
HAL Id: hal-03737874
https://hal.science/hal-03737874v2

Submitted on 4 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Individual Discrete Logarithm with Sublattice Reduction
Haetham Al Aswad, Cécile Pierrot

To cite this version:
Haetham Al Aswad, Cécile Pierrot. Individual Discrete Logarithm with Sublattice Reduction. De-
signs, Codes and Cryptography, 2023, 91 (12), pp.4059-4091. �10.1007/s10623-023-01282-w�. �hal-
03737874v2�

https://hal.science/hal-03737874v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Individual Discrete Logarithm
with Sublattice Reduction

Haetham Al Aswad? and Cécile Pierrot

Université de Lorraine, CNRS, Inria Nancy, France.

Abstract. The Number Field Sieve and its numerous variants is the best
algorithm to compute discrete logarithms in medium and large charac-
teristic finite fields. When the extension degree n is composite and the
characteristic p is of medium size, the Tower variant (TNFS) is asymp-
totically the most efficient one. Our work deals with the last main step,
namely the individual logarithm step, that computes a smooth decompo-
sition of a given target T in the finite field thanks to two distinct phases:
an initial splitting step, and a descent tree.
In this article, we improve on the current state-of-the-art Guillevic’s al-
gorithm dedicated to the initial splitting step for composite n. While still
exploiting the proper subfields of the target finite field, we modify the
lattice reduction subroutine that creates a lift in a number field of the
target T . Our algorithm returns lifted elements with lower degrees and
coefficients, resulting in lower norms in the number field. The lifted ele-
ments are not only much likely to be smooth because they have smaller
norms, but it permits to set a smaller smoothness bound for the descent
tree. Asymptotically, our algorithm is faster and works for a larger area
of finite fields than Guillevic’s algorithm, being now relevant even when
the medium characteristic p is such that Lpn(1/3) ≤ p < Lpn(1/2). In
practice, we conduct experiments on 500-bit to 2048-bit composite finite
fields: Our method becomes more efficient as the largest non trivial divi-
sor of n grows, being thus particularly adapted to even extension degrees.

Key words: Cryptanalysis. Public Key Cryptography. Discrete Log-
arithm. Finite Fields. Tower Number Field Sieve. MTNFS, STNFS.

1 Introduction

Context. Given a cyclic group G, a generator g ∈ G and a target T ∈ G, solving
the discrete logarithm problem in G means finding an integer x modulo |G|
such that gx = T . While the post-quantum competition is ongoing, the discrete
logarithm problem is still at the basis of the security of many currently-deployed
public key protocols. This article deals with the hardness of this problem when
the considered group G = F∗pn is all the invertible elements in a finite field.
Small characteristic finite fields are no longer considered in practice because of

? Funded by French Ministry of Army - AID Agence de l’Innovation de Défense. Cor-
responding author: haetham.al-aswad@inria.fr

2 Haetham Al Aswad and Cécile Pierrot

the advent of quasipolynomial time algorithms [BGJT14, GKZ14, KW19] and
for this reason we focus on medium and large characteristic. We recall the usual
notation1 LQ(α, c) = exp((c+ o(1))(logQ)α(log logQ)1−α) when o(1) tends to 0
as Q = pn tends to infinity. With this notation, we say that p = LQ(α) is of
medium size if 1/3 < α < 2/3 and of large size if 2/3 < α.

Composite extension degrees in the wild. In the sequel, we assume that our
target finite field has a non prime extension degree n > 1. Let d be the greatest
proper divisor of n. Considering finite fields with composite extensions is highly
motivated by pairing-based cryptography. Pairings first appeared in 1940 when
Weil showed a way to map points of order r on a supersingular elliptic curve
to an element of order r in a finite field, but the first algorithm to efficiently
compute the Weil pairing was only published in 2004 thanks to Miller [Mil04].
In the early 2000s, efficient pairing-based protocols were presented [BF01,BLS01,
Jou04] and nowadays pairings are deployed in the marketplace, for example in
the Elliptic Curve Direct Anonymous Attestation protocol that is embedded in
the current version of the Trusted Platform Module [TPM] (TPM2.0 Library),
released in 2019. The security of these protocols relies on both the discrete
logarithm problem in the group of points of a pairing-friendly elliptic curve, and
on the discrete logarithm problem in a non prime finite field, which means where
the extension degree n > 1. Pairing constructions can work with prime extension
degrees, such as Fp2 and Fp3 but composite extensions are common, such as Fp4 ,
Fp6 and Fp12 .

Number Field Sieve for composite extensions. The Number Field Sieve (NFS)
and its numerous variants is the fastest algorithm to compute discrete logarithms
in finite fields of medium and large characteristic. It has a Lpn(1/3, c) complex-
ity, where the constant 0 < c < 2.3 depends on the variant, the characteristic
and the extension degree. One of these variants is the Tower Number Field Sieve
(TNFS), known to be asymptotically more efficient than NFS for some fields
when the extension degree is composite. We can couple both NFS and TNFS
with a multiple variant – for any finite field – and a special variant – for sparse
characteristic finite fields only, to obtain lower asymptotic complexities. The
main difference between TNFS and NFS comes from the representation of the
target finite field Fpn : whereas in NFS the finite field is represented as a quo-
tient field Fp[x]/(f) with f a polynomial of degree n over Fp, TNFS represents
it as (R/pR) [X]/(ϕ) with R the ring R = Z[t]/(h(t)), h being a degree κ poly-
nomial that remains irreducible modulo p and ϕ of degree η such that n = κη.
However, every variant of NFS, including the Tower variant, is designed around
the same steps. After the polynomial selection, that permits to construct the tar-
get finite field together with (at least) two auxiliary number fields K1 and K2,
the algorithm defines a small set of “small” elements and creates linear equations
among the discrete logarithms of these elements. This is the sieving phase. A
linear algebra step returns then these specific discrete logarithms. Finally, the

1 We use LQ(α) instead of LQ(α, c) when the value of c is not important.

Splitting Step for Composite Extension Degree Finite Fields 3

individual logarithm step that is the topic of this article concludes the algorithm.
Its aim is to recover the discrete logarithm of an arbitrary element T in the finite
field thanks to all the logarithms already computed in the linear algebra step.

Introduced in 2000 by Shirokauer [Sch00], TNFS for generic extensions was
reinvestigated by Barbulescu, Gaudry and Kleinjung [BGK15], proving that the
asymptotic complexity of TNFS in large characteristics is similar to NFS. Yet
in medium characteristics the complexity is even greater than Lpn(1/3). Kim,
Barbulescu [KB16] and Jeong [KJ17] proposed a method to extend TNFS to
composite degree extension n, reaching a Lpn(1/3) complexity in medium char-
acteristics too. When n has an appropriate size, this variant is faster2 than NFS,
with a complexity of Lpn(1/3, (48/9)1/3). Moreover, in [SS19], Sarkar and Singh
presented a unified polynomial selection for TNFS and lowered its complexity in
some cases. In [KB16,KJ17], when coupled with the multiple variant or special
variant TNFS is called MexTNFS or SexTNFS, but in this article we simply
denote it by MTNFS or STNFS. Designing a sieving step adapted in practice
for TNFS, De Micheli, Gaudry and Pierrot [MGP21] reported in 2021 the first
implementation of TNFS and performed a record computation on a 521-bit finite
field with extension n = 6. Note that computing a discrete logarithm in a finite
field with extension degree n > 1 is in practice harder than a discrete logarithm
in a prime field of similar bitsize. For instance, the last record on a prime field
Fp was done with NFS in 2019 in a 795-bit finite field [BGG+20], whereas the
last record on a field Fp4 reached a 392-bit finite field [BGGM15a]. See Table 1
for some small extension degree discrete logarithm computations.

Finite field Bitsize of pn Year Team

Fp 795 2019 Boudot, Gaudry, Guillevic, Heninger,
Thomé, Zimmermann

Fp2 595 2015 Barbulescu, Gaudry, Guillevic, Morain
Fp3 593 2019 Gaudry, Guillevic, Morain
Fp4 392 2015 Barbulescu, Gaudry, Guillevic, Morain
Fp5 324 2017 Grémy, Guillevic, Morain
Fp6 521 2021 De Micheli, Gaudry, Pierrot
Fp12 203 2013 Hayasaka, Aoki, Kobayashi,Takagi

Table 1: Discrete logarithm records [Gré] in finite fields for various extension
degrees, performed with the Number Field Sieve. TNFS is only implemented for
the Fp6 record, explaining the larger field reached there.

Splitting step. All the previous results mentioned above mainly focus on adapting
new methods for the context of TNFS, to reduce the complexity of the dominat-
ing sieving and linear algebra steps. However Guillevic [Gui19] dealt with the
individual logarithm step that remained at the same level of difficulty in TNFS
than in NFS. Recall that the last step consists in two distinct phases, first a split-
ting phase – also called by some authors smoothing step – and then a descent
tree. Up to this result, the standard algorithm for initial splitting for such fields

2 In medium characteristics, NFS has a complexity of Lpn(1/3, (96/9)1/3).

4 Haetham Al Aswad and Cécile Pierrot

was the Waterloo algorithm [BFHMV84, BMV84], also called the extended gcd
method and very similar to the fraction method as detailed in [JLSV06]. These
methods iteratively generate a pair of polynomials and tests both of them for B-
smoothness, for a given bound B. Guillevic [Gui19] exploits the proper subfields
of the target finite field, resulting in an algorithm that gives much more smooth
decomposition of the target in the initial splitting step. Besides, Mukhopadhyay
and Sarkar’s method [MS20] deals with at the splitting step for small character-
istic finite fields with composite extension degrees. [MS20] is dedicated to the
Function Field Sieve and is not applicable in our context.

Our work. In this article, we improve on the current state-of-the-art Guillevic’s
algorithm dedicated to the initial splitting step for composite n. While still
exploiting the proper subfields of the target finite field, and running a reduction
algorithm on a well-defined lattice as in [Gui19], we manage to control the degree
of the candidates for the B-smoothness test as in [MS20]. The key idea is to use
sublattices of the original lattice of [Gui19] by removing some rows and columns.
As a result, our algorithm returns number field elements with lower degrees and
slightly bigger coefficients, resulting when the parameters are well set to lower
norms in the number field. These elements are not only much likely to be smooth
because they have smaller norms, but it allows a smaller smoothness bound for
the descent tree. As a consequence it reduces the height of the subsequent tree.

Besides, using the BKZ reduction algorithm instead of LLL allows to bet-
ter fine-tune the asymptotic parameters. We get an algorithm that works for
an asymptotic range of characteristics where [Gui19] does not apply, namely
for Lpn(1/3) ≤ p < Lpn(1/2). In this range, when p 6= Lpn(1/3), the former
asymptotic complexity was the one of the splitting step of NFS, whereas we get
a better asymptotic complexity for composite extensions n in Lpn(1/3, (3(1+ζ−
d/n))1/3), where d is the largest proper divisor of n and ζ is the value such that
the infinite norm of the polynomial defining the number field for the lift is in pζ .
For instance for even extension degrees, and for the Conjugation method, we
lower the asymptotic complexity from approximately3 Lpn(1/3, 1.82) to approx-
imately Lpn(1/3, 1.14), which is a dramatic asymptotic improvement. Note that
the extension degree n is always even for finite fields of supersingular pairing-
friendly curves. Besides, we show that using BKZ instead of LLL allows to reach
a lower complexity for the individual logarithm step when p = Lpn(1/2). More-
over, we prove that in large characteristic finite fields where p = LQ(α) with
α ≥ 2/3, one can apply an enumeration algorithm to the lattice instead of LLL
or BKZ while keeping the same complexity for the individual logarithm step.
Figure 1 illustrates for even extension degrees the complexities brought by the
use of LLL, BKZ, or an enumeration algorithm depending on the domain. Similar
results are obtained for odd extension degrees. Table 2 sums up the six existing
smoothing methods available for medium and large characteristic finite fields.

