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Abstract

This paper introduces the resources necessary to develop and evaluate human assisted lifelong learning
speaker diarization systems. It describes the ALLIES corpus and associated protocols, especially designed
for diarization of a collection audio recordings across time. This dataset is compared to existing corpora
and the performances of three baseline systems, based on x-vectors, i-vectors and VBxHMM, are reported
for reference. Those systems are then extended to include an active correction process that efficiently guides
a human annotator to improve the automatically generated hypotheses. An open-source simulated human
expert is provided to ensure reproducibility of the human assisted correction process and its fair evaluation.
An exhaustive evaluation, of the human assisted correction shows the high potential of this approach. The
ALLIES corpus, a baseline system including the active correction module and all evaluation tools are made
freely available to the scientific community.
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1. Introduction

Speaker diarization is the task of answering the
question ”Who speaks when?” along an audio
recording [1]. The result of speaker diarization is
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essential for indexing and analysing various types of
audio data, such as audio/video broadcasts, confer-
ence speeches, lectures, court proceedings or busi-
ness meetings. It is also required as a pre-processing
step to guaranty optimal performance for tasks like
speech recognition, spoken language understanding
or speaker recognition [2, 3, 4, 5, 6, 7].

Given an audio stream, speaker diarization sys-
tems address the segmentation and clustering prob-
lem in two separated stages [1, 8, 9] or in an in-
tegrated stage [10, 11]. The segmentation of the
audio stream into homogeneous segments (overlap-
ping or not) classically involves voice activity de-
tection (VAD) [12, 13] and speaker change detec-
tion [14]. Upon this segmentation, the speech seg-
ments are cluster into homogeneous speaker groups.
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While a majority of speaker diarization systems are
based on those two stages [1, 8, 9] some also involve
an additional re-segmentation step [15] and recent
approaches are attempting at solving the task by
using an End-to-End neural architecture [16, 17].

This work focuses on speaker diarization to pro-
duce speaker annotations on large audio corpora
collected across years. This task differs from the
classical speaker diarization in three main aspects.
First, the audio stream is collected in a discontin-
uous manner, for instance by recording daily TV
or radio shows. This discontinuity, that is actually
inherent to TV and radio broadcasts or web con-
tents, severely affects the performance of automatic
systems by introducing strong acoustic mismatches
between shows [18, 19, 20, 21]. Moreover, the vari-
ability across shows involves changes of speakers or
topics. Second, the collection of data across years
implies aging of the speakers and evolution of the
recording channel (new compression codecs, various
quality, style changes...). This generates a dataset
shift [22, 23, 24] that data-driven automatic sys-
tems have difficulties to compensate [25, 26, 21].
The third difference with classical speaker diariza-
tion is due to the size of the audio data to process.
Archivers and content managers are collecting thou-
sands of hours of audio a day, every day. As the
collection of audio shows increases endlessly at a
very fast paste, it is thus necessary to process the
stream of data in an efficient manner.

In short, an automatic speaker diarization sys-
tem processing such a data collection has to deal
with a discontinuous stream of audio shows pre-
senting a high cross-show variability and a con-
stantly fast increasing volume affected by a tem-
poral dataset shift. We assume in this work that
the quantity and complexity of the task does not
allow the speaker diarization system to re-process
already processed data and require an incremental
processing. The proposed work flow consists thus
of processing each audio show on arrival, by per-
forming within show diarization and then to link
the speakers from this show with previously seen
speakers in an incremental cross-show diarization
process. The performance of such a system would
strongly depend on two factors: the quality of the
within-show diarization and the robustness of the
system to cross-show variability.
Across time, the quality of the within-show diariza-
tion might degrade due to the dataset shift that
will quickly make the data-driven models of the au-
tomatic systems obsolete. It is therefore essential

Figure 1: Proposed structure of a Human Assisted Lifelong
Learning Speaker Diarization System. While processing an
incoming audio file, the automatic diarization system gener-
ates question for a human expert, whose answers are used
to correct the output of the automatic system and to adapt
the system across time.

to adapt those models to cope with the incoming
stream of data and we propose to address this chal-
lenge via lifelong learning. Lifelong learning is the
process of continuously learn or adapt while per-
forming a sequence of tasks so that the knowledge
leveraged in the past will help performing the future
tasks [27, 28]; in our case we consider that continu-
ously learning on incoming data will contribute to
the robustness of the system to the dataset shift.
Lifelong learning might not be enough to com-
pensate for the abrupt discontinuities across au-
dio shows and the quality of the overall process
rests upon the performance of within show diariza-
tion. For this reason, we propose to involve a
human-in-the-loop to correct the within-show di-
arization and address new events appearing across
time. Amongst possible scenarios, the human-in-
the-loop can initiate interactions with the system
by providing feedback or, in an active learning sce-
nario [29], the system can itself initiate this inter-
action by asking questions to the human.

Figure 1 depicts our vision of a Human-Assisted
Lifelong Learning Speaker Diarization System.
This system embeds an automatic diarization sys-
tem which incrementally processes the incoming
data and asks questions to a human expert. The
answers provided by the human expert are immedi-
ately exploited by a correction module to improve
the system’s output while an adaptation module
leverage information from the incoming data and
the human answers to sustain the performance of
the automatic system across time. Our motivation
in this work is to prepare the ground for research
on human assisted lifelong learning speaker diariza-
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tion.
As a first major contribution, we provide the

necessary framework and materials to develop and
evaluate human assisted lifelong learning speaker
diarization systems (HALSDS). This includes the
necessary data, protocols and metrics. In a sec-
ond major contribution, we mark a step forward
the development of a new protocol for HALSDS by
introducing three human assisted speaker diariza-
tion systems. Faced with the magnitude of the
task and the lack of previous work in the litera-
ture, we limit the scope of this paper to human
assisted within-show diarization systems that only
employ a correction module (no adaptation). More-
over, we only consider, clustering correction with-
out modifying segmentation borders as errors due
to clustering mistakes are often more harmful than
segmentation errors in terms of performance [30].
The article is organized as follows. Section 2 gives
a review of related works and resources. Section
3 describes in details the ALLIES corpus and its
associated protocols that will be made public and
freely available for scientific purposes. Section 4 de-
scribes three automatic speaker diarization systems
and their augmentation with an active-correction
module, as depicted on figure 1. Section 5 describes
classical metrics used for speaker diarization evalu-
ation and introduces new ones especially developed
to evaluate the specific features of human-assisted
lifelong learning speaker diarization. Results and
analyses are reported in Section 6 while Section 7
proposes a deeper discussion on the impact of the
data on the different metrics proposed. The out-
comes and perspectives of this study are eventually
summarized in Section 8.

2. Related works

In this section, we review the wide scope of el-
ements that are necessary to develop and eval-
uate human assisted speaker diarization across
time. The following sections are providing a brief
overview of existing speaker diarization systems;
their use for diarization of collection across time;
the previous attempts to involve a human in the
process; the available corpora and eventually the
existing protocols and metrics.

2.1. A brief overview of speaker diarization systems

It is possible to consider that all speaker diariza-
tion system are taking as input a sequence of au-
dio samples or segments and produce as output a

stream of labels which naturally leads to describe
those systems in two stages: segmentation and clus-
tering.

Segmentation aims at producing homogeneous
audio segments that can be represented with a com-
pact, robust, representation to be later clustered.
Intrinsically, shorter segments are more likely to be
homogeneous. However, longer segments provide
more robust and discriminative representations to
improve the classification performance. This is
the reason why segmentation historically involves
speech activity detection and speaker change detec-
tion to produce audio segments as long as possible.
Speech activity detection is a well studied task
[31, 32, 33] that has achieved recent improvement
with neural approaches [34, 35, 36]. In our study,
we choose a standard approach based on the work
from [37, 14].
Speaker change detection can be achieved by using
statistical models such as in [38, 39, 40] or neu-
ral approaches as in [41, 14] as our work focuses
on clustering we used a well-known statistical ap-
proach that has shown robust performance in the
past on the type of data included in the ALLIES
corpus [42].

