
HAL Id: hal-03737694
https://hal.science/hal-03737694v2

Preprint submitted on 14 Feb 2023 (v2), last revised 15 Nov 2023 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DADAO: Decoupled Accelerated Decentralized
Asynchronous Optimization

Adel Nabli, Edouard Oyallon

To cite this version:
Adel Nabli, Edouard Oyallon. DADAO: Decoupled Accelerated Decentralized Asynchronous Opti-
mization. 2023. �hal-03737694v2�

https://hal.science/hal-03737694v2
https://hal.archives-ouvertes.fr

DADAO: Decoupled Accelerated

Decentralized Asynchronous Optimization

Adel Nabli

ISIR, CNRS, Sorbonne University

MILA, Concordia University

adel.nabli@sorbonne-universite.fr

Edouard Oyallon

ISIR, CNRS, Sorbonne University

February 14, 2023

Abstract

This work introduces DADAO: the first decentralized, accelerated,

asynchronous, primal, first-order algorithm to minimize a sum of L-smooth

and µ-strongly convex functions distributed over a given network of size n.

Our key insight is based on modeling the local gradient updates and gossip

communication procedures with separate independent Poisson Point Pro-

cesses. This allows us to decouple the computation and communication

steps, which can be run in parallel, while making the whole approach com-

pletely asynchronous, leading to communication acceleration compared to

synchronous approaches. Our new method employs primal gradients and

does not use a multi-consensus inner loop nor other ad-hoc mechanisms

such as Error Feedback, Gradient Tracking, or a Proximal operator. By

relating the inverse of the smallest positive eigenvalue of the Laplacian

matrix χ1 and the maximal resistance χ2 ≤ χ1 of the graph to a suffi-

cient minimal communication rate between the nodes of the network, we

show that our algorithm requires O(n
√

L

µ
log(1

ǫ
)) local gradients and only

O(n
√
χ1χ2

√

L

µ
log(1

ǫ
)) communications to reach a precision ǫ, up to log-

arithmic terms. Thus, we simultaneously obtain an accelerated rate for

both computations and communications, leading to an improvement over

state-of-the-art works, our simulations further validating the strength of

our relatively unconstrained method. We also propose a SDP relaxation

to find the optimal gossip rate of each edge minimizing the total number

of communications for a given graph, resulting in faster convergence com-

pared to standard approaches relying on uniform communication weights.

Our source code is released on a public repository.

1

1 Introduction

In recent years, the increased amount of available data as well as the prolifer-
ation of highly-parallelizable and connected hardware have brought significant
changes in the way we process data. These developments have led to the need
for efficient and scalable methods for distributed optimization, particularly in
the context of machine learning. Indeed, in scenarios where data is distributed
across multiple nodes, such as in edge computing or distributed sensor networks,
leveraging the local resources of each device is a topic of significant interest. In
other settings, such as clusters, spreading the compute load is ideally done
to obtain a linear speedup in the number of nodes. In a typical distributed
training framework, the goal is to minimize a sum of functions (fi)i≤n split
across n nodes of a computer network. A corresponding optimization proce-
dure involves alternating local computations on the nodes and communications
along the edges E of the network. In the decentralized setting, there is no cen-
tral machine aggregating the information sent by the workers: nodes are only
allowed to communicate with their neighbors in the network. This work ad-
dresses simultaneously multiple limitations of existing decentralized algorithms
while guaranteeing fast convergence rates.

Synchronous lock. Optimal methods [42, 27] have been derived for syn-
chronous first-order algorithms, whose executions are blocked until all nodes
have reached a predefined state (e.g., they must all finish computing local gra-
dients before the round of communication begins), which limits their efficiency
in practice as they can heavily be impacted by a few slow nodes or edges in the
graph (the straggler problem). To tackle the synchronous lock, we rely on the
continuized framework [12], itself derived from the randomized gossip model [5].
In randomized gossip, nodes update their local values at random times using
pairwise communication updates named gossip. Thus, iterates are randomized,
labeled with a continuous-time index that only need local clocks to be synchro-
nized at the beginning of the procedure (in opposition to a global iteration count
that has to be known by all at all time) and performed locally with no regards
to a specific global ordering of events. While based on discrete events and
thus readily implementable, the continuized framework simplifies the analysis
by leveraging continuous proof tools.