3 This is the asymptotic complexity for the initial splitting step of NFS, given by
Waterloo algorithm.

Splitting Step for Composite Extension Degree Finite Fields 5

1
3

1
2

2
3

1
α

Lpn
(
1
3
, 3
√

3
)

using LLL
or BKZ

using LLL, BKZ or an
enumeration algorithm

Lpn

(
1
3
, 3

√
3 ·
(

1 + 1

3
√
c3

))
using BKZ

Lpn
(
1
3
, 3
√

3
)

using BKZ

Lpn

(
1
3
, 3

√
3 ·
(
1 + log 2

c2

))
using LLL [Gui19]

medium characteristic large characteristic

Fig. 1: Complexities for the individual logarithm phase for finite fields of even ex-
tension degrees, as a function of the characteristic p = Lpn(α, c), in JLSV1. The
height of each rectangle represents the complexity of the individual logarithm
step in the corresponding range. The red rectangle represents the complexity
when α = 1/2 brought by [Gui19], using LLL. Using BKZ (in green) we are able
to reduce the complexity when α = 1/2 and to reach smaller characteristics.
When 1/2 < α < 2/3 (in grey) the complexities are equal regardless of LLL or
BKZ. When α ≥ 2/3 (in orange), LLL, BKZ, or an enumeration algorithm give
the same complexity.

Method
Parameters in Al-
gorithm 1

Interest

Previous
work

Waterloo
[BMV84]

Not supported
The only method working for prime ex-
tensions.

[Gui19]
LLL-reduction
with s = 0

Best method in practice for small ex-
tension degrees. Ex: n = 4, 6, 10. Sec-
tion 6.

Our
work

LLL-reduction
on sublattices

LLL-reduction
with s > 0

Best method in practice when n grows.
Ex: n ≥ 16. Section 6.

BKZ-reduction
BKZ-reduction
with s = 0

Best asymptotic algorithm for medium
characteristic finite fields. Section 5.3.

BKZ-reduction
on sublattices

BKZ-reduction
with s > 0

Lower norms than BKZ with s = 0, but
no change is the asymptotic complexity.
Section 5.4.

Enumeration
algorithm

Enumeration algo-
rithm with s = 0

Best asymptotic algorithm for large
characteristic finite fields. Section 5.4

Table 2: Smoothing algorithms for medium and large characteristic finite fields.
The crossover point when LLL on sublattices becomes better than [Gui19] de-
pends on the size of the target: examples are given for 500-bit size finite fields.

6 Haetham Al Aswad and Cécile Pierrot

In practice, we conduct experiments on finite fields of size 500 bits (the
current TNFS record size), 700 bits (a probably reachable size using TNFS),
1024 bits (a key-size that can still be found in the wild) and 2048 bits (a relevant
key-size). The results of all four experiments together with the code to reproduce
them are available at the git repository [AP22]. Our method becomes more
efficient as d the largest non trivial divisor of n grows, being thus particularly
suitable for even extension degrees. The results are similar for all these sizes
because the effect mainly depends on d (thus n), and for this reason we only
detail in this paper our experiments on 500 and 2048-bit finite fields, for extension
degrees n that vary from 4 to 50.

For instance, with a 476-bit target finite field Fp34 , we can lower the dimension
of the 34-dimension lattice by removing 5 columns and rows. Regular lift of a
target T in the number field gives elements with a 789-bit norm. Applying [Gui19]
would create 540-bit candidates to test for smoothness, whereas our algorithm
using this smaller matrix returns 517-bit candidates in the number field. Bear
in mind that considering FFS instead of NFS may be relevant when dealing
with large extension degrees, depending on the whole size of the finite field.
For instance, in [MSST22], a discrete logarithm computation is performed in a
1051-bit field with extension degree 50 using FFS. However, for our 2048-bit
finite fields, NFS and its variants would likely be the most efficient available
algorithms to use since the characteristic sizes are sufficiently large.

Outline of the article. In Section 2, we give a short refresher on the Number
Field Sieve together with the background needed on lattice reductions. Sec-
tion 3 presents our algorithm to compute a candidate with a smaller norm in
the number field, for the initial splitting step. Like [Gui19], our algorithm works
for TNFS, MTNFS and STNFS. Then in Section 4 we focus on the asymptotic
complexity of the splitting step, if LLL is used for the lattice reduction. Section 5
deals with the impact of replacing LLL by BKZ. In particular Corollary 1 gives
lower asymptotic complexities for the individual logarithm phase. Finally Sec-
tion 6 is dedicated to our practical results on 460 to 500-bit and 2050 to 2080-bit
finite fields with composite extensions n, up to 50.

2 Background

From now on, Fpn is the target finite field, and n = ηκ is its composite extension
degree. Let d be the largest divisor of n strictly lower than n. Since the compu-
tation of a discrete logarithm in a group can be reduced to its computation in
one of its prime subgroups by Pohlig-Hellman’s reduction, we work modulo `, a
non trivial prime divisor of Φn(p), with Φn the n-th cyclotomic polynomial. We
start with a useful definition:

Definition 1. Let x and B be two positive integers. Then x is said to be B-
smooth if all its prime divisors are lower than B.

Splitting Step for Composite Extension Degree Finite Fields 7

Let us give a short refresher on the Number Field Sieve and some details
about its Tower variant. Both NFS and TNFS follow similar steps as any index
calculus algorithm.

2.1 The (Tower) Number Field Sieve

Polynomial selection. TNFS selects three polynomials, namely h, f1 and f2
in Z[x]. The polynomial h must be of degree η and irreducible modulo the char-
acteristic p. Let ι be a root of h. Then we have an intermediate number field Q(ι).
The polynomials f1 and f2 have degree at least κ. Conditions on the polynomials
h, f1 and f2 permit to define two ring homomorphisms from R[x] = Z[ι][x] to
the target finite field Fpn through the number fields K1 = Q(ι)[x]/(f1(x)) and
K2 = Q(ι)[x]/(f2(x)). This yields a commutative diagram as shown in Figure 2.

The classical NFS works with an easier polynomial selection where we only
need f1 and f2. The relative commutative diagram is the same as in Figure 2 but
with R[x] = Z[x]. Several polynomial selections for NFS are possible, giving each
one a pair (f1, f2) of polynomials. The most important parameters are the size
of their coefficients and their respective degrees. In practice polynomial selec-
tions such as Conjugation [BGGM15b], JLSV1 [JLSV06] or Sarkar-Singh’s [SS16]
methods can be adapted to the TNFS setting to obtain three polynomials h, f1
and f2 as required.

R [x]

K1 ⊃ R [x] /(f1(x)) K2 ⊃ R [x] /(f2(x))

R/p[x]/(ϕ(x)) ∼= Fpn

x 7→α1 x 7→α2

mod p, mod ϕ mod p, mod ϕ

Fig. 2: Commutative diagram of Tower NFS. Here αi is a root of fi in Ki for
i = 1, 2 and ϕ is of degree η and irreducible modulo an ideal p above p in R. It
is a common factor modulo p of f1 and f2.

Relation collection. The goal of the relation collection step is to select among
a set of polynomials φ(x, ι) ∈ R[x] with a bounded degree at the top of the
diagram the candidates which produce a relation. A relation is found if the
polynomial φ(x, ι) mapped to K1 and K2 factors into products of prime ideals
of small norms in both number fields. The ideals of small norms that occur in
these factorizations constitute the factor basis. To verify the B-smoothness on

each side, one needs to evaluate the norms Ni(
∑degfi
k=0 ak(ι)(αi)

k) for i = 1, 2.
Note that these norms are integers that can be computed thanks to resultants.
The relation collection step stops when we have enough relations to construct a
system of linear equations that may be full rank. The unknowns of these equa-
tions are the virtual logarithms of the ideals of the factor basis. For the classical

8 Haetham Al Aswad and Cécile Pierrot

NFS, the relation collection is easier and consists on the same idea, but working
with univariate polynomials φ(x) ∈ Z[x] instead of bivariate polynomials.

Sparse linear algebra. A good feature of the linear system created in both NFS
and TNFS (there is no difference for this step) is that the number of non-zero
coefficients per line is very small. Sparse linear algebra algorithms such as the
block variant of Wiedemann’s algorithm [Wie86] speeds up the computation.
The output of the linear algebra phase is a kernel vector corresponding to the
virtual logarithms of the ideals in the factor basis.

Individual discrete logarithm. The final step of TNFS consists in finding the
discrete logarithm of an arbitrary element T ′ in the target finite field, that we
call the target element. This step is subdivided into two substeps: an initial
splitting step – also called smoothing step – and a descent step. The splitting
step is an iterative process where T ′ is first randomized by T = gtT ′ ∈ F∗pn ,
where g is a generator of F∗pn and for t ∈ Z chosen uniformly at random. Values
for t are tested until T lifted back to one of the number fields Ki is Bi-smooth
for a smoothness bound Bi > B. We focus on this step in Section 3. This step
dominates the asymptotic complexity of the individual discrete logarithm phase.

The second step consists in decomposing every factor of the lifted value of T
into ideals of the factor basis for which we know the virtual logarithms. In our
case these factors are prime ideals with norms less than a smoothness bound B.
This process creates a descent tree where the root is the lift of T , a node is an
ideal coming from the smoothing step and the nodes below are ideals that get
smaller and smaller as they go deeper. The leaves are ultimately elements of the
factor basis. The edges of the tree are defined as follows: for every node, there
exists an equation between the ideal of the node and all the ideals of its children.

2.2 Tools from lattice reduction algorithms

SVP problem and enumeration algorithms: Given an Euclidean lattice L, the
SVP (Shortest Vector Problem) consists in finding the smallest non zero vector
of the lattice. The best existing algorithms to solve it are exponential in the di-
mension of the lattice. The family of enumeration algorithms are used in practice
for small dimension lattices. For instance the HKZ-reduction algorithm [MW15]
finds the shortest vector of a lattice of dimension n in time 2O(n log(n)) and in a
polynomial space complexity. There exists an older enumeration algorithm [MV10]
that is asymptotically faster with a time complexity in O

(
22n
)
, but the huge

drawback is its exponential space complexity in O (2n).

The LLL algorithm: To handle the difficulty of SVP, another problem was
introduced, γ-SVP. This problem consists in looking for a short vector of the
lattice, more precisely, if we denote by λ1 the first minimum of the lattice, which
is the Euclidean norm of the shortest non zero vector of the lattice L, γ-SVP
consists in finding v ∈ L∗ such that |v| ≤ γλ1.

Splitting Step for Composite Extension Degree Finite Fields 9

Lenstra, Lenstra, and Lovasz proposed in 1982 [LLL82] an algorithm that
solves γ-SVP in polynomial time for a certain parameter γ. The algorithm takes
as input a basis of L and returns another basis of the lattice which has better
properties, in particular the first vector of the returned basis is a solution to
γ-SVP. Let us state some properties of the LLL algorithm:

Theorem 1. Let L be a lattice of dimension n. Let λ1 be the first minimum of
the lattice and R the first vector returned by LLL when a basis of L is given as
input, then :

– ‖R‖∞ ≤ ‖R‖2 ≤ 2
n−1
2 λ1.

– ‖R‖∞ ≤ ‖R‖2 ≤ 2
n−1
4 det (L)

1
n .

Modifying some parameter inside LLL permits to obtain an upper bound:

‖R‖2 ≤ (4/3)
n−1
4 det (L)

1
n . However setting 2 or 4/3 is negligible in the sequel.

The BKZ algorithm: The best approximation algorithm known in practice for
large dimensions is the Blockwise-Korkine-Zolotarev (BKZ) algorithm, published
by Schnorr and Euchner in 1994 [SE94]. The Schnorr-Euchner’s BKZ algorithm
can be seen as a generalization of LLL where instead of considering pairs of
vectors, one looks at blocks of projected vectors. BKZ thus has an additional
parameter β ≥ 2 which corresponds to the considered size of block. We denote
by β-BKZ the algorithm BKZ when the integer β is taken as parameter. As LLL,
BKZ returns a new basis of the lattice L given as input, in particular the first vec-
tor of the basis is a solution to the γ-SVP problem. Roughly speaking, the higher
β is, the slower the algorithm and the better the output basis. We shortly recap
two theorems concerning BKZ, for further details please see [HPS11,MW16].