Different clustering methods can be implemented
after the segmentation step. Some methods like K-
Means [43, 44] require a preliminary estimation of
the number of speakers, while other like spectral
clustering [45] or Hierarchical Agglomerative Clus-
tering (HAC) [46, 47, 48, 49] can automatically es-
timate this number. Based on the work from [50],
it appears that HAC performs slightly better than
spectral clustering when applied after a classical
segmentation process. This is the reason why two
of our baseline systems use an HAC clustering as
described in section 4.1. Additionally, our choice
of HAC is motivated by its convenience to estimate
the confidence of a clustering choice by measuring
the difference between clustering threshold and dis-
tance between clusters.

Due to recent improvements in acoustic model-
ing, since the rise of i-vectors [51] and then neural-
based embeddings [52, 45, 53, 54], it is now possible
to obtain very robust representation of audio seg-
ments as short as a few seconds. Recent works such
as [8] exploit the accuracy of x-vector representa-
tions to reduce the speaker diarization process to
the clustering of x-vectors extracted on a sliding
window of 3 seconds. The clustering is efficiently
performed by first estimating the number of speaker
with a spectral clustering and then clustering them
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with a simple k-means algorithm. This work opens
avenues in human assisted learning speaker diariza-
tion but the involvement of a human-in-the-loop
within the k-means algorithm is not obvious. This
is the reason why our first attempt makes use of
HAC clustering. In [10, 11], the authors present
another approach that clusters x-vectors extracted
on a sliding window. After automatically estimat-
ing the number of speakers in a file, a Variational
Bayesian HMM (VB-HMM) is used to cluster the
x-vectors by applying an iterative re-segmentation
process. This method has shown excellent perfor-
mance in the latest benchmarking evaluations [55]
and is used as one of the systems for our study. Its
description is given in section 4.1.3.

End-to-End approaches also rely on the fact that
neural networks can directly produce their own lo-
cal representation of the audio signal starting from
very short segments that can be reduced to tens
of milliseconds when processing MFCC or filter-
banks [16, 56, 17] or be as short as the sampling
period. if feeding the network with raw speech sig-
nal [57, 58, 59]. End-to-end systems have shown
good performance in the latest benchmarking evalu-
ations [55] and offer large avenues for improvement.
Since the purpose of this work is to introduce hu-
man assisted learning, we decide to first develop
human assisted systems starting from two types of
approach: one based on x-vectors and HAC clus-
tering and the other based on VB-HMM that has
shown to be the best stand-alone system in recent
evaluations.

2.2. Diarization across time

In the literature, a few works have addressed
cross-show diarization and its challenges [21, 60, 61,
62] but to our knowledge, none of them has released
a complete protocol on publicly available data.

2.3. Corpora for speaker diarization

Most of the existing corpora for speaker di-
arization do not include cross-show speaker IDs
and are thus not usable for cross show diarization
[63, 64, 65, 66, 9, 67]. Other corpora in which cross-
show speaker IDs exist are too small, in terms of
number of shows [68] or speaker [69] to be used
for cross-show diarization. Additionally, those cor-
pora which include cross-show speaker IDs are not
provided with the time steps including the date
that are necessary for lifelong learning diarization
[70, 71].

The number of speakers and the ratio of speech
per file is an important variability factor that can
affect speaker diarization performance. The num-
ber of speakers can be either fixed [63, 65, 70],
or variable as in [71] where it ranges from 1 to 21
speakers per file. Corpora collected from telephone
conversations, TV or Radio and meetings usually
offer a high ratio of speech duration. On the oppo-
site, the very special context of the Fearless Steps
corpus [68], extracted from the APOLLO-11 mis-
sion, provides about 100 hours of recordings includ-
ing only 36% of speech. The amount of overlapped
speech also strongly affects the performance and
is intrinsically linked to the type of data; focusing
on overlapped speech, the AISHELL-4 [72] corpus
shows an overlap ratio of 18.2% while, by construc-
tion, there is no overlap in the CHiME-5 [70].

Most of the corpora only include English speech
[64, 70, 68, 65]. Amongst the few other lan-
guages available for speaker diarization, one can
cite AISHELL-4 [72] in Chinese Mandarin or Al-
bayzin [69] in several Spanish languages.

Although there is a variety of speech corpora
which can be used for speaker diarization, we found
that no existing corpus gathers all required charac-
teristics to enable lifelong learning speaker diariza-
tion, especially. Existing corpora lack the chrono-
logical time stamps (dates) that are necessary for
lifelong learning and speakers appearing in several
files with a unique ID that enables linking speakers
across the entire collection. Those are the reasons
why we introduce the ALLIES corpus, an extension
of existing French corpora released for the ESTER
[73], REPERE [18] and ETAPE [20] benchmarking
campaigns.

2.4. Human assisted learning for diarization

Modern diarization systems achieve decent per-
formance depending on the type of data they pro-
cess [14] but those performances are often not good
enough to deploy such systems without any human
supervision [9, 30].

Human assisted approaches have been developed
for other speech processing tasks, including speech
recognition [75, 76, 77], language recognition [78],
speech activity detection [79] or speech emotion
recognition [80], but are not directly applicable to
speaker diarization. Literature on human assisted
speaker diarization is very sparse and existing ap-
proaches are complementary to our work more than
competitive. In [81], active learning is used to find
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Table 1: Comparison of existing diarization corpora for the purpose of human assisted lifelong learning speaker diarization.
Name Language Duration # Speaker Cross-show speaker ID Recording time for Lifelong Detail

CALLHOME [63] Multilingual 20 h 2–7 Spk./file No No Telephone conversations
AMI [64] English 100 h 3-5 Spk./file No No Meeting

Voxconvers [71] Mostly English 74 h 1-21 Spk./file Yes No Conversation from YouTube video
CHiME-5 [70] English 50 h 4 Spk./file Yes No Conversations in the home environment

APOLLO-11 [68] English 100 h 34 Spk./hour Yes, but only 30 files No Only 36% speech, speaker turn duration 0.5 s
AISHELL-4 [72] Mandarin 118 h 4-8 Spk./file unknown unknown Conference venues, 18% overlap ratio
DIHARD3 [67] Multilingual 67 h 1-7 Spk./file No No Contains different styles
LibriCSS [65] English 10 h 8 Spk./file No No Simulated dialogs
Albaizin [69] Spanish 569 h Avg. 27 Spk./file Yes, but only 166 speakers Yes TV broadcast

MGB [74] English 1600 h unknown Yes Yes (Only 1m:20d) TV broadcast

the initial number of speakers in a collection of doc-
uments. The human is then not involved anymore
after this preliminary step. In [82], multi-modal ac-
tive learning is proposed to process speech segments
according to their length and obtain missing labels;
a task that is out of the scope of our study. In [83],
active learning is used to leverage training data and
improve a speaker recognition system and could be
similarly used for clustering. In [30], the authors
propose an active learning framework to apply dif-
ferent types of corrections together with metrics to
evaluate the cost of human-computer interactions.
This work is based on a chronological correction
process that can strongly limit the efficiency of the
process. Our work is thus complementary to exist-
ing ones as we focus on on-line clustering correction
where questions can be asked by the system regard-
less of any chronological constraint.

2.5. Evaluation and analysis of automatic and hu-
man assisted diarization

Performance of speaker diarization systems is
usually reported in terms of diarization error rate
(DER) [84] and more recently of Jaccard error rate
JER [67] that gives a higher weight on clustering
errors. Segmentation is evaluated by combining
purity and coverage additionally with detection er-
ror rate that provides information on the quality of
speech activity detection as in [85].

The performance of diarization systems has been
investigated in several studies [86, 87, 88] to find
the features that affect the diarization error. These
features can be related to speakers or to the acous-
tic and transmission conditions of the recordings.
These analyses provide an insight on the perfor-
mance of automatic systems and directions for fu-
ture improvements. In [87], the authors report the
predominance of speech activity and speech overlap
detection errors. In [88], the authors propose a per-
formance prediction paradigm assuming that infor-
mation related to the speech duration of a speaker
and speaker turn duration can help the systems to

recognize this speaker. In [86], two evaluation cri-
teria are proposed: Nuttiness that measures char-
acteristics causing high DER and Flakiness that
measures the stability of performance of different
systems on a given audio file. The authors calcu-
late the Spearman correlation coefficient between
various features of the input audio and diarization
performance in order to have better understanding
of diarization output.