Coupled lock. However, in [12], gradient and gossip operations are coupled:
each communication along an edge first requires the computation of the gradi-
ents of the two functions locally stored on the corresponding nodes. As more
communication steps than gradient computations are necessary to reach an ǫ pre-
cision, even in an optimal framework [27, 42], the coupling leads to an overload
in terms of gradient steps. Moreover, coupling computations and communica-
tions implies they must be performed sequentially, decoupling them allows both
tasks to be done in parallel, allowing an additional speedup.

2

To our knowledge, our work is the first primal method to tackle those locks
simultaneously while obtaining accelerated rates for both computations and com-
munications. We propose a novel algorithm (DADAO: Decoupled Accelerated
Decentralized Asynchronous Optimization) based on a combination of similar
formulations to [27, 13, 18] in the continuized framework of [12]. We study:

inf
x∈Rd

n
∑

i=1

fi(x) , (1)

where each fi : R
d → R is a µ-strongly convex and L-smooth function computed

in one of the n nodes of a network. We derive a first-order optimization algo-
rithm that only uses primal gradients and relies on Point-wise Poisson Processes
(P.P.P.s [31]) modeling of the communication and gradient occurrences, leading
to accelerated communication and computation rates. Furthermore, our com-
munication bounds rely on the maximal resistance of a graph rather than the
largest eigenvalue of a Laplacian, leading to an additional acceleration compared
to works which rely on synchrony. Our framework is based on a simple fixed-
point iteration and kept minimal: it only involves primal computations with an
additional momentum term. Thus, we do not add other cumbersome designs
such as the Error-Feedback or Forward-Backward used in [27] (whose adapta-
tion to asynchronous settings is for now unclear). While we do not consider the
delays bound to appear in practice (we assume instantaneous communications
and computations), we remove the coupling lock by performing gradient and
gossip steps in parallel. Tab. 1 compares DADAO with other approaches and
shows it is the only work to achieve accelerated rates both in number of commu-
nication and gradients. Then, we assume that each edge fires at a rate that can
be adjusted a priori, yet the network has to verify a set of physical constraints,
such as a maximal bandwidth condition. This contrasts with common gossip
algorithms, which either leave the weights of the gossip matrix to be defined by
the user or propose simple appropriate heuristics, such as the use of Metropolis
weights, see e.g. [48, 43, 37, 17]. We cast a relaxation of the minimization of
the communication rate as a novel convex optimization problem, which can be
efficiently solved with classical solvers. This allows for outperforming commu-
nication rates obtained from uniform or standardized Laplacian weights, which
are often suggested in the literature.

Contributions. (1) We propose a primal algorithm with provable guarantees
in the context of asynchronous decentralized learning. (2) This algorithm is the
first to reach accelerated rates for both communications and computations while
not requiring ad-hoc mechanisms obtained from an inner loop. (3) We propose
a simple theoretical framework compared to concurrent works, we show that
our rates are better than previous works, and (4) we illustrate this theoretical
comparison numerically. (5) We propose a SDP procedure to optimize the
communication rate of our algorithm for a user-specified graph.

3

Structure of the paper. In Sec. 3.1, we describe our work hypothesis and
our model of a decentralized environment, while Sec. 3.2 describes our dynamic.
Sec. 3.3 states our convergence guarantees and highlights that the communica-
tion and computational rates of our method are better compared to its competi-
tors. Next, Sec. 4 explains how to optimize the edge weights of a given graph
topology to minimize DADAO’s overall communication rate. Sec. 5.1 explains
our implementation of this algorithm, and finally, Sec. 5.2 verifies our claims
numerically. All our experiments are reproducible, using PyTorch [39], our code
being online https://github.com/AdelNabli/DADAO/.1

Notations: f = O(g) means there is a constant C > 0 such that |f | ≤ C|g|,
{ei}i≤d is the canonical basis of Rd, d ∈ N, 1 is the vector of 1, I the identity,
A+ is the pseudo-inverse of A. We further write ei , ei ⊗ I.

