ , a s , ℓ = 0, 1, . . . , n} contradicting the hypotheses, hence the claim. □ 3.3.1. Proof of Lemma. Let C, D be dense subsets of M, N respectively. These sets are equipped with the induced order ≪ relation.

Back & Forth: A finite partial isomorphism M

N is an order isomorphism p : A → B, with A, B finite subsets of M and N respectively, equipped with the corresponding induced order relations.

We will construct, inductively, a family of partial isomorphisms p i :

A i → B i , for i ∈ N where A i , B i are finite subsets of C ′ , D ′ (with C ⊂ C ′ ⊂ M, D ⊂ D ′ ⊂ N and C ′ , D ′ are countable), such that A i ⊂ A i+1 , B i ⊂ B i+1 (3.3.1) i∈N A i = C ′ , (3.3.2) i∈N B i = D ′ , (3.3.3) qftp(a n /â) = qftp(b n / b) (3.3.4)
The union i∈N p i will then be an order isomorphism

C ′ → D ′ . 3.3.2. Back & forth. Let p n be a partial isomorphism mapping a i to b i for i = 0, 1, . . . , n. Forth: (n is even) Let c be an element of C \ A. Let c ↓ be the set {x ∈ A|x ≪ c}. Similarly, c ↑ := {x ∈ A|c ≪ x}, and c ∥ := {x ∈ A|x∥c}.
The sets c ↠ and c ↞ are defined as

c ↠ := {x ∈ A|c ↠ x}, c ↞ := {x ∈ A|x ↠ c}.
We will assume for the moment that c ↠ = c ↞ = ∅. It follows that

x∈c ↓ I + (x) ∩ x∈c ↑ I -(x) ∩ x∈c ∥ x ⊥ ̸ = ∅
By the assumptions of the Lemma we have 

x∈c ↓ I + (p n (x)) ∩ x∈c ↑ I -(p n (x)) ∩ x∈c ∥ p n (x) ⊥ ̸ = ∅
d ↠ := {x ∈ B|d ↠ x}, d ↞ := {x ∈ B|x ↠ d}.
We will assume for the moment that d ↠ = d ↞ = ∅.

It follows that

x∈d ↓ I + (x) ∩ x∈d ↑ I -(x) ∩ x∈d ∥ x ⊥ ̸ = ∅
By the assumptions of the Lemma we have Proof. The map p is total: let x be an element of C ′ . Then x = a ℓ for some ℓ ∈ N. Hence x ∈ A ℓ . It follows that p| A ℓ = p ℓ is defined on x = a ℓ .

x∈d ↓ I + (p -1 n (x)) ∩ x∈d ↑ I -(p -1 n (x)) ∩ x∈d ∥ p -1 n (x) ⊥ ̸ = ∅
To show that p is bijective, we argue similarly: let, for the sake of a contradiction, x, y ∈ C ′ be elements such that p(x) = p(y). By the above reasoning, there exists some i such that p i (x) = p(x) = p(y) = p i (y), contradicting the injectivity of p i . Similarly, let z ∈ C ′ . Then z = a ℓ for some sufficiently large ℓ; then z = a ℓ ∈ B k (for some natural number k). We have

p k (A k ) = B k . □ Let us define Φ : M → N , x → lim k p(x k ), where x k → x as k → ∞, x k ∈ dom(p).
This is well defined as otherwise p ceases to be a causal morphism:

3.5. Lemma. The map Φ is a well defined non-trivial causal isomorphism M → N .

Proof of Lemma: First we show that Φ is a well defined map: let y, z ∈ M be two spacetime points, such that lim k p(x k ) = y and lim ℓ p(x ′ ℓ ) = z, where (

x k ) k , (x ′ ℓ ) ℓ both converge to x ∈ M. Let V be a neighbourhood V = [a, b] of x, with a, b ∈ C; then x k , x ′ ℓ ∈ V ∀k, ℓ > N 1 , & p(V ∩ C) ⊂ [p(a), p(b)] for some N 1 ∈ N. In particular p(x k ), p(x ′ ℓ ) ∈ [p(a), p(b)] for all k, ℓ > N 1 . Considering a sequence V n := [a n , b n ], a n , b n ∈ C of nested causal diamonds V n+1 ⊂ V n , such that a n , b n → x as n → ∞ we obtain lim k→∞ p(x k ) = lim ℓ→∞ p(x ′
ℓ ), thus y = z and Φ is well defined. Similarly, Φ is a causal morphism.