In the context of human assisted diarization, the
cost and the quality of human interaction must be
evaluated. Keystroke Saving Rate (KSR) [89] which
is the number of keyboard strokes made by the user
can be used in some platform but is highly depen-
dent on the user interface and does not allow easy
comparison between systems. In order to propose
a metric that enables a fair comparison between a
wide range of systems and that can be expressed
in the same unit as DER we propose to focus on
the amount of time required for human interaction.
This idea, first introduced in [30], has been refined
and extended in [90] where we proposed a penalized
error that integrates the interaction cost together
with the diarization error rate. In this work, we in-
vestigate this metric and report the Penalized DER
[91] for our experiments.

3. The ALLIES corpus and associated pro-
tocol

In this section we introduce the ALLIES corpus,
designed to enable development and evaluation of
human assisted lifelong learning speaker diarization
systems. For this purpose, the ALLIES corpus in-
cludes the date of each audio recording and a large
number of recurrent speakers over the years (i.e.,
speakers who speak in many shows over the years
and are consistently labeled). In this article, we
consider a show as a session of a given show title
(i.e. BFM Story) and shows are processed indepen-
dently from the show title itself. As shown in Table
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1, those characteristics are unique amongst publicly
available corpora for speaker diarization.

3.1. An extension of existing corpora

The ALLIES corpus has been designed to gather
and extend existing French corpora collected for
ESTER [73], REPERE [18] and ETAPE [20]
projects. The ALLIES data comes from 1,008
French TV and radio shows collected from 7 Ra-
dio stations and 4 TV channels for a total amount
of audio data consisting of 25 days, 12 hours and 46
minutes out of which 53% are annotated (13 days,
16:21:17). Table 2 displays the statistics of ESTER,
REPERE, ETAPE compared with the ALLIES cor-
pus. This section details the history of the ALLIES
corpus, its statistics in terms of speakers and gives a
special focus on temporal statistics before describ-
ing the corpus partition proposed for experimental
purposes.

Table 2: Statistics of the ALLIES corpus and previously
released part of this corpus.
Corpus ESTER ETAPE REPERE ALLIES

# shows 157 73 291 1,008
# spks per show 28.4 10.5 9.6 11.6
# unique spks 3,059 688 1,518 5,901
Annotated time (h:m:s) 110:40:48 34:09:26 52:37:26 328:21:17
Speech ratio 0.97 0.96 0.94 0.96
Overlap ratio (%) <1 3 4 3
Start date 1998-12-17 2010-02-03 2011-07-06 1998-12-07
End date 2008-12-02 2011-05-26 2013-04-24 2014-12-01

Note that the current ALLIES corpus is already
being extended with new audio material but also
with more annotation on the available audio. This
material will be added to the corpus over the years.
The new data collected for the ALLIES corpus has
been precisely annotated for overlapping speech. In
the new set of data, overlapping speech segments
(3.2% of the total time) involving two speakers are
annotated with the name of the speakers, while seg-
ments involving three speakers or more are labeled
”+3”.

3.2. Speaker statistics

The ALLIES corpus includes 5,901 unique speak-
ers recorded over 16 years which ensures an impor-
tant intra-speaker variability due to the aging of
recurrent speakers. Note that TV and Radio shows
are labeled with the date of their first broadcast,
which means that the age of most speakers in a
recording is consistent with the date of recording (of
course it is possible that a minor part of the shows
include archived recordings). The longest period of

a speaker appearance is longer than 15 years (from
1998-12-10 to 2014-06-15. This speaker appears in
12 shows within the ALLIES corpus.

Some speakers appear more than hundred times
in different shows of the corpus over months or
years. Table 3 and Figure 2 provide a more de-
tailed picture of the top recurrent speakers appear-
ance across years.

Table 3: Appearance of the most recurrent speakers in the
ALLIES corpus across years
#Speakers Min #occurrences Avg. recording period

1 146 1107 days
10 27 965 days
50 5 1502 days
1018 2 785 days

Recurrent speakers are necessary to evaluate the
performance of incremental cross-show diarization.
On average, 49% of the speakers encountered in
a show have already been seen in the past (in a
show with older recording date). Additionally, the
detection of recurrent speakers is very important
for practical reasons (evaluation of fairness before
elections, sociological studies across time...) and in
terms of performance as they count for 42% of an-
notation time. Recurrent speakers are not only pre-
senters or journalists who appear in a single series
of shows with homogeneous acoustic condition and
speaking style. In average, odds are higher than
7% (resp. 2%) for a recurrent speaker to have been
seen in the past in a show from a different series
(resp. channel).

Speaker turn duration can have a huge impact
on diarization performance and is strongly depen-
dent on the type of show. Analyses given in [1]
show that speaker turn duration in broadcast news
is longer than in other contexts. The average dura-
tion of speaker turn in ALLIES is 14.1 seconds with
a large standard deviation of 27.46 seconds which
highlights the wide diversity of show genres that is
covered by the ALLIES corpus.

3.3. Partitioning of the ALLIES corpus

To enable fair comparisons of systems on the AL-
LIES dataset we propose an evaluation protocol,
that will be used for the ALLIES challenge1. The
dataset is chronologically split into three disjoint
parts: a Training set, a Development set and an

1https://git-lium.univ-lemans.fr/Larcher/

allies-evaluation
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Figure 2: Chronological appearance of all recurrent speakers in the ALLIES corpus according to the recording date. Each
horizontal line corresponds to a unique speaker and each dot represents one occurrence of this speaker at this date (x-axis)

Evaluation set (see Figure 3). The partition has
been done so that the three sets include respectively
40%/30%/30% of the annotated data (in terms of
annotated speech duration). Table 4 lists channels,
shows and durations for each partition of the AL-
LIES corpus.

To get a better sense of the chronology of the AL-
LIES corpus, Figure 3 displays the cumulative du-
ration of annotated data across time together with
the time limits of the Training , Development
and Evaluation sets.

Due to historical reasons in the collection process,
the duration of annotated data is highly variable
across shows; for instance: the only show from the
Culture radio channel includes 1h01m04s of annota-
tions, while the average duration of annotations for
Planete Show Biz is less than 2 minutes (see Table
2). For the same historical reasons, the sampling of
TV and Radio shows is not uniform across time. It
explains why the Training set runs over 12 years
while Development and Evaluation sets spread
over 16 and 34 months respectively.

The number of speakers in the three partitions
is also very different. In Figure 4, a Venn diagram
displays the number of speakers for the three parts
of the corpus with details of speakers overlapping in
the different partitions. The ALLIES corpus con-
tains 66 speakers who appear in the three parts of
the corpus and 261 speakers who appear both in
Development and Evaluation parts.

3.4. The ALLIES protocols

Designed for human assisted lifelong-learning di-
arization, the ALLIES corpus can also be used for a
classic speaker diarization task as reported in Sec-
tion 6. The protocol for this task is given in the fol-
lowing section and extended later for lifelong learn-
ing.

3.4.1. Human assisted diarization protocol

In this protocol, data from the Training set
can only be used to train the initial automatic
system, possibly with additional data. After this
step, Training data is discarded. In the following
steps (i.e., development and evaluation), each show
is processed with the exact same initial automatic
system. For each single show, the system is free to
use data from this unique show in any way without
using the Training data.

Additionally, using a questioning and correction
module (see Figure 1), the system can interact with
the simulated human expert by asking two types of
questions: (i) questions related to the clustering:
“Are the speakers speaking at time t0 and t1 the
same?” (ii) and questions related to the segmen-
tation: “What are the borders of the speaker turn
around time t?”. The answers of these questions
can be retrieved from the reference annotation to
adapt the system or correct the system hypothe-
sis. After processing a show, the system is reset to
its initial state (this scenario does not include any
sequential processing).
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Table 4: Global partitioning of the ALLIES corpus recorded from 4 channels and 19 show titles with their corresponding
annotated duration (and number of shows). All durations are given in hh:mm:ss format.