2 Related Work

Table 1: This table shows the strength of DADAO compared to concurrent
works for obtaining ǫ-precision. n is the number of nodes, |E| the number of
edges, 1

χ1
the smallest positive eigenvalue of a fixed weighted Laplacian L, ρ

the eigengap and χ2 ≤ χ1 the effective resistance. Note that under reasonable
assumptions

√
χ1χ2n = O(|E|√ρ) (see Lemma 3.1). Async., Comm., Grad., M.-

C. and Prox. stand respectively for Asynchrony, Communication steps, Gradient
steps., Multi-consensus and Proximal operator. As suggested in their respective
papers, all the algorithms are run with 1

‖L‖L. For AGT and OGT, the mixing

matrix used is stochastic, a more precise comparison is given by Prop. 3.3.

Method Async. Decoupled No Inner Loop Primal Total Total
(M.-C. or Prox.) Oracle # Comm. # Grad.

MSDA [42] ✗ ✗ ✗ ✗
√
ρ|E|

√

L
µ log 1

ǫ n
√

L
µ log 1

ǫ

DVR [21] ✗ ✗ ✗ ✓
√
ρ|E|

√

L
µ log 1

ǫ n
√

L
µ log 1

ǫ

ADOM+ [27] ✗ ✗ ✗ ✓ ρ|E|
√

L
µ log 1

ǫ n
√

L
µ log 1

ǫ

TVR [18] ✗ ✓ ✗ ✓ ρ|E|Lµ log 1
ǫ nL

µ log 1
ǫ

AGT [34] ✗ ✗ ✗ ✓
√
ρ|E|

√

L
µ log 1

ǫ n
√

L
µ log 1

ǫ

OGT [44] ✗ ✓ ✓ ✓
√
ρ|E|

√

L
µ log 1

ǫ n
√

L
µ log 1

ǫ

ESDACD [19] ✓ ✗ ✓ ✗
√
χ1χ2n

√

L
µ log 1

ǫ

√
χ1χ2n

√

L
µ log 1

ǫ

Continuized [12] ✓ ✗ ✓ ✗
√
χ1χ2n

√

L
µ log 1

ǫ

√
χ1χ2n

√

L
µ log 1

ǫ

DADAO (ours) ✓ ✓ ✓ ✓
√
χ1χ2n

√

L
µ log 1

ǫ n
√

L
µ log 1

ǫ

Continuized and asynchronous algorithms. We highly rely on the elegant
continuized framework [12], which allows obtaining simpler proofs and brings
the flexibility of asynchronous algorithms. We reemphasize that identically to

1
Erratum: An earlier version of this preprint wrongly claimed that the method was suitable
for time-varying settings whereas further analysis is required for this to be be properly shown.

4

https://github.com/AdelNabli/DADAO/

[12], the result of this paper is a stochastic discrete algorithm with a continuous
proof: our proof framework is not based on the discretization of an Ordinary
Differential Equation (ODE) but rather studies the evolution of a Stochastic
Differential Equation (SDE) with jumps. However, by contrast to [12], in our
work, we significantly reduce the necessary amount of gradient steps compared
to [12] while maintaining the same amount of activated edges. Another type of
asynchronous algorithm can also be found in [32], yet it fails to obtain Nesterov’s
accelerated rates for lack of momentum. We note that [33] studies the robustness
to delays yet requires a shared memory and thus applies to a different context
than decentralized optimization. [18] is a promising approach for modeling
random communication on graphs yet fails to obtain acceleration in a neat
framework without inner loops.

