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Abstract

Face expressions understanding is a key to have a better understanding of
the human nature. In this contribution we propose an end-to-end pipeline
that takes color images as inputs and produces a semantic graph that en-
codes numerically what are facial emotions. This approach levrages low-level
geometric details as face representation which are numerical representations
of facial muscles activation patterns to build this emotional understanding.
It shows that our method recovers social expectations of what characterize
facial emotions.

1. Introduction

Face expressions are one of the main human communication channel.
They are resultant of many complex human internal processes that them-
selves have been triggered by external stimulis. Understanding how human
emotions work is a continuously investigated research topic and results favor
both academic (e.g., human psychological understanding improvement) and
industrial (e.g., advertising targeting) developements. In this study we pro-
pose a new framework allowing to understand visually what are facial emo-
tions; in which manner they are recognizable from others; in other words,
what are defining them intrinsically from a numerical point of view. Our
approach relies on embedding human faces as graphs where nodes represent
both semantic and positional landmarks. The spatial distribution of those
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landmarks is highly related to facial emotion revealing procedure. We firstly
classify those graphs with a semantic-aware Graph Neural Network (GNN)
model. We then provide a qualitative study that explains accurate internal
decision processes the classifier has designed for it, which in this context, is
a proxy for emotions numerical definition framework.

2. Related work

Face expression characterization is foremost an emotion recognition de-
pendent problem. Face expression recognition problems have been deeply
investigated according to different angles such as natural language process-
ing paradigm [1]. Other studies has been conducted with EEG signals [2]
that allow to have a deep notion of what are emotion from a neurological
point of view. Other studies had took interest in human emotions char-
acterization namely [3, 4] and a graph-based study has been done by [5].
Understanding facial emotions from a visual viewpoint, on a side, deals with
facial alignment. Facial alignment is at the core interest of computer vision
community. It consists of specifying facial landmarks position regarding spe-
cific semantics. Some relevant solutions have been proposed by the computer
vision community leading to a wide deployment in industrial applications al-
though it remains an important research topic still investigated. There are
non-linear correlated phenomenons between facial landmarks groundthruth
distribution and facial emotion revealing process. In this study we propose
an end-to-end framework that fisrt, encodes human faces present in color im-
ages as graphs; then explain deep face representations classification yielding
numerical definition of what are human facial emotions. Many explaining
methods suited for GNN has been proposed in the litterature. XGNN [6] is
a model-level approach that generates iteratively explaining graphs through
a reinforcement learning procedure. GNNExplainer [7] is a mask generator
model based on mutual information optimization. It starts with randomly
initialized node and node features mask jointly optimized, with mutual infor-
mation, against the class label of the assessed graph. LRP-GNN [8] adopts a
walk-based approach, introducing the node anteriority and apply the origi-
nal Layer-wise Relevance Propagation (LRP) [9] propagation rule. EiX-GNN
[10] is a model-agnostic approach that is ordering subgraphs by determining
the asymtotic behavior of a random walk that is performs over the explained
graphs. Nonetheless, explaining is often a context-dependant task. In order
to get rid of any contextualized-expertise to assess these methods in term of
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relevance, objectives metrics [11] has been designed and have helped us to
choose our explaining methods. Despites all these considerations, it turns
out that our pipeline allows to recover social expectations of what are facial
emotions recognition.

3. Problem formulation

Emotion is a human multi-factorial response to environemental inter-
action. For human-to-human communication, emotions help to design ex-
changed messages. Expressing emotions can be made by different channels.
One of them is to put face configuration in a specific spatial configuration
that is socially recognizable. From this, revealing an emotion is a transfer
process between an initial face shape to an other specific one. The resulting
pose can be defined as being what is the expressed emotion. For instance
in 2-persons conversation, expressing happiness is done most of the time by
smiling and uprising cheeks of one of the involved person. Noticing this
change helps to visually perceive hapiness for the conversation partner, the
emotional message is thus received if both individuals share the same facial
emotion revealing process. Under computer-aided approach, understanding
and characterizing human face emotions can be address by computationally
understand the underlying conditionned facial geometry and especially given
these precise configurations. We present here our proposed approach provid-
ing relevant results even on a wide range of social contexts.