Type Channel Show title Total Training Development Evaluation

TV
(204:14:03)

BFM
BFM Story 26:40:33 (49) 2:28:29 (3) 12:45:46 (25) 11:26:18 (21)

Planete Showbiz 2:24:14 (73) - 2:24:14 (73) -
Ruthel Krief 0:21:06 (4) - - 0:21:06 (4)

LCP

Ca Vous Regarde 24:22:29 (45) 1:32:18 (2) 14:58:13 (27) 7:51:58 (16)
Culture Et Vous 2:45:12 (87) - 0:16:49 (8) 2:28:23 (79)
Entre Les Lignes 25:32:35 (62) 0:52:47 (2) 10:36:20 (29) 14:03:28 (31)

LCP Actu 21:34:51 (80) - - 21:34:51 (80)
LCP Info 46:40:14 (156) - 28:54:48 (97) 17:45:26 (59)

Pile Et Face 25:57:08 (76) 2:13:07 (5) 14:40:09 (46) 9:03:52 (25)
Top Questions 24:08:38 (104) - 9:59:32 (46) 14:09:06 (58)

TVME - 2:09:23 (8) 2:09:23 (8) - -
TV8 - 1:37:40 (4) - 1:37:40 (4) -

Radio
(124:07:14)

Africa1 - 3:47:36 (18) 3:47:36 (18) - -
Classique - 1:00:04 (1) 1:00:04 (1) - -
Culture - 1:01:21 (1) 1:01:21 (1) - -

France Info - 12:00:43 (13) 12:00:43 (13) - -
France Inter - 54:56:52 (86) 52:59:09 (79) 1:57:43 (7) -

RFI - 28:49:18 (38) 28:49:18 (38) - -
RTM - 22:31:20 (103) 22:31:20 (103) - -

Total 328:21:17 (1008) 131:25:35 (273) 98:11:14 (362) 98:44:28 (373)

Figure 3: Cumulative duration of annotated signal across time. The shows recorded before the 18th of October 2010 are used
as Training data, shows between the 18th of October 2010 and the 17th of February 2012 are used as Development data
and the remaining shows (recorded after the 17th of February 2012 are part of the Evaluation data

Data from the Development set can be used to
tune the hyper-parameters of the human assisted
systems but not to retrain or adapt the automatic
system itself. Evaluation set is then provided to
fairly evaluate the systems. While processing the
Evaluation set, adaptation of the automatic sys-
tem and tuning of the hyper-parameters is forbid-
den. Optimal results of three standard systems us-
ing this protocol are provided in Section 6 for the

Development set. Results on the Evaluation set
will be published after the ALLIES Challenge.

3.4.2. Lifelong-Learning protocols

Compared to the previous scenario, this one con-
siders the sequential processing of shows across time
to evaluate human assisted lifelong-learning sys-
tems. In this scenario, the Training set can be
used the exact same way as previously to train an
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Figure 4: Number of speakers in different partitions of AL-
LIES corpus and the number of common speakers.

initial system. The Training data is then set aside
to be re-used anytime by the system.

For Development and Evaluation, the ex-
tension of the previous protocol for human as-
sisted lifelong-learning speaker diarization requires
to strictly process the shows in chronological order.
Each show is processed as described in the previous
protocol with possible interaction with the human
expert. After the system produces its final hypoth-
esis for one show, the next show (in chronological
order) is then processed without resetting the sys-
tem, i.e., when processing one show, the system can
make use of any information gathered on previously
seen shows, including models of previously encoun-
tered speakers that are used for cross-show cluster-
ing (speaker linking across shows). Development
data can be used to optimize the hyper-parameters
of the system that are then fixed when processing
the Evaluation set.

For Evaluation, two lifelong-learning protocols
are proposed depending on the state of the human
assisted diarization system when starting process-
ing the Evaluation set. In a first scenario, named
ALLIES-reset-lifelong, it is possible to use the ini-
tial system trained on Training set with hyper-
parameters tuned on Development set. In a sec-
ond scenario, named ALLIES-lifelong, one can start
processing the Evaluation using a version of the
human assisted diarization system that has already
gathered knowledge by processing the Develop-
ment set. In this former scenario, the system might
have learned about the speakers encountered in the
Development set.

The remaining of this paper focuses on within
show human assisted diarization. This is a first step
toward lifelong human assisted diarization. Cross
show and incremental diarization are not performed
in this work and will be published in the future.

4. Human Assisted Diarization Systems

This section first describes three baseline diariza-
tion systems that are used to provide a wider view
of diarization performances on the ALLIES corpus.
Second, it presents the proposed question genera-
tion module and correction module that are used
on top of each of the three baseline systems. In
the followings, only the human assisted diarization
protocol is investigated. It means each baseline di-
arization system is considered fixed after its initial
training. Highly dependent on the baseline system
architecture, the adaptation module is let out of the
scope of this work. The adaptation module will be
investigated in future works.

Diarization errors can be due to wrong segment
borders or wrong label allocation. The former error
being the most harmful in terms of performance
[30], this work only focuses on correcting labeling
errors, i.e. clustering errors.

4.1. Automatic diarization systems

Figure 5 provides an overview of the 4-step auto-
matic diarization process. The automatic systems
can be described as a succession of two phases: ini-
tial segmentation and clustering. The first phase is
common to all systems while the clustering differs
between systems.

4.1.1. Initial segmentation

The initial segmentation is illustrated as step
1 in Fig. 5. The LIUM Voice Activity Detec-
tion (VAD) system is used to segment the audio
stream by discarding non-speech segments (silence,
noise, breathing, etc.). This VAD, based on stacked
LSTM [14], is implemented in the S4D open-source
framework [92]. The output of the network is
smoothed by removing non-speech segments shorter
than 50ms and speech segments shorter than 25ms.
In order to investigate the impact of clustering cor-
rection on diarization performance without inter-
fering with segmentation errors, all results will also
be provided by using an ideal speech activity de-
tection obtained from the ground truth annotation
and referred to as the reference segmentation (ref ).
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Figure 5: Diarization steps of the Evallies systems; 1. Initial
segmentation that withdraws non speech part of the given
audio stream is obtained by using the reference segmenta-
tion or an automatic Voice Activity Detection system, 2.
BIC-HAC clustering, 3. Extraction of x/i vectors from each
cluster of segment obtained from the previous step, 4. Sec-
ond clustering step using PLDA

4.1.2. Evallies systems

The Evallies diarization systems are based on a
hierarchical agglomerative clustering (HAC). Two
flavours of this system are used: one with i-vectors
and the other one with x-vectors. The three steps
of this system are the following ones:

• BIC-HAC (step 2 in Fig. 5): A first HAC is per-
formed on vectors of 13 MFCC using the BIC
criteria [92] starting from the initial segmenta-
tion (VAD or ref ). When using VAD segmen-
tation, the initial clustering result is followed
by a Viterbi decoding to smooth the segment
borders along the audio stream. The thresh-
old of BIC-HAC is optimized based on the final
DER on a development set.

• i/x-vectors representation (setp 3 in Fig. 5):
The i/x-vectors (iv or xv) are extracted from
each speaker turn and averaged to provide a
single i/x-vector per BIC-HAC cluster. The
i-vectors [51] extractor, including a 256 com-
ponent UBM and a total variability matrix of
rank 128 is trained on the ALLIES Training
set, while the Half-ResNet34 used for x-vector
extraction [93, 94, 95] is trained on a larger set
of data combining VoxCeleb1&2 [96, 97].

• HAC clustering (step 4 in Fig. 5): A sec-
ond HAC clustering is performed by using i/x-
vectors. The distance matrix used for this clus-
tering is computed using a PLDA [98] trained

on the Training set. The threshold of this
clustering is also optimized based on the final
DER on the development set.

In the remaining, the flavour of the Evallies system
using i-vectors (respectively x-vectors) is named
Evallies iv (respectively Evallies xv).

