Therapeutic effects of large-field visual virtual immersion on balance control in unilateral vestibular patients

Olivier A.J. Martin, Denis Faure-Vincent, Jean-Dominique Gascuel, Sébastien Schmerber, Alina Voda, Pascal Bellemain

To cite this version:
Olivier A.J. Martin, Denis Faure-Vincent, Jean-Dominique Gascuel, Sébastien Schmerber, Alina Voda, et al.. Therapeutic effects of large-field visual virtual immersion on balance control in unilateral vestibular patients. ISPGR 2022 - International Society of Posture and Gait Research, Jul 2022, Montréal, Canada. pp.1-1. hal-03737948

HAL Id: hal-03737948
https://hal.science/hal-03737948
Submitted on 25 Jul 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
INTRODUCTION | VR-based balance rehab. relevance?

CLINICAL TRIAL - PATIENTS

- Unilateral vestibular patients (42-80 y.o.; 3 m., 4 f.)
- Visually-induced dizziness (aerophasia, chronic recurrent dizziness, vestibular neuritis)
- 8 weeks rehab. period = 1 or 2 rehab. session per week included in the patients care process
- Ethics validation (CIPP - voluntary informed patients)

METHODS | The PIVVIT project (Plateforme d’Imagerie Visuelle Virtuelle Thérapeutique)

VISUAL STIMULI

- Large-field (panoramic) visual virtual flows
- Standardized optokinetic stimulus
- 8 Optic flows STIM. : 3D scrolls (Up, Down) + 2D Rotations (Clockwise, Counterclockwise) + 3D radial expansion.
- 6 flows SPEED (speed ratio from 0.3 to s8 A.U.)
- Scenario optimized for efficiency on patient: visual-flows constraints increase throughout the therapeutic session: flows pattern (scroll, radial and rotation), stimulation speed increased, gaze anchoring on the visual reference (with/without).

GAZE ANCHORAGE (GA)

- Visuo-spatial reference
- With GA: session 1-4; Without GA: session 5-8
- [With: session 9; Without: session 10]

PROTOCOL

- 1 Trial = Visual stimulation
 - Nest = Flow - Nest = 23 sec.
- 1 Series = 8 stim. (8 trials)
 - 8 different 10°/20°/30° visual flows
- 1 Session = 6 Speed
 - 8x stimulus speed = 64 trials
- 2 Gaze Anchorage cond.
 - Secs. 1-4: With GA
 - Secs. 5-8: Without GA
- 12 phases: a) Comparator/Validation
 - 3 VR-based tests (PIVVIT): "Proof of concept" +++
 - 3 Standard OGS tests: "Proof of non-inferiority" +++

RESTING COUNIT: Radial (expansion)
Lateral (black, red+)
UP DOWN EXPANSION CLOCKWISE-CLOCKWISE

PIVVIT-based standard stimulation

[VR]

S8 = (48 trials x 8) = 384 trials (x 15sec.)
Total stim. duration = 96 min. (1h36)

MORE PHASES: Comparator/Validation
- 8x stimulus speed = 64 trials

RESULTS | VR immersion → Visual perturbation → Balance restoration

INTER SESSIONS effect (representative patient)
- Increase the CoP Trajectory length
- Increase the postural reaction
- Improve the balance perturbations

INTRA SESSIONS effect (representative patient)
- Reduce the CoP Trajectory length
- Reduce the postural reaction
- Improve the gaze-balance interactions

VISTA PLUS
- Increase the CoP Trajectory length
- Increase the postural reaction
- Improve the balance perturbations
- Multiple visual flows parameters to "obstruit" the compensatory postural strategies

DISCUSSION – CONCLUSION | Rapid VR-based rehab. benefits

At a Clinical/Rehab. level: Positive effects of the “large visual field” immersion on balance restoration
- METH. Patient-related sessions repetition + difficulty-dependent tunable scenarios + patient follow-up + methodical practice through short period (two months)
- BENEFITS. Rapid functional restoration of efficient synergistic control between balance and gaze process.
- PSYCHOL. Patients’ motivation and self-confidence!

At a Neuro-functional level: “visual-vestibular-motor” adaptation occurs despite the vestibular deficits
- PROCESS. Reweighting of the visual-vestibular sensory inputs reciprocal inhibition restoration
- ADAPTATION. Reduction of the visual dependence by visual-vestibular reverse compensations
- Questions about the neural basis of the “visual-vestibular plasticity”
- Sensory adaptive threshold/gain of the VOR and/or OCN?
- Dual sensorimotor balance in plastic restoration: Interaction MT visual area - vestibular nuclei
- vestibulo-visual integration for motor control tuning/adjustment

CONCLUSION

- Optimized rehabilitation strategies based on simple virtual visual immersive strategies.
- Dual stimulation prototypes (uncontrolled OKS) for unilateral vestibular patient
- Limit: No long-term effects (reported by patients after a six months period) requiring periodic booster sessions
- Our study corroborate the proof of concept of interactive VR-rehabilitation based on a large visual field stimulation paradigm (experimental and clinical validation).

ACKNOWLEDGEMENTS. Thanks to all patients, and to the Grenoble University Hospital (CHUGA NET Clinic) – Grant DRCI (Dept. Clinical Research & Innovation) : PIVVIT Project #1045.