Theorem 2. Let L be an Euclidean lattice of dimension n, and R the first vector
returned by β-BKZ applied on L, then:

‖R‖∞ ≤ ‖R‖2 ≤ 2β
n−1

2(β−1)
+ 3

2 det (L)
1
n

Theorem 3. The complexity of β-BKZ on an Euclidean lattice L of dimen-
sion n is:

Poly (n, size(L)) 2O(β)

where size(L) is the sum of logarithms of absolute values of the coordinates of
the matrix representing L, and Poly (n, size(L)) denotes a polynomial function
in n and size(L).

3 Splitting step with a smaller lattice

In this section we study the splitting step in large and medium characteristic
finite fields of composite extension degrees. For the sake of simplicity, we detail
our algorithm with the classical NFS setting, namely we consider the morphism
Ki = Q[X]/(fi(X)) → Fpn ∼= Fp[X]/(ϕ(X)). A preimage of an element S in

10 Haetham Al Aswad and Cécile Pierrot

the finite field through this morphism is called a lift, and is written S. We work
with the classical setting because it is easier to compare our result with [Gui19]
that is written for NFS, but in the TNFS setting the whole algorithm works in
the same way. The goal is to improve the smoothness probability of the lift of
T ∈ F∗pn to Ki by constructing an adequate lattice whose reduced vectors define
elements of Ki with potentially small norms, which are precisely the potential
lifts of T we are looking for.

3.1 Splitting step with proper subfields

The aim of the splitting step is to compute the discrete logarithm of a target T ′

in a finite field. The discrete logarithm is computed modulo `, a given and
precomputed integer. The key idea of the algorithm is to replace the target T ′

by another element T so that:

1. log(T ′) ≡ log(T)− t mod ` for a random known t.
2. the norm of the lift of T in one of the number fields K1 or K2 is B-smooth,

for some predefined smoothness bound B that is usually larger than the
bound for the factor base.

In the sequel we simply note K the number field that is chosen to be the one
where we lift the elements. We note f the polynomial defining K.

To do so, [Gui19] creates a lattice in K so that, for any element S̄ in the
lattice its image S in the finite field verifies the first item above, namely log(T) ≡
log(S) + t mod `. Performing a lattice reduction on this set, Guillevic is then
able to produce a number field element R with a small norm. This procedure
is done over and over on gtT ′ where t is chosen randomly in [1, l − 1] until the
algorithm outputs an element R that verifies the second item, namely such that
its norm is B-smooth.

Construction of a lattice thanks to proper subfields elements. The construction
is based on the existence of elements in the finite field for which we can deduce
in advance that they have the same discrete logarithm as the target element
modulu `, a prime divisor of the multiplicative group order. Such elements are
found thanks to the following lemma:

Lemma 1 (From [Gui15], Lemma 2). Let ` be a divisor of φn(p). Let U ∈
F∗pn be an element that lies in a proper subfield of Fpn , then log(U) ≡ 0 mod `.

In order to construct the lattice, exhibiting an element in a proper subfield
is sufficient. Indeed, let’s compute once and for all:

U = g
pn−1

pd−1 ,

where g denotes a generator of the multiplicative group of F∗pn of order `, and

d is the largest proper divisor of n. Then {1, U, . . . , Ud−1} is an Fp-basis of Fpd .
In particular this is done before randomizing T ′ as T = gtT ′, for an integer

Splitting Step for Composite Extension Degree Finite Fields 11

t ∈ [0, . . . ` − 1]. T becomes the temporary new target. The following elements
{T,UT, . . . , Ud−1T} are Fp-independent and every element R of the Fp-vector-
space spanned by the d previous elements verifies log(R) ≡ log(T) mod `. In-
deed, an Fp-combination can be written as R =

(
a0 + a1U + · · ·+ ad−1U

d−1)T .
On the one hand R = 0 if and only if it is the trivial combination, and on the
other hand, since a0 + a1U + · · · + ad−1U

d−1 ∈ F∗pd , applying Lemma 1 we get

the desired equality. Thus {T,UT, . . . , Ud−1T} are sent to the number field K
in which they form a lattice over Z. Applying LLL to it allows to find a short
vector in the lattice that corresponds to an element R in the number field with
small norm, and such that its image R in the finite field has the same logarithm
modulo ` as T . If the norm of R is B-smooth for a predefined bound B, then
the algorithm returns t and R, that becomes the new target for the descent tree.
Otherwise, one starts over with a new t until a B-smooth element is found.

3.2 Sublattices for smaller norms in the number field

The main idea presented in [Gui19] for the splitting step in large and medium
characteristic finite fields is to substitute the target by another one that has
smaller coefficients. In small characteristic finite fields of composite extension
degree, [MS20] replaces the target by another one with a smaller degree. The
method we propose allows the advantages of both worlds, supplanting the target
with candidates with smaller coefficients and smaller degrees. The key ingredient
is to consider sublattices of the initial one. We study the splitting step for a
number field K defined by a degree n polynomial f . The presentation is easier
this way, and this matches all the polynomial selections where at least one of
the polynomial is of degree n. We explain in Paragraph 3.4 how to adapt our
work to a more general case where deg(f) ≥ n.

Description of our algorithm when deg(f) = n. Algorithm 1 details our method
and an implementation of Algorithm 1 is available at [AP22]. The idea consists
of computing an element U of a proper subfield to construct a lattice M of
elements that all have the same discrete logarithm as a randomized target T .
After a Gauss reduction on the matrix, we send its coefficients to Z and complete
it in a square matrix L by adding elements multiple of p. Our algorithm differs
from [Gui19] at this step: We do not apply a reduction algorithm on the full
matrix L but consider instead a sublattice L′ of L with a smaller dimension. L′
is constructed from L by deleting s specific rows and columns, with s an integer
in ∈ [0, d−2] that is defined beforehand. Applying a lattice reduction algorithm
on L′, we get a (n− s)-dimensional vector (r0, · · · , rn−s−1) of L′, and we create

a candidate in Ki : R =
∑n−s−1
k=0 rkα

k, with α a root of f .
Paragraph 3.3 details how to set s. Note that if s = 0 then our algorithm

is actually Guillevic’s algorithm. When s > 0, the improvement comes from the
reduction of the dimension of the vectors that are given by the lattice reduction
algorithm. Since L′ is of dimension n−s instead of n, the elements of the number
field R that are constructed are of degree at most n − s − 1, instead of n − 1.
Proposition 1 proves the correctness of Algorithm 1.

12 Haetham Al Aswad and Cécile Pierrot

Algorithm 1 Splitting step with sublattices for the individual logarithm in
composite extension degree finite fields

Input: A finite field Fpn = Fp[X]/(ϕ), n non prime.
A lattice reduction algorithm: LLL, BKZ or an enumeration algorithm.
` a prime divisor of Φn(p),
s ∈ [0, d− 2].
K = Q[X]/(f) a number field over Fpn with N the corresponding norm.
v : K → Fpn a projection.
g a generator of F∗pn .
T ′ ∈ Fpn the target
B a smoothness bound
Output: t ∈ [1, `−1], R ∈ K such that logg(v(R)) ≡ t+logg(T

′) mod `, and N (R)
is B-smooth.

1. d← the largest proper divisor of n.

2. Compute U = g
pn−1

pd−1 , then {1, U, . . . , Ud−1}. It is an Fp-basis of Fpd .
3. Repeat:

(a) Choose t ∈ [1, l − 1] randomly.
(b) Compute T = gtT ′ ∈ Fpn .

(c) Construct the following d× n matrix: M =

T
UT
U2T

...

Ud−1T

(d) Apply Gauss reduction to M to obtain the matrix:

MG =

e00 e01 e02 . . . 1
e10 e11 e12 . . . ∗ 1

...
ed−1 0 ed−1 1 ed−1 2 1

(e) Send the matrix to Z and add n− d rows as follows to obtain the following

n× n square matrix: L =

p
p

. . .

p
e00 e01 e02 . . . 1
e10 e11 e12 . . . ∗ 1

. . .

ed−1 0 ed−1 1 ed−1 2 1

(f) Delete the last s rows and columns of L to obtain the (n − s) × (n − s)

matrix: L′ =

p
p

. . .

p
e00 e01 e02 . . . 1
e10 e11 e12 . . . ∗ 1

. . .

ed−s−1 0 ed−s−1 1 ed−s−1 2 1

(g) Apply a reduction algorithm such as LLL, BKZ, or an enumeration algo-

rithm to L′.
(h) R̄ ∈ K ← the shortest vector returned by LLL, BKZ, or the enumeration

algorithm.

4. Until N (R̄) is B-smooth.
5. Return t, R̄.

Splitting Step for Composite Extension Degree Finite Fields 13

Proposition 1 (Proof of correctness of Algorithm 1). Let (t, R) denote
the output of Algorithm 1 for the input T ′ ∈ Fpn . Define R as the projection
of R in Fpn , and T = gtT ′ as in Algorithm 1. Then logg(R) ≡ logg(T) mod `.

Proof. We adopt the same notations as in Algorithm 1. We represent K =
Q[X]/(f) as Q(α). Thus for any integer 0 < µ ≤ deg(f), a µ-dimensional
vector representation of an element in K is relative to the independent fam-
ily {1, α, α2, . . . , αµ−1}. It is sufficient to prove that R̄ is represented by a vector
that is in the lattice spanned by the rows of L: span{L}. Indeed, as stated
in [Gui19], any integer linear combination of the rows of L represents an element
that once mapped to Fpn is represented as an Fp-combination of the rows of M .
It can be written as uT where u ∈ F∗pd , and thus its logarithm is equal to log(T)
mod ` by Lemma 1.

It remains to prove that R̄ admits a vectorial representation that is an element
of the lattice span{L}. Let 0 ≤ s ≤ d − 2 as in the input of Algorithm 1. Any
vector in span{L′} is a representation of an element in K in the independent
family {1, α, . . . , αn−s−1}. Let R̄ := r0 + r1α + · · · + rn−s−1α

n−s−1 and v′ =
(r0, r1, . . . , rn−s−1) ∈ span{L′} its vectorial representation. Since v′ is an integer
linear combination of the rows of L′, we can write v′ =

∑n−s
i=1 aiL

′
i where L′i

denotes the i-th row of L′ and ai an integer for 0 ≤ i ≤ n− s.
Similarly denote by Li the i-th row of L. For each 0 ≤ i ≤ n − s, Li is the

concatenation of L′i followed by s zeros. Indeed, L is a lower triangular matrix,
hence, after deleting the s last rows of L, the s last columns are all zeros. Thus the
n dimensional vector v :=

∑n−s
i=1 aiLi is equal to v = (r0, r1, . . . , rn−s−1, 0, . . . 0),

and v is in the lattice span{L}. This concludes the proof since v is a vector
representation of the element R̄: R̄ = r0 + r1α+ . . . rn−s−1α

n−s−1 + 0αn−s+1 +
· · ·+ 0αn−1.

Euclidean norms versus norms in the number field. Looking at sublattices of
a given lattice to find shorter norms might seem counterintuitive: indeed, since
smaller coefficients for a given vector v imply a smaller norm in the number field
for the related element constructed with v, our aim is to find a short vector of L.
Considering a sublattice L′ may thus result in missing very short vectors that
live in L\L′. Indeed we run the risk of loosing the smallest vectors of the lattice
and thus outputting an element with a greater Euclidean norm. However, the
subtlety lies in the difference between the Euclidean norm (or the infinity norm)
and the norm N defined over the number field K: whereas N is sensible to the
coefficients size and to the degree of the polynomial, the Euclidean norm and
the infinity norm are sensible to the coefficients sizes only.

For instance, if P1 = 1 + α + 3α2 and P2 = 1 + α + 3α50 are elements of
the number field K, then P1 and P2 have both the same Euclidean and infinity
norms, but N (P2) should be much greater than N (P1). In practice, for all the
experiments we run in Section 6, we see that our sublattices don’t give shorter
vectors than the original full dimension lattice L. However the elements in the
number fields that are constructed from the output vectors benefit from the large

14 Haetham Al Aswad and Cécile Pierrot

number of zero coefficients at the end, meaning a decrease in the degree, that
leads to lower the norms when n is large, as we observe.