4.1.3. VBxHMM system

The third baseline system is the VBxHMM sys-
tem proposed in [11]. Starting from the ini-
tial segmentation, x-vectors are extracted using a
ResNet34 on a sliding window of 1.5s with a shift
of 0.25s and then centered, whitened and length
normalized. The x-vectors are pre-clustered using
HAC (with cosine similarity) to obtain the initial
speaker labels. Eventually, x-vectors are further
clustered using the VBx model after applying a di-
mensionality reduction. The optimal HAC thresh-
old and VBx hyper-parameters are tuned to opti-
mize the DER on the development data. A deeper
description of this system is given in [11]. All pa-
rameters from this system are trained on VoxCeleb
1 & 2 [96, 97].

4.2. Active correction process

The active correction module detailed in this sec-
tion is composed of three parts: a confidence esti-
mation module, a questioning module and a cor-
rection module. An initial hypothesis (illustrated
on Fig. 6) is generated once using an automatic
within-show diarization system (Evallies HAC clus-
tering or VBxHMM). Based on the initial clusters
obtained automatically, the confidence estimation
module ranks the audio segments that are likely
to be wrongly annotated. Exploiting the human
expert answers, a correction module modifies the
initial hypothesis. Our motivation in this work is
to produce an active correction system that is inde-
pendent of the baseline system. Note that the cur-
rent implementation of the active correction system
only modifies the clustering and does not modify
borders of the segments.

4.2.1. Confidence estimation module

We propose to represent the initial hypothesis
with a clustering tree that is obtained in a three-
step process illustrated on Fig. 6.

1. For each initial cluster, a HAC is performed
(on MFCCs with a BIC criteria). A thresh-
old, set experimentally, is used to determine
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Figure 6: Active correction steps; 1. For each cluster of basline diarization system (Evallies or VBxHMM systems) run BIC-
HAC to generate sub-clusters, 2. Extracting x-vector per sub-cluster and link them with HAC, 3. Extract x-vector per cluster
and link them with HAC (active correction would be applied only on the links generated in step 2 and 3)

sub-clusters of segments. Those sub-clusters
will be considered as non-separable during the
human correction process. This BIC-HAC pre-
vents from extracting speaker representations
from segments too short to contain enough in-
formation (see Figure 6, step 1).

2. i/x-vectors are extracted for each sub-cluster
generated after step (1), and linked by another
HAC (based on PLDA log-likelihood) to cre-
ate a clustering tree. After this step, each ini-
tial cluster is divided in sub-clusters linked in
a clustering tree. Such a clustering tree will be
now referred to as sub-tree (see Figure 6, step
2).

3. All sub-trees are finally linked to create a
between-cluster tree. Similarly to step (2),
one i/x-vector is extracted for each cluster cre-
ated by the automatic diarization system and
a third HAC (based on PLDA log-likelihood)
generates a final between-cluster tree for the
entire audio stream, which leaves are the non-
separable sub-clusters (see Figure 6, step 3).

These three steps generate a dendrogram based
on the initial hypothesis and the PLDA score. Fig-
ure 6 illustrates two types of node. Within-cluster
nodes are below the initial hypothesis (2, 4 and 6),
they merge two branches of the tree (two clusters)
that are supposed to belong to the same speaker

(according to the automatic system). Between-
cluster nodes are above the initial hypothesis (1,
3 and 5) merge clusters that belong to two differ-
ent speakers (according to the automatic system).
For human assisted correction, we define a confi-
dence metric c for each node in the dendrogram;
the further from the initial hypothesis, the higher
the confidence. For a between-cluster node, c is the
inverse PLDA score. For a within-cluster node, c is
the PLDA score. We propose to rank all nodes by
their confidence (from lowest to highest) in order to
obtain one single ranked list of nodes to investigate.

4.2.2. Questioning module

The numbers assigned to nodes in Figure 6 shows
the order of questions (1 to 6) which follows the con-
fidence ranking. For example node 1 is considered
with less confidence than node 6.

Correction module. This work considers that the
human expert can only be asked the following ques-
tion: ”Do the two branches of the node belong to the
same speaker?”. A ”yes” answer from the human
expert requires either to join the two branches of
a node above the threshold (merging operation) or
to leave as it is the branches of a node below (no
splitting required). In case of a ”no” answer, a node
above the threshold is not modified (no merging re-
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quired) and the two branches of a node below the
threshold are separated (splitting operation).

Limitations of the questioning module. Question-
ing each node of the clustering tree would minimize
the error, but would induce a prohibitive cost of hu-
man interactions. To constrain this cost, we impose
two limitations to reduce the number of questions.
The first limitation aims at discarding questions ad-
dressing already known information. In case a hu-
man expert confirms that a node is correctly merged
(for example node 4 in Fig. 6), we assume that
asking about its descendants is useless (for exam-
ple node 6 in Fig. 6). Similarly, in case a human
experts answers that a node must be split, its ances-
tors won’t be questioned. To avoid asking useless
questions, we keep in memory human expert an-
swers by considering two sets of nodes. The Stop
separation set contains nodes that should not be
investigated for separation (or splitting). The Stop
clustering set contains nodes that should not be in-
vestigated for clustering (or merging). These sets
are initially empty and updated after each interac-
tion with the human expert. If a question related to
a within-cluster node gets confirmed (respectively
corrected) by the human, all descendant nodes will
be added to the Stop separation set (respectively all
ancestor nodes will be added to the Stop clustering
set). In case a question related to a between-cluster
node gets corrected (respectively confirmed), all an-
cestor nodes will be added to the Stop clustering set
(respectively all descendant nodes will be added to
the Stop separation set). For example, in Figure 6,
if the human expert answers that node 1 should be
merged, (i.e. cluster 1 and 2 belong to the same
speaker), then node 2 will not be investigated for
separation. Note that despite this first limitation,
the number of possible questions can still be very
high.
The second limitation aims at minimizing the num-
ber of questions for which the human expert is likely
to confirm the system’s decision. We propose to
limit possible questions to questions with low con-
fidence. To do so, we set an empirical early stop-
ping criterion called confirmation to stop (C2S ) .
Once the human has confirmed a number C2S of
decisions from the automatic system, this one stops
asking questions. Reducing C2S reduces the risk of
useless questions, while increasing C2S allows the
system to explore a larger part of the tree.

One question asked for a given node of the clus-
tering tree might relate to many audio segments;

indeed, each branch of the node might correspond
to several segments. To facilitate the work of the
human expert, our system selects two audio exam-
ples of each branch of the node under investigation
for the user to listen to. Based on our preliminary
results [91], the longest segment in each branch are
the best candidates for comparing two sub-clusters
and will be used in all experiments.

5. Evaluation

Extending diarization to a human assisted life-
long learning task requires to extend metrics to
take into account the cost of human interaction.
In this section, we first describe the metrics used to
evaluate our baseline systems; additionally to the
classic ones, we introduce a metric that specifically
evaluates the segmentation. Then we give a brief
overview of the Penalized DER introduced in [90].
Eventually, we describe the simulated human ex-
pert module developed to enable reproducible re-
search in the context of human assisted diarization.

5.1. Baseline systems assessment

Diarization results are reported using four met-
rics: the weighed diarization error rate (DER) [84],
the weighed Jaccard error rate (JER) which, unlike
DER, considers an equal weight for each speaker
[67], Purity of clusters and Coverage of speakers
[85].

Additionally, we introduce a Segmentation Er-
ror Rate (SER) to shed a light on the initial stage
of diarization. Since our human assisted diariza-
tion process only focuses on clustering correction,
we use the SER to differentiate between the effect
of both steps of diarization (segmentation and clus-
tering). The SER measures the mismatch between
reference and hypothesis segmentation borders. For
each segment, Sr

i in the reference (resp. hypothe-

sis), the segment Ŝh
i , in the hypothesis (resp. refer-

ence) that has maximum intersection duration with
Sr
i is selected. The duration of Sr

i that does not

have a match in Ŝh
i , referred as tSr

i
, is then divided

by the total duration of Sr
i , noted DSr

i
, to com-

pute a segmentation error rate for the segment Sr
i .