Decentralized algorithms with fixed topology. [42] is the first work to
derive an accelerated algorithm for decentralized optimization, and it links the
convergence speed to the Laplacian eigengap. The corresponding algorithm
uses a dual formulation and a Chebychev acceleration (synchronous and only
for fixed topology). Yet, as stated in Tab. 2, it still requires many edges to be
activated. Furthermore, under a relatively flexible condition on the intensity of
our P.P.P.s, we show that our work improves over bounds that depend on the
spectral gap. An emerging line of work following this formulation employs the
continuized framework [14, 12, 13], but unfortunately do not use a primal oracle,
as they rely on the gradients of the Fenchel conjugate. Finally, we note that
the work of [13] incorporates delays in their model, using the same technique
as our work, yet transferring this robustness to another setting remains unclear.
Reducing the number of communication has been studied in [36], but without
obtaining accelerated rates. [22] allows for fast communication and gossip rates
yet requires a proximal step and synchrony between nodes to apply a momentum
variable.

Finite sum acceleration. If each local function fi is a sum of elementary
functions

∑m
j=1 fi,j with a favorable conditionning, an additional acceleration

is possible, as observed by [22, 21, 18], which is a different problem from Eq.
1. This can be viewed as a cluster of nodes with infinite connectivity and an
efficient decentralized algorithm should automatically adapt to such structure.
Thus, we focused on the setting m = 1, which allows a fair comparison with
these works.

Error feedback/Gradient tracking. A major lock for asynchrony is the
use of Gradient Tracking [26, 37, 34] or Error Feedback [45, 28]. Indeed, gra-
dient operations are locally tracked by a running-mean variable which must be
synchronously updated at each gradient update, making it incompatible with
an asynchronous framework. Furthermore, acceleration requires an undesirable
multi-consensus inner loop. We emphasize that [44] allows to decouple the
gradient updates from communication, yet the framework is still synchronous,

5

leading to synchronous communication rates, that asynchrony can improve (see
Tab. 1).

Decoupling procedures. Decoupling subsequent steps of optimization proce-
dures traditionally leads to speed-ups [22, 18, 3, 4]. This contrasts with methods
which couple gradient and gossip updates, so that they happen in a predefined
order, i.e., simultaneously [12] or sequentially [27, 25]. In decoupled optimization
procedures, inner-loops are not desirable as they require an external procedure
that can be potentially slow and need a block-barrier instruction during the
algorithm’s execution (e.g., [22]). It means in particular that it is preferrable to
avoid approaches such as Catalyst [35], multi-consensus steps [30] or Tchebychev
acceleration of consensus [42].

Resistance of a graph. The maximal resistance of a graph is a widely stud-
ied quantity, particularly in physics [24, 46, 23], as it is a refined geometric
invariant of graphs. The resistance of a graph corresponds to the commute time
of a Markov Chain [7]. However, beyond the Continuized framework [12] or
acceleration of consensus problems [6, 2, 16], we are unaware of generic, asyn-
chronous, accelerated decentralized optimization procedures that rely on this
quantity. Also, it has a more physical interpretation than the Laplacian’s norm,
as it can be computed via Ohm’s and Kirchhoff’s Circuit Laws (see [7]).

3 Accelerated Asynchronous Algorithm

3.1 Gossip Framework

We consider the problem defined by Eq. 1 in a distributed environment consti-
tuted by n nodes whose dynamic is indexed by a continuous time index t ∈ R

+.
Each node has a local memory and can compute a local gradient ∇fi, as well as
elementary operations, in an instantaneous manner. As said above, having no
delay is less realistic, yet adding them also leads to significantly more difficult
proofs whose adaptation to our framework remains largely unclear. Next, we
will assume that our computations and gossip result from independent homoge-
neous P.P.P. with no delay. For the sake of simplicity, we assume that all nodes
can compute a gradient at the same rate:

Assumption 3.1 (Homogeneous gradient computations). The gradient compu-
tations are normalized to fire independently at a rate of 1 computation per time
unit. For the i-th worker, we write Ni(t) the corresponding P.P.P. of rate 1, as
well as N(t) = (Ni(t))i≤n.

Remark 3.1. The P.P.P Ni(t) on node i means that taking gradient steps
at i are discrete events, but the time intervals between two events is a random
variable following an exponential law of parameter 1. Thus, the expected waiting
time between two gradient steps on the i-th worker is 1 time unit.