Thus by considering a sublattice we try to balance two quantities: we accept
slightly greater coefficients and ask in return for a smaller degree. As a result,
our algorithm returns lifted elements R with lower norms in the number field,
as we show both asymptotically in Section 4 and in practice in Section 6. We
give in Appendix A a concrete application of Algorithm 1 on a finite field of
extension 28 and another application on a finite field of extension 50.

3.3 Dimension of the sublattice

As seen above, the dimension of the sublattice plays a key role in the norm of
the output candidates in the number field K. This dimension, which is n− s is
monitored by a parameter s, equal to the number of rows and columns we erase
from the original lattice L. For this reason, s is clearly an integer greater or
equal to 0. Besides, we cannot take s larger than d− 2. Indeed, if we delete the
last s = d− 1 rows and columns from the matrix, that would leave us, once the
lattice is mapped to the finite field, with a sub-vector-space of dimension 1. This
would generate a trivial algorithm where we would get at the end either a trivial
element 0 in the finite field or the element given by the last row of the matrix,
multiplied by a constant factor. The precise analysis that permits to balance the
risks and benefits of lowering the dimension of the lattice and correctly tune s
is given in Section 4. It leads to the following theorem that tells how to choose s
before running the algorithm.

Theorem 4. Let p be the characteristic of the finite field, n its extension degree,
d the largest divisor of n and ζ ∈ [0, 1] the parameter such that ‖f‖∞ = pζ where

f is the polynomial defining the number field. Let s1 = n−
√

2(n−d)n log p
n log 2+2ζ log p . The

best asymptotic complexity is reached for Algorithm 1 with LLL when s is defined
as follows:

– If s1 < 0, then s = 0.
– If 0 ≤ s1 ≤ d− 2 then s = bs1c or s = ds1e.
– If s1 > d− 2, then s = d− 2.

3.4 Variant for MTNFS and STNFS

The algorithm described above works for NFS and TNFS for composite extension
degrees. It is a natural question to wonder whether it applies to TNFS when
coupled with a multiple variant or a special variant. To avoid burdening this
article with long details, we simply give guidelines concerning our way to answer
this question, without any long explanation on both MTNFS and STNFS.

Using a multiple variant [BP14,Pie15,KB16,KJ17] does not affect our result
here, and one can apply it almost directly, as there is no particular way to deal
with a multiple diagram during the initial splitting step. The number of potential

Splitting Step for Composite Extension Degree Finite Fields 15

number fields to lift in increases, but the idea remains the same: lift your target
element from the target finite field to this number field with the lower norms.

When using a special variant [JP14,KB16,KJ17] for a sparse characteristic,
the number field with the lower norms is the one given by the polynomial with
small coefficients but degree λn, where λ is a constant that depends on the target
(pairing) finite field. We need then to slightly modify the lattice in our algorithm
to deal with this larger degree. The following paragraph tackles this issue.

Construction of the lattice when deg(f) > n. When the polynomial selection
gives two polynomials f1 and f2 with different degrees and sizes for the coeffi-
cients, the general idea for the individual logarithm step is to choose to lift the
target in the number field that naturally shows the smaller norms. The two poly-
nomials are at least of degree n since they share a common factor ϕ of degree n
defining the target finite field, but one of it can have a strictly higher degree,
for instance 2n, or even greater with the special variant. Our algorithm applies
to this more general context when the extension degree of the number field K
in which we lift the target elements is greater than the extension degree of the
finite field. Indeed, let us assume that K = Q[x]/(f) and deg(f) = ñ ≥ n, then
we look for s over [0, ñ − n + d − 2] and we construct the following lattice of
dimension ñ× ñ instead of the lattice L in Algorithm 1:

L̃ =

p 0 0
...

. . .

0 . . . p 0
e00 e01 . . . 1 0
e10 e11 . . . ∗ 1 0

. . .

ed−1 0 ed−1 1 . . . 1
ϕ(x) 1

. . .
. . .

xñ−n−1ϕ(x) 1

.

4 Asymptotic analysis with LLL as lattice reduction
algorithm

In this section our aim is to determine the asymptotic optimal choice for s: For a
given lattice L, we want to set s so that the algorithm outputs the element with
the smallest possible norm in the number field. In other words we seek for the
optimal sublattice. Note that in this section we assume that LLL is the lattice
reduction algorithm that is run. In particular in Paragraph 4.1, we underline
that neither our method nor Guillevic’s one has any interest with LLL when
the characteristic is in the lower part of the medium characteristic area, namely
when p = LQ(α) with 1/3 < α < 1/2. In Paragraph 4.2 we determine the
optimal choice for s and propose a criteria on the polynomial selections that

16 Haetham Al Aswad and Cécile Pierrot

are concerned by our improvement. Working with BKZ gives better results as
there is lighter restriction on α. For this reason we only give the full asymptotic
complexity for BKZ in Section 5, not LLL.

4.1 Norms in the number field of the output of LLL

Let s ∈ [0, d − 2] be an integer. We denote by R1 ∈ K the candidate created
thanks to the first vector of the output of LLL in one loop of Guillevic’s al-
gorithm, and by R2 its counterpart in our algorithm. To study the quantities
N
(
R1

)
and N

(
R2

)
, we start by recalling a useful bound on norms in a number

field. For any R ∈ K:

N (R) ≤
(
deg(R) + 1

) deg(f)
2 (deg(f) + 1)

deg(R)
2 ‖R‖.deg(f)∞ ‖f‖deg(R)

∞ (1)

We recall as well the following formula where as usual Q = pn:

n =
1

c

(
logQ

log logQ

)1−α

(2)

In the sequel, we assume that deg(f) = n and ‖f‖∞ = pζ for some ζ ∈ [0, 1],
where f is the polynomial defining the number field. Note that ζ depends on the
polynomial selection, and typical value are for instance 0, 1/2 or 1. Applying
Theorem 1 and Equation (1) while keeping in mind that deg(R1) = n − 1 and
deg(R2) = n− s− 1, we deduce the following bounds on R1 and R2:

N
(
R1

)
≤ nn2 (n+ 1)

n−1
2 2n

n−1
4 p(1+ζ)n−d−ζ

and N
(
R2

)
≤ (n− s)n2 (n+ 1)

n−s−1
2 2n

n−s−1
4 pn

n−d
n−s+ζ(n−s−1).

Our aim is to minimize the second bound in the variable s. We start by

proving that the combinatorial factors in the bounds, namely n
n
2 (n+ 1)

n−1
2 and

(n − s)n2 (n + 1)
n−s−1

2 are negligible with respect to the other factors, as soon
as α > 0. Indeed, on the one hand thanks to Equality (2), log (nn) is upper-

bounded by (− log c)/c (logQ/ log logQ)
1−α

+ (1 − α)/c(logQ)1−α (log logQ)
α

,

thus nn is in LQ(1 − α). On the other hand p(1+ζ)n−d−ζ and pn
n−d
n−s+ζ(n−s−1)

are lower bounded by p
n
2−1 = LQ(1). Moreover, it is easy to see that the factor

in 2n
2

that appears in both bounds is in LQ(2(1− α)). It means that whenever
α > 1/2 this factor is negligible compared to the one in LQ(1), whenever α = 1/2
it is in LQ(1), and whenever α < 1/2 it dominates over LQ(1). We sum up this
paragraph as follow. Let R be the output of Algorithm 1:

– if α > 1/2, then N
(
R
)

= O
(
pn

n−d
n−s+ζ(n−s−1)

)
.

– if α = 1/2, then N
(
R
)

= O
(

2n
n−s−1

4 pn
n−d
n−s+ζ(n−s−1)

)
.

– if α < 1/2, then the extension degree becomes too large and both bounds,
Guillevic’s (s = 0) and ours become dominante with respect to LQ(1). Hence
our method – including Guillevic’s one – is not better than a regular and

Splitting Step for Composite Extension Degree Finite Fields 17

simple lift of the target, without any lattice reduction. Indeed Inequality (1)
directly states that a norm of any element coming up from the finite field is
bounded by LQ(1). As far as we know, this limitation of LLL was not made
explicit in the literature.

The asymptotic complexity obtained with LLL is given in Theorem 6. The
curious reader can find the whole complexity analysis for s = 0 in [Gui19].

4.2 Optimal sublattice dimension

We consider the bound on the norm of the output of Algorithm 1, namely

2n
n−s−1

4 pn
n−d
n−s+ζ(n−s−1) where we only neglect the combinatorial factors. We

minimize this bound in s, thus proving Theorem 4 given in Section 3

Proof. We introduce the following function in s:

h : s 7→ 2n
n−s−1

4 pn
n−d

(n−s)+ζ(n−s−1).

We look for an integer sopt ∈ [0, d− 2] such that h(sopt) = mins∈[0, d−2]{h(s)}.
A computation done with SageMath gives the following table of variation:

s

h

s1 n s2

where s1 = n−
√

2(n−d)n log p
n log 2+2ζ log p and s2 > n. Thus h decreases then increases

on [0, n] and reaches its minimum in s1.

The above result explicits the optimal sublattice to construct when we use
LLL as a lattice reduction algorithm:

– Either the optimal lattice is already the (full) one of dimension n given
in [Gui19].

– Or the optimal lattice is given by a formula, stating how many vectors we
should erase.

– Or the optimal one is when we withdraw as many vectors as we can, which
means d− 2.

With a given polynomial selection, and thus a fixed parameter ζ, a natural
question is whether we need to choose a sublattice or the full lattice. To answer
this question we give a simple condition on ζ that ensures that the optimal
sublattice is a strict sublattice. First we remark that in Theorem 4 if s1 ≥ 1
then sopt > 0. So we study the condition s1 ≥ 1.

s1 ≥ 1 ⇐⇒ n−
√

2(n−d)n log p
n log 2+2ζ log p ≥ 1

⇐⇒ (n− 1)2 ≥ 2n(n−d)
n· log 2

log p+2ζ

⇐⇒ n · log 2
log p + 2 · ζ ≥ 2n(n−d)

(n−1)2

⇐⇒ ζ ≥ n(n−d)
(n−1)2 −

n log 2
2 log p .

18 Haetham Al Aswad and Cécile Pierrot

Thus for polynomial selection methods that outputs such a ζ, our algorithm with
LLL offers lower norms than [Gui19] with LLL. For instance if we deal with even
extensions, then d = n/2 and our algorithm is asymptotically better whenever

ζ ≥ 1
2

(
n
n−1

)2
− n log 2

2 log p . It is sufficient to have:

ζ ≥ 1

2

(
1

1− 1/n

)2

. (3)

Example 1. JLSV1 polynomial selection presented in [JLSV06] is a theoretical
corner case for our method: it outputs two polynomials f1 and f2 with both
degree n and coefficients such that ‖f‖∞ =

√
p, namely ζ = 1/2, which is the

limit obtained in (3) when n tends to infinity. Note that JLSV1 is useful in the
TNFS setting both in theory and in practice. The question whether in practice
our method lowers the norms for this polynomial selection for current relevant
sizes of finite fields is the topic of Section 6.

5 Asymptotic analysis with BKZ as lattice reduction
algorithm

This section details the asymptotic analysis of our algorithm when s = 0 and
when we use BKZ instead of LLL. Indeed, recall that with LLL, this algorithm is
asymptotically meaningful in finite fields where α ≥ 1/2. The idea is to overcome

this difficulty, that comes from 2n
n−1
4 = LQ (2(1− α)) in the bound of the norms,

by looking at an algorithm providing another term for this bound. We show in
this section that BKZ permits to extend the range of application of the algorithm.
Besides it leads to a better asymptotic complexity for the initial splitting step.

5.1 Fine tuning the parameter β in BKZ when s = 0

Let β be an integer in [2, n] that denotes the block size in BKZ, s = 0 and
write again deg(f) = n, and ‖f‖∞ = pζ where f is the polynomial defining the
number field. Let R̄ be the element in the number field constructed thanks to
the coefficients of the first vector of the basis output by BKZ in Algorithm 1.
Thanks to Theorem 2 and to the usual bound of a norm in a number field given
by the resultant:

N
(
R̄
)
≤ 2nβn(n−1

2(β−1)
+ 3

2)pn−d+ζ(n−1). (4)

The combinatorial factors are negligible in the considered characteristic range.
We choose the largest β under the constraint that β-BKZ stays asymptotically
negligible compared to LQ(1/3). Indeed, such a β would neither increase the
complexity of the initial splitting step – that is in LQ(1/3) nor the individual
logarithm phase.