By applying this process in a symmetrical manner
to the reference and the hypothesis, we compute
SERref and SERhyp as detailed in eq. 1 and 2.

SERref =
1

Nref

Nref∑
i=1

tSr
i

DSr
i

(1)
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SERhyp =
1

Nhyp

Nhyp∑
i=1

tSh
i

DSh
i

(2)

where Nhyp is the number of segments in the hy-
pothesis and Nref the number of segments in the
reference. Finally, the Segmentation Error Rate,
SER, is obtained by getting the average of SERref

and SERhyp as shown in eq. 3 :

SER =
SERhyp + SERref

2
. (3)

The measure SER reveals the mismatch of two
segmentation sequences; it increases when segment
borders in reference and hypothesis are not match-
ing, or when several segments in reference (or hy-
pothesis) correspond to a single segment in the
other sequence.

5.2. Human interaction assessment

DER/JER improvement. The assessment of a hu-
man assisted system must take into account the cost
of human interaction together with the quality of
the interaction process. An optimal interaction re-
duces the work of the human while maximizing the
gain in terms of performance. One way to estimate
the cost of the human interaction for diarization is
to measure the DER (resp. JER) improvement, de-
fined as the absolute difference between DER (resp.
JER) before and after the human correction. Penal-
ized DER (DERpen), a metrics introduced in [91],
is used to merge the information about the final per-
formance (after human interaction) with the cost of
the interaction required to reach this result. This
metric adds a constant amount of error time, called
penalized time (tpen), to the diarization error time,
for each question asked to the human expert. Eq. 4
defines the DERpen, where FA is false time, Miss
is missed time, Conf is confusion time of diariza-
tion hypothesis, Ttotal is total duration of audio files
and N is the number of human interactions.

DERpen =
FA + Miss + Conf + N · tpen

Ttotal
(4)

We also propose to use the effective number of
corrections over number of questions ratio (CQR)
as a questioning performance criteria to estimate
the quality of the human interaction.. It is used to
evaluate the early stopping criteria and the question
generation module.

5.3. Simulated human expert

To enable fair and reproducible benchmarking, a
human expert is simulated by using ground truth
reference to provide a correct answer to each ques-
tion. In the context of this study, the system can
ask questions of the form: ”Have the segments A
and B been spoken by the same speaker?”. Since
segments A and B might not be pure (i.e., they
can include speech from several speakers), the sim-
ulated human expert first assigns each segment to
its dominant speaker in the reference. The dom-
inant speaker of a segment is the one with max-
imum speech duration in the reference segmenta-
tion. Eventually, the simulated expert answers the
question by comparing the dominant speakers from
segments A and B.

To establish a lower bound, we also develop an
ideal correction process that does not consider any
limitation of interaction cost. In this approach, all
segments from the hypothesis to be corrected are
matched with their counterparts from the reference
and labeled accordingly with the dominant speaker.
This assignment is done based on maximum inter-
section time between reference and hypothesis seg-
ments. The ideal correction simulates a process in
which all combinations of segments pairs would be
questioned. The main difference of C2S = inf and
the ideal correction is that in the ideal correction,
the protocol described in Section 4.2 is not applied
and no limitation of the interaction costs is con-
sidered. This lower bound provides an opportunity
to disentangle segmentation error from clustering
error; the former one being the main focus of our
proposed human correction process. This simula-
tion is provided as part of the ALLIES evaluation
package2.

6. Experiments

In this study, only within show experiments are
realized. Shows are processed independently and
the average of DER is weighed based on their du-
ration and referred to as total DER. The total JER
also is computed as the weighed average JER of
all speakers in ALLIES Development set. Cross-
show experiments will be investigated in future
work.

2https://git-lium.univ-lemans.fr/Larcher/evallies
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6.1. Baseline diarization system performance

Performance of the three baseline diarization sys-
tems introduced in 4.1 are reported in Table 5 when
using an automatic VAD, or the reference segmen-
tation as initial segmentation.

One can expect the SER to be null when using
the reference segmentation, but it can be observed
in Table 5 that this is not the case. This non-zero
SER can be explained by the merging of two con-
secutive segments or by the pre-processing step (the
segmentation smoothing, and possibility of merg-
ing two segments in BIC-HAC, see 4.1) that is ap-
plied on top of the initial segmentation. Note that
improving the SER mechanically improves Purity,
Coverage and DER.

SER are eight times higher when using the VAD
compared to the initial segmentation (it is not the
case for VBxHMM due to re-segmentation inherent
to this system) and this error is not corrected by
our human assisted process that only focuses on
clustering correction.

VBxHMM system performs significantly better
than the two Evallies HAC-based systems for all
metrics except SER where performance is equiva-
lent. Obtaining a DER of 16.19% with VAD and
10.44% with the reference segmentation, Evallies-
xv performs slightly better than Evallies-iv which
achieves 17.24% and 11.08% in the same conditions.

Comparing the number of estimated clusters with
the number of speakers in the reference shows that
the use of an automatic VAD segmentation for the
Evallies system results in under-clustering, while
the VBxHMM system detects the correct number
of speaker.

6.2. Human assisted correction performance

Table 6 shows the performance of the three base-
line systems after applying the proposed active cor-
rection process with different configurations. The
first conclusion is that this process improves the
performances of all systems in terms of DER and
JER when using VAD or reference segmentation.

As a reference, the bottom line performance ob-
tained with Ideal correction is given for each sys-
tem and both initial segmentations. As explained
in Section 5.3, it corresponds to the optimal perfor-
mance that can be obtained when applying cluster-
ing correction without any limitation of interaction.

As expected, increasing the confirmation to stop
(C2S ), i.e., increasing the possibility of having more

corrections, leads to a lower DER. The observa-
tion of the correction to question ratio (CQR) re-
veals that the system asks more useless questions
when increasing the C2S (i.e., CQR decreases when
C2S increases). This result suggests that increas-
ing C2S leads to more corrections but that more
non-informative questions will be asked, leading to
high human interaction cost with limited gain.

DERpen, proposed in [90], includes the cost of
questions together with the final DER after correc-
tion. As expected, DERpen is minimum for low
values of C2S (1 or 2) and increases for higher val-
ues, as shown in the last column of Table 6. For all
systems using reference segmentation, DERpen is
lower than baseline DER for all C2S values, high-
lighting the importance of improving the segmen-
tation process. A growing DERpen means that
corrected segments are shorter than tpen, the time
spent to correct it, or that the re-labeled clusters are
not pure enough, bringing more degradation than
benefit when re-labeled. This will be the topic of
a future work on improving the correction process,
especially focusing on segmentation errors.

Efficiency of the correction strongly depends on
the design of the human-computer interface that is
not the topic of this work. However, Figure 7 gives
an overview of the benefit that can be obtain when
reducing the interaction time (tpen). On this figure,
baseline DER (before correction) and final DER
(after correction) are given by the dash line and
the blue bars respectively, while penalization (time
spent by the human expert to reach this final DER)
is given by the upper colored bars. Remember that
DERpen is the sum of the final DER and the penal-
ization. For all three systems, applying corrections
leads to lower DER but one can observe that de-
pending on the correction time (tpen), the balance
between time spent for correction and time of signal
corrected during the process is not always positive.
For instance, spending 8 seconds for each correction
leads to a DERpen that is higher than the baseline
DER for all systems and C2S values. For Evallies-
iv (resp. Evallies-xv) system, it is reasonable to
dedicate up to 4 seconds (resp. 2 seconds) per cor-
rection while for VBx a correction time higher than
1 second leads to a DERpen higher than DER base-
line for any C2S value. Note that the comparison
between DERpen and DER only reflects a global
correction benefit as more corrections always leads
to lower DER. Ideally, the quality of the correction
module should be compared to a fully manual cor-
rection, which will be the topic of a future work.
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Table 5: Baseline systems performance: segmentation error rate (SER), False time ratio (FA), Miss time ratio (Miss), Confusion
time ratio (Conf), Diarization error rate (DER), Jaccard error rate (JER), Purity, Coverage, and the average Number of Speakers
± 95% confidence interval (the number of speakers in the reference is 9.81±0.63 ) with two initial segmentations: reference or
VAD

Segmentation Systems SER FA Miss Conf DER JER Purity Coverage Num. Spk.