6

Next, we model the bandwidth of each connection. For an edge (i, j) be-
longing to ∈ E , the set of edges of a graph we assume connected (3.2), we write
Mij(t) the P.P.P. with rate 0 < λij < ∞. When this P.P.P. fires, both nodes
share and update their local memories. The rate λij is adjustable locally by
machine i while λji is controlled by machine j. While λij and λji may be differ-
ent, we highlight that the communication process is symmetric, i.e. both nodes
update their local memories when either one of the two corresponding P.P.Ps
fires. Thus, in the corresponding undirected graph Ē , each edge (i, j) will fire
at a rate of λij + λji. Given our notations, if (i, j) 6∈ E , then the connection
between (i, j) can be thought as a P.P.P. with intensity 0. Taking the λij as edge
weights, we introduce the subsequent graph Laplacian, which is the expected
Laplacian of our graph:

Λ ,
∑

(i,j)∈E
λij(ei − ej)(ei − ej)T .

We write Λ ,
∑

(i,j)∈E λij(ei − ej)(ei − ej)
T its tensorized counter-part that

will be useful for our Lyapunov-based proofs. Following [42], we will compare
this quantity to the following projector:

π , I− 1

n
11

T =
1

2n

∑

1≤i,j≤n

(ei − ej)(ei − ej)
T .

Using the spectral norm, we introduce the algebraic connectivity of our net-
work using Λ, as in [27]: χ1 , ‖Λ+‖ . We might also write χ1[Λ] to avoid
confusion, depending on the context.

Assumption 3.2 (Connected graph). The set of edges E defines a connected
graph such that χ1[Λ] <∞.

Next, the maximal effective resistance of the network, as in [12, 11], is:

χ2 ,
1

2
sup

(i,j)∈E
(ei − ej)TΛ+(ei − ej) .

A standard quantity [42], which is used to control the number of synchronous
gossips steps, is the spectral gap, given by ρ , ‖Λ‖‖Λ+‖ . We also introduce the
value κ, the ratio of communication frequency between the fastest and slowest
edges:

κ ,
sup(i,j)∈E λij + λji

inf(i,j)∈E λij + λji
.

This ratio is typically bounded, for instance, in the case of a graph with
constant edge weights or for λij = 1

di
with di the degree of the i-th node in

a bounded degree graph or a regular graph. We prove the following Lemma
(proved in Appendix A), which is useful to control χ1, χ2 and compare our
bounds with works that rely on the spectral gap of a graph:

7

Lemma 3.1 (Effective resistance). The spectrum of Λ is non-negative. Also,
we have χ1 = +∞ iff Ē is not a connected graph. Also, if the graph is connected,
then:

n− 1

TrΛ
≤ χ2 ≤ χ1 .

Furthermore, we also have the following:

√
χ1χ2TrΛ ≤

√
ρ
√

κn|Ē | .

The last part of this Lemma indicates that our method requires less commu-
nications than methods depending on the spectral gap when no degenerated be-
havior on the graph’s connectivity happens, i.e. when κ is adequately bounded,
which is a standard assumption [20].

Remark 3.2. For synchronous frameworks [27, 42], the spectral quantity ex-
tracted from their gossip matrix is a given measure of the connectedness of their
graphs that is used afterwards to deduce the right number of synchronous com-
munication rounds between two gradient steps. In our framework, Λ directly
contains the information of both the topology E and the edge communication
rates λij , thus χ1[Λ] must rather be understood as an indicator of how well the
graphs connectedness and the chosen communication strategy interact. In fact,
we will see later that there is a condition on χ1, χ2 for DADAO to converge, see
Appendix F for further discussion.

3.2 Dynamic to optimum

Next, we follow a standard approach [29, 27, 41, 18] for solving Eq. 1 (see
Appendix B for details), leading to studying, for 0 < ν < µ, the following
Lagrangian:

inf
x∈Rn×d

sup
y∈R

n×d

z∈R
n×d

n
∑

i=1

fi(xi)−
ν

2
‖x‖2 − 〈x, y〉 − 1

2ν
‖πz + y‖2.

