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Abstract

Personalizing treatment according to patient’s characteristics is at the core of stratified or
precision medicine. There has been a recent surge of statistical methods aiming at identifying
so-called optimal treatment strategies, i.e., strategies that assign a given treatment to a patient
according to his/her characteristics. However, when data from a randomized controlled trial
are used to estimate the optimal treatment strategy, it is not straightforward to estimate and
test the benefit of the estimated strategy as compared to not personalizing treatment. In this
context, we propose a principled approach for the estimation of the benefit of an estimated
treatment strategy, accounting for its uncertainty. This leads to formalizing a strategy that we
term the max lower bound strategy. Numerical simulations are used to show it allows proper
type I error rate control and coverage probabilities. The approach is extended to multiple
covariates using machine learning techniques. It is then applied to the data of a randomized
trial in antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis.
Keywords: Personalized medicine; Stratified medicine; Optimal treatment strategy; Machine
learning.

1 Introduction

Personalized—or stratified—medicine consists in differentially treating patients based on their in-
dividual characteristics. If adapting the treatment to the patient is not a new idea in itself, it has
attracted wide attention since the 2010s. Personalized medicine has been considered to have the
potential to radically advance patient care by improving prevention and treatment efficacy while
avoiding side effects (Hamburg and Collins, 2010). If this concept has successfully transformed the
treatment of certain diseases, it has also been suggested that the hopes of personalized medicine
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were not fully matched by evidence (Khoury, 2010; Vivot et al., 2015). Of particular concerns are
the emphasis on prognostic rather than predictive markers (Mandrekar and Sargent, 2009), and the
widespread use of trials with an enrichment design (Freidlin and Korn, 2014; Vivot et al., 2016).
Nonetheless, several methods have been recently developed to derive combinations of markers pre-
dicting improved response to treatment using data from randomized clinical trials (RCT, Cai et al.,
2011; Zhao et al., 2012, 2013; Kang et al., 2014; Zhou et al., 2017), as well as observational studies
(Qian and Murphy, 2011; Zhang et al., 2012; Shen and Cai, 2016; Athey and Wager, 2017; Künzel
et al., 2019). One threat is however the risk of overfitting and associated treatment mistargeting
(van Klaveren et al., 2019).

Let us consider a potential outcome framework, where it is assumed that each patient is associ-
ated with a vector (Y 0, Y 1) representing the outcome that would be observed under each treatment
option so that the outcome is Y = Y 01T=0 +Y 11T=1. Assuming that higher values of Y are benefi-
cial, it would be natural to give treatment 1 to patients with Y 1 ≥ Y 0 and treatment 0 to those with
Y 1 < Y 0. Since both are never observed together, and cannot be known before administering the
treatment, the approaches cited above mostly attempt to relate Y 0 and Y 1 to a set of covariates X
representing the patient’s characteristics. If we let ∆(X) = E(Y 1|X)−E(Y 0|X) and if this quantity
is known, then giving treatment 1 to individuals with ∆(X) ≥ 0 and treatment 0 to individuals
with ∆(X) < 0 yields an optimal treatment strategy in that it maximizes the expectation of the
outcome over the population (Zhang et al., 2012).

A treatment strategy—also termed treatment regime (e.g., Zhang et al., 2012), individualized
treatment rule (e.g., Shen and Cai, 2016), or policy (e.g., Kang et al., 2014)—consists in formalizing a
rule determining which treatment a patient should receive according to his/her covariates. To define
the benefit of using a treatment strategy, one needs to compare the expectation of the outcome in
the population under this treatment strategy to what would be obtained under the usual or reference
treatment strategy (Janes et al., 2014). What should be the reference strategy is a complex issue,
but we will simply consider here that there exists a treatment that is at some point viewed as the
best treatment option for a given disease. Let us assume that one RCT compares a new treatment
to this "old" one. If the new treatment is significantly superior to the old one in terms of average
outcome, then the reference treatment strategy would be to now recommend treating all patients
with the new treatment. In contrast, if the new treatment is not significantly better, then the
reference treatment strategy is to treat all patients with the old treatment. In order to deal with
both situations, we will simply refer throughout the manuscript to the reference treatment (T = 1),
and the other treatment will be called the alternative treatment (T = 0). Later on, we will call
the subset of patients for whom a treatment strategy recommends the alternative rather than the
reference treatment the “personalized set”.

In their comprehensive work on how to evaluate the performance of personalized treatment
strategies, Janes et al. (2014) have proposed a plug-in estimator of the average gain under the
optimal treatment strategy, and used bootstrap to obtain the corresponding percentile confidence
intervals. They show that their estimators have good properties when an improvement is present
(that is, there are patients who have better outcome under the alternative treatment than under
the reference one) but warn the reader not to use their estimators to test for the presence of an
improvement. While testing for presence of an improvement is not the focus of their work, they
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suggest to use a composite test on the linear regression coefficients. In a previous work, Shuster
and van Eys (1983) proposed to divide the range of X in regions of superiority of one treatment
over the other, and a region of uncertainty where there is no significant difference between the
treatment effects. This naturally allows to test for the benefit of personalizing treatment based on
the covariates X.

The starting point of our paper is to note that, in practice, the optimal treatment strategy is
not known, and therefore any actual personalization will be dependent on an estimated treatment
strategy. Thus, our main objective is to propose a principled way to estimate the benefit of person-
alization of an estimated strategy. This allows us to study the choice of strategy and, accordingly,
to design a new strategy with maximal guarantee on its gain. We also provide a statistical test for
presence of improvement under the estimated strategy and show its good properties.

In Section 2, we adopt a Bayesian framework to estimate the quantities of interest and their
credible quantiles. We start Section 3 by illustrating the problems posed by the naïve plug-in
estimator of the optimal treatment strategy, and consider more general forms of strategies. We
then propose in Section 4 a new treatment strategy, which we call the max lower bound strategy,
and show that it defines a personalized set whenever presence of improvement under the optimal
treatment strategy is detectable. Our approach is extended in Section 5 to other types of outcomes
(binary and censored) and to the multivariate case, using machine learning techniques. Finally, we
illustrate the procedure on a randomized clinical trial in Section 6.

2 Strategy-aware estimation

It is assumed throughout that each triplet patient/response/treatment is modeled by a random
vector (X,Y, T ), where X is a vector of covariates taking values in X ⊂ Rd (the patient’s
characteristics), T is the treatment (alternative = 0, reference = 1), and Y is the patient’s out-
come. The latter depends on the treatment, and under the consistency assumption, we consider
Y = Y 01T=0 + Y 11T=1.

According to the definition given in the introduction, a treatment strategy can be represented
by a function pol : X → {0, 1}, which assigns a possible treatment 0 or 1 to each possible
realization x ofX. For instance, the strategy consisting in giving the reference treatment to everyone
could be termed ref : x 7→ 1. In the context of personalized medicine, we are looking for a
more complex strategy, which takes into account each patient’s characteristics. In particular, the
optimal treatment strategy introduced earlier can therefore be written opt(x) = 1∆(x)≥0, where
∆(x) = E(Y 1|X = x)−E(Y 0|X = x). A general strategy (or policy), say pol, can be characterized
by its average outcome, EY pol, as well as the gain in average outcome as compared to using the
reference strategy ref, that is:

Θ(pol)
def
= EY pol − EY 1 = EX [−∆(X)1pol(X)=0],

where EX is the expectation under PX , the probability distribution of X.
Taking the optimal strategy opt gives

Θ(opt) = EX [−∆(X)1∆(X)<0], (1)
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the quantity used in Janes et al. (2014), who have further proposed additional measures for the
benefit of personalization, such as the proportion of marker-negative (or positive) patients Pneg =

P(∆(X) < 0) and the average benefits of no treatment among marker-negativesBneg = E[−∆(X)|∆(X) <

0], so that Θ(opt) = PnegBneg. We note ithat Θ(opt) ≥ 0, and that Pneg > 0 is a necessary con-
dition to have Θ(opt) > 0. Of course, for a general strategy pol, Θ(pol) can have an arbitrary
sign.

In practice, the distribution of (X,Y, T ) is unknown, and so is the optimal strategy opt. We
consider an i.i.d. sample corresponding to RCT data Dn = (Xi, Yi, Ti), 1 ≤ i ≤ n, where each
triplet (Xi, Yi, Ti) is distributed as the generic (X,Y, T ). So, for each i, Xi represents the patient’s
characteristics that we want to use to personalize treatment, Yi is the observed continuous outcome,
and Ti ∈ {0, 1} is the treatment allocated in the trial. We consider the potential outcome framework
introduced earlier, i.e., Yi = Y 0

i if Ti = 0 and Yi = Y 1
i if Ti = 1, and assume throughout that Xi is

independent of Ti (randomization).
In this section, and until Subsection 5.2, we make the assumption that X is a bounded scalar

(that is, d = 1, with X = support(PX) = [x0, x1], −∞ < x0 < x1 <∞), and that data arise from a
linear model. The linear model assumes that Y t, t = 0, 1, can be expressed as a sum of an intercept
β0, a prognostic term with coefficient β1, an average treatment effect term with coefficient β2, an
interaction term between treatment and the covariate X with coefficient β3, and some independent
Gaussian noise ε with variance σ2 > 0:

Y t = β0 + β1X + β2t+ β3Xt+ ε, t = 0, 1. (2)

We will suppose, without loss of generality, that X is centered (EXX = 0), so that β2 represents
the average treatment effect, EY 1−EY 0. Note that this implies that 0 ∈ [x0, x1]. It is also assumed
that the variance σ2 is known for simplicity. If we do not make this assumption, we have to use
the t-distribution instead of the Gaussian distribution, which adds complication for no additional
insights.