VAD
Evallies-iv 0.16 2.12 4.54 10.57 17.24 32.13 80.50 88.04 21.06±1.09
Evallies-xv 0.16 2.05 4.69 9.46 16.19 31.49 80.65 87.88 20.41±0.98
VBxHMM 0.17 2.15 4.31 4.56 11.01 14.42 84.34 88.46 9.41±0.64

ref
Evallies-iv 0.02 0.72 1.99 8.37 11.08 17.51 99.98 99.84 8.31±0.58
Evallies-xv 0.02 0.73 2.04 7.67 10.44 16.17 99.98 99.84 8.57±0.58
VBxHMM 0.14 0.21 4.27 4.89 9.37 11.52 94.52 88.70 9.33±0.64

Figure 7: The impact of different penalization of asking ques-
tions for systems using VAD result as initial segmentation.

7. Discussion

Nuttiness (hard to crack) was introduced in [86]
as the ”exhibition of high DER” to understand why
some audio files show unusual high DER. In this
section, we investigate some speaker and show char-
acteristics, and also the impact of the human cor-
rection process, together with system performances
in order to try to predict the nuttiness of an audio
file.

To identify shows that could lead to nuttiness,
the Figure 8 summarizes DER and DER improve-
ments for each series of shows obtained with the
Evallies-xv system. It reveals that diarization per-
forms best for some titles, e.g. the DER of Planete
Showbiz is higher than BMF Story. We can also
observe a degradation of DER with the human as-
sisted correction on TV8 title.

7.1. Analysis of the baseline diarization system

Assuming that some shows or speakers are com-
plex, i.e., lead to higher DER or JER, we investi-
gate different features of shows and speakers that
could impact the diarization performance. Intu-
itively, complexity can be due to the type of show
(e.g., number of speakers, background noise), the
collection process (e.g., dates, compression) and the
spontaneity of speech (e.g., intonation variations,
overlaps, etc.).
In the following sections, Evallies-xv system using
VAD result and reference diarization as initial seg-
mentation is used as baseline system. Pearson cor-
relation coefficients, R, are computed between var-
ious show features and 5 metrics which capture the
performance of the baseline system: DER, JER,
coverage, purity and SER. Considering the diffi-
culty of finding significant correlations we only re-
port correlations with a p-value lower than 0.01.
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Table 6: Performance of 3 baseline systems on Development data given in terms of DER, JER, and the average Number
of Speakers ± 95% confidence interval (the number of speakers in the reference is 9.81±0.63 ). Human assisted correction is
evaluated in terms of averaged number of questions per hour (Avg. #Q/h), number of corrections over number of questions
(CQR) and penalized DER (DERpen). The collar is set to 0.250 seconds and penalized time to 4 seconds).

Segmentation System HAL DER JER Num. Spk. Avg. #Q / h CQR DERpen

VAD

Evallies-iv

Baseline 17.24 32.13 21.06±1.09 - - -
C2S=1 15.66 28.52 21.29±1.13 9.82 40.74 16.75
C2S=2 15.31 28.25 21.27±1.13 13.75 33.14 16.84
C2S=4 15.19 28.11 21.23±1.12 17.34 28.85 17.12

C2S=inf 15.17 28.11 21.21±1.12 18.88 27.34 17.27
Ideal 9.08 20.97 28.98±1.46 - - -

Evallies-xv

Baseline 16.19 31.49 20.41±0.98 - - -
C2S=1 14.75 29.03 20.72±1.02 9.16 32.41 15.77
C2S=2 14.59 28.70 20.75±1.02 13.46 27.25 16.08
C2S=4 14.58 28.66 20.75±1.01 17.03 22.79 16.47

C2S=inf 14.57 28.66 20.74±1.01 18.65 20.96 16.64
Ideal 9.05 20.73 29.33±1.46 - - -

VBxHMM

Baseline 11.01 14.42 9.41±0.64 - - -
C2S=1 10.60 13.92 9.63±0.66 7.39 18.33 11.42
C2S=2 10.56 13.83 9.64±0.67 11.89 13.17 11.88
C2S=4 10.45 13.72 9.61±0.67 16.29 11.29 12.26

C2S=inf 10.41 13.67 9.58±0.66 19.08 10.70 12.53
Ideal 6.81 8.94 10.76±0.69 - - -

ref

Evallies iv

Baseline 11.08 17.51 8.31±0.58 - - -
C2S=1 9.01 14.19 8.39±0.59 8.64 34.97 10.00
C2S=2 8.77 13.84 8.35±0.58 12.48 27.69 10.20
C2S=4 8.68 13.75 8.32±0.58 15.85 22.75 10.47

C2S=inf 8.63 13.72 8.3±0.58 17.47 20.99 10.59
Ideal 2.46 1.33 9.73±0.61 - - -

Evallies xv

Baseline 10.44 16.17 8.57±0.58 - - -
C2S=1 8.59 13.46 8.36±0.58 7.62 25.73 9.26
C2S=2 8.55 13.37 8.33±0.58 11.29 20.14 9.74
C2S=4 8.29 13.21 8.3±0.57 14.79 16.67 10.11

C2S=inf 8.26 13.20 8.3±0.57 16.57 14.94 10.31
Ideal 2.46 1.33 9.73±0.61 - - -

VBxHMM

Baseline 9.37 11.52 9.33±0.64 - - -
C2S=1 8.97 11.11 9.55±0.67 7.53 20.27 9.80
C2S=2 8.96 11.02 9.57±0.68 11.96 14.36 10.29
C2S=4 8.85 10.90 9.53±0.67 16.23 12.20 10.66

C2S=inf 8.83 10.80 9.5±0.67 19.15 11.35 10.96
Ideal 4.72 4.25 9.24±0.59 - - -
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Figure 8: Initial DER and DER improvement after clustering correction (c2s=inf) according to title in Dev with VAD’s result.
Simple average without taking into account the show duration. Number of shows and duration of each title can be found in
Table 4.

7.1.1. Segmentation and diarization errors

In Table 5, segmentation errors due to the VAD,
are mostly reflected in the FA rate ('2%) and prob-
ably also affect the Miss rate. This is clearly re-
flected by the SER which is 8 times higher when
using the VAD. For both Evallies systems, this error
affects the confusion rate which is higher by 2 points
when using the automatic VAD. This result con-
firms previous works in the domain but also shows
that x-vectors are relatively robust to the pollution
caused by the segmentation error. Indeed, degra-
dation in terms of confusion is in the same range as
the FA rate.

In [86], the authors report that short speaker turn
durations damages the DER. Indeed, short speaker
turns, possibly due to frequent interruptions or
short sentences, can impact the final diarization re-
sult in two ways. The authors assume it can make
the segmentation task more difficult and increase
the chances of error in VAD segmentation. In the
ALLIES Development set, we observe a correla-

tion of R = −0.27 (p < 0.001) between speaker
turn and SER which weakly supports this hypoth-
esis. The authors of the study also concluded that
short segments will reduce the quality of speaker
embeddings. We found no significant correlation
between speaker turn durations and DER when us-
ing VAD segmentation (R = −0.08; p = 0.11). This
correlation is slightly higher with the reference seg-
mentation (R = −0.23; p < 0.001) but is not con-
clusive. Our finding seems to support the idea that
speaker representation has made great progresses
during the last decade and is now more robust to
the perturbations introduced by segmentation er-
rors.

According to our study, the major factor affecting
segmentation errors is a compression mismatch that
appears for some files in the ALLIES corpus. We
found that the compression of audio file is slightly
correlated with SER (R = −0.36; p < 0.001). How-
ever, it does not significantly affects the DER when
considering the reference segmentation (R = −0.07;
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p = 0.21), which demonstrates the robustness of x-
vectors to the audio compression observed in this
corpus.

7.1.2. Dominant vs. minor speakers

In order to investigate the correlation of JER and
speakers, different features related to the role of
speakers such as appearance duration and number
of appearance in a given show have been computed.