Finally, to see that Φ is bijective, we observe that p is bijective, and that each point z ∈ N is the limit of some sequence (z k ) k : the sequence (p -1 (z k )) k being contained in a compact subset of M it converges to some limit p -1 (z).

Partial classification of Aut(M) for M a two-dimensional gh-spacetime

In this section we consider the case of a two-dimensional globally hyperbolic spacetime. We have: 4.1. Theorem. Let M be a two-dimensional globally hyperbolic spacetime having non-compact Cauchy surfaces. Assume furthermore that M is upward and downward directed, i.e. M satisfies the following ( †) For all x, y ∈ M, there exist u, v ∈ M such that x, y ≺ u & v ≺ x, y.

Then there exists a causal isomorphism i : M → M 2 . Consequently, the group of causal automorphisms of M is Aut(M 2 ).

Let C be a countable dense subset of M; We have p ≪ q; hence for some z ∈ [p, q], p ≪ z ≪ q. Hence z satisfies the requirement of the Lemma. We obtain the following: 4.7. Theorem. Let M be a two-dimensional globally hyperbolic spacetime having compact Cauchy surfaces.

Assume the induction hypothesis holds for all sets

A, B satisfying |A| = m, |B| = n; for |A| = m + 1, |B| = n: let A ′ ⊂ A, |A ′ | = m,
O 1 ∩ O 2 ∩ • • • ∩ O n ̸ = ∅ ↔ O ′ 1 ∩ O ′ 2 ∩ • • • ∩ O ′ n ̸ = ∅ 4.
Assume furthermore that M (the universal covering space of M) is directed. Then the group Aut(M) of causal automorphisms of M is given by

N (Z)/Z
where N (Z) is the normalizer of Z in Aut(M 2 ). 4.8. Non-directed two-dimensional globally hyperbolic spacetime. Let us define

D := {(x, t) ∈ M 2 ||x| + |t| < 1}. This is the diamond I + ((0, -1)) ∩ I -((0, +1)). Note that D is causally isomorphic to M 2 .
4.9. Theorem ( [5]). Any two-dimensional spacetime with non-compact Cauchy surfaces can be causally isomorphically embedded into D.

We denote the above embedding by ι. Let us recall the statement for M = M 2 : 4.10. Theorem ( [START_REF] García-Parrado Gómez-Lobo | Product posets and causal automorphisms of the plane[END_REF]). The group Aut(M 2 ) of causal automorphisms of the Minkowski plane is given by

(Homeo ≤ (R)) 2 ⋊ S 2
We may characterize causal automorphisms of non-directed globally hyperbolic spacetimes by considering the embedding ι. By analyzing the structure of non-directed spacetimes, we obtain a more precise classification of the automorphism group: 4.12. Theorem. Let M be a two-dimensional globally hyperbolic spacetime. Then Aut(M) is one of the following groups:

1. Γ := (Homeo ≤ (R)) 2 ⋊ S 2 ; 2. N Γ (Z)/Z ; 3. Γ ′ := a subgroup of Γ stabilizing a countable set; 4. N Γ ′ (Z)/Z ; 5. Homeo ≤ (R) ⋊ S 2 ; 6. N Homeo ≤ (R)⋊S 2 (Z)/Z; Proof. Items (1) and ( 2) have already been investigated (they correspond to directed spacetimes, with non-compact and compact Cauchy surfaces, respectively). Assume that M has non-compact Cauchy surfaces. Assume furthermore that M is upward but not downward-directed, and let a 1 , a 2 ∈ ∂M be such that

( ‡) ∃b(a 1 , a 2 ≺ b & ∄x(x ∈ M & x ≺ a 1 , a 2 )).
Then any automorphism of D must preserve the type tp(a 1 , a 2 ).

We have three possible cases:

1. There exist timelike curves γ 1 , γ 2 containing a 1 , a 2 respectively such that for any Cases 1. and 2. imply the existence of a small interval in ∂M (i.e. image of an interval of R by a homeomorphism R → ∂M) . By paracompactness of ∂M we conclude the existence of a countable set of b (as in ( ‡) above), and hence Aut(M) stabilizes a countable subset of M. In case 3., the group of causal automorphisms stabilizing ∂M is seen to be Homeo ≤ (R)⋊ S 2 : let ∂M be defined by x -= φ(x + ), and let Φ : M → M, (x + , x -) → (ϕ(x + ), ψ(x -)) be a causal automorphism of M, where ϕ, ψ are increasing homeomorphisms of R.