For each patient i with covariate Xi, the difference in outcome between the reference treatment
and the alternative treatment is simply

∆(Xi) = E[Y 1
i |Xi]− E[Y 0

i |Xi] = β2 + β3Xi.

If the coefficients were known exactly, then we would choose to give the reference treatment 1 to all
patients with ∆(Xi) ≥ 0 (favoring the treatment with the best outcome on average when ∆(Xi) = 0

but the other choice would be equivalent) and give the alternative treatment 0 to patients with
∆(Xi) < 0. The average gain between this perfect optimal treatment strategy and the reference
strategy is then the one given in equation (1). We note that if β3 = 0, i.e., if there is no interaction,
then ∆(Xi) is constant, equal to the average treatment effect β2. We also see that if β2 < 0, then
there are always some patients who would benefit from personalization as ∆(0) = β2 < 0 and
0 ∈ [x0, x1]. On the other hand, when β2 ≥ 0, the presence of an interaction, i.e., β3 6= 0, is not
sufficient for the existence of patients benefiting the alternative treatment. Indeed, if β2 ≥ 0, the
existence of x ∈ [x0, x1] such that ∆(x) < 0 is equivalent to −β2/β3 > x0 when β3 > 0, and to
−β2/β3 < x1 when β3 < 0.

In practice, we do not have access to the true values of β2 and β3, and have to rely on some
estimation procedure. This implies that there will be uncertainty in our estimation, and therefore
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uncertainty in the associated strategy. An important contribution of the present paper is to estimate
the average gain under the estimated strategy and not the perfect, but unknown, strategy opt.

Let us denote by β̂ def
= (β̂0, β̂1, β̂2, β̂3) the standard least square estimators of β def

= (β0, β1, β2, β3).
We let Pβ be the sampling probability of ε or, in other words, the sampling probability of Y given
X and T . Under Pβ , we have β̂ ∼ N (β,Σ), where Σ = σ2(Z>Z)−1 and Z is the design matrix

Z =


1 X1 T1 X1T1

...
...

...
...

1 Xn Tn XnTn

 .
While β̂2 is the estimated effect of the reference treatment versus the alternative treatment, this
does not warrant that β̂2 ≥ 0. As we discussed in the introduction, we could have β̂2 ≤ 0 if the new
treatment improved outcomes compared to the old treatment but not significantly. The reference
treatment is then set to the old treatment, and the new treatment is the alternative one.

The presence of an interaction is a necessary condition for improvement due to personalization,
and the associated test will be ubiquitous throughout. In order to make the discussion more trans-
parent, we formally define this test below. Notation Σi,j means the element in the i, j position of
the covariance matrix Σ, and qα is the α-quantile of the standard normal distribution.

Definition 1 (Interaction test). To test against the null hypothesis H interact
0 : β3 = 0, the test

statistic is β̂3/
√

Σ3,3. Its distribution is N (0, 1) under Pβ. When the alternative hypothesis is
H interact

1 : β3 6= 0, the rejection region is {|β̂3|/
√

Σ3,3 > q1−α/2}. If the alternative hypothesis is
H interact

1 : β3 > 0 (respectively, H interact
1 : β3 < 0), the rejection region is {β̂3/

√
Σ3,3 > q1−α}

(respectively, {β̂3/
√

Σ3,3 < qα}).

Now that we have discussed the interpretation of the coefficients, we can turn to the problem
at hand. The natural estimator of ∆(x) is simply ∆̂(x) = β̂2 + β̂3x, and an example of estimated
strategy is the plug-in estimator of the optimal strategy, say ˆpol1, sometimes called the optimal
treatment regime (OTR, Brinkley et al., 2010; Zhang et al., 2012; Janes et al., 2014). It is defined
by ˆpol1(x) = 1∆̂(x)≥0, and recommends to each patient the treatment maximizing the predicted
outcome given the patient’s characteristics X. For a general estimator ˆpol(x), eventually different
from ˆpol1(x), the associated improvement in population averaged outcome is

Θ( ˆpol)
def
= EX [−∆(X)1 ˆpol(X)=0],

which is unknown and has to be estimated. More importantly, we should also provide a lower con-
fidence bound for this quantity at a predefined level. We will assume that PX is known throughout
our theoretical discussions, but in practice, we use Pn, the empirical distribution of X1, . . . , Xn.
The distribution PX used in the estimation of Θ( ˆpol) could be different from the one generating
the sample if, for example, we want to estimate the average improvement in a population with a
different distribution than the one of the RCT.

We insist that Θ( ˆpol) is a random variable, because it depends upon ˆpol. This dependency
complicates the study of Θ( ˆpol) under Pβ . To circumvent this complication, we have chosen to
adopt a Bayesian estimation point of view and, conditionally on the sample Dn, put a distribution
on the regression parameter β. This allows to separate the uncertainty on β (random under the
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posterior distribution) from the uncertainty on the strategy (fixed under the posterior distribution).
We will however be interested in the frequentist properties of our estimation, and therefore the
use of a prior would be counter-productive. In other words, we use a constant prior on R4 for β.
Therefore, the posterior distribution of β given the sample Dn is simply Π

def
= N (β̂,Σ), where Σ is

the covariance matrix defined above.
To distinguish the true fixed β, we denote by β? def

= (β?1 , β
?
2 , β

?
3 , β

?
4) a random variable whose

distribution is Π. Similarly, we add a ? superscript on the quantities depending on β? instead of β.
Thus, we set

Θ?( ˆpol) = EX [−∆?(X)1 ˆpol(X)=0],

where ∆?(X) = β?2 + β?3X. This quantity is easy to study, as shown in the next proposition (proof
in the Appendix A1). We let

Θ̂( ˆpol) = EX [−∆̂(X)1 ˆpol(X)=0].

Proposition 1. Under Π, Θ?( ˆpol) follows a Gaussian distribution with EΠ[Θ?( ˆpol)] = Θ̂( ˆpol)

and
VarΠ[Θ?( ˆpol)] = EΠ

[
E2
X [(∆?(X)− ∆̂(X))1 ˆpol(X)=0]

]
.

The credible α-quantile of Θ( ˆpol)—that is, the α-quantile of the posterior distribution—is then

q̂n,α( ˆpol) = Θ̂( ˆpol) + qαsdΠ(Θ?( ˆpol)), (3)

where sd denotes the standard deviation. This quantity will be studied thoroughly in the next
section, and we will see later that these credible quantiles are in fact confidence bounds with valid
frequentist coverage for Θ( ˆpol) under Pβ . In practice, the use of formula (3) requires to compute the
standard deviation. It is however simpler to sample β? from Π J times and compute Θ?( ˆpol) each
time, which gives us an empirical distribution {Θ?

j ( ˆpol)}1≤j≤J , from which we can then retrieve
the quantiles of the posterior distribution of Θ( ˆpol).

In addition to estimating the benefit of personalization, it is essential in clinical studies to be
able to test the null hypothesis of no gain from personalization, that is, H0 : Θ( ˆpol) ≤ 0 against the
alternative hypothesis of gain from personalization H1 : Θ( ˆpol) > 0. This can naturally be done
using our credible α-quantile. Indeed, the natural rejection region of the null hypothesis at level α is
simply {q̂n,α( ˆpol) > 0}, as this means that the posterior distribution of Θ( ˆpol) has more than 1−α
of its weight on the positive line. It is important to note that this test is not a proper test because
our null hypothesis depends on a random variable instead of a fixed quantity. This means that even
when there is an improvement to be found, i.e., Θ(opt) > 0, the null hypothesisH0 : Θ( ˆpol) ≤ 0 can
occur, either because of poor estimation of the strategy or because the estimated strategy defines
an empty personalized set. This issue will depend on the choice of the strategy, as illustrated in
the next section. However, while this is not a proper test, it is precisely the decision we care about.
In fact, we will show in Section 4 that this test needs to be combined with the test for interaction
presented in Definition 1. Furthermore, we will see that for the right choice of strategy, the resulting
joint test is a valid test for presence of improvement under the optimal strategy.

We close this section by emphasizing that we have three probability measures of interest: PX
(the distribution of X under which we want to compute the expected gains), Pβ (the frequentist

6



-0.02 -0.01 0.00 0.01

0.
00

0.
04

0.
08

0.
12

Θ( ˆpol1)

Θ̂
(

ˆ
po
l 1
)

-0.02 -0.01 0.00 0.01

-0
.0

2
0.

00
0.

02
0.

04

Θ( ˆpol1)

q̂ n
,0
.0

5(
ˆ

po
l 1
)

Figure 1: Graph of Θ( ˆpol1) against Θ̂( ˆpol1) and q̂n,0.05( ˆpol1). We simulated 10 000 datasets based on
the linear model (2), i.e., we sampled ε for each simulation. The variable X is sampled once from a uniform
distribution between -1 and 1. We take n = 300, β0 = 0, β1 = 1, β2 = 1, β3 = 1.3, and σ2 = 1. Under these
simulation settings, optimal personalization affects 10% of the patients, Pneg = 0.1, and Θ(opt) = 0.013.
We sampled from Π 10 000 times in order to compute the quantiles. To enhance readability, we have plotted
only 1 000 points. The line y = x is also plotted.

probability of ε) and Π (the posterior probability of β given Dn). The subscript β in the second
one underlines the fact that β is a constant under this probability, whereas it is random under Π.
To avoid confusion, we introduced a ? superscript for the random variables under Π.