4. Our approach

Face shape deformation is due to a joint facial muscle activation, some
patterns occur and some of them are basis components for facial emotion
revealing. Catching such patterns and characterizing them computationnally
is the key to provide a computationnal understanding of facial emotions.
Encoding such patterns require to define them physically and transcript it
in computing machine. Faces are complex biological structure but we can
represent facial muscle groups as semantic positional landmarks. To cover
this issue, we use state-of-art face alignment method that has been especially
designed for such semantic mapping. The landmark spatiallity variation is
due to the adjacent facial muscles that squeeze or stretch conjointly in some
face neighborhoods. Acquiring this relational knowledge, in particular when
emotions are expressed, can be done by representing faces as a graph where
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Figure 1: Our method relies on three compounds: a labeling module that is used to
build our graph-fashion face emotional datasets; once this assembling is done, a deep
model will classify our graph by parcellating in human-intractable high-dimensional space
standardized graph vertices spatial positions; a conversion is then operated to put this
complex representation into a human readable that provide an understanding of human
facial emotions thank to the ScoreCAM GNN explainer.

each node is a facial landmark and where adjacency is represented by both
intra-muscles (local) and inter muscles (global) scale interactions. We will
describe our image-based facial graph-embedding process suited for various
contexts; introducing our emotional supervised classification problem and its
interpretability aspect. This last will let us highlight what are key insights
to understand facial emotions at a visual scope.

4.1. Features conception and labeling
These raw materials are the inputs of our preprocessing step : image-

based facial landmark detection and emotion recognition. For the sake of
clarity, we denote D as being our images dataset. The dataset set size is
denoted by |D| ∈ N and we see an image of size k, l ∈ N as a triplet X ∈
Mk,l([0, 255] ∩ N)3.

Facial landmark inference. From raw color images we determine graph fea-
tures to learn thank to a face alignment method. The development of such
method is at a core interest of computer vision community and detecting fa-
cial landmarks is a well-studied problem. Basically, assuming that we have an
optimal image-based facial landmark detector fa? that determined carefully
p ∈ N three-dimensional facial landmarks, i.e. :

fa? : D → R3×p

X 7→ (xi)i∈{1,··· ,p}
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Since each instance X of D has its own recording context, the inference
fa?(X) lean on significant different spatially distributed subspace of R3 no-
tably in terms of space-barycentric position or overall scaling ratio. Without
a standardization procedure this will lead to an irrelevant statistical learning
because intrinsecal emotion signal is only a in-between relative landmarks
interaction. To gain statistical stability, we apply a standardization process
relying on finding optimal rigid affine transformations. We will consider here
the scale, rotation and translation transformation since this is these three
affine transformations that overcome the wide-context image recording issue.
This standardization puts fa?(D) in a common, sustainable and statistically
efficient dataset representation. This framework is defined regarding a mean
face that stands as a regressed and standardized objective. This mean face is
emotionless, synthetic, and has been designed by averaging spatially p land-
marks of neutral aligned faces. It means also that neutral emotion will be
our baseline to characterize other facial emotions. We denote this mean face
has (mi)i∈{1,··· ,p} ∈ R3×p.
The standardization process is formalized as follow; for all (xi)i ∈ fa?(D) :

(s?X,R
?
X, t

?
X) = arg min

(s,R,tT )∈Ω

p∑
i=1

‖mT
i − sRxTi − tT‖2 (1)

with Ω = R+ × SO(3)× R3.
Note that those rigid transformations follow the data distribution prior. In-
deed, due to the various contexts present in D, head poses are various as
well. Considered geometric transformations must not alter the global bio-
logical structure of human faces which is, without abusive considerations,
assumed to be constant across any individuals. And since affine transforma-
tions preserve notably colinearity, parallelism, ratio of length and barycen-
ters, it conserves the global physical faces aspect and does not introduce any
semantic alterations or non-linear effects. This problem (1) has a closed-form
solution where proof is given in [12]. Due to face global face shape variation
over individuals in D, non-linear variation (i.e individual singularity) is not
taken into account but can be seen as noisy features that may not affect
meaningfully the learning phase. We denote the standardized dataset as D?,
it means:

D? = {s?XR?
XXT − t?TX|X ∈ fa?(D)} (2)

Then we embed this new data standardized representation as a graph accord-
ing the following scheme. From original definition, graphs are couple (V,E)
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where V is the set of nodes and E ⊂ V × V is the set of edges. The set E
is the adjacency representation of the considered graph. There is a matrix
formulation of edges representation that is fully equivalent and allowing to
perform easieer algebraic operation. The adjacency matrix A ∈M|V |({0, 1})
as its entry ai,j defined by ai,j = 1 iff (i, j) ∈ E, 0 otherwise. In the context
of deep representation of signals evolving over the graph, graphs are rather
seen as (L,A) such that L is a column vector of size |V | valued in H, a
d-dimensional Hilbert space (d ∈ N). It thus means that each node in V
as an H-valued row vector of size d representing the signal evolving on this
node. The adjacency matrix A is used to describe the domain structure.