b 1 ∈ γ 1 , b 2 ∈ γ 2 satisfying a 1 ≪ b 1 ≪ b,
Denoting the extension of Φ to D by Φ ′ , let Φ ′ : D → D, (x + , x -) → (ϕ(x + ), ψ(x -)) (with ϕ, ψ defined over R). Then, on ∂ιM: ψ(φ(x + )) = φ(ϕ(x + )); let u be a parameter for ∂M, x

+ = f + (u), x -= f -(u), then ϕ(f + (u)) = f + (φ(u)), ψ(f -(u)) = f -(φ(u))
. We may assume that f + or f -is monotone (otherwise, it can be seen that for some x ∈ ∂M, we have I ± (x) ∩ ιM ̸ = ∅, impossible by Theorem 4.1 of [START_REF] Kim | A classification of two-dimensional spacetimes with non-compact Cauchy surfaces[END_REF]). It follows that φ is monotone, as required. The case where M is downward but not upward directed is treated similarly. If M is neither upward nor downward directed, then the same analysis still applies (with minor changes), and we also get that Aut(M) is one of the groups listed in the Theorem. The other cases (i.e. M has compact Cauchy surfaces) follow by application of Theorem 4.7. □ 4.13. Group of conformal automorphisms of M. Let us denote by Diffeo(R) ≤ the group of increasing C ∞ -diffeomorphisms of the real line.

In [5], a characterization of the conformal automorphism group of a two-dimensional globally hyperbolic spacetime with non-compact Cauchy surface is given. We obtain a simpler characterization of C ∞ -conformal diffeomorphisms of the Minkowski plane using null coordinates x + = t + x, x -= t -x (the standard metric on M 2 written in terms of null coordinates is given by -dx + dx -):

4.14. Theorem. The group Conf(M 2 ) of conformal diffeomorphisms of the plane is given by Diffeo ≤ (R) 2 ⋊ D 2 , where D 2 is the dihedral group, D 2 ≃ C 2 × C 2 .

Proof. Let Φ : M 2 → M 2 , (x + , x -) → (X + , X -) be a conformal diffeomorphism of the plane. We have:

-dX + dX -= -e φ(x + ,x -) dx + dx -, as Φ is a conformal map, with φ(x + , x -) being an arbitrary function. Writing X + = X + (x + , x -) and X -= X -(x + , x -) we obtain

- ∂X + ∂x + dx + + ∂X + ∂x -dx -∂X - ∂x + dx + +
∂X - ∂x -dx -= -e φ(x + ,x -) dx + dx -, hence X + + X - + = 0 X + -X - -= 0 X + + X - -+ X + -X - + > 0 Finally, X + = X + (x + ), X -= X -(x -), and X + + X - -> 0 Or X + = X + (x -), X -= X -(x + ), and X + -X - + > 0. The rest of the proof now follows [START_REF] García-Parrado Gómez-Lobo | Product posets and causal automorphisms of the plane[END_REF]: any conformal diffeomorphism of M 2 is of one the forms (x + , x -) → (f (x + ), g(x -)) or (x + , x -) → (f (x -), g(x + )), where f, g are diffeomorphisms of the real line, which are both increasing or decreasing. It follows that the group Conf(M 2 ) is generated by elements in Diffeo ≤ (R) 2 , space reflections (x + , x -) → (x -, x + ) and time reflections (x + , x -) → (-x -, -x + ).

We still need to see that the subgroup Diffeo ≤ (R) 2 is normal in Conf(M 2 ). Let p 1 denote the transposition (x + , x -) → (x -, x + ); for any n ∈ Diffeo ≤ (R) 2 , n : (x + , x -) → (f (x + ), g(x -)) we have p 1 np 1 : (x + , x -) → (g(x + ), f (x -) where g, f are increasing diffeomorphisms of R. Hence p 1 np 1 ∈ Diffeo ≤ (R) 2 as required. Let p 2 denote the map (x + , x -) → (-x -, -x + ); then we have p 2 np 2 : (x + , x -) → (-x -, -x + ) → (f (-x -), g(-x + )) → (-g(-x + ), -f (-x -)).