From Theorem 3 we look for the largest β such that Poly (n, size(L)) 2O(β)

is negligible with respect to LQ(1/3), where size(L) denotes the sum of log-
arithms of absolute values of the coefficients of our input matrix L. On the

Splitting Step for Composite Extension Degree Finite Fields 19

one hand L has coefficients all bounded by p, thus size(L) ≤ n2 log p and
n2 log p = O(logQ) from which we deduce that Poly (n, size(L)) is negligible
with respect to LQ(1/3). On the other hand writing β = nx and using Equal-
ity (2) we get log(2β) = log 2/cx(logQ/ log logQ)x(1−α). We deduce that 2β is
negligible compared to LQ(x(1− α)), and likewise 2O(β) is negligible compared
to LQ (x(1− α)). We set x the largest possible number such that x(1−α) ≤ 1/3
keeping in mind that x must be smaller than 1 since β = nx must be smaller
than n. This gives the following choice:

x =

∣∣∣∣ 1 if α ≥ 2/3
1

3(1−α) if α < 2/3

Summary for the choice of the parameter β:

– When α > 2/3, we are dealing with finite fields with large characteristics
relatively to the size of n, so the extension degree, which is small, gives a
lattice L of small enough dimension so that we can directly run an enu-
meration algorithm on it to find the shortest vector. Indeed, setting β = n
in BKZ means calling an oracle to solve SVP on the whole lattice, which
are in practice enumeration algorithms such as Kannan-Fincke-Pohst algo-
rithms [FP85, Kan87] or more recent techniques as developed in [MW15].
The complexity of [MW15] is 2O(n log(n)) = LQ(1 − α). This complexity is
negligible with respect to the complexity of the individual logarithm step
which is in LQ(1/3) as we see in the sequel.

– When α = 2/3, setting β = n in BKZ is the good option too. How-
ever [MW15] becomes non negligible but [MV10]4 that has a time complexity
in O

(
22n
)

stays negligible with respect to LQ(1/3).
– When α < 2/3, the extension degree and thus the dimension of the lattice

becomes larger, and looking at blocks in BKZ becomes mandatory. We pro-
pose to set β = n(3(1−α))

−1

(which is strictly lower than n). The complexity
of β-BKZ remains negligible compared to LQ(1/3).

5.2 Norms in the number field of the output of BKZ

Now that β is set, we evaluate the norm of the element R̄ in the number field
that corresponds to the first vector of the matrix output by BKZ.

We start with large characteristic finite fields. When α ≥ 2/3 the idea is to ap-
ply an enumeration algorithm outputting elements of norms nn/2pn−d+ζ(n−1) =
LQ (1, 1 + ζ − d/n). Indeed, Minkowski’s theorem brings ||R||∞ ≤ n1/2p(n−d)/n

where R is the shortest vector.
Let us focus at Equation (4) that gives a bound on the norms in the medium

characteristic case. When α < 2/3, we set β = nx with x = 1
3(1−α) . First, as

above pn−d+ζ(n−1) = LQ (1, 1 + ζ − d/n) and 2n ≤ LQ(1−α) is negligible com-

pared to LQ(1) whenever α > 0. Second let us have a look at D = βn(n−1
2(β−1)

+ 3
2),

4 The counter part of this enumeration algorithm is its exponential space complexity.

20 Haetham Al Aswad and Cécile Pierrot

and study its size. D = n
xn
2 (n−1

nx−1+3), by the mean value theorem applied
to the function f : y 7→ yx, where x < 1 on the interval [1, n] we have:

(n − 1) · (nx − 1)−1 ≤ (n1−x)/x, which yields D ≤ n
n2−x

2 + 3nx
2 . We evaluate

this last quantity in two steps:

– n
n2−x

2 = LQ
(
(2− x) · (1− α), (1− α) · (2c2−x)−1

)
where

(2− x) · (1− α) = 2(1− α)− 1/3. As 2(1− α)− 1/3 ≤ 1
⇐⇒ α ≥ 1/3, we identify three cases:

• If α > 1/3, then n
n2−x

2 is negligible compared to LQ(1).

• If α = 1/3, then n
n2−x

2 = LQ
(
1, (1− α) · (2c2−x)−1

)
.

• If α < 1/3, then the bound is no longer asymptotically significant because
a simple lift in the number field of any element of the finite field has norm
of size at most LQ(1).

– n3nx/2 is negligible compared to the first factor n
n2−x

2 .

Let us compare LLL and BKZ and summarize our result up to now.

Six areas for the characteristics. Here are the different areas and the summary
of the behavior of LLL and BKZ on the norms of the output elements, depending
on the size of the characteristic, from the smallest ones, to the largest ones.

– If α < 1/3 then neither LLL nor BKZ gives lower norms than an easy lift
from the finite field to the number field.

– If α = 1/3, then LLL is not relevant but BKZ outputs elements in K with a
norm bounded by LQ(1, 1 + ζ − d/n+ (1− α) · (2c2−x)−1).

– If 1/3 < α < 1/2, then LLL is not relevant but BKZ provides a bound which
is LQ(1, 1 + ζ − d/n).

– If α = 1/2, the bound for the norm of the number field element element
given by LLL is LQ

(
1, 1 + ζ − d/n+ c−2 log 2

)
while with BKZ we can get

a lower bound LQ (1, 1 + ζ − d/n).
– If 1/2 < α < 1, then the two bounds given by LLL and BKZ are equivalent

and are in LQ(1, 1 + ζ − d/n).
– If 2/3 ≤ α < 1, an enumeration algorithm can replace LLL or BKZ and

outputs norms in LQ(1, 1 + ζ − d/n) as well.

5.3 New asymptotic complexity for the individual logarithm phase

Since the initial splitting step dominates in terms of complexity the descent
phase, the asymptotic complexity of the individual logarithm step is the com-
plexity of the step we are studying. As seen in Paragraph 5.2, some characteristic
ranges and polynomial selections permit to lower the norms, and thus to lower
the individual logarithm phase complexity.
Recall that our choice of β ensures that β-BKZ is of negligible complexity com-
pared to the complexity of the ECM smoothness test done to see if the norm is
B-smooth or not, in each loop. To conclude on the total asymptotic complexity

Splitting Step for Composite Extension Degree Finite Fields 21

of this step, we must estimate the number of loops required to find a B-smooth
element. To do so we recall two useful theorems concerning the probability of
smoothness and the running time to find a smooth element.

Theorem 5 (Canfield, Erdos, Pomerance). [CEP83]
Let (α1, α2, c1, c2) ∈ [0, 1]2 × [0, +∞[2 such that α1 > α2 or (α1 = α2 and
c1 > c2). Denote by P the probability that a natural random number smaller
than A = LQ(α1, c1) to be B = LQ(α2, c2)-smooth. Then:

P−1 = LQ

(
α1 − α2, (α1 − α2)

c1
c2

)
.

Let the smoothness bound be written as B = LQ(αB , cB). Theorem 6 that
mostly comes from [Gui19] states the best choice on B. To find this B the key
idea is to balance two different effects when B increases. On the one hand, the
probability of an element R̄ to be B-smooth increases. On the other hand, the
B-smoothness test by ECM becomes more costly.

Theorem 6. Let R̄ be an element of the number field K constructed thanks
to the output of LLL or β-BKZ on the lattice L with dimension n. Let e > 0
such that N (R̄) < LQ(1, e). Then under the assumption that N (R̄) is uniformly
distributed over [1, Qe], the minimal time for the corresponding algorithm to find
a B-smooth element is

LQ

(
1

3
, (3e)

1
3

)
reached with αB = 2/3 and cB =

(
e2

3

) 1
3

.

Proof. The cost of LLL or β-BKZ being negligible compared to the cost of the
smoothness test done by ECM, the cost of the algorithm to find a B-smooth
element is equal to P−1 × C, where P is the probability of R̄ being B-smooth
and C is the cost of ECM. The cost of the smoothness test done by ECM is
LQ(αB/2, (2cBαB)1/2). So according to Theorem 5 the cost of our algorithm
when s = 0 (which is exactly the method proposed in [Gui19]) is:

LQ

(αB
2
, (2cBαB)

1
2

)
· LQ

(
1− αB , (1− αB)

e

cB

)
.

We want to minimize the above quantity. Let’s start by minimizing the parame-
ter max (αB/2, 1− αB) under the condition that this maximum must be lower

than 1/3. Since the condition

{
αB
2 ≤ 1/3

1− αB ≤ 1/3
is equivalent to αB = 2/3. We

conclude that the optimal choice is αB = 2/3. This is the first value we are look-
ing for. Then, the cost of the algorithm becomes LQ

(
1/3, (4cB/3)1/2 + e/(3cB)

)
which is minimal for cB = (e2/3)1/3. This gives the announced cost.

Corollary 1 (New asymptotic complexities for the individual loga-
rithm step in composite extension degree). Let p be the characteristic

22 Haetham Al Aswad and Cécile Pierrot

of a target finite field, n its composite extension degree, d the largest proper di-
visor of n, f the polynomial defining the number field for the lift, and ζ such
that ‖f‖∞ = pζ . We consider our algorithm (algorithm 1) where s is set to
zero, meaning that no rows or columns are removed from the matrix. Then the
minimal complexity to find a B-smooth element in the number field is:

LQ

(
1

3
, (3e)

1
3

)

reached with B = LQ

(
2
3 ,
(
e2

3

) 1
3

)
where

– e = 1 + ζ − d
n + (3c3/2)−1 if α = 1

3 . This complexity is reached with BKZ
only.

– e = 1 + ζ − d
n if 1

3 < α < 1
2 . This complexity is reached with BKZ only.

– e = 1 + ζ − d
n if α = 1

2 , reached with BKZ. For the sake of comparison, an

algorithm with LLL as in [Gui19] gives e = 1 + ζ − d
n + log(2)

c2 .

– e = 1 + ζ − d
n if 1

2 < α < 2
3 . This is reached either with BKZ or with LLL.

– e = 1+ζ− d
n if 2

3 ≤ α < 1. This is reached with enumeration, BKZ, or LLL.

Figure 1 in the introduction represents the complexities given by Corollary 1
when n is even and ζ is set to 1/2.

Comparison with previous algorithms. While both Algorithm [Gui19] and Algo-
rithm 1 using BKZ have the same asymptotic complexity when 1/2 < α ≤ 1,
using BKZ allows to get a lower complexity when α = 1/2. Moreover, [Gui19]
does not apply when 1/3 ≤ α < 1/2, and to our knowledge, the only pre-
vious smoothing algorithm that works in this area is the Waterloo 5 algo-
rithm [BMV84]. The asymptotic complexity of this method when 1/3 ≤ α < 1/2

is in LQ

(
1/3, (3(2 + ζ))

1/3
)

. Hence our Algorithm 1 with BKZ is faster, as it

has an asymptotic complexity in LQ

(
1/3, (3(1 + ζ − d/n))

1/3
)

in the same area.

Nevertheless, the Waterloo technique applies on any extension degree whereas
Algorithm 1 applies only on composite extension degrees.

Remark 1. When we get a new smaller e value in the above corollary, we have a
double gain. Indeed, it provides us with both a smaller complexity for the initial
splitting step – we get a smooth element faster – and a smaller smoothness bound
– the obtained element is more smooth, thus better for the descent step.

Example 2. Let us target a finite field with even extension degree n and char-
acteristic p. Construct the number fields and the target finite field thanks to a
polynomial selection that guaranties ζ = 0 and deg(f) = n. The Conjugation
method is a good example of such a selection. Theses parameters lead to e = 1/2

5 Waterloo algorithm is designed for smoothing in small characteristic finite fields but
is usable in this area too.

Splitting Step for Composite Extension Degree Finite Fields 23

because d/n = 2. Then the complexity of the initial splitting step brought by
our algorithm using BKZ is:

LQ

(
1

3
,

(
3

2

) 1
3

)
,

where (3/2)1/3 ≈ 1.14. This value for the complexity is reached for any p >
LQ(1/3). For the sake of comparison, we recall that the complexity brought by
the Waterloo algorithm in medium characteristic finite fields is LQ(1/3, 1.82).