3 Choice of a treatment strategy

3.1 Problems of estimation under ˆpol1

Our first example of strategy was the plug-in estimator of the optimal treatment strategy, that
is ˆpol1(x) = 1∆̂(x)≥0. We show here that, despite its simplicity, this policy behaves poorly for
estimating the benefit of personalization. In particular, it can be overall detrimental even though
our estimation predicts that it will be beneficial, i.e., Pβ(Θ( ˆpol1) < 0|q̂n,α( ˆpol1) > 0) is large.

We illustrate this using simulations based on a linear model of the form (2), whose specifics are
described in the legend of Figure 1. Briefly, under our simulation settings, 10% of patients should
benefit more from the alternative than from the reference treatment (i.e., Pneg = 0.1), and under
the optimal treatment strategy, the average outcome is improved by 0.013 (i.e., Θ(opt) = 0.013).
We consider the properties of the quantile q̂n,0.05( ˆpol1), which can be used to provide a test, and
the mean of the distribution, Θ̂( ˆpol1), which provides an estimation of the benefit of personalizing
treatment. As the true parameters of the linear model are known, we can compute the true value
of Θ( ˆpol1).

The quantile q̂n,0.05( ˆpol1) is positive, i.e., we are detecting the presence of a benefit of person-
alization, in 4.7% of the simulations. This is suboptimal as with a different strategy detailed later
on, we will be able to detect a benefit of personalization in 34% of cases.
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More worrying yet is the behavior of the true parameter Θ( ˆpol1) against its estimator Θ̂( ˆpol1).
This is shown in the upper panel of Figure 1. It should be noted that most points are close to the
optimal (0.013, 0.013), where the strategy is well estimated and the estimated gain is close to its
real value. However, in a certain number of simulations the strategy is poorly estimated, and as a
consequence the real gain is negative while the estimated gain appears very large. These situations
are problematic because a decision based on such estimations will negatively impact health while
being claimed to have a large positive impact.

Manual inspection of the problematic points shows that this behavior happens when the ratio
β̂2/β̂3 is underestimating β2/β3. As x = −β̂2/β̂3 is the value at which ∆̂ changes sign, this means
that ˆpol1 will attribute the alternative treatment to too many participants compared to the optimal
treatment strategy, and therefore many participants who would have benefited from the reference
treatment will receive the alternative treatment. At the same time, since the posterior distribution
we use is centered on poorly estimated coefficients, the estimation of benefit will be optimistic. The
inverse situation can also be seen under the first bisector: when the ratio β̂2/β̂3 is overestimated, not
enough participants will be attributed the alternative treatment, leading to a decreased population
averaged outcome as compared to what could have been obtained by using the optimum.

The consequence of these problematic situations is even more poignant when we consider the
lower quantile, i.e., the one we use to test the presence of an improvement. As we can see in the lower
panel of Figure 1, q̂n,0.05( ˆpol1) seems to be positive mostly when Θ( ˆpol1) is negative. Although
q̂n,0.05( ˆpol1) is positive 4.7% of the time, in 90% of those cases Θ( ˆpol1) is negative. This is the
same phenomenon as above: an underestimated ratio leads to a large personalized set and at the
same time overestimated bounds on the gain. While the quantile has the right coverage probability,
the mistakes it makes are the one we care the most about: claiming a large improvement when
personalizing treatment would be detrimental on average.

Fortunately, all these issues can be dealt with by considering a different strategy. The key idea
is that if we can identify the patients that bring the most uncertainty to our estimation, then we
can choose to exclude them from the personalization. This means that in case of uncertainty, we
prefer to give the reference treatment. This asymmetry is analogous to the asymmetry created by
defining a hypothesis as the null hypothesis in statistical test theory. This asymmetry is present in
our quantity of interest Θ( ˆpol) as no uncertainty comes from the patients receiving the reference
treatment. Furthermore, this asymmetry is desirable, as a clinician implementing a personalization
strategy will want to make sure that the change will be beneficial even if some patients who would
have benefited from the alternative treatment are missed by this strategy. As a consequence, the
strategies that we will recommend here are different from the ones where the global health impact
of a strategy (e.g Qiu et al. (2018)) is considered and not its relative impact compared to a reference
treatment.

In order to define a better strategy, we need to understand the uncertainty that patients bring to
our aggregated quantities. To reach this goal, it is necessary to make a detour through an analysis
of uncertainty at the individual level. This is the topic of the next subsection.
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3.2 Uncertainty at the individual level

A patient with covariate X = x has an estimated improvement of ∆̂(x) = β̂2+β̂3x. The distribution
of improvement under Π is

∆?(x) = β?2 + β?3x ∼ N
(
∆̂(x),VarΠ(∆?(x))

)
,

where
VarΠ(∆?(x)) = Σ2,2 + 2Σ2,3x+ Σ3,3x

2.

The certainty with which such a patient will benefit from personalization is naturally measured by
the quantity Π(∆?(x) < 0). As ∆?(x) is Gaussian, this probability depends only on

z∆(x)
def
=

∆̂(x)

sdΠ(∆?(x))
=

β̂2 + β̂3x√
Σ2,2 + 2Σ2,3x+ Σ3,3x2

,

as we have Π(∆?(x) < 0) = Φ(−z∆(x)), with Φ the cumulative distribution function of the standard
normal distribution.

In this context, we can derive a test for personalization at the individual level. Namely, we
consider the null hypothesis H0 : ∆(x) ≥ 0 , i.e., the reference treatment is better than the
alternative for a patient with covariate x. The alternative hypothesis is then H1 : ∆(x) < 0, and
the rejection region of this test is {z∆(x) < qα}. This rejection region is the region of superiority
for the alternative treatment and was already defined in Shuster and van Eys (1983). Observe that,
for each individual, Φ(z∆(x)) = Π(∆?(x) ≥ 0) is the level at which we would reject the null.

This state of affairs suggests a new, natural, strategy, which personalizes treatment for patients
in the region of superiority of the alternative treatment, i.e., patients such that z∆(x) < qα. We call
this strategy the individual strategy ˆindα, and notice that it depends on α, the chosen confidence
level. Thus, we have

ˆindα : x 7→ 1z∆(x)≥qα . (4)

The fundamental difference with the naïve plug-in ˆpol1 strategy is that patients with qα ≤ z∆(x) <

0, who are predicted to benefit from the alternative treatment under the strategy ˆpol1, would still
receive the reference one under ˆindα. The function x 7→ z∆(x) is therefore sufficient to quantify the
uncertainty with which a patient would benefit from the alternative treatment, and we need to study
it in depth. It is important to keep in mind that we are mainly interested by the behavior of z∆

when it is negative, as this corresponds to patients who are expected to benefit from personalization.
The study of z∆ variations is detailed in the Appendix B. Results are summarized in the figure 2
and proposition 2.

Proposition 2. Assume, for simplicity, that Σ2,3 = 0. Then the function z∆ defines a bijection to
(−|β̂3|/

√
Σ3,3, 0]. The domain of the bijection is

(−∞,−β̂2/β̂3] if β̂2 > 0 and β̂3 > 0,
[−β̂2/β̂3,+∞) if β̂2 > 0 and β̂3 < 0,
(C,−β̂2/β̂3] if β̂2 < 0 and β̂3 > 0, with z∆(C) = −|β̂3|/

√
Σ3,3,

[−β̂2/β̂3, C) if β̂2 < 0 and β̂3 < 0.
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β̂2 > 0

x

z∆

x0 Xα − β̂2

β̂3
x1

− β̂3√
Σ3,3

qα

β̂3√
Σ3,3

β̂2 < 0

x

z∆

x0 C − β̂2

β̂3
x1

− β̂3√
Σ3,3

β̂3√
Σ3,3

Figure 2: Example of variation of z∆ depending on the sign of β̂2. The interaction coefficient β̂3 is
positive in both plots. If it were negative, the curve would the symmetric of the plotted curve with respect
to the ordinate axis.

Thus, for all α < 0.5 such that qα > −|β̂3|/
√

Σ3,3, we can define Xα
def
= z−1

∆ (qα), as shown in
Figure 2. We have capitalized the X to underline that this is a random variable under Pβ . This
allows to rewrite the rejection region to test superiority of the alternative treatment for a patient
with covariate x as {z∆(x) < qα} = {x < Xα} if β̂3 > 0 and {z∆(x) < qα} = {x > Xα} if β̂3 < 0.
The point of Proposition 2 is to be able to parametrize on the scale of x instead of the scale of
z∆—this new parameterization will play a key role in the next subsection.

Our detour through the analysis of the uncertainty at the individual level is now over. On the
way, we have found another strategy of interest, ˆindα, and a function sufficient to quantify the
uncertainty, z∆. We are now prepared to study the uncertainty at the aggregated level, and use it
to define a strategy with maximal guarantee on its gain.

4 Max lower bound strategy

4.1 Definition

Our goal is to find a strategy that defines a non-empty personalized set as often as possible, while
having the most confidence that personalization will be beneficial. To this aim, we first need to
restrict the range of possible strategies we will be looking at. The two strategies we have seen up
to now, ˆpol1 and ˆindα, are both of the form x 7→ 1z∆(x)≥η, with η = 0 for ˆpol1 and η = qα for
ˆindα. We have also seen that z∆ is sufficient to quantify uncertainty at the individual level. It is

therefore reasonable to limit our search to strategies of the same form as our two previously defined
strategies.