We map bijectively D? to D?
G = {GX̂|X̂ ∈ D?} where for each X̂ ∈ D?,

GX̂ = (X̂,A) ∈ D? × {A}. Note that A does not depend on X̂ because
the topology of induced graphs (i.e., the face muscle interaction adjacency)
is a common feature shared across all humans being, indeed as mentioned
before giving a social context and an emotion, peoples express it according to
the same joint muscle activation patterns. The design of A has been driven
by the muscle momentum connexity assumption. The muscle momentum
connexity assumption is based upon the fact that in every face localities,
physically connected muscles act together as a group (i.e. given a muscle,
when it is activating, adjacent muscles are more likely to be driven by this
activation and acting in turn). And so, we assume that this asumption holds
to reveal facial emotion.

We designed facial muscles interactivity according an hand-crafted strat-
egy built upon local and global semantic informations. Local adjacency is
conceived according to the muscle momentum connexity assumption. At the
local scope, landmarks, that represent the same positional semantic, are rep-
resented as a chained subgraph. Global adjacency is focused on gathering
those local semantics in an prior-free representation, so as a complete adja-
cency structure according to the graph theory terminology. This strategy al-
lows to embed efficiently both fine-details semantics (local scale) and higher-
level semantics (global scale), including biological prior knowledge. The care-
ful mixing of these connex components (according to the input graph) has
a convinient algebraic representation. Indeed, the general adjacency ma-
trix A is a block matrix designed respectively to respect the aforementioned
{1, · · · , p} semantic parcellation. Landmarks semantic splitting mapping is
described in Table 1.
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Semantic features Node index
Left eyebrow 17,18,19,20,21
Right eyebrow 22,23,24,25,26

Left eye 36,37,38,39,40,41
Right eye 42,43,44,45,46,47

Nose 27,28,29,30,31,32,33,34,35
Thin & cheeks 0,1,2,3,4,5,6,7,8,9,10,11,...,16
Upper mouth 48,49,50,51,52,53,54,64
Lower mouth 48,60,59,58,57,56,55,54,64,65,66,67

Table 1: Semantic face parts - Nodes index mapping

Face expression recognizer inference. As well as facial landmarks detection
method, emotion recognition based on color images has been heavily investi-
gated by the computer vision community. Many studies have been conducted
and emotion recognition problems are often framed as supervised classifica-
tion problems since nowadays many data are publicly available. Considering
C ∈ N different emotions, an emotions recognizer is simply a optimal map-
ping er? such that:

er? : D → {1, · · · , C}
X 7→ cX

We then infer er?(D) to obtain labels that will be afterward used to clas-
sify emotions with respect to D?

G × er?(D), i.e., in a graph-based fashion
rather than in image-based setting.

Note: Inferences made through fa? and er? may not be absolutely accu-
rate in terms of, respectively, emotion and facial landmark groundthruths.
The D?

G × er?(D) quality is highly dependent on fa? and er? accuracy. It
has to be noticed that wrong assignment may lead to irrelevant results and
may bias the conclusion of this study.

4.2. Feature classification
In order to acquire high understanding of facial emotions and to encode

efficiently the joint landmarks relative position distribution given an emo-
tion, we levrage the powerful data representation abilities that deep classifier
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have. As a consequence, we used a deep model to classify emotions, espe-
cially a graph neural networks. Graph Neural Network is a general deep
model introduced in [13] that is able to deal with data represented as graph.
Contemporain GNN models has been proposed [14, 15]. We have used such
models to perform our classification task. Now, we introduce θ ∈ Θ such that
Θ is an m-dimensional Euclidean space. We denote by fθ our parametrized
GNN classifier that determines for each instance the discrete conditional
probability distribution given θ and the instanced graph GX̂ over these C
classes. The optimal parameter θ? ∈ Θ exists and determines what is an
optimal classifier that we denote fθ? .