5.4 Combining the sublattice method with BKZ or enumeration

In this section we present a mix of the two previous methods: we study the
behavior of BKZ or an enumeration algorithm on a sublattice L′, namely we set
s > 0. We look at Algorithm 1 where the reduction algorithm is β-BKZ, with
β = (n− s)(3(1−α))−1

as in Paragraph 5.1 if α < 2/3. If α ≥ 2/3 then we use an
enumeration algorithm on the sublattice derived from L by deleting s rows and
colomns. As in Paragraph 4.2 we study the optimal choice of s over [0, d − 2]
that minimizes the norms of the candidates R̄.

BKZ on sublattices. In order to do so, using β-BKZ and Theorems 1 and 2 we
get an upper bound on N (R̄) as a function of s. Recall that the degree of R̄ is
upper bounded by n− s− 1. We have:

N (R̄) = O
(

2nβn(n−s−1
2(β−1)

+ 3
2) pn

n−d
n−s+ζ(n−s−1)

)
.

Again our aim is to find the integer s in [0, d − 2] that minimizes the func-

tion hBKZ : s 7→ 2nβn(n−s−1
2(β−1)

+ 3
2) pn

n−d
n−s+ζ(n−s−1). Let us write s̃1 = n − (2(n −

d)n log(p) log(β − 1))1/2 · (log(β) + 2ζ log(p)(β − 1))−1/2, and s2 be an integer
such that s̃2 > n. A simple analysis gives the following variation table for hBKZ:

s

hBKZ

s̃1 s̃2

As in Paragraph 4.2, we deduce the following result that explicits where the
function hBKZ is minimum over the integers between 0 and d− 2:

Lemma 2. Let s̃1 = n− (2(n−d)n log(p) log(β−1))1/2 · (log(β) + 2ζ log(p)(β−
1))−1/2. Then the number sopt of rows and columns to delete is given by the
following cases:

1. If s̃1 < 0, then sopt = 0.
2. If 0 ≤ s̃1 ≤ d− 2, then sopt = bs̃1c or sopt = ds̃1e.
3. If s̃1 > d− 2, then sopt = d− 2.

24 Haetham Al Aswad and Cécile Pierrot

Let us give a simple condition on ζ that ensures that the optimal sublattice to
choose is a strict sublattice, and thus for such values of ζ, we expect that this
new algorithm outperforms all the smoothness algorithms mentioned previously.
Our algorithm outputs better candidates for the norms in the number field as

soon as s̃1 ≥ 1. Since s̃1 ≥ 1 ⇐⇒ (n − 1)2 ≥ 2(n−d)n log(β−1) log p
log β+2ζ(β−1) log p , which is

equivalent to have:

ζ ≥ n · (n− d)

(n− 1)2
· log(β − 1)

β − 1
− log β

2(β − 1) log p
.

This condition for even extension degrees can be written as:

ζ ≥ 1

2

(
n

n− 1

)2

· log(β − 1)

β − 1
− log β

2(β − 1) log p
.

Example 3. We focus on the family of finite fields with fixed extension de-
gree n = 24. Choosing β = 6 and looking at JLSV1 for the polynomial se-

lection, we see that: ζ = 0.5 in one hand, and 1
2

(
n
n−1

)2
log(β−1)
β−1 ≈ 0.15 in the

other hand, meaning that these parameters offer a convenient settings for our
improvements. Similarly, choosing n = 12, β = 3, and looking at JLSV1, we

have 1
2

(
n
n−1

)2
log(β−1)
β−1 ≈ 0.21 which is a nice setting too.

Even when the best choice of s is greater than 0, we still get norms in LQ(1, 1+
ζ−d/n) as the ones we get when setting s to 0. An optimal sopt > 0 means that
we get smaller, yet asymptotically equivalent norms. In this sense, considering
sublattices does not allow to lower the smoothing step asymptotic complexity.

Enumeration on sublattices. When an enumeration algorithm is used, the bound

on the norm of the output is (n − s)n/2pn
n−d
n−s+ζ(n−s−1). Since we deal with

large characteristic finite fields, any polynomial selection outputs polynomials
of infinite norm smaller than p1/2, thus we can assume ζ ≤ 1/2. Under this
assumption, the bound above, as a function of s, is an increasing function, it
reaches its minimum over the integers [0, d−2] at s = 0. We conclude that in large
characteristic finite fields, when using an enumeration algorithm in Algorithm 1,
it is asymptotically useless to decrease the lattice dimension.

6 Lower practical norms

As in most of discrete logarithm algorithms, we cannot deduce the behavior of
our method on practical sizes by only looking at the major improvement on the
asymptotic complexity. To tackle this question we present in this section practical
results obtained with our implementation of Algorithm 1. This implementation
including the finite field construction is given in [AP22]. On the examples and
sizes we have looked at, BKZ did not lead to real important improvements for

Splitting Step for Composite Extension Degree Finite Fields 25

the norms with respect to LLL. For this reason we present only our experiments
with LLL to perform the lattice reductions on sublattices of various sizes.

One run of our implementation takes as input a random target T in a finite
field of composite extension degree, a relevant and compatible number field K
and a parameter s ∈ [0, d− 2] and creates an element R̄ in K to be tested for B-
smoothness. This method is not applicable for n = 4 but starts with a potential
effect as soon as d > 2, i.e. n ≥ 6. Note that whenever s is set to 0, then our
implementation is an implementation of Guillevic’s algorithm [Gui19], without
the smoothness test.

Target finite fields. We consider 148 different finite fields with composite
extension degrees varying from 4 to 50. Half of them have a 460 to 500-bit size
while the others have a 2050 to 2080-bit size. In order not to make the text
more cumbersome, we use in the sequel the term 500-bit size and 2048-bit size
to refer to these two different families of fields. Indeed, for each composite degree
4 ≤ n ≤ 50, the characteristic is set to the first prime larger than 2500//n (resp.
22048//n+1). Note that we conducted experiments with 700 and 1024-bit sizes
too, but the results are similar and for the sake of simplicity we do not detail
these experiments here.

Each field Fpn is built alongside with a number field Kf = Q[X]/(f) where f
is one of the polynomial given by the JLSV1 polynomial selection. Thus we have
deg(f) = n and ‖f‖∞ = p1/2. For each finite field, we ran an optimization code
based on the alpha value [GS21] and coefficients sizes to select the polynomials.
The polynomials were selected among 100 pairs produced by the JLSV1 polyno-
mial selection. The code for selecting the polynomials as well as the polynomials
can be found at the GitLab repository [AP22].

Other polynomial selection methods. Other experiments not provided here show
that our algorithm produces practical improvements when the coefficients of the
polynomial that defines the finite field are sufficiently large. For instance, we do
not manage to reduce the norms by more than 10 bits by using the Conjugation
method.

Target elements. In each finite field we randomly draw 1000 elements that
become our 1000 targets. Each element T is given as an input for two algorithms:
we note R1 the output in the number field of Guillevic’s one, and R2 the output
of our Algorithm 1. For each field we compute the mean of the norms in K of
all lifted targets, the mean of the norms in K of all R1, and the mean of the
norms in K of all R2. Auxiliary data and in particular these means are reported
in Appendix B. Moreover, our implementation of algorithm 1 can be found at
the GitLab repository [AP22].

Theoretical optimal choices versus practical experiments. For each fi-
nite field, we test several values of s. This allows to see that we are not yet

26 Haetham Al Aswad and Cécile Pierrot

experiencing asymptotic phenomenons, as the theoretical s given in Theorem 4
and the best practical ones differ. Again, these theoretical s and practical good
ones are in Appendix B. For instance for the 476-bit field Fp28 the theoretical
optimal s is equal to 6 whereas in practice s = 3 gives good results.

Lower norms in the number field. The results on 500-bit finite fields and
the 2048-bit ones are each presented with 4 graphics:

– Figures 3 and 7 show the norms in K of the lifted elements, of Guillevic’s
candidates, and ours, all as a function of n.

– Figures 4 and 8 present the benefit of our method on the bitsizes of the
norms in K as a function of n.

– Figures 5 and 9 present the benefit of our method on the bitsizes of the
norms in K, but as a function of d the largest divisor of n.

All theses graphs do support our previous analysis. Algorithm 1 outputs
elements of smaller norms in the number field than those output by [Gui19]. For
instance in the 500-bit finite field of extension 16 (resp. 48) Algorithm 1 allows to
get elements to be tested for B-smoothness of size 6 bits smaller (resp. 36 bits)
than those output by [Gui19]. In the 2048-bit finite field of extension degree 32
(resp. 50), Algorithm 1 allows to get elements to be tested for B-smoothness of
size 11 bits smaller (resp. 25 bits) than those output by [Gui19].

Higher Euclidean norms. Figures 6 and 10 show the difference of sizes in
basis 2 between the average Euclidean norms of Guillevic’s candidates and the
average Euclidean norms of candidates from Algorithm 1, as a function of the
extension degree n. As expected, the outputs of LLL performed on our sublattices
have greater Euclidean norms than those output by LLL on the original full
lattice.

The largest divisor effect. Moreover, one important remark is illustrated
thanks to Figures 5 and 9. Here we see that the higher d is, the better our method
performs with regard to [Gui19]. This is not surprising as when d increases,
the set of choices for the parameter s increases, and the degree of the output
decreases with s.

Improvement in the probability of smoothness. Let us look closely at two
examples and compute the gain we get in term of smoothness probability. First
we look at the 500-bit finite field Fp16 . [Gui19] allows to get 501-bit norms and our
algorithm gives 495-bit norms. Let us set B = 235 for the smoothness bound6.
Using the dickman rho function implemented in sage, we get that the probability
of [Gui19]’s output to be B-smooth is about 1.30 × 10−18, and the one of our
output is 3.65 × 10−18. Our output is twice as likely to be B-smooth. Another

6 This is the value chosen in the 521-bit TNFS record on Fp6 [MGP21]

Splitting Step for Composite Extension Degree Finite Fields 27

example with the 2048-bit finite field Fp50 . We get using [Gui19]’s algorithm 2144-
bit norms whereas using Algorithm 1 the norms have sizes around 2119 bits. Let
us set B = 280. In this case our outputs are 4.6 times as likely to be B-smooth.

Fig. 3: Average norms in the number
field of the lifted targets, of Guillevic’s
candidates and of candidates from Algo-
rithm 1, as a function of the extension
degree n. Experiments run on approxi-
mately 500-bit finite fields.

Fig. 4: Difference of sizes in basis 2 be-
tween the average norms of Guillevic’s
candidates and the average norms of
candidates from Algorithm 1, as a func-
tion of the extension degree n. Experi-
ments run on approximately 500-bit fi-
nite fields.

Fig. 5: Difference of sizes in basis 2 be-
tween the average norms of Guillevic’s
candidates and the average norms of
candidates from Algorithm 1, as a func-
tion of d the greatest proper divisor of n.
Experiments run on approximately 500-
bit finite fields.

Fig. 6: Difference of sizes in basis 2 be-
tween the average Euclidean norms of
Guillevic’s candidates and the average
Euclidean norms of candidates from Al-
gorithm 1, as a function of the extension
degree n. Experiments run on approxi-
mately 500-bit finite fields.

28 Haetham Al Aswad and Cécile Pierrot

Fig. 7: Average norms in the number
field of the lifted targets, of Guillevic’s
candidates and of candidates from Algo-
rithm 1, as a function of the extension
degree n. Experiments run on approxi-
mately 2048-bit finite fields.

Fig. 8: Difference of sizes in basis 2 be-
tween the average norms of Guillevic’s
candidates and the average norms of
candidates from Algorithm 1, as a func-
tion of the extension degree n. Experi-
ments run on approximately 2048-bit fi-
nite fields.

Fig. 9: Difference of sizes in basis 2 be-
tween the average norms of Guillevic’s
candidates and the average norms of
candidates from Algorithm 1, as a func-
tion of d the greatest proper divisor of
n. Experiments run on approximately
2048-bit finite fields.