Conditionally on Dn, z∆ is a fixed function. Assume for now, without loss of generality, that
β̂3 > 0, and, to fix ideas, that x0 (the left extremity of the support of X) is in the domain of the
bijection defined in Proposition 2. In this case, we can parametrize our class of policies on the
scale of x instead of the scale of z∆. This suggests to look for our strategy in functions of the
form x 7→ 1x≥ρ, with ρ ∈ [x0,−β̂2/β̂3]. (Of course, in the opposite situation where β̂3 < 0, the
corresponding form is x 7→ 1x≥ρ for ρ ∈ [−β̂2/β̂3, x1].)
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In order to achieve our goal, we propose to maximize the test statistic for positive impact of
personalization, i.e., q̂n,α(1x≥ρ), over all possible choices of ρ ∈ [x0,−β̂2/β̂3]. More precisely, let
Aα = arg maxρ q̂n,α(1x≥ρ) be the set of maximizers. To define the strategy unambiguously, we
choose the largest such threshold, i.e., we set

ρmax,α = maxAα.

We call the resulting strategy the max lower bound strategy and denote it by ˆmlbα. Thus, by
definition,

ˆmlbα(x) = 1x≥ρmax,α .

To study the behavior of the random variable ρmax,α, we simply use equation (3), which in this
context takes the form

q̂n,α(1x≥ρ) = Θ̂(1x≥ρ) + qαsdΠ(Θ?(1x≥ρ)).

As we want to maximize this quantity, we are going to derivate with respect to ρ. Assume, to
simplify, that X has a bounded density with respect to the Lebesgue measure on [x0, x1], i.e.,
PX(dx) = fX(x)dx. In that case, the variance becomes

VarΠ[Θ?(1x≥ρ)] = EΠ

[(∫ ρ

x0

(∆?(x)− ∆̂(x))fX(x)dx
)2
]

def
= v(ρ).

Thus, using the Lebesgue dominated convergence theorem, we have

dv

dρ
(ρ) = EΠ

[
2fX(ρ)(∆?(ρ)− ∆̂(ρ))

(∫ ρ

x0

(∆?(x)− ∆̂(x))fX(x)dx
)]

= 2fX(ρ)CovΠ(−∆?(ρ),Θ?(1x≥ρ)).

We conclude that

dq̂n,α(1x≥ρ)

dρ
(ρ) = fX(ρ)

(
−∆̂(ρ) + qαsdΠ(∆?(ρ))CorΠ(−∆?(ρ),Θ?(1x≥ρ))

)
. (5)

We are now ready to state our main theorem, which summarizes the connection between what
happens at the individual level and at the aggregated level. Its proof is given in the Appendix A2.
Observe that the result does not assume that x0 is in the domain of the bijection.

Theorem 1. Assume that X is either discrete or has a bounded density with respect to the Lebesgue
on [x0, x1]. Recall that Xα = z−1

∆ (qα). If −β̂3/
√

Σ3,3 < qα, then:

(i) If x0 < Xα, the strategy ˆmlbα = 1x≥ρmax,α defines a non-empty personalized set with ρmax,α ≥
Xα. In this case, q̂n,α( ˆmlbα) > 0.

(ii) If, on the contrary, Xα ≤ x0, then the personalized set is empty, i.e, ρmax,α = x0 and ˆmlbα =

ref. In this case, q̂n,α( ˆmlbα) = 0.

On the other hand, if β̂3/
√

Σ3,3 < qα, then:

(i) If Xα < x1, the strategy ˆmlbα = 1x≤ρmax,α defines a non-empty personalized set with ρmax,α ≤
Xα. In this case, q̂n,α( ˆmlbα) > 0.
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(ii) If, on the contrary, x1 ≤ Xα, then the personalized set is empty, i.e, ρmax,α = x1 and ˆmlbα =

ref. In this case, q̂n,α( ˆmlbα) = 0.

This theorem is important insofar as it connects the behavior of the max lower bound strategy
to the presence or absence of patients who benefit individually from the alternative treatment at
level α. If there are some such patients, then we can personalize treatment for a slightly larger set of
patients while maximizing the confidence that personalization will be beneficial overall. If there are
none, then the strategy is but the ref strategy, which does not personalize anyone and recommends
the reference treatment to everyone.

Theorem 1 relies on the assumption that the unilateral test for interaction is significant (that
is, −β̂3/

√
Σ3,3 < qα). If this assumption is not respected, i.e., −β̂3/

√
Σ3,3 ≥ qα, and if we also

have β̂2 < 0, then q̂n,α( ˆmlbα) can be positive. As discussed in Subsection 3.2, this would mean an
undesirable recommendation of the alternative treatment when neither the treatment effect nor the
interaction effect are significant. To circumvent this problem, we propose to simply replace the ˆmlbα
by the restricted max lower bound strategy ˆMlbα, which reduces to ˆmlbα under the assumptions of
the theorem and does not personalize otherwise. This will allow to control the type I error of the
companion test, as we will see in Section 4.3. The restriction depends on the alternative hypothesis
for interaction:

ˆMlbα = 1−β̂3/
√

Σ3,3≥qαref + 1−β̂3/
√

Σ3,3<qα
ˆmlbα

when the test for interaction is unilateral with H interact
1 : β3 > 0, and

ˆMlbα = 1
β̂3/
√

Σ3,3≥qαref + 1
β̂3/
√

Σ3,3<qα
ˆmlbα

when the test for interaction is unilateral with H interact
1 : β3 < 0. If the test is bilateral, i.e.,

H interact
1 : β3 6= 0, then we let

ˆMlbα = 1−|β̂3|/
√

Σ3,3≥qα/2
ref + 1−|β̂3|/

√
Σ3,3<qα/2

ˆmlbα.

As qα/2 < qα, when −|β̂3|/
√

Σ3,3 < qα/2 we are under one of the assumptions of Theorem 1.
We conclude this subsection by studying the gap between Xα and ρmax,α. If we go back to

equation (5), we see that if CorΠ(−∆?(ρ),Θ?(1x≥ρ)) = 1, then dq̂n,α(1x≥ρ)
dρ (ρ) = 0 if and only if

ρmax,α = Xα defined above. In practice, this will be approximately true as long as ρ is close to x0,
as shown in the next proposition.

Proposition 3. We have, almost surely, limρ→x+
0
CorΠ(−∆?(ρ),Θ?(1x≥ρ)) = 1.

Proof. By Lemma A1 in the Appendix A,

CorΠ(−∆?(ρ),Θ?(1x≥ρ)) = CorΠ
(
−∆?(ρ),−∆?(g(ρ))

)
→ρ→x+

0
CorΠ(−∆?(x0),−∆?(x0)) = 1.

This means that in many cases the max lower bound strategy will be very close to the individual
strategy defined in (4), i.e.,

ˆMlbα ≈ ˆindα.
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Furthermore, the proximity of CorΠ(−∆?(Xα),Θ?(1x≥Xα)) with 1 is a diagnostic tool to evaluate
the quality of this approximation. If CorΠ(−∆?(Xα),Θ?(1x≥Xα)) is not close to 1, then we can
personalize more patients than if we were considering uncertainty at the individual level, while
controlling type I error. This is a consequence of subadditivity of standard deviation: if we sum
variables that have correlation smaller than 1, the standard deviation of the sum is smaller than
the sum of the standard deviations. The two possibilities are illustrated in the next subsection.

4.2 Illustration

In this subsection, we illustrate the behavior of the bilateral ˆMlbα strategy. We simulate two
scenarios: the first scenario is the one we used for Figure 1, to exemplify the problems caused by
considering ˆpol1, the plug-in estimator of the optimal treatment strategy. Our second scenario
illustrates the case where there is substantial distance between Xα and ρmax,α.

In both scenarios, we simulate datasets based on the linear model (2). The specifics of the first
scenario are detailed in Figure 1. To show the influence of the choice of strategy, we compute our
quantities of interest for a grid of policies depending on a threshold η for z∆, with η ranging from
q0.02 to q0.5. For each simulation, we select ηmax,0.05 empirically, i.e., we select the threshold for
which q̂n,0.05(1z∆(x)≥η) is maximal. This is shown in Figure 3. As we can see, the problematic points
in the upper left quadrant under ˆpol1 are brought to the upper right quadrant by decreasing η.
Only 0.2% of the simulations where q̂n,0.05( ˆMlb0.05) > 0 identify a strategy that is not beneficial, i.e.,
Θ( ˆMlb0.05) ≤ 0. Manual inspection of the instances where this is true show that they correspond to
extreme underestimation of the ratio β2/β3.

As noted at the end of Section 2, the hypothesis we want to test H0 : Θ( ˆMlbα) ≤ 0 depends on
a random variable. We have seen in Subsection 3.1 that for a poor choice of strategy such as ˆpol1,
Pβ(H0|q̂n,α( ˆpol1) > 0) can be substantial even though Θ(opt) > 0. However, for the ˆMlbα strategy,
the simulations are reassuring as this same probability is quite small and the strategy identified is
not beneficial only if the personalized set is empty.

Power for detection of interaction in this case is 1 and we are therefore always under the as-
sumption of our theorem. We detect a positive improvement due to personalization in 34% of
simulations. There is a small difference between the probability of min(z∆) < q0.05 at 34.7% and
q̂n,0.05( ˆMlb0.05) > 0 at 34.3% that is likely due to Monte-Carlo noise. The proportion personalized
Pneg is 5% when the personalized set is not empty instead of the 10.6% of the opt strategy.

The factor identified in the derivative of ρ 7→ q̂n,0.05(1x≥ρ) as influencing the quality of the
approximation of ρmax,0.05 by X0.05, i.e., of ηmax,0.05 by q0.05, CorΠ(−∆?(X0.05),Θ?(1z∆(x)<q0.05

)) is
always larger than 0.98 in this scenario. This implies that q0.05 is a good approximation of ηmax,0.05

and the ˆMlb0.05 strategy is almost equal to the ˆind0.05 strategy. Since we sample only 10 000 times
from Π, there is still some noise and q0.05 is selected only 94% of the time when q̂n,0.05( ˆMlb0.05) > 0,
the remaining occurrences select either q0.04 or q0.07, the closest values on the grid.