For f(x) =
∑n

i=1 fi(xi), the saddle points (x∗, y∗, z∗) of the above Lagrangian
are given by:

∇f(x∗)− νx∗ − y∗ = 0
y∗ + πz∗ + νx∗ = 0
πz∗ + πy∗ = 0 .

(2)

Our algorithm is based on a fixed-point algorithm to obtain those saddle points,
which is a similar idea to [28], which is only restricted to a setting without
communication acceleration. Furthermore, contrary to [27], we do not employ a
Forward-Backward algorithm, which requires both an extra-inversion step and
additional regularity on the considered proximal operator. Not only does this
condition not hold in this particular case, but this is not desirable in a con-
tinuized framework where iterates are not ordered in a predefined sequence and

8

require a local descent at each instant. Another major difference is that no
Error-feedback is required by our approach, which allows unlocking asynchrony
while simplifying the proofs and decreasing the required number of communi-
cations. Instead, we show it is enough to incorporate a standard fixed point
algorithm, without any specific preconditioning (see [8]). We consider the fol-
lowing dynamic:

dxt = η(x̃t − xt)dt− γ(∇f(xt)− νxt − ỹt) dN(t)

dx̃t = η̃(xt − x̃t)dt− γ̃(∇f(xt)− νxt − ỹt) dN(t)

dỹt = −θ(yt + zt + νx̃t)dt+ (δ + δ̃)(∇f(xt)− νxt − ỹt)dN(t)

dyt = α(ỹt − yt)dt (3)

dzt = α(z̃t − zt)dt− β
∑

(i,j)∈E
(ei − ej)(ei − ej)

T(yt + zt)dMij(t)

dz̃t = α̃(zt − z̃t)dt− β̃
∑

(i,j)∈E
(ei − ej)(ei − ej)

T(yt + zt)dMij(t) ,

where ν, η̃, η, γ, α, α̃, θ, δ, δ̃, β, β̃ are undetermined real-valued parameters. As
in [38], variables are paired to obtain a Nesterov acceleration. The variables
(x, y) allow decoupling the gossip steps from the gradient steps using indepen-
dent P.P.P.s. Furthermore, the Lebesgue integrable path of ỹt does not corre-
spond to a standard momentum, as in a continuized framework [12]; however,
it turns out to be a crucial component of our method. Compared to [27], no
extra multi-consensus step needs to be integrated. Our formulation of an asyn-
chronous gossip step is similar to [12], which introduces a stochastic variable
on edges; however, contrary to this work, our gossip and gradient computations
are decoupled. We emphasize that while the dynamic 3 is formulated using
SDEs [1], which brings the power of the continuous-time analysis toolbox, it
is still event-based and thus discrete in nature. Hence, the dynamic can be
efficiently implemented in practice as explained in Sec. 5.1 and Appendix H.

3.3 Theoretical guarantees

We prove the following in Appendix C.

Theorem 3.2. Assume each fi is µ-strongly convex and L-smooth. Assume
3.1, and that 2χ1χ2 ≤ 1. Then there exists some parameters for the dynamic
Eq. (3) (given in Appendix C.1), such that for any initialization x0 ∈ ker(π),
and x̃0 = x0, y0 = ỹ0 = ∇f(x0)− µ

2x0, z0 = z̃0 = −πy0, we get for t ∈ R
+:

E[‖xt − x∗‖2] ≤ (
1

2
+

23

8

L

µ
+ 2

L2

µ2
)‖x0 − x∗‖2e−

t
8
√

2

√
µ
L

Also, the expected number of oracle gradient calls is nt and the expected number
of edges activated is: t

2TrΛ .