  x ≪ y or x ⊀ y. The point of this definition is to exclude non-open relations. The statements x ≪ y and I -(y) ∩ I + (x) ̸ = ∅ are equivalent. Other equivalent statements are I + (y) ⊊ I + (x) and I -(x) ⊊ I -(y). The expression x ↠ y is a shorthand for x ≺ y & x ̸≪ y. 2.3. Assertion. Assume a ↠ b. Then, for any c, we have b
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 2 Theorem. A partial map {a} → {b} can be extended to a causal isomorphism M → N if and only if for any finite tuples (a 0 = a, a 2 , . . . , a n ) and (b 0 = b, b 2 , . . . , b n ) with qftp(a 1 , . . . , a n ) = qftp(b 1 , . . . , b n ) (in the language L := {≪, ↠}) the following conditions hold: M and N are upward and downward directed, and (3.2.1)

  and it suffices to choose a d in the above intersection. Denote a n+1 := c and b n+1 := d. Back: (n is odd) Let d be an element of N \ B. Let d ↓ be the set {x ∈ b|x ≪ d}. Similarly, d ↑ := {x ∈ B|d ≪ x}, and d ∥ := {x ∈ B|x∥d}. The sets d ↠ and d ↞ are defined as

4 .

 4 and it suffices to choose a c in the above intersection. Denote a n+1 := c and b n+1 := d.The case where c ↠ (say) is non-empty is handled similarly by using condition (3.2.2). More precisely, assume that c satisfies i∈I a i ↠ c & j∈J c ↠ a j for some I, J ⊂ {0, 1, . . . , n}. Then by condition 3.2.2, there exists some d ∈ N satisfying i∈I b i ↠ d & j∈J d ↠ b j . Using Lemma 3.3, we can assume that tp(d/ b) =tp(c/ā). However, might be the case that d / ∈ D, in which case we let D n := D n-1 ∪ {d}, where D n-1 was defined at the earlier stages. If, in the back stage, d ↠ ̸ = ∅ (say), then a similar reasoning as above can be applied, and we define a set C n := C n-1 ∪ {c}, where c satisfies tp(d/ b). Define C ′ := n∈N C n , D ′ := n∈N Lemma. The map p is a total causal isomorphism C ′ → D ′ .

4. 2 .

 2 Lemma. Let A, B ⊂ C, A ∩ B = ∅ be finite. Assume that A ≪ B; then there exists some z ∈ C such that A ≪ {z} ≪ B. Proof. This is done by induction on |A| and |B|. 1. A = B = ∅, the statement holds since M is non-empty. 2. |A| = 0 then by induction on |B|: i. |B| = 1 the statement follows since M is globally hyperbolic with no boundary; ii. |B| = 2 the statement follows by the assumption that M is directed. iii. |B| > 2 the statement follows easily by induction. 3. The case |B| = 0 is treated similarly. 4. |A| = |B| = 1: follows by the denseness of C. 5. |A| = 1, |B| = 2: write A = {a}, B = {b 1 , b 2 } with a ≺ b 1 , b 2 . Then b 1 , b 2 are contained in the forward light cone with vertex a. Similarly, a is contained in the past light cones of b 1 , b 2 . The past light cones of vertices b 1 , b 2 have nonempty intersection I 12 := I -(b 1 ) ∩ I -(b 2 ) (since a belongs to this intersection). Let z ∈ I 12 ∩ I + (a). Then z satisfies the required property. 6. A similar argument applies when |A| = 2, |B| = 1. 7. |A| = 2, |B| = 2: This is the base step for induction; Let A = {a 1 , a 2 }, B := {b 1 , b 2 }. Then a 1 , a 2 ≪ b 1 , b 2 . As a 1 , a 2 ≪ b 1 , two null curves emanating from a 1 , a 2 intersect at a point p. Then p ≪ b 1 , b 2 . Similarly, two null curves containing b 1 , b 2 respectively intersect at some point q.
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 43 and let {a} := A \ A ′ . Then by the induction hypothesis, there exists some z such that A ′ ≪ {z} ≪ B. If a ≪ z we are done. Otherwise, apply the result for the sets {a, z}, B to conclude. For |A| = m, |B| = n + 1 a similar reasoning applies. □ It follows immediately: Lemma. Keep the above notation. Let {a 0 , a 1 , . . . , a n } ⊂ M, and {b 0 , b 1 , . . . , b n } ⊂ M 2 with qftp(ā) =qftp( b). Then (4.3.1)

4 .