To conclude on this scenario, the use of the ˆMlb0.05 strategy has allowed to deal with the problems
that were due to the use of ˆpol1, i.e., the low probability of identifying a significant improvement
and, when a significant improvement was identified, the large probability of the strategy being
detrimental.

With our second scenario, we want to illustrate the interest of using ηmax,0.05 instead of q0.05. We
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Figure 3: Max lower bound strategy. Graph of Θ(pol) against Θ̂(pol) and q̂n,0.05(pol). Each trajectory
represents the change in those quantities when η varies. The cross corresponds to η = 0, i.e., pol = ˆpol1.
The triangles correspond to the end of the trajectory, i.e., ρ = q0.02 = −2.05. The red X marks the quantities
under the ˆMlb0.05 strategy. We plotted only the first 100 trajectories in order to have a readable output. In
both plots, the first bisector, i.e., the y = x line, is drawn.

simulate 100 datasets with parameters β1 = 1, β2 = 0, β3 = 0.5, n = 500, and σ2 = 1. As we still
use a uniform distribution on [−1, 1] for X, the optimal treatment strategy would be to personalize
half the patients. We sampled 100 000 times from Π in order to minimize Monte Carlo noise and
pinpoint precisely ηmax,0.05. We searched for η on a grid with 0.1 increments that contained q0.05.

Out of the 70 occurrences where the test for interaction is significant, i.e., −|β̂3|/
√

Σ3,3 > q0.025,
and q̂n,0.05( ˆMlb0.05) > 0, the best choice for η was q0.05 only 30 times. All other selected thresholds
were larger than q0.05, as expected. In these 70 simulations, the average CorΠ(∆?(X0.05),Θ?(1z∆(x)<q0.05

))

was 0.91. This quantity was 0.99 when q0.05 had been selected and 0.86 in the 40 other instances.
In the 40 simulations where a larger threshold had been selected, the average Pneg was 42% for the
threshold q0.05 while it was 46% for ηmax,0.05. This shows that the gain from aggregating uncertainty
instead of controlling it at the individual level can be substantial.

4.3 Properties

The definition of the restricted max lower bound strategy ˆMlbα was motivated by the need to
combine the rejection region proposed at the end of Section 2, {q̂n,α( ˆmlbα) > 0}, with the test for
interaction presented in Definition 1. One important issue is therefore to show that the combined
test controls the type I error when there is no improvement under the optimal treatment strategy,
i.e., Θ(opt) = 0. In the Appendix C1, we illustrate that using {q̂n,α( ˆmlbα) > 0} as rejection region
for our test does not control the type I error rate. On the contrary, combining this rejection region
with the one of the interaction test of Proposition 1 allows to control type I error under the null
hypothesis Hopt

0 . We have therefore defined a strategy, ˆMlbα, and a companion test such that
our strategy personalizes treatment when the null hypothesis of no improvement is rejected and
recommends the reference treatment to everyone in the opposite case. The test is also a valid test
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for presence of improvement under the optimal treatment strategy. Therefore, ˆMlbα personalizes
treatment whenever we can detect the presence of a theoretical improvement. Janes et al. (2014)
propose a test for presence of benefit under the optimal rule but do not derive a rejection region.
We expect their test to be identical to ours.

We have defined our estimation procedure using Bayesian arguments, and we have used this
estimation to select the strategy ˆMlbα. We checked that the resulting quantiles respect the expected
frequentist coverage probabilities, i.e., Pβ(Θ( ˆMlbα) ≤ q̂n,γ( ˆMlbα)) = γ, were γ ∈ [0, 1] is any
confidence level, which does not have to be equal to α, the confidence level used in the definition
of ˆMlbα. Results of simulations detailed in the Appendix C2 show that coverage is approximately
respected. However, there is a clear asymmetry between left and right coverages.

5 Extensions of the method

5.1 Extension to other outcomes

If the outcome Y is binary and not continuous, one option would be to use logistic regression instead
of model 2 such as

logit(P(Y = 1|X,T )) = β0 + β1X + β2T + β3XT,

where, for all p ∈ [0, 1], logit(p) = log( p
1−p). As the maximum likelihood estimator of β is asymp-

totically normal, we can apply the procedures described in the previous sections. However, the
definition of ∆(X) as β2 + β3X is not natural as it is unclear what the corresponding Θ would
mean. It is more logical to follow Janes et al. (2014), and let

∆(X) = P(Y = 1|X,T = 1)− P(Y = 1|X,T = 0),

in which case Θ(pol) will be the difference in event rate between pol and ref. Thus,

∆(X) =
exp(β0 + β1X + β2 + β3X)

1 + exp(β0 + β1X + β2 + β3X)
− exp(β0 + β1X)

1 + exp(β0 + β1X)
,

an expression that depends on the whole of β instead of just β2 and β3.
We can then, as before, sample β? from Π, the asymptotic posterior distribution of β, and

obtain quantiles of our quantity of interest. Instead of using z∆ as we did under a Gaussian
assumption, a natural idea is to work with Π(∆?(x) > 0). Indeed, in the Gaussian case, we have
z∆(x) < qα ⇔ Π(∆?(x) > 0) < α. We then look for policies of the form 1Π(∆?(x)>0)<γ , with
γ ∈ [0, 1]. Our threshold is now on the probability scale between 0 and 1. We apply this extension
to real data in Section 6.

Similarly, our approach can be extended to a censored outcome. In that case, one should
first select a measure of treatment contrast, which could be either the survival probability at a
prespecified time τ , or the restricted mean survival up to τ , for instance. A Cox proportional
hazards model can then be fitted to the date and then used to derive the survival probability at τ
or the restricted mean survival up to τ (Zhao et al., 2013; Li et al., 2016).
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5.2 Extension to the multivariate case

In most RCTs, a large number of covariates describe each patient instead of just one, as we previously
assumed. In order for personalized medicine to fulfill its promises, it is crucial that the information
contained in this data be harnessed.

Let us then assume that X = (X1, . . . , Xd) is now d-dimensional. Using a machine learning
algorithm, we can predict Y given X and T . In the present paper, we use the random forests
algorithm (Breiman, 2001), and denote by ĥ(X,T ) such a prediction. We can then define, as
before,

∆̂(X) = ĥ(X, 1)− ĥ(X, 0).

The procedure to estimate Θ(pol) we proposed in Section 2 was based on our knowledge of the
joint distribution of (∆?(x))x, with ∆?(x) following the posterior distribution of ∆(X). In the case
of a linear model, this distribution was quite simple, thanks to the straightforward relation between
∆ and the coefficients, namely ∆?(x) = β?2 + β?3x. Unfortunately, such a simple technique does not
immediately transpose to machine learning algorithms. Of course, there are ways to estimate the
uncertainty around a prediction, for example using bootstrap methods (Tibshirani, 1996; Wager
et al., 2014), but they only concern single predictions. Besides, studying the joint distribution of
prediction errors of machine learning algorithms exceeds the scope of this article. Instead, we follow
in this section Chernozhukov et al. (2018). This will allow us to extend what we have developed in
the univariate case. The idea is to use ĥ to build features that will be plugged in a linear model,
for which we will be able to apply the procedure detailed in Section 2.

Our univariate linear model has three parts besides the intercept: a prognostic term β1X, a
reference treatment average effect term β2, and an interaction term β3X, with the last two multiplied
by treatment assignment T . The prognostic term is the expected value given X when a patient
receives the alternative treatment. Therefore, we define our first feature as Z1(X) = ĥ(X, 0) in order
to capture the prognosis. Besides, the treatment effect ∆(X) is estimated by ĥ(X, 1) − ĥ(X, 0).
Since ∆(X) = β2 +β3X in the linear case, and EXX = 0, it is logical to define the interaction term
by Z3(X) = ĥ(X, 1)− ĥ(X, 0)− ∆̄, where ∆̄ is the empirical mean of ∆̂(X). All in all, we assume
that our outcome follows a linear model, of the form

Y = β0 + β1Z1 + β2(T − T̄ ) + β3Z3(T − T̄ ) + ε.

Chernozhukov et al. (2018) show that given ĥ the best linear prediction of the individual treatment
effect is β2 + β3Z3. Unlike in the univariate case where we had a main term and an interaction
term, here Z1 is not the main effect of Z3 and therefore Z3 might have a main term. Centering T
ensures that only the interaction between Z3 and T will be captured.

Observe that, because of the way we have built our features, we expect the coefficients in the
linear regression to be close to natural values that correspond to perfect estimation of Y by ĥ:
β1 = 1, β2 = ∆̄, and β3 = 1. If the coefficients are far from their expected values, if for example β3

is negative, then we should be suspicious of the results. This motivates the use of a unilateral test
for interaction in the test described in Section 4.3.

Overfitting is also a concern in our setting, because an overfit prediction will always find an
interaction term Z3 by fitting the noise, and the same noise will be present when doing the linear
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regression. Chernozhukov et al. (2018) advocate for a sample splitting approach. We prefer to
use the out-of-bag estimators of random forests or more generally a prediction obtained in cross-
validation in order to have a full sample for the regression.

Following the approach developed above, we can test for presence of an improvement and esti-
mate the improvement under the max lower bound strategy. Let us finally mention that the crux
of the approach is to replace the joint distribution of prediction errors by the joint distribution
of (β?2 + β?3Z3(x))x. A reason to expect the procedure to be somewhat conservative is that very
different x will lead to similar values of Z3. If we have two distant points x1 and x2 such that
Z3(x1) ≈ Z3(x2), then the prediction errors of Z3(x1) and Z3(x2) might be less correlated than in
our procedure, where the correlation is one. Given the subadditivity of standard deviation, taking
this into account would lead the aggregate quantity to carry less uncertainty. A promising research
perspective is therefore to study the joint distribution of prediction errors of machine learning algo-
rithms to be able to provide tighter confidence bounds and therefore extend personalization to as
many patients as possible.