The condition 2χ1χ2 ≤ 1 can simply be understood as whether or not the
chosen communication strategy suits sufficiently well the graph topology E for

9

DADAO to converge using the expected rates of communication (λij)(i,j)∈E
compared to the expected rate of one gradient step per time unit on each node
we assumed in Assumption 3.1 (see Appendix F for a more complete discus-
sion). Thus, given a graph topology, it is straightforward to obtain a Laplacian
verifying 2χ1χ2 ≤ 1. Indeed, we have the following:

Remark 3.3. For any graph topology E and any choice of corresponding graph
Laplacian L verifying χ1[L] bounded, there is a communication strategy (λij)(i,j)∈E
such that Λ, the Laplacian of E with edges (i, j) ∈ E weighted with their expected
communication rate λij, verifies 2χ1[Λ]χ2[Λ] ≤ 1. One such example is given
by:

Λ =
√

2χ1[L]χ2[L]L .

This property allows us to use in DADAO the Laplacians introduced in pre-
vious work, to which we can now compare. It leads to the following proposition
(proved in Appendix D), which shows that DADAO obtains better complexities
than concurrent works while starting from the same family of Laplacians:

Proposition 3.3 (Comparison with concurrent work).

• If κ = O(|Ē|n), then DADAO obtains better communication rate than
MSDA [42], and requires strictly less communications for the complete
graph.

• For any fixed Laplacian valid for ADOM+ [27], DADAO obtains a better
communication rate than ADOM+, and requires strictly less communica-
tions for the complete graph.

• If κ = O(|Ē|n), for a valid Laplacian using the Gossip matrix of OGT
[44] or AGT [34], DADAO obtains a better communication rate than both
Gradient Tracking methods, and requires strictly less communications for
the complete graph.

• DADAO requires fewer gradient computations than the Continuized frame-
work [13], and has a strictly better computation rate for the cycle graph.

We highlight that [42] claimed that their algorithm is optimal because they
study the number of computations and synchronized gossips on a worst-case
graph; our claim is, by nature different, as we are interested in the number
of edges fired rather than the number of synchronized gossip rounds. Indeed,
in an asynchronous framework, there is no notion of round of communication,
which allows this framework to enjoy the advantageous rates of randomized
procedures. Moreover, not only this measure of complexity is standard in asyn-
chronous frameworks (e.g., see [5]), but also, if we are aiming for the most frugal
procedure, minimizing both the total number of computations and communica-
tions is of interest. Tab. 2 predicts the behavior of our algorithm on various
classes of graphs encoded via a normalized Laplacian. It shows that systemati-
cally, our algorithm leads to the best complexities. For example, in the case of

10

a complete graph, one synchronized gossip round requires a total of |E| = O(n2)
communications whereas we show that a rate of only O(n) communications per
time unit suffices for DADAO in this case. We note that the graph class de-
picted in Tab. 2 was used as worst-case examples for proving the optimality of
[42] in a synchronous context.

Table 2: Complexity for various graphs using 1
‖L‖L with L the standard Lapla-

cian with unit edge weights. In this case, ρ = χ1. The complexities are reported
per time unit so that all algorithms reach ǫ-precision at the same time. We have,
respectively, for a star/line or cyclic/complete graph and the d-dimensional grid:
χ1 = O(n), χ2 = O(n), Tr = O(1) / χ1 = O(n2), χ2 = O(1), Tr = O(n) /
χ1 = O(1), χ2 = O(1), Tr = O(n) / χ1 = O(n2/d), χ2 = O(1), Tr = O(n).

Method # edges activated per time unit # gradients computed per time unit
Graph Star Line Complete d-grid Star Line Complete d-grid

[27] ADOM+ n2 n3 n2 n1+2/d n n n n
[42] MSDA n3/2 n2 n2 n1+1/d n n n n

[12] Continuized n n2 n n1+1/d n n2 n n1+1/d

Centralized n - - - n - - -
DADAO (ours) n n2 n n1+1/d n n n n

4 Minimizing the communication rate as a SDP

For a given connected graph topology E , we introduce RE
+ , {λ, λij ≥ 0 and λij =

0, if (i, j) 6∈ E}. We want to find a set of edge firing rates that would minimize
the overall number of communications. Given a set of weights λ ∈ R