 4 Proof of Theorem. The result follows from the above Lemmas, together with the observation that the condition qftp(ā) =qftp( b) holds for the tuples ā = a 0 , b = b 0 with arbitrary a 0 ∈ M and b 0 ∈ M 2 .
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 5 Two-dimensional spacetimes with compact Cauchy surfaces. In order to handle the case where a spacetime M has compact Cauchy surfaces, we use the following result: 4.6. Theorem ([6]). Let M be a Lorentzian manifold (or, semi-Riemannian manifold) with universal covering π : M → M . Denote by Γ the group π 1 (M). Then, Γ ⊂Aut(M) =: G (respectively Γ ⊂Conf(M) =: G 1 ). Also, Aut(M ) (or, Conf(M )) is isomorphic to N (Γ)/Γ in which N (Γ) is the normalizer of Γ in Aut(M ) (or, Conf(M )).

4. 11 .

 11 Theorem. Let M be a two-dimensional globally hyperbolic spacetime. If M is not directed, then any causal automorphism of M induces a homeomorphism ∂ιM → ∂ιM, where ∂ιM is equipped with the standard topology.
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a 2 ≪

 2 b 2 ≪ b we have ( ‡) holds for b 1 , b 2 . 2. There exist null curves γ 1 , γ 2 containing a 1 , a 2 respectively such that for any b 1 ∈ γ 1 , b 2 ∈ γ 2 satisfying a 1 ↠ b 1 ↠ b, a 2 ↠ b 2 ↠ b we have ( ‡) holds for b 1 , b 2 . 3. For all causal curves γ 1 , γ 2 with a 1 ∈ γ 1 , a 2 ∈ γ 2 , there exist some b 1 ∈ γ 1 , b 2 ∈ γ 2 satisfying a 1 ≺ b 1 ≺ b, a 2 ≺ b 2 ≺ b and ( ‡) does not hold for b 1 , b 2 .

Defining f 1 , g 1 by f 1 (x + ) = -g(-x + ), g 1 = -f (-x -) it can be seen that both f 1 and g 1 are increasing diffeomorphisms of R. Let now p := p 1 p 2 : (x + , x -) → (-x + , -x -); a similar reasoning shows that pnp is in Diffeo ≤ (R) 2 , whence the result follows. This proves the Theorem. □

Applying the above considerations allows to obtain: 4.15. Theorem. Let M be a two-dimensional globally hyperbolic spacetime. Then Conf(M) is one of the following groups:

Essentially, the same proof method as for Theorem 4.11 still applies, after making the necessary changes at the places (extra care should be taken in the case of conformal anti-causal diffeomorphisms). □

Locally conformally flat globally hyperbolic spacetimes

While a generic spacetime of dimension ≥ 3 has very few causal (or conformal) automorphisms, the locally conformally flat case is more interesting. 5.1. Theorem. Let M be globally hyperbolic spacetime. Assume that M is (1) simply connected ;

(2) locally conformally flat ;

(3) directed ;

(4) has non-compact Cauchy surfaces ;

(5) dim(M) ≥ 3 ; Then M is globally conformally flat.

Proof. It suffices to check that the conditions (3.2.1, 3.2.2) are met. Let D = [p, q] be an interval in M. By compactness of D, there exists a finite cover D i , i = 1, . . . , ℓ by conformally flat opens.

The metric restricted to D i has the form

Then

where Ω is obtained from the Ω i using partition of unity. For any finite set A ⊂ D we can then use the causal embedding D → M n to deduce the required result. □

5.2.

Theorem. Let M be a globally hyperbolic spacetime. Assume that M is (1) locally conformally flat ;

(2) directed ;

(3) dim(M) ≥ 3 ;

Combining this with the result by D. Malament ([7]) we obtain: 5.3. Theorem. Let M be a globally hyperbolic spacetime having dimension ≥ 3.

Assume that M is locally conformaly flat, and that (M, ≪) is directed. Then M is conformaly homogeneous.

Appendix A. Back and forth equivalence

A back-and-forth equivalence between two countable structures A, B (see, e.g. [START_REF] Marker | Model Theory: An Introduction[END_REF] page 48) is a non-empty family P of partial isomorphisms

with U (respectively V ) being a finite substructure of A (respectively B) with the following two properties: (forth) For each f ∈ P and each element x of A, there is an element y of B together with an extension f + ∈ P f + : U ∪ {x} → V ∪ {y}, with f + (x) = y. (back) For each f ∈ P and each element y of B, there is an element x of A together with an extension f + ∈ P f + : U ∪ {x} → V ∪ {y}, with f + (x) = y. We write

to indicate the existence of a back & forth-system.