6 Illustration on real data

We illustrate our approach on the data of the Rituximab in ANCA-Associated Vasculitis (RAVE)
(Stone et al., 2010). RAVE is multicenter, randomized, double-blind, double-dummy, noninferi-
ority trial of rituximab versus cyclophosphamide for remission induction of severe antineutrophil
cytoplasmic antibody associated vasculitis. There were 99 patients assigned to rituximab and 98
assigned to cyclophosphamide. The primary outcome was a measure of remission at 6 months.
Overall, the proportion of patients in remission at 6 months was 64% with rituximab vs. 53% for
cyclophosphamide (p < 0.001 for the non-inferiority test that was the initial aim of the trial and
p = 0.1 for the usual superiority test). This trial was an interesting candidate for our procedure
as the average treatment effect was positive but not significant, but the original article underlined
that a prespecified subgroup analysis identified that rituximab patients significantly improved the
outcome of patient who presented wit relapsing disease, compared to cyclophosphamide.

We used 27 baseline covariates to model the outcome (see Table A.1 in the Supplementary
Material). Missing covariate data were imputed once using an iterative Factorial Analysis for Mixed
Data (FAMD) algorithm (Audigier et al., 2016) in order to obtain a dataset with no missing value.

Using this completed dataset, we trained random forests in classification to predict the outcome.
Each tree was grown with a bootstrap version of the sample. Each observation therefore had
probability around 1/3 to not be used to grow a tree, and such an observation is called out-of-bag
in the random forest vocabulary. To avoid overfitting, we used the out-of bag estimate, i.e., only the
trees for which the observation is out-of-bag are used to predict. This means that the observation
was not used in the model that predicts its outcome. We grew 1 500 trees in order to have around
500 trees for each out-of-bag prediction. For each observation (X,T ), we used the out-of-bag forest
to predict the treatment effect Z1 = ĥ(X, 0) and ∆̂(X) = ĥ(X, 1) − ĥ(X, 0), where ĥ(X,T ) is the
mean vote of the forest.

We then computed Z3 = ∆̂(X)− ∆̄, and performed logistic regression of Y on Z1, T − T̄ , and
Z3(T − T̄ ). As Z1 and Z3 are not on the logit scale, we do not expect for their coefficients to be
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close to 1, but the sign of the coefficients should be positive. This was the case for Z3 but not
Z1. The test for the average treatment effect term yielded p = 0.1 which is consistent with the
result in the original study. But the test for the interaction coefficient was not significant even at
a liberal 0.10 significance threshold. As a consequence the personalized set was empty. Compared
to the original article, it has to be noted that the subgroup possibly benefitting from rituximab
was identified among eight subgroup analyses with no correction for multiplicity. Our results thus
confirm that this analysis likely lacked robustness.

7 Discussion

In this paper, we have shown the importance of considering the uncertainty in the estimated strategy
when estimating the benefit of personalization. Indeed, the optimal strategy is never known, and we
have to estimate a strategy and its benefit simultaneously. In order to deal with this uncertainty,
we chose to prioritize one treatment over the other, just as we prioritize the null hypothesis in
significance testing. This has led us to advocate for the max lower bound strategy. It is the strategy
for which the α-credible quantile of the improvement under personalization will be maximal. The
personalized set it defines is often close to the region of superiority of the alternative treatment in
Shuster and van Eys (1983), but can be substantially larger.

The asymmetry between treatments is induced by privileging the reference treatment that would
usually be received if no treatment personalization was implemented. This implies in particular that
the max lower bound strategy still assigns the reference treatment to some patients for whom it
is predicted that the alternative treatment would lead to a more favorable outcome. This could
seem unnatural, but we argue it is however necessary to control the risk of implementing a strategy
that leads to a worse average outcome than the reference non-personalized strategy. It is therefore
crucial to ensure that a change in strategy is beneficial to patients on average, in the spirit of the
primum non nocere principle in medicine.

Our estimation of benefit is based on Bayesian arguments. The interest of considering Bayesian
estimation is that it allows us to consider the estimated strategy as fixed. Nevertheless, we are
interested in frequentist properties of our estimation such as type I error and coverage probabilities.
Using theoretical arguments and simulations, we saw that these statistical properties appear to be
respected. Unfortunately, the positivity of the credible quantile q̂n,α( ˆmlbα) does not offer a stand-
alone test because of somewhat pathological behavior when the estimated treatment effect β̂2 is
negative. However, it can be combined with the test for presence of interaction, which allows to
deal with this issue while not affecting the result of the test when β̂2 is positive. The resulting test
is a valid test for presence of improvement under the optimal strategy.

In a more speculative part of our paper, we proposed to extend our approach to the multivariate
case, by creating features from the prediction of a machine learning algorithm, and applying what
we have developed in the univariate case. An important consideration underlying this strategy
was to avoid overfitting. A more formal extension of our approach to the multivariate case may
involve the derivation of the joint distribution of prediction errors for machine learning algorithms,
which needs further work. Also, it may be interesting to study the gain of using recently proposed
X-learners (Künzel et al., 2019) to estimate the predictions Ê[Y 1 − Y 0|X] (also termed conditional
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average treatment effects) instead of random forests, for instance. The issue of estimating credible
quantiles with X-learner however also remains unsolved.

In the multivariate case, other authors have proposed different approaches to control for over-
fitting and uncertainty in model-based predictions of individual treatment effects Ê[Y 1 − Y 0|X].
For instance Li et al. (2016) have proposed a two- or three-step procedure. If there are sufficient
data, the dataset is divided into three independent subsets. The first subset serves for estimating
candidate models. The second subset is used to define the personalized set, for instance by using the
lower one-sided 95% confidence bound of predictions. Then, the properties of the resulting strategy
are estimated in the third subset. If data are not sufficient, the first two stages are replaced by a
cross-training stage, where one subset is iteratively randomly divided into a training and an evalu-
ation set, final predictions being then averaged over the repetitions. While this approach has been
shown to have good properties in simulation studies, in particular in controlling the type I error
rate, it necessitates a fair amount of data for splitting. It would be interesting to investigate how it
compares with the max lower bound strategy.

It could also be interesting to study how the max lower bound strategy compares to (or could be
used in conjunction with) residual weighted learning approaches, where the issue of determining the
optimal strategy is directly handled as a weighted classification problem (Zhao et al., 2012; Zhou
et al., 2017).

All aforementioned methods aiming at identifying treatment strategies are making use of al-
ready collected data. Once an “optimal” strategy has been determined, it should therefore also be
itself evaluated in a randomized trial. To approach the optimal treatment strategy and maximize
outcomes in the long term, it could also be recommended to conduct randomized trials focusing on
patients in the region of no superiority of any treatment. Such trials may provide adequate data to
refine treatment strategies.
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Supplementary Material

Appendix A: Proofs

A1 Proof of Proposition 1

We have

Θ?( ˆpol) = EX [∆?(X)1 ˆpol(X)=0] = β?2PX( ˆpol(X) = 0) + β?3EX [X1 ˆpol(X)=0],

which is a linear combination of a Gaussian vector and is therefore Gaussian. Using Fubini’s
theorem, we may write

EΠ[Θ?( ˆpol)] = EX
[
EΠ[−∆?(X)]1 ˆpol(X)=0

]
= EX [−∆̂(X)1 ˆpol(X)=0] = Θ̂( ˆpol).

Besides,

VarΠ[Θ?( ˆpol)] = EΠ

[
(Θ?( ˆpol)− Θ̂( ˆpol))2

]
= EΠ

[
E2
X [(∆?(X)− ∆̂(X))1 ˆpol(X)=0]

]
.

A2 Proof of Theorem 1

For simplicity, it is assumed throughout that X has a bounded density with respect to the Lebesgue
measure on [x0, x1]. Proofs are similar in the discrete case and left to the reader. We only consider
the case where −β̂3/

√
Σ3,3 < qα. The proof is analogous in the other case.

We first begin by stating a lemma.

Lemma A1. There exists a non-decreasing function g from [x0, x1] such that g(x0) = x0, for all
ρ > x0, x0 < g(ρ) < ρ and

Θ?(1x≥ρ) = −PX(X < ρ)∆?(g(ρ)).

Proof. Observe that
Θ?(1x≥ρ) = PX(X < ρ)(−β?2 − β?3EX [X|X < ρ])

and let, for ρ > x0, g(ρ) = EX [X|X < ρ].
To see that g is non-decreasing, we derivate for ρ > x0 and obtain

g′(ρ) =
fX(ρ)

P2
X(X < ρ)

∫ ρ

x0

(ρ− x)fX(x)dx ≥ 0.

The inequality is strict except when fX(ρ) = 0.
For all ρ > x0, the inequalities x0 < g(ρ) < ρ are straightforward from the definition of g. We

then have limρ→x+
0
g(ρ) = x0 and we prolongate by continuity so that g(x0) = x0.

We are now ready to prove the theorem.

Proof of Theorem 1. The assumption −β̂3/
√

Σ3,3 < qα guarantees that qα is in the image set of
the bijection defined in Proposition 2 and that we can safely define Xα = z−1

∆ (qα). The function
ρ 7→ q̂n,α(1x≥ρ) attains a maximum in [x0, x1] as a continuous function in a compact set.
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In the case Xα ≤ x0, we use Lemma A1. Then, for all ρ ∈ (x0,−β̂2/β̂3), we may write

Θ?(1x≥ρ) = −PX(X < ρ)∆?(g(ρ))

and
q̂n,α(1x≥ρ) = PX(X < ρ)

(
−∆̂(g(ρ)) + qαsdΠ(∆?(g(ρ)))

)
.