Fig. 10: Difference of sizes in basis 2 be-
tween the average Euclidean norms of
Guillevic’s candidates and the average
Euclidean norms of candidates from Al-
gorithm 1, as a function of the extension
degree n. Experiments run on approxi-
mately 2048-bit finite fields.

Conclusion

We proved that using BKZ reduction instead of LLL lowers the individual log-
arithm complexity in the lower half of the medium characteristic range.

Splitting Step for Composite Extension Degree Finite Fields 29

In addition, experiments show that using sublattices to perform the smooth-
ness step in the number field sieve can outperform the existing technique of using
the whole lattice. This new technique outperforms the later when the composite
extension degree is sufficiently large and the coefficients of the polynomial con-
structing the number field are large enough. For instance, these two conditions
are fulfilled when dealing with medium characteristic finite fields and using the
JLSV1 polynomial selection. This set up is relevant since the JLSV1 polynomial
selection is both adapted in theory and in practice for TNFS and is well adapted
for MNFS in the medium characteristic case, especially when one asks for a
symmetric diagram. Such setting can be very useful for the MexTNFS variant
in order to get many number fields of the same quality.

Declaration

– Funding: Haetham Al Aswad is funded by French Ministry of Army - AID
Agence de l’Innovation de Défense. Cécile Pierrot did not receive support
from any organization for the submitted work.

– Financial interests: The authors declare they have no financial interests.

The datasets generated during the study are available in the ”Smoothing step
in NFS for composite extension degree finite fields” git lab repository, [AP22].

Acknowledgment

This version of the article has been accepted for publication, after peer re-
view but is not the Version of Record and does not reflect post-acceptance
improvements, or any corrections. The Version of Record is available online at:
http://dx.doi.org/10.1007/s10623-023-01282-w. Use of this Accepted Version is
subject to the publisher’s Accepted Manuscript terms of use:
https://www.springernature.com/gp/open- research/policies/acceptedmanuscript-
terms

References

AP22. Haetham Al Aswad and Cécile Pierrot. Smoothness step in NFS for com-
posite extenion finite fields. https://gitlab.inria.fr/halaswad/smoothing-
step-in-nfs-for-composite-extension-degree-finite-fields. GitLab, 2022.

BF01. Dan Boneh and Matthew K. Franklin. Identity-based encryption from the
Weil pairing. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS,
pages 213–229. Springer, Heidelberg, August 2001.

BFHMV84. Ian Blake, R. Fuji-Hara, R. Mullin, and S. Vanstone. Computing loga-
rithms in finite fields of characteristic two. Siam Journal on Algebraic
and Discrete Methods, 5, 06 1984.

30 Haetham Al Aswad and Cécile Pierrot

BGG+20. Fabrice Boudot, Pierrick Gaudry, Aurore Guillevic, Nadia Heninger, Em-
manuel Thomé, and Paul Zimmermann. Comparing the difficulty of
factorization and discrete logarithm: A 240-digit experiment. In Ho-
vav Shacham and Alexandra Boldyreva, editors, CRYPTO 2020, Part II,
LNCS, pages 62–91. Springer, Heidelberg, August 2020.

BGGM15a. Razvan Barbulescu, Pierrick Gaudry, Aurore Guillevic, and François
Morain. DL record computation in Fp4 of 392 bits, 2015. http://www.lix.
polytechnique.fr/~guillevic/docs/guillevic-catrel15-talk.pdf.

BGGM15b. Razvan Barbulescu, Pierrick Gaudry, Aurore Guillevic, and François
Morain. Improving NFS for the discrete logarithm problem in non-prime
finite fields. In Elisabeth Oswald and Marc Fischlin, editors, EURO-
CRYPT 2015, Part I, volume 9056 of LNCS, pages 129–155. Springer,
Heidelberg, April 2015.

BGJT14. Razvan Barbulescu, Pierrick Gaudry, Antoine Joux, and Emmanuel
Thomé. A heuristic quasi-polynomial algorithm for discrete logarithm
in finite fields of small characteristic. In Phong Q. Nguyen and Elisabeth
Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 1–16.
Springer, Heidelberg, May 2014.

BGK15. Razvan Barbulescu, Pierrick Gaudry, and Thorsten Kleinjung. The tower
number field sieve. In Tetsu Iwata and Jung Hee Cheon, editors, ASI-
ACRYPT 2015, Part II, volume 9453 of LNCS, pages 31–55. Springer,
Heidelberg, November / December 2015.

BLS01. Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the
Weil pairing. In Colin Boyd, editor, ASIACRYPT 2001, volume 2248 of
LNCS, pages 514–532. Springer, Heidelberg, December 2001.

BMV84. Ian F. Blake, Ronald C. Mullin, and Scott A. Vanstone. Computing
logarithms in GF(2n). In G. R. Blakley and David Chaum, editors,
CRYPTO’84, volume 196 of LNCS, pages 73–82. Springer, Heidelberg,
August 1984.

BP14. Razvan Barbulescu and Cécile Pierrot. The Multiple Number Field Sieve
for Medium and High Characteristic Finite Fields. LMS Journal of Com-
putation and Mathematics, 17:230–246, 2014.

CEP83. E. Rodney Canfield, Paul Erdös, and Carl Pomerance. On a problem
of Oppenheim concerning “factorisatio numerorum”. Journal of Number
Theory, 17(1):1–28, 1983.

FP85. Ulrich Fincke and Michael E. Pohst. Improved methods for calculating
vectors of short length in a lattice. Mathematics of Computation, 1985.

GKZ14. Robert Granger, Thorsten Kleinjung, and Jens Zumbrägel. Breaking ‘128-
bit secure’ supersingular binary curves - (or how to solve discrete loga-
rithms in F24·1223 and F212·367). In Juan A. Garay and Rosario Gennaro,
editors, CRYPTO 2014, Part II, volume 8617 of LNCS, pages 126–145.
Springer, Heidelberg, August 2014.

Gré. Laurent Grémy. Computations of discrete logarithms sorted by date.
https://dldb.loria.fr/.

GS21. Aurore Guillevic and Shashank Singh. On the Alpha Value of Polynomials
in the Tower Number Field Sieve Algorithm. Mathematical Cryptology,
1(1):39, 2021.

Gui15. Aurore Guillevic. Computing individual discrete logarithms faster in
GF(pn) with the NFS-DL algorithm. In Tetsu Iwata and Jung Hee Cheon,
editors, ASIACRYPT 2015, Part I, volume 9452 of LNCS, pages 149–173.
Springer, Heidelberg, November / December 2015.

http://www.lix.polytechnique.fr/~guillevic/docs/guillevic-catrel15-talk.pdf
http://www.lix.polytechnique.fr/~guillevic/docs/guillevic-catrel15-talk.pdf
https://dldb.loria.fr/

Splitting Step for Composite Extension Degree Finite Fields 31

Gui19. Aurore Guillevic. Faster individual discrete logarithms in finite fields of
composite extension degree. Mathematics of Computation, 88(317):1273–
1301, January 2019.

HPS11. Guillaume Hanrot, Xavier Pujol, and Damien Stehlé. Analyzing blockwise
lattice algorithms using dynamical systems. In Phillip Rogaway, editor,
CRYPTO 2011, volume 6841 of LNCS, pages 447–464. Springer, Heidel-
berg, August 2011.

JLSV06. Antoine Joux, Reynald Lercier, Nigel Smart, and Frederik Vercauteren.
The number field sieve in the medium prime case. In Cynthia Dwork,
editor, CRYPTO 2006, volume 4117 of LNCS, pages 326–344. Springer,
Heidelberg, August 2006.

Jou04. Antoine Joux. A one round protocol for tripartite Diffie-Hellman. Journal
of Cryptology, 17(4):263–276, 2004.

JP14. Antoine Joux and Cécile Pierrot. The special number field sieve in Fpn
- application to pairing-friendly constructions. In Zhenfu Cao and Fang-
guo Zhang, editors, PAIRING 2013, volume 8365 of LNCS, pages 45–61.
Springer, Heidelberg, November 2014.

Kan87. Ravi Kannan. Minkowski’s convex body theorem and integer program-
ming. Mathematics of Operations Research, 12(3):415–440, aug 1987.

KB16. Taechan Kim and Razvan Barbulescu. Extended tower number field sieve:
A new complexity for the medium prime case. In Matthew Robshaw and
Jonathan Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS,
pages 543–571. Springer, Heidelberg, August 2016.

KJ17. Taechan Kim and Jinhyuck Jeong. Extended tower number field sieve
with application to finite fields of arbitrary composite extension degree.
In Serge Fehr, editor, PKC 2017, Part I, volume 10174 of LNCS, pages
388–408. Springer, Heidelberg, March 2017.

KW19. Thorsten Kleinjung and Benjamin Wesolowski. Discrete logarithms in
quasi-polynomial time in finite fields of fixed characteristic. Cryptology
ePrint Archive, Report 2019/751, 2019. https://eprint.iacr.org/2019/
751.

LLL82. A. K. Lenstra, H. W. Lenstra, and L. Lovasz. Factoring Polynomials with
Rational Coefficients. Mathematische Annalen, 261:515–534, 1982.

MGP21. Gabrielle De Micheli, Pierrick Gaudry, and Cécile Pierrot. Lattice enu-
meration for tower NFS: A 521-bit discrete logarithm computation. In
Mehdi Tibouchi and Huaxiong Wang, editors, Advances in Cryptology -
ASIACRYPT 2021 - 27th International Conference on the Theory and
Application of Cryptology and Information Security, Singapore, December
6-10, 2021, Proceedings, Part I, volume 13090 of Lecture Notes in Com-
puter Science, pages 67–96. Springer, 2021.

Mil04. Victor Miller. The Weil pairing, and its efficient calculation. Journal of
Cryptology, 17:235–261, 2004.

MS20. Madhurima Mukhopadhyay and Palash Sarkar. Faster initial splitting for
small characteristic composite extension degree fields. Finite Fields and
Their Applications, 62:101629, 2020.

MSST22. Madhurima Mukhopadhyay, Palash Sarkar, Shashank Singh, and Em-
manuel Thomé. New discrete logarithm computation for the medium
prime case using the function field sieve. Advances in Mathematics of
Communications, 16(3):449–464, 2022.

https://eprint.iacr.org/2019/751
https://eprint.iacr.org/2019/751

32 Haetham Al Aswad and Cécile Pierrot

MV10. Daniele Micciancio and Panagiotis Voulgaris. A deterministic single ex-
ponential time algorithm for most lattice problems based on voronoi cell
computations. In Leonard J. Schulman, editor, 42nd ACM STOC, pages
351–358. ACM Press, June 2010.

MW15. Daniele Micciancio and Michael Walter. Fast lattice point enumeration
with minimal overhead. In Piotr Indyk, editor, 26th SODA, pages 276–
294. ACM-SIAM, January 2015.

MW16. Daniele Micciancio and Michael Walter. Practical, predictable lattice basis
reduction. In Marc Fischlin and Jean-Sébastien Coron, editors, EURO-
CRYPT 2016, Part I, volume 9665 of LNCS, pages 820–849. Springer,
Heidelberg, May 2016.

Pie15. Cécile Pierrot. The multiple number field sieve with conjugation and
generalized Joux-Lercier methods. In Elisabeth Oswald and Marc Fischlin,
editors, EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages 156–
170. Springer, Heidelberg, April 2015.

Sch00. Oliver Schirokauer. Using Number Fields to Compute Logarithms in Fi-
nite Fields. Mathematics of Computation, 69:1267–1283, 2000.

SE94. Claus-Peter Schnorr and M. Euchner. Lattice basis reduction: Improved
practical algorithms and solving subset sum problems. Mathematical Pro-
gramming, 66:181–199, 1994.

SS16. Palash Sarkar and Shashank Singh. A general polynomial selection
method and new asymptotic complexities for the tower number field
sieve algorithm. In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASI-
ACRYPT 2016, Part I, volume 10031 of LNCS, pages 37–62. Springer,
Heidelberg, December 2016.

SS19. Palash Sarkar and Shashank Singh. A unified polynomial selection method
for the (tower) number field sieve algorithm, 2019.