4.3. Feature understanding
Once having determined θ?, we can analyze how fθ? internal decision

processes have been designed. The classifier fθ? combine non-linearly many
different scales of input representations. Diving into such tortuous mixing
is hopeless in order to have a human-understandable representation of this
mixing. We rather use a method that seeks to highlight in a human-affordable
and precise manner this representation combining. Explaining methods do
not have a formalized formulation since what they are supplying are still
under investigation from psychological, philosophical or even computional
aspects.

5. Experiment

In this section we provide our actual framework from the dataset we have
used to labelazing tools as well as our implementation setup that justify the
results shown below.

5.1. Dataset
For a wide deployment purpose of our method, we use publicly and highly

available RGB images coming from famous computer vision datasets.

300W. dataset [16, 17, 18] is widely used computer vision datasets for fa-
cial landmarks problems. This dataset is interesting since it supplies a very
large contextual example including a wide range of emotions. This variety
of data covers the majority of human emotions that a person using our tool
can encounter in daily life. This dataset is composed of respectively 300
indoor-contextualized and 300 outdoor-contextualized instances. It is from
this dataset that we have inferred three-dimensional landmarks and emotions.
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5.2. Face alignment tools
As a three-dimensional landmark detector fa? we used [19]. This model

is one of state-of-the-art 2D-to-3D landmark detector and it detects p = 68
facial landmarks. It relies on the Face Alignment Network. Several methods
(e.g [20]) have been designed to directly find three-dimensional landmarks
from raw images. . But for accuracy concerns, regressing models in two-
dimensional space is easier from optimization point of view than in three-
dimensional ones because the searching space is in the lower dimension. So
a 2D-to-3D models that just extend the last dimension based on an already
accurate 2D position is preferable to a 3D regression model that is trained
from scratch.

5.3. Face expression recognizer tools
As an emotion recognizer tool er? we have chosen the state-of-the-art

model [4]. It achieves 76.82% of accuracy on FER2013 dataset which is the
state-of-art dataset for such classification task. It has been trained to detect
7 emotion types : angry, fear, disgust, happy, sad, surprise and neutral. This
method is using a segmentation network to refine feature maps that are then
plugged into a Deep Residual Network and a U-Net based architecture.

As far as we know, both tools achieved respectfully state-of-the-art results
in their own domain. That is why we have chosen them to lead this study.
We now provide our own classifier architecture that helps us to classify our
graph representation regarding those C = 7 emotion types.

5.4. Classifier architecture and implementation setup
The architecture of fθ (Figure 2a) is designed upon a local encoding that

focuses on understanding each connex components and a global setting that
combines, without any prior, these local information flows that afterward feed
a linear layer allowing the weighting of each preprocessed semantics (with
the concatenation of global average pooling and global maximum pooling
layers) for the emotion classification. Our experimental setup is defined as
follows : for our deep classifier we have used GCN modules for each semantic
component encoding and a GCN for the subsequent global encoding. A linear
module large of 512 neurons is used for the classification phase. We have used
the Adam optimizer with a learning rate of 7×10−4. From a hardware point,
we have used Nvidia A100 40 Gb GPUs.
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(a) Graph-based classifier structure: We designed the signal propaging scheme
by concentrate semantic localities between themselves. Each semantic part is
seen as a connex component of the assessed graph. As long as each component
encodes a partial emotion information, we gather each of them in a semantic
graph with eight components that are connected in an unconstrained manner,
it means that it is a complete graph. The obtained embedded data distribution
is then fed to a GCN module and a linear part that helps to classifying.

(b) The initial semantic
node indexation that we
used for our experimen-
tation. This indexation
is widely used for tack-
ling face landmark as-
signment problems.
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Infidelity Sparsity
GNNExplainer 1.67 0.23
LRP-GNN 0.79 0.14

ScoreCAM GNN 0.21 0.89

Table 2: Statistical comparative study of explaining methods: left column is the averaged
infidelity over the dataset 300W given each assessed explaining methods. The infidelity
[11] measures the unfaithfulness of a explaining method regarding an instance and a deep
model. The lowest the infidelity, the better. We have measure as well the average sparsity
that provided explanations actually are regarding each explaining method. Sparsity is
another objective metrics that measuring the conciseness of each provided explanation.
The higher the sparsity, the better. According both objective metrics, ScoreCAM GNN
has shown empirically better results.

6. Results

In this section, we firstly provide the performances we have reached for
classifying emotions within our graph-based approach. Then, we will il-
lustrate we are our results regarding the emotion singularization obtained
through ScoreCAM GNN which has been proven to be the most relevant
regarding objective assessment metrics.