As g(ρ) > x0 ≥ Xα, we have

−∆̂(g(ρ)) + qαsdΠ(∆?(g(ρ))) < 0,

and therefore q̂n,α(1x≥ρ) < 0, ∀ρ ∈ (x0,−β̂2/β̂3), and the maximum is 0 attained in x0.
If x0 < Xα and x0 is in the domain of the bijection defined in Proposition 2, we can write using

equation (5), for all ρ ∈ [x0, Xα],

dq̂n,α(1x≥ρ)

dρ
(ρ) = fX(ρ)

(
− ∆̂(ρ) + qαsdΠ(∆?(ρ))

+ qαsdΠ(∆?(ρ))(CorΠ(−∆?(ρ),Θ?(1x≥ρ))− 1)
)
.

The sum of the first two terms in the parenthesis is positive, except inXα where it is 0, as z∆(ρ) > qα

∀ρ ∈ [x0, Xα), thanks to Proposition 2. The last term is positive, except in x0 where it is 0, as the
product of two negative factors (α < 0.5 and the correlation is smaller than 1). The parenthesis
is therefore strictly positive. As fX(ρ) can be 0, we have dq̂n,α(1x≥ρ)

dρ (ρ) ≥ 0, ∀ρ ∈ [x0, Xα], and
ρ 7→ q̂n,α(1x≥ρ) increases on that interval. It follows that the maximum is attained for ρmax,α ≥ Xα

and is positive, since q̂n,α(1x≥x0) = 0 and fX(ρ) puts mass in a neighborhood of x0.
If x0 < Xα and x0 is not in the domain of the bijection defined in Proposition 2, then the

parametrization of our class of policies on the x scale is not valid. However, once parametrization
is dealt with, the same arguments lead to the same result. We now detail the parametrization in
this case.

If x0 > x2
def
= arg min z∆, then we can still define a bijection with domain [x0,−β̂2/β̂3] and the

calculations above apply.
However, if x0 < x2, we cannot replace x 7→ 1z∆(x)≥η by x 7→ 1x≥ρ. We have to define two

bijections g1 and g2 with image set [η0
def
= min(z∆), z∆(x0)], as shown in Figure A1. The function g1

is decreasing while g2 is increasing, and we have, for all η ≤ z∆(x0), z∆(x) < η ⇔ g1(η) < x < g2(η).
The mean improvement of this strategy is then

Θ̂(1z∆(x)≥η) = −
∫ g2(η)

g1(η)
∆̂(x)fX(x)dx,

and its derivative

dΘ̂

dη
(η) = −g′2(η)∆̂(g2(η))fX(g2(η)) + g′1(η)∆̂(g1(η))fX(g1(η)).

The variance under Π is

VarΠ[Θ?(1z∆(x)≥η)] = EΠ

[( ∫ g2(η)

g1(η)
(∆?(x)− ∆̂(x))fX(x)dx

)2] def
= v(η).
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x0 g1(η) x2 g2(η)

x

z∆

η 0
η

Figure A1: Double parametrization of z∆.

Thus,

dv

dη
(η) = 2g′2(η)fX(g2(η))CovΠ(−∆?(g2(η)),Θ?(1z∆(x)≥η))

− 2g′1(η)fX(g1(η))CovΠ(−∆?(g1(η)),Θ?(1z∆(x)≥η)).

From this, we obtain the derivative of our quantile with respect to η, that is,

dq̂n,α(1z∆(x)≥η)

dη
(η)

= g′2(η)fX(g2(η))
(
− ∆̂(g2(η))

+ qαsdβ
(
∆̂(g2(η))

)
CorΠ(−∆?(g2(η)),Θ?(1z∆(x)≥η))

)
− g′1(η)fX(g1(η))

(
− ∆̂(g1(η))

+ qαsdβ
(
∆̂(g2(η))

)
CorΠ(−∆?(g1(η)),Θ?(1z∆(x)≥η))

)
.

As g2 is increasing and g1 is decreasing, both terms have the same sign, and the same argument as
above shows that

dq̂n,α(1z∆(x)≥η)

dη (η) > 0 for η ≤ qα.
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Appendix B: Study of z∆ variations

Note first that z∆(x) = 0 ⇔ x = −β̂2/β̂3. The limits of z∆ in −∞ and +∞ are, respectively,
lim−∞ z∆ = −β̂3/

√
Σ3,3 and lim+∞ z∆ = β̂3/

√
Σ3,3. This is the z-statistic of the test for presence

of an interaction seen in Definition 1. In addition,

dz∆

dx
(x) =

Ax+B

sdΠ(∆?(x))3/2
,

where A = −β̂2Σ3,3 + β̂3Σ2,3 and B = −Σ2,3β̂2 + β̂3Σ2,2.
The signs of A and B decide the shape of z∆. Since X and T are independent, Σ2,3 will be

approximately 0. If we set it equal to 0 in the previous expressions, we obtain A = −β̂2Σ3,3 and
B = β̂3Σ2,2. For simplicity, we will assume that Σ2,3 = 0 throughout, as this allows to discuss more
easily interpretable cases. For example, instead of −β̂2Σ3,3 + β̂3Σ2,3 < 0, we will have β̂2 > 0 and
instead of −Σ2,3β̂2 + β̂3Σ2,2 > 0, we will have β̂3 > 0. As Σ2,3 is close to 0, the probability of the
sign of A (respectively, of the sign of B) being different than minus the sign of β̂2 (respectively,
than the sign of β̂3) is small. Note however that if we want to apply our work to observational data,
where X and T are not independent, then the more complicated inequalities should be used.

Figure 2 in the main manuscript shows how z∆ typically varies, depending on the sign of β̂2

when β̂3 > 0. The sign of β̂3 does not affect the behavior: if we change its sign, the curve is
simply the symmetric of the original curve with respect to the ordinate axis. If β̂2 > 0, then z∆

is increasing on (−∞,−β̂2/β̂3] and therefore defines a bijection on its image set (−β̂3/
√

Σ3,3, 0].
As −β̂3/

√
Σ3,3 is the z-statistic for the test of presence of an interaction, for no individual can the

alternative treatment be recommended at a level α smaller than the p-value of the test for presence
of interaction.

However, if β̂2 < 0, then z∆ decreases before increasing. This means that for C characterized
by z∆(C) = −β̂3/

√
Σ3,3, we have ∀x < C, z∆(x) < −β̂3/

√
Σ3,3, i.e., we can have more evidence

for the use of the alternative treatment in some people than for the presence of an interaction. The
condition β̂2 < 0 means that the observed treatment effect is negative. If we refer back to our
definition of the reference and the alternative treatment in the introduction, β̂2 < 0 can happen
only when the new treatment was superior to the old treatment but not significantly. It is therefore
not desirable to recommend the alternative treatment to patients with z∆(x) < qα < −β̂3/

√
Σ3,3

as this means that we recommend an alternative treatment when neither the treatment effect nor
the interaction effect are significant. In Section 4 of the main manuscript, we advocate to combine
the interaction test with the test for improvement in order to exclude this situation.

Nevertheless, as long as we consider levels α larger than the p-value attained by the interaction,
we are in a similar position to the one we had in the case β̂2 > 0. Indeed, in this case z∆ defines
a bijection from (C,−β̂2/β̂3] to (−β̂3/

√
Σ3,3, 0]. This means that we consider only levels α larger

than the p-value for interaction.
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Appendix C: Additional properties of the ˆMlbα strategy

C1 Testing for benefit of personalization

We develop here on the need to combine the rejection region we proposed at the end of Section 2,
{q̂n,α( ˆmlbα) > 0}, with the test for interaction presented in Definition 1.

Let us recall that we want to test the null hypothesis of no benefit of personalization under
the ˆmlbα strategy, i.e., H0 : Θ( ˆmlbα) ≤ 0, against the alternative hypothesis that there is a gain
from personalization, i.e., H1 : Θ( ˆmlbα) > 0. As noted above, these hypotheses depend on random
variables. However, when the optimal strategy defines an empty personalized set, i.e., Θ(opt) = 0,
the estimated strategy can never be beneficial, since Θ( ˆmlbα) ≤ Θ(opt) = 0. Therefore, when
Θ(opt) = 0, Pβ(H0) = 1. Thus, letting Hopt

0 : Θ(opt) = 0, we have Hopt
0 ⊂ H0, with the added

advantage that Hopt
0 is a traditional null hypothesis that depends only on fixed quantities. In the

sequel, we therefore study the well-defined type I error under the null hypothesis Hopt
0 .

We now provide motivation for the combination of the interaction test with the test we proposed
based on q̂n,α( ˆmlbα). We will show that {q̂n,α( ˆmlbα) > 0} does not control type I error under Hopt

0

and that this is linked with the pathological behavior of z∆ when β̂2 < 0. As we have seen in
Subsection 3.2, when β̂2 < 0 the function z∆ has a downward bump and can therefore attain values
smaller than −|β̂3|/

√
Σ3,3. This situation can occur quite frequently. Assume, for example, that

β3 = β2 = 0, and let us illustrate this scenario with simulations following the protocol in the
legend of Figure C2. As β̂2 is centered and Gaussian, we have Pβ(β̂2 < 0) = 1/2. Furthermore,
the scenario β3 = β2 = 0 falls under Hopt

0 . The simulations show that the quantile we have
focused on, q̂n,0.05( ˆmlb0.05), is positive 1 time out of 4 when β̂2 < 0. As a consequence, if we use
{q̂n,0.05( ˆmlb0.05) > 0} as the rejection region of our test, the type I error rate will be 14%. The
excess in type I error rate above its nominal level comes exclusively from the simulations where
β̂2 < 0. As we see next, combining this rejection region with the one of the interaction test of
Proposition 1 allows to control type I error under the null hypothesis Hopt

0 .
Depending on the clinical context, the test for interaction can be unilateral or bilateral, and

we advocate for the use of the corresponding (unilateral or bilateral) ˆMlbα. When the alternative
hypothesis for the interaction test is H interact

1 : β3 > 0, i.e., the test is unilateral, then the border
between Hopt

0 and the alternative hypothesis Hopt
1 : Θ(opt) > 0 and β3 > 0 is

B = {(β2, β3), β3 ≥ 0,∆(x0) = 0} = {(β2, β3), β3 ≥ 0, β2 = −x0β3}.