TPM. Trusted platform module. https://trustedcomputinggroup.org/

resource/tpm-library-specification/. Latest Version Nov. 2019.

Wie86. Douglas H. Wiedemann. Solving Sparse Linear Equations over Finite
Fields. IEEE Transactions on Information Theory, 32(1):54–62, 1986.

A Example

We give a concrete example to better understand Algorithm 1 and to see how de-
creasing the degree while allowing larger coefficients can result is smaller norms.
Take the finite field Fp28 of size 476 bits where p = 131101.

Construction of finite field and number fields: After running JLSV1 polynomial
selection to find 100 pairs of suitable polynomials. We choose the pair with
the highest score for a notion of score based on the alpha value [GS21] and
the coefficient sizes. The code to select the pair of polynomials can be found
at [AP22].

f1(X) = X28 +349X27 +348X26 +1040X25 +349X24 +348X23 +1040X22 +
1040X21+695X20+1041X19+695X18+347X17+349X16+347X15+348X14+
694X13 + 1039X12 + 348X11 + 347X10 + 348X9 + 1039X8 + 347X7 + 695X6 +
1041X5 + 349X4 + 1039X3 + 347X2 + 1041X + 349.

https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://trustedcomputinggroup.org/resource/tpm-library-specification/

Splitting Step for Composite Extension Degree Finite Fields 33

f2(X) = −379X28 − 1170X27 − 791X26 − 857X25 − 1170X24 − 791X23 −
857X22−857X21−1203X20−1236X19−1203X18−412X17−1170X16−412X15−
791X14 − 824X13 − 478X12 − 791X11 − 412X10 − 791X9 − 478X8 − 412X7 −
1203X6 − 1236X5 − 1170X4 − 478X3 − 412X2 − 1236X − 1170.

Moreover, f1 is also irreducible in Fp[X], thus Fp28 is represented as:

Fp[X]/(f1) := Fp(α).

Since f1 has smaller coefficients than f2, it is natural to perform the smoothing
step in K = Q[X]/(f1) := Q(x). Denote by N the norm defined in K and for
any element Y in Fp(α), Ȳ denotes its natural preimage in K.

Generator selection: Finding a generator of F∗pn requires factoring pn−1 which
is out of reach. Instead one chooses a random element g ∈ F∗pn and tests if

g(p
n−1)/m 6= 1 for all m running over small divisors of pn − 1 (say all divi-

sors smaller than 109). Such an element has a very high probability of be-
ing a generator of F∗pn , and is called a pseudo generator. Running our code
that is available at [AP22], we find the following pseudo generator of F∗p28 :

g = 44501α27 + 17288α26 + 79714α25 + 15355α24 + 100146α23 + 87012α22 +
18126α21+125995α20+12941α19+86746α18+22260α17+8816α16+41799α15+
19116α14 +45121α13 +116926α12 +11767α11 +64435α10 +16296α9 +33812α8 +
96819α7+40474α6+105343α5+71563α4+48599α3+102954α2+36712α+3594.

Target selection: We choose a target constructed from the decimal digits of π.

T = 1415926α27 + 5358979α26 + 3238462α25 + 6433832α24 + 7950288α23 +
4197169α22+3993751α21+582097α20+4944592α19+3078164α18+628620α17+
8998628α16+348253α15+4211706α14+7982148α13+865132α12+8230664α11+
7093844α10 + 6095505α9 + 8223172α8 + 5359408α7 + 1284811α6 + 1745028α5 +
4102701α4 + 9385211α3 + 555964α2 + 4622948α+ 9549303.

After reducing each coefficient modulo p, the target T becomes: T = 104916α27+
114939α26 + 92038α25 + 9883α24 + 84228α23 + 1937α22 + 60721α21 + 57693α20 +
93855α19+62841α18+104216α17+83760α16+86051α15+16474α14+116088α13+
78526α12 +102402α11 +14390α10 +64859α9 +94910α8 +115368α7 +104902α6 +
40715α5 + 38570α4 + 77040α3 + 31560α2 + 34413α+ 110031.

Outputs: To run our code [AP22], one starts by creating an instance from
smoothness.sage: diag = Smoothness(p, n, f1, f1, g), and then one calls the
method smoothness lattice n: R1, R2, sbest = diag.smoothness lattice n(T). We
get R1 the output of the algorithm of [Gui19] (i.e: Algorithm 1 with s = 0) and
R2 the output of Algorithm 1 for the best choice of s, that is spractical. We recall
that spractical is the number of columns erased from the lattice that results in
the output of the smallest element, that is R2. We get:

R1 = −13x27 − 51x26 − 10x25 + 100x24 + 219x23 + 80x22 + 98x21 + 54x20 −
5x19 +113x18−195x17 +92x16−46x15−99x14 +9x13 +77x12−173x11 +77x10 +
57x9 + 213x8 − 82x7 − 107x6 − 76x5 − 58x4 − 8x3 + 34x2 − 64x− 28.

34 Haetham Al Aswad and Cécile Pierrot

R2 = 175x23− 87x22− 10x21 + 305x20 + 233x19− 37x18− 151x17− 123x16−
30x15 + 105x14 + 145x13 − 214x12 + 143x11 + 432x10 + 63x9 − 222x8 − 17x7 −
303x6 − 309x5 − 239x4 + 25x3 − 373x2 − 330x− 174, where spractical = 4.

Norms of the target and the outputs: The norm of the target is N
(
T̄
)
≈ 2769,

the norm of R1 is N
(
R1

)
≈ 2507, and the norm of R2 is N

(
R2

)
≈ 2492. Our

algorithm outputs here an element of norm 15 bits smaller than the one output
by [Gui19]. We emphasize that R1 is of degree maximal 27 whereas R2 is of
degree 27− 4 = 23 and has slightly larger coefficients.

Probability of smoothness: Fix a smoothness bound B = 235. Then using the
dickman rho function implemented is sage, the probability of N

(
R1

)
being B-

smooth is about 6.45× 10−19 and the probability of N
(
R2

)
being B-smooth is

about 3.77× 10−18. Our output is 5.8 more likely to be smooth.

Larger example: As shown in Section 6, our algorithm performs the best as
the degree extension n grows. For instance let us look at the 2050-bits finite
field Fpn = F219902325557950 . All the parameters for this setting, such as the
polynomials selected and the generator, can be found in the GitLab repository
[AP22]. Similarly as above, applying Algorithm 1 leads to the following:

1. The norm of the target chosen with the decimals of π is N
(
T
)
≈ 23152

2. The norm of the output R1 of [Gui19]’s algorithm is N
(
R1

)
≈ 22138

3. The norm of the output R2 of Algorithm 1 with the best s is N
(
R2

)
≈ 22121,

where the best s is spractical = 4.

In this example our output is 217 times smaller. If the smoothness bound is set
to B = 270, then our output is about 3.5 times more likely to be B-smooth. Since
the smoothness probability is higher, one can set a lower smoothness bound in
order to get a smaller descent tree.

B Data

The next two tables present the results of our experiments: n is the extension
degree, d is the largest divisor of n, p in bits is the number of bits of the
characteristic p, Bitsize of the field is the size of the finite field Fpn in bits,
Input norms in bits is the mean in bits of the norms in the number field of
the 1000 targets, Output norms with [Guil19] in bits is the mean in bits
of the norms output by [Guil19], Our norms in bits is the mean in bits of
the norms output by Algorithm 1, spractical is the mean of the best choice of s
in Algorithm 1 in practice rounded to one decimal place, and stheoretical is the
optimal s given from the asymptotic formula rounded to the integer below. Each
given norm in a given finite field is a mean of the norms of 1000 elements. The
data is sorted in respect to n the extension degree. Moreover, the polynomials
selected for the experiments, the pseudo generators of the multiplicative group
in each finite field, and the implementation that produced this data are available
at [AP22].

Splitting Step for Composite Extension Degree Finite Fields 35

n d p in bits Bitsize of Input norms Output norms Our norms spractical stheoretical
the field in bits with [Gui19] in bits in bits

4 2 125 500 688 438 438 0.0 0

6 3 83 498 707 457 457 0.1 0

8 4 62 496 721 471 470 0.3 0

9 3 55 495 726 557 557 0.0 0

10 5 50 500 732 479 477 0.4 0

12 6 41 492 734 482 478 0.7 0

14 7 35 490 739 486 481 0.9 0

15 5 33 495 745 573 571 0.2 0

16 8 31 496 755 501 495 1.2 0

18 9 27 486 746 497 490 1.4 0

20 10 25 500 775 517 507 1.7 0

21 7 23 483 751 583 579 0.6 0

22 11 22 484 757 508 498 2.1 0

24 12 20 480 761 511 498 2.5 2

25 5 20 500 787 678 674 0.4 0

26 13 19 494 786 532 520 2.8 3

27 9 18 486 773 600 591 1.1 1

28 14 17 476 769 516 499 3.2 6

30 15 16 480 778 527 509 3.9 8

32 16 15 480 779 525 507 4.2 10

33 11 15 495 815 641 630 1.8 7

34 17 14 476 789 540 517 5.0 12

35 7 14 490 810 704 695 1.1 5

36 18 13 468 779 536 514 5.5 14

38 19 13 494 816 558 535 5.7 15

39 13 12 468 772 606 592 2.7 11

40 20 12 480 801 548 520 6.5 18

42 21 11 462 779 534 507 7.2 19

44 22 11 484 792 542 520 6.9 20

45 15 11 495 840 668 651 4.0 13

46 23 10 460 773 533 506 8.2 21

48 24 10 480 842 594 558 10.4 22

49 7 10 490 836 770 756 2.5 5

50 25 10 500 837 584 554 8.8 23

Table 3: Experiments are run on 460 to 500-bit finite fields. The extension degree
varies from 4 to 50.

36 Haetham Al Aswad and Cécile Pierrot

n d p in bits Bitsize of Input norms Output norms Our norms spractical stheoretical
the field in bits with [Gui19] in bits in bits

4 2 513 2052 2821 1796 1796 0.0 0

6 3 342 2052 2907 1878 1878 0.0 0

8 4 257 2056 2959 1930 1930 0.0 0

9 3 228 2052 2968 2282 2282 0.0 0

10 5 205 2050 2979 1950 1950 0.0 0

12 6 171 2052 3003 1973 1972 0.1 0

14 7 147 2058 3028 1996 1994 0.2 0

15 5 137 2055 3031 2342 2342 0.0 0

16 8 129 2064 3049 2011 2009 0.3 0

18 9 114 2052 3046 2013 2010 0.5 0

20 10 103 2060 3063 2025 2021 0.6 0

21 7 98 2058 3063 2370 2370 0.0 0

22 11 94 2068 3086 2047 2042 0.7 0

24 12 86 2064 3080 2040 2032 0.8 0

25 5 82 2050 3075 2656 2656 0.0 0

26 13 79 2054 3083 2047 2041 0.8 0

27 9 76 2052 3083 2389 2388 0.1 0

28 14 74 2072 3111 2063 2055 1.0 0

30 15 69 2070 3121 2078 2068 1.1 0

32 16 65 2080 3145 2099 2088 1.3 0

33 11 63 2079 3142 2440 2437 0.2 0

34 17 61 2074 3145 2101 2089 1.4 0

35 7 59 2065 3132 2707 2706 0.1 0

36 18 57 2052 3109 2075 2062 1.6 0

38 19 54 2052 3126 2094 2080 1.9 0

39 13 53 2067 3146 2449 2444 0.3 0

40 20 52 2080 3172 2125 2111 1.9 0

42 21 49 2058 3151 2114 2099 2.2 0

44 22 47 2068 3167 2126 2109 2.4 0

45 15 46 2070 3175 2476 2469 0.5 0

46 23 45 2070 3182 2144 2124 2.6 0

48 24 43 2064 3182 2150 2128 2.9 2

49 7 42 2058 3169 2873 2867 0.2 0

50 25 41 2050 3166 2144 2119 3.2 4

Table 4: Experiments are run on 2050 to 2080-bit finite fields. The extension
degree varies from 4 to 50.

	Individual Discrete Logarithm with Sublattice Reduction