6.1. Classification performances
For the classification task label distribution needs to be balanced for an

efficient learning. It turns out that emotions were not uniformly distributed
over instances of 300W. Consequently, we had a focus only on classes which
occur at least at 10% among 300W instances. Those emotions are happy,
neutral, sad and fear, it thus means that C = 4. We also note some emo-
tion misattributions by er?. Under our experimental setup, we reach 66% of
accuracy on the graph-variant of 300W dataset. This result remains accept-
able considering the misattribution problem and general classification model
accuracy that surround 80% of accuracy. Based on these results, we now
provide some qualitative emotion characterization measurements.

6.2. Relative explaining methods assessment
In order to supply relevant results as possible, we have leaded a statistical

comparative study among state-of-the-art explaining methods. In this study
we retain GNNExplainer, the state-of-the-art method, LRP-GNN and Score-
CAM GNN that provide explanations under realistic time amount with re-
spect to XGNN or SubgraphX. As shown in Table 2, we have measured some
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explaining methods objective assessment metrics (faithfulness and sparsity)
and ScoreCAM GNN seems to be the most relevant explaining method. As a
consequence, we will only considering ScoreCAM GNN explanations to lead
our emotional understanding study. ScoreCAM GNN [21] is an extension to
non-Euclidean domain of ScoreCAM, initially introduced by [22]. ScoreCAM
linearly combine the highest level of data representation and weight each of
them by its own contribution weight relatively to the classification task. The
outcome of ScoreCAM GNN is, given a classifier and an instance, a normal-
ized distribution of these contributions for classifying the instance, of each
element of the domain the instance leans on (i.e. nodes). In our context, it
provided the impact of each node regarding the classification of the consid-
ered graph according to fθ? . In other terms, it provides the importance of
each landmark which has an almost one-to-one physical mapping (facial mus-
cle neighborhood) involved in emotion description, so a deep facial emotion
understanding.

6.3. Face expression understanding
Understanding deep model behaviors may be dependent on model accu-

racy since model accuracy reflects the numerical understanding of the model
learning tasks. Under the above considerations, some results may be a bit
irrelevant but it appears experimentally that provided explanation of fθ? be-
haviors are in accordance with the social baseline of what an emotion is with
respect to other emotions thus what is characterizing facial emotions visually.
As shown in Figure 3, we have displayed the four emotions characterization
with their initial image representation. For classification task, single instance
explaining method always provided their explanation with including what is
the relevant information (current class understanding) and what is not rele-
vant (remaining classes) since classification are seamlessly a space partition
problem. We firstly described what is the neutral emotion because it can
be seen as a baseline for understanding and characterizing other emotions.
Indeed we can see neutral emotion as a non-emotional emotion. Other emo-
tions characterization will be then supplied in a constrastive fashion, with
as a baseline, the neutral emotion that is geometrically unambiguous. For
happy emotion, what we noticed under what ScoreCAM GNN revealed is
that upper, lower mouth and nose are conjointly involved in the raw descrip-
tion of what happiness is over a human face. Analogously, sadness emotion
can be seen as the symmetric of happiness and we found out that recognizing
sadness from the geometrical point of view is also done by a specific mouth
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Figure 3: Face expression characterization through ScoreCAM GNN: In these four dual
representation of human faces we highlight where is the numerical definition of facial
emotions. Neutral emotion is the baseline emotion to characterize other ones. It shows
that happiness and sadness are both highly embedded in mouth and nose motions which
are socially relevant.
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and nose muscle configuration that is far different from the happiness config-
uration. These results are in social accordance of what we can expect from
the response of what characterizing facial emotions.

7. Conclusion

In this study we propose an original approach to characterize visually
what are human face emotions. By using, state-of-the-art methods to recover
high-level information, such as image-based emotion recognition or semantic
facial landmarks positioning, we encode human faces as a graph to enforce
and leverage the relational aspects of muscle activation patters involved in
human emotions revealing processes. Even with uncomplete information due
mainly to self-weakness of labeling methods, that stands out as being state-
of-the-art method in their own field of application, we recover social expected
results of what are emotions and which muscle group are involved to visually
described them. Further works may include more accurate labeling methods
in order to increase the overall accuracy of the graph based classifier. Other
explaining methods may be used to provide emotional understandings.
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