The rejection region of the joint test is

R = {−β̂3/
√

Σ3,3 < qα, q̂n,α( ˆmlbα) > 0}.

Combining the test based on our quantile with the interaction test means that we always respect
the assumption of Theorem 1 in the rejection region, and we can therefore apply the theorem to
write R = {−β̂3/

√
Σ3,3 < qα, x0 < Xα}. As we have x0 < Xα ⇔ z∆(x0) < qα, the rejection region

then becomes:
R = {−β̂3/

√
Σ3,3 < qα, z∆(x0) < qα}.

On the border B, ∆(x0) = 0, and therefore, under Pβ , z∆(x0) ∼ N (0, 1). As Pβ(z∆(x0) < qα) = α,
we have control of the type I error rate:
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Figure C2: Control of type I error for the joint test with bilateral test for interaction. We
simulated 4 000 datasets based on the linear model (2), i.e., we sampled ε for each simulation. The variable
X is sampled once from a uniform distribution between -1 and 1. We take n = 300, β0 = 0, β1 = 1, and
σ2 = 1. We sampled 4 000 times from Π. The interaction coefficient β3 varies between 0 and 0.5 by 0.1
increments with β2 = −β3 mini(Xi). The dotted line shows α = 0.05.

Proposition 4. If we consider a unilateral test for interaction in the joint test for presence of
improvement, then for all (β2, β3) ∈ B we have Pβ (Rejection) ≤ α.

The situation is not so straightforward in the bilateral case and we will not formally prove that
we have control over type I error. Indeed, when the alternative hypothesis for the interaction is
H interact

1 : β3 6= 0, the rejection region changes with the sign of β̂3. We have R = {−|β̂3|/
√

Σ3,3 <

qα/2, z∆(x0) < qα} if β̂3 > 0 and R = {−|β̂3|/
√

Σ3,3 < qα/2, z∆(x1) > qα} if β̂3 < 0. As β̂3

is not always of the sign of β3, a formal proof would be tedious. We can nevertheless expect
type I error to be controlled, and we give some arguments to support this statement. Indeed, the
border region between the null hypothesis and the alternative becomes B = {(β2, β3), β3 ≥ 0, β2 =

−x0β3}∪{(β2, β3), β3 ≤ 0, β2 = −x1β3}. In the case where β3 = 0, the test for interaction is clearly
sufficient to control the type I error. If β3 is large and positive, we have with great probability that
β̂2 > 0 and β̂3 > 0. In this case, z∆(x0) ∼ N (0, 1), and

Pβ (Rejection) ≈ Pβ(z∆(x0) < qα) = α.

A similar reasoning applies when β3 is large and negative. Using simulations, we show in Figure C2
that this control is still attained for intermediate values between β3 = 0 and β3 positive and large.
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C2 Coverage probabilities

We here check that the resulting quantiles respect the expected frequentist coverage probabilities,
i.e., Pβ(Θ( ˆMlbα) ≤ q̂n,γ( ˆMlbα)) = γ. Here γ ∈ [0, 1] is any confidence level, which does not have to
be equal to α, the confidence level used in the definition of ˆMlbα. This subsection will use simulations
to check this, keeping in mind that the question of frequentist validity of Bayesian credible bounds
is an active field of theoretical research (e.g., van der Vaart, 1998).

Coverage probabilities are complicated in our setting by the fact that with positive probability,
ˆMlbα = ref. In this case, the set of patients for whom the recommended treatment is the alternative

treatment (i.e., the personalized set) is empty. As Θ? is an integral on the personalized set, we have
Θ?(ref) = 0, and the distribution of Θ? is a Dirac mass at 0. As Θ(ref) = 0 as well, all quantiles
are therefore correct in this case. This means that Pβ(Θ( ˆMlbα) = q̂n,γ( ˆMlbα)) > 0, and the best we
can hope for is to have control over strict left coverage Pβ(Θ( ˆMlbα) < q̂n,γ( ˆMlbα)) and over strict
right coverage Pβ(Θ( ˆMlbα) > q̂n,γ( ˆMlbα)). In the frequentist world, valid coverage translates to

Pβ
(
Θ( ˆMlbα) < q̂n,γ( ˆMlbα)) ≤ γ

and
Pβ
(
Θ( ˆMlbα) > q̂n,γ( ˆMlbα)

)
≤ 1− γ.

To investigate if coverage is respected by our estimation, we simulated data in the same fashion
as above. We simulated 10 000 datasets based on the linear model (2), i.e., we sampled ε for each
simulation. The variable X is sampled once from a uniform distribution between -1 and 1. We take
n = 300, β0 = 0, β1 = 1, β2 = 0.3, σ2 = 1, and β3 ∈ {0.5, 0.8, 1}. We select 0.05 for α and we use
ˆMlb0.05. We sampled β? 10 000 times from Π.

Figure C3 shows the results for four thresholds, including α = 0.05. Each bar corresponds to a
set of simulations with fixed parameters and a choice of γ. It is divided in 3 with the length of each
color corresponding (from bottom to top) to the probability of left coverage (blue), equality (green),
or right coverage (red). Naturally, the total length of the bar is 1 as those three probabilities sum to
1. The line γ is drawn and the coverage inequalities hold if it is in the green. The main message of
Figure C3 is that coverage is approximately respected. However, there is a clear asymmetry between
left and right coverages. When β3 decreases, the green bar corresponding to the probability of an
empty personalized set increases. As that probability increases, the probability of right coverage
(red) decreases while the probability of left coverage (blue) stays constant. It is only after the
probability of right coverage is 0 that the probability of left coverage decreases with β3.

C3 Influence of parameters

To have some grasp on the situation, we propose the visualization in Figure C4 in the parameters’
plane. The confidence ellipse around (β̂2, β̂3) represents Π, the posterior distribution of (β2, β3)

from which we sample (β?2 , β
?
3). To each Xi corresponds a line ∆?(Xi) = β?2 + β?3Xi = 0. The

lines that are under the true value of (β2, β3) correspond to participants for whom personalization
is beneficial.

The ellipse controls uncertainty in two dimensions instead of one and therefore leads to wider
confidence region when projected in one dimension. This is why some of the dotted lines intersect
the 90% confidence ellipse despite corresponding to points for which z∆(X) < q0.05.
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Figure C3: Coverage of Θ( ˆMlb0.05) by q̂n,γ( ˆMlb0.05) for γ ∈ {0.05, 0.25, 0.5, 0.95}. The bar length corre-
sponds to the probabilities of different events depending on the value of β3. In each bar, from bottom to top,
the length of the blue bar is the empirical probability of left coverage Pβ(Θ( ˆMlb0.05) < q̂n,γ( ˆMlb0.05)). The
green bar corresponds to Pβ(Θ( ˆMlb0.05) = q̂n,γ( ˆMlb0.05)), i.e., Pβ( ˆMlb0.05 = ref). The red bar corresponds
to the probability of right coverage Pβ(Θ( ˆMlb0.05) > q̂n,γ( ˆMlb0.05)). The γ line is drawn. As long as the line
is in the green, coverage is respected. Note that the median q̂n,0.5( ˆMlb0.05) corresponds to Θ̂( ˆMlb0.05).
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Figure C4: Confidence ellipse around (β̂2, β̂3) (marked by a red x) at confidence level 25%, 50%, 75%, and
90%. The red cross marks the true value of the parameters (β2, β3). The lines have equation x + yXi = 0

for all Xi in the sample. The dotted lines correspond to the observations that verify z∆(Xi) < ηmax,0.05, i.e.,
the set of patients for which the alternative treatment is recommended under strategy ˆind0.05. The axis of
the ellipse are parallel to the x-axis and y-axis because of the independence between X and T .

With this representation, it is quite easy to infer the influence of parameters on the discovery
rate. As the sample size n increases, the ellipse will shrink and the estimated parameters will
converge towards the true parameters at rate 1/

√
n, which will lead to more frequent identification

of a non-empty personalized set. When the treatment effect β2 increases, there are less patients
who benefit from personalization and therefore it becomes harder to identify them. If β3 increases,
the opposite happens. If both parameters increase while their ratio remains fixed, it will become
easier to identify a personalized set because the lines will be more spread out.
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Appendix D: Covariates used for the analysis of the RAVE data

Table D1: Covariates used for analysis of the RAVE data.

Variable

Delay between stroke and randomization in hours
Conscious state at randomization
Patient sex
Age in years
Symptoms noted on waking
Atrial fibrillation
CT before randomization
Infarct visible on CT
Heparin within 24 hours prior to randomization
Aspirin within 3 days prior to randomization
Systolic blood pressure at randomization (mmHg)
Face deficit
Arm/hand deficit
Leg/foot deficit
Dysphasia
Hemianopia
Visuospatial disorder
Brainstem/cerebellar signs
Other deficit
Stroke subtype
Local time - hours of randomization
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