Therapeutic effects of large-field visual virtual immersion on balance control in unilateral vestibular patients

Olivier A.J. Martin, Denis Faure-Vincent, Jean-Dominique Gascuel, Sébastien Schmerber, Alina Voda, Pascal Bellemain

To cite this version:
Olivier A.J. Martin, Denis Faure-Vincent, Jean-Dominique Gascuel, Sébastien Schmerber, Alina Voda, et al.. Therapeutic effects of large-field visual virtual immersion on balance control in unilateral vestibular patients. ISPGR 2022 - International Society of Posture and Gait Research, Jul 2022, Montréal, Canada. pp.1-1. hal-03737948

HAL Id: hal-03737948
https://hal.science/hal-03737948
Submitted on 25 Jul 2022
Therapeutic effects of large-field virtual visual immersion on balance control in unilateral vestibular patients

Martin O.1, Faure-Vincent D.1, Gascuel J-D.2, Schmerber S.3, Voda A.1, Bellemain P.1
1GIPSA-lab, UMR5216 Grenoble-Alpes University & G-INP, Grenoble France
2INRIA Rhône-Alpes, Maverick Team & Jean Kunzman Lab, Grenoble, France
3Grenoble-Alpes University Hospital, NET Clinic, Grenoble, France
(*Contact: olivier.martin@gipsa-lab.grenoble-inp.fr)

INTRODUCTION | VR-based balance rehab. relevance?

- Balance processing use visual vestibular and proprioceptive sensory inputs in a synergistic way [1].
- Vestibular deficit increases a neural dependency due to the vestibular cortico-suppression [2].
- Automatic sensory and motor compensations (visual-vestibular-motor) to reduce the patients’ visual dependency.

METHODS | The PVIVIT project (Plateforme d’Imagerie Visuelle Virtuelle Thérapeutique)

CLINICAL TRIAL - PATIENTS
- Unilateral vestibular patients (42-80 y.a. ; 3 m., 4 f.)
- Visually-induced dizziness (areflexia, chronic recurrent dizziness, vestibular neuritis)
- 8 weeks rehab. period = 1 or 2 rehab. session per week included in the patients care process
- Ethics validation (CPP - voluntary informed patients)

VISUAL STIMULI
- Large-field (panoramic) visual virtual flows
- Standardized optokinetic stimulus
- 8 Optic flows STIM. : 3D scrolls (Up, Down) + 3D Rotations (Clockwise, CounterClockwise) + 3D Radial expansion.
- 6 flows SPEED (speed ratio from 0.3 to 2.8 A.U.)
- Scenario optimized for efficiency on patient visual flows constraints increase throughout the therapeutic session: flows pattern (scroll, radial and rotation), stimulation speed increased: gaze anchoring on the visual reference (with/without).

GAZE ANCHORAGE (GA)
- Visuo-spatial reference
- With GA : session 1-4; Without GA : session 5-8
- [With : session 9; Without : session 10]

Gaze anchoring cond.
- Visuo-spatial reference
- With GA : session 1-4; Without GA : session 5-8
- [With : session 9; Without : session 10]

RESULTS | VR immersion → Visual perturbation → Balance restoration

- Automatic sensory and motor compensations (visual-vestibular-motor) to reduce the patients’ visual dependency.
- Reduce the postural reaction
- Increase the balance perturbation
- Improve the Go-Behavior interactions

DISCUSSION – CONCLUSION | Rapid VR-based rehab. benefits

At a Clinical/Rehab. level: Positive effects of the “large visual field” immersion on balance restoration
- METH. Patient-related sessions repetition + difficulty-dependent tuneable scenarios + patient follow-up + methodical practice through short period (two months)
- BENEFITS. Rapid functional restoration of efficient synergistic control between balance and gaze process.
- PSYCHOL. Patients’ motivation and self-confidence!

At a Neuro-functional level: “visual-vestibular-motor” adaptation occurs despite the vestibular deficits
- PROCESS. Reweighting of the visual-vestibular sensory inputs → reciprocal inhibition restoration
- ADAPTATION. Reduction of the visual dependence by visual-vestibular reverse compensations
- Questions about the neural basis of the “visual-vestibular plasticity”
- Sensory adaptive threshold/gain of the VOR and/or OKN ?
- Dual sensorimotor balance in restoration: Interaction MT visual area - vestibular nuclei → visual-vestibular integration for motor command tuning/adjustment.

CONCLUSION
- Optimized rehabilitation strategies based on simple virtual visual immersions Vs. standardized rehabilitation protocols (uncontrolled OKS) for unilateral vestibular patient
- Limit: No long-term effects (reported by patients after a six months period) requiring periodic booster sessions
- Our study corroborate the proof of concept of interactive VR-rehabilitation based on a large visual field stimulation device (experimental and clinical validation).