We selected the 50 and 100 speakers from the
Development set having the longest appearance
duration within a show: for the top 50 speakers,
they appear more than 750 sec. in each show where
they are present while the 100 majors speakers ap-
pear more than 634 seconds. We found that JER
and appearance duration are correlated with a co-
efficient R = 0.53 for the top 50 and R = 0.60 for
the top 100 (both with a p-value of p < 0.001).
When considering all speakers, these features are
not correlated. This reveals that major speakers
(in duration) are more difficult to diarize.

Similarly, for minor speakers, i.e., the 50 speak-
ers and 100 speakers having the shortest duration
appearance, JER and appearance duration are neg-
atively correlated with a coefficient R = −0.41
(p < 0.001). Those observations indicate that
minor and major speakers are the one exhibiting
the highest JER and highlight the fact that auto-
matic systems are developed to minimize averaged
DER and JER, which probably implies an over-
optimization for average speakers and raises the is-
sue of out-layers (the tails of the speaker distribu-
tion). Taking into consideration the role of speakers
within a show seems an interesting avenue to tackle
this effect. The question of cluster purity for ma-
jor speakers and the poor performances on minor
speakers will be investigated in future work.

7.2. Analysis of the human correction process

In this section, the impact of the human correc-
tion process, measured using the DER improve-
ment, the JER improvement and the number of
generated questions (CQR) is also analysed with
regard to show and speaker features.

Figure 9 shows the average DER improvement
obtained for the ten first ranked questions asked
during the human assisted correction process for
each of the three baseline systems. For the two
Evallies systems, the first questions bring the high-
est improvement in DER, which confirms the effi-
ciency of the question generation module based on

our clustering confidence measure. For VBxHMM,
our question generation module is not able to rank
most useful questions first, and it is the second
question asked to the simulated human expert that
brings the best improvement in terms of DER. This
is probably due to the fact that our question gener-
ation module confidence criteria is the same as the
one in Evallies systems but differs from the one in
VBxHMM system.

Figure 9: DER improvement and ratio of generated ques-
tions in question order. The first questions are generated
more often and gain more DER improvement.

No correlation between show features and DER
or JER improvement has been found in our study.
Deeper investigations are required to understand
the nuttiness of shows in human correction process.

8. Conclusion

In this article, we have prepared the ground for
human assisted lifelong speaker diarization. We
have proposed a complete set of resources to sup-
port the development and evaluation of human as-
sisted speaker diarization systems including a new
corpus, protocols and metrics for this task. The
ALLIES corpus, build as an extension of previously
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existing corpora, offers a large quantity of data in-
cluding 1,008 TV and radio shows recorded over
more than 14 years with many recurrent speak-
ers. This characteristic makes it useful for speaker
diarization within and across shows, but also for
speaker verification as aging of speakers and var-
ious acoustic conditions makes it very challenging
for this task. The release of a protocol for speaker
verification on this data is part of an on-going work.
Note that this corpus is currently used for the AL-
LIES challenge and will be publicly released for free
after this challenge.

A simulated human expert has been developed
to enable fair and reproducible evaluation of the
human assisted learning process. This simulated
human expert is able to answer different types of
question from the automatic system and will be ex-
tended in the future to answer questions related to
segmentation, cross-show speaker diarization and
other types of questions. Note that this simulated
human expert is released for the ALLIES challenge
as part of an open-source package3.

We have reported various performances on the
ALLIES corpus with three automatic baseline sys-
tems without and with human assisted correction.
To our knowledge, this work is the first attempt
to develop an active speaker diarization system for
which the human operator is involved along the di-
arization process through an active correction pro-
cess. Amongst those systems, two are released in
our git repository3 together with the proposed con-
fidence estimation module, and questioning mod-
ule.

In this work, we have also extended our previous
work on metrics for human assisted diarization by
proposing a segmentation error rate that has been
shown useful to better understand the performance
of the different steps of the diarization system.

This work opens many avenues for future re-
search on human assisted speech processing and
many works are already engaged in this direction.
The ALLIES corpus is currently being extended to
extend its time coverage over 20 years and increase
the number and sessions of recurrent speakers. The
current human assisted speaker diarization system
will be extended for incremental cross-show diariza-
tion across time. Impacts of TV versus radio chan-
nels will be investigated in futur work. Our aim
is to develop an incremental adaptation module in-
cluding an evolutive speaker embedding extractor

3https://git-lium.univ-lemans.fr/Larcher/evallies

to automatically adapt to new speakers and acous-
tic environments. Eventually, as discussed above,
we believe that the ALLIES corpus can benefit the
speaker verification community and plan to release
a speaker verification protocol on this dataset.
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M. Gómez, A. De Prada, Albayzin 2018 evaluation:
the iberspeech-rtve challenge on speech technologies for
spanish broadcast media, Applied Sciences 9 (24) (2019)
5412.

[70] J. Barker, S. Watanabe, E. Vincent, J. Trmal, The fifth
CHiME speech separation and recognition challenge:
dataset, task and baselines, in: Annual Conference of
the International Speech Communication Association
(INTERSPEECH), 2018, pp. 1561–1565.

[71] J. S. Chung, J. Huh, A. Nagrani, T. Afouras, A. Zisser-
man, Spot the conversation: speaker diarisation in the
wild, in: Annual Conference of the International Speech
Communication Association (INTERSPEECH), 2020,
pp. 299–303.

[72] Y. Fu, L. Cheng, S. Lv, Y. Jv, Y. Kong, Z. Chen, Y. Hu,
L. Xie, J. Wu, H. Bu, et al., Aishell-4: An open source
dataset for speech enhancement, separation, recognition

21



and speaker diarization in conference scenario, arXiv
preprint arXiv:2104.03603.

[73] G. Gravier, J.-F. Bonastre, E. Geoffrois, S. Galliano,
K. McTait, K. Choukri, The ester evaluation campaign
for the rich transcription of french broadcast news., in:
International Conference on Language Resources and
Evaluation (LREC), 2004.

[74] P. Bell, M. J. Gales, T. Hain, J. Kilgour, P. Lanchantin,
X. Liu, A. McParland, S. Renals, O. Saz, M. Wester,
et al., The mgb challenge: Evaluating multi-genre
broadcast media recognition, in: 2015 IEEE Workshop
on Automatic Speech Recognition and Understanding
(ASRU), IEEE, 2015, pp. 687–693.

[75] G. Riccardi, D. Hakkani-Tur, Active learning: Theory
and applications to automatic speech recognition, IEEE
transactions on speech and audio processing 13 (4)
(2005) 504–511.

[76] H. Jiaji, C. Rewon, R. Vinay, L. Hairong, S. Sanjeev,
C. Adam, Active learning for speech recognition: The
power of gradients, in: The 30th Conference on Neu-
ral Information Processing Systems, NIPS. Barcelona,
Spain, 2016, pp. 1–5.

[77] J. Bang, H. Kim, Y. Yoo, J.-W. Ha, Efficient ac-
tive learning for automatic speech recognition via
augmented consistency regularization, arXiv preprint
arXiv:2006.11021.

[78] E. Yilmaz, M. McLaren, H. van den Heuvel, D. A.
van Leeuwen, Language diarization for semi-supervised
bilingual acoustic model training, in: 2017 IEEE Au-
tomatic Speech Recognition and Understanding Work-
shop (ASRU), IEEE, 2017, pp. 91–96.

[79] D. G. Karakos, S. Novotney, L. Z. 0002, R. M. Schwartz,
Model adaptation and active learning in the bbn speech
activity detection system for the darpa rats program.,
in: INTERSPEECH, 2016, pp. 3678–3682.

[80] M. Abdelwahab, C. Busso, Active learning for speech
emotion recognition using deep neural network, in: 2019
8th International Conference on Affective Computing
and Intelligent Interaction (ACII), IEEE, 2019, pp. 1–
7.

[81] C. Yu, J. H. Hansen, Active learning based constrained
clustering for speaker diarization, IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing
25 (11) (2017) 2188–2198.

[82] B. Mateusz, J. Poignant, L. Besacier, G. Quénot, Active
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