E
+ defin-

ing a Laplacian Λ(λ), it is sufficient to use the edge firing rates given by the
normalized Laplacian Λ(λ)

√

χ1[Λ(λ)]χ2[Λ(λ)] to guarantee convergence. Thus,
the quantity we want to minimize is the trace of this normalized Laplacian,
i.e. TrΛ(λ)

√

2χ1[Λ(λ)]χ2[Λ(λ)]. However, except in a simplistic scenario, it is
difficult to estimate optimal edge weights for a given graph. This has been dis-
cussed in [16] for the sum of the effective resistances of a graph, and in [47, 5] for
χ1[Λ(λ)]. Similarly to [16], we propose an SDP to minimize the corresponding
communication rate, which relies on a slightly technical convexity lemma (see
Appendix E.1). However, λ→ χ2[Λ(λ)] is not convex. Indeed, the supremum is
taken over a set of edge dynamically defined through λ, E(λ) , {(i, j), λij > 0}
which makes it non-convex: an optimal solution might lead to removing some
edges from the graph and consider the maximum effective resistance of this sub-
graph. This forces us to slightly relax this condition by taking the supremum
over a predefined fixed set of edges, and we introduce for any λ ∈ R

E
+:

χE
2 (λ) ,

1

2
max
(i,j)∈E

(ei − ej)⊤Λ+(λ)(ei − ej) .

This function is convex, and we note that by definition χE
2 (λ) ≥ χ2[Λ(λ)]. We

now propose several structural constraints on the weights of a Laplacian:

11

(C1) Global bandwidth:
∑

(ij)∈E λij ≤ λ, where λ > 0 is a total bandwidth
constraint,

(C2) Local connectivity:
∑

j,(ij)∈E λij ≤ λi, where λi > 0 is a local constraint
on node connectivity,

(C3) Local bandwidth:
∑

j,(ij)∈E λji + λij ≤ λi, where λi > 0 is a local
constraint on edge connectivity to node i.

In the following, we will generically call C ∈ {C1, C2, C3} one of these linear
constraints. Getting back to our initial problem, we want to consider:

minimize TrΛ(λ)
√

2χ1[Λ(λ)]χ2[Λ(λ)] (4)

subject to λ ∈ C ∩ R
E
+

which allows connected subgraphs of E to be considered. However, in order
to frame this minimization problem as a SDP, we first need to relax it, see
Appendix E.2 for a complete discussion. This leads to the following proposition,
proved in Appendix E.3:

Proposition 4.1 (Minimizing communications as a SDP). Given a fixed topol-
ogy E, the problem:

minimize
√

2χ1[Λ(λ)]χE
2 (λ) (5)

subject to λ ∈ C ∩ R
E
+

is equivalent to the following SDP:

minimize t1 + t2

subject to λ ∈ uC, u ≥ 1, λij ≥ 0 ∀ (i, j) ∈ E
Λ =

∑

ij λij(ei − ej)(ei − ej)T

(

Λ u(ei − ej)
u(ei − ej)T t1

)

< 0 ∀ (i, j) ∈ E

(

Λ I− 1
n11

T

I− 1
n11

T t2I

)

< 0

In Appendix E.3, we prove that, running the accelerated gossip procedures
on the Barbell graph using uniform weights is O(n3/2) worse than with weights
solution to the relaxed problem (5). This is illustrated in Fig. 1 (a) and con-
firmed by Fig. 1 (b), which displays the impact of choosing sub-optimal gossip
matrices for the convergence rates of gossip-based methods in practice. For
more numerical results using our SDP solvers, see Appendix E.5.

12

5 10 15 20
0

250

500

750

1000

1250 Optimal
Uniform

(a)

0 1000 2000 3000 4000 5000

communications

10 13

10 11

10 9

10 7

10 5

10 3

10 1

D
is

ta
n
c
e
 t

o
 c

o
n
s
e
n
s
u
s

(b)

Figure 1: (a) Optimal value of
√
2χ1χ2 for problem (5) under constraint C1

compared to the one obtained with uniform weights 1/|E|, as a function of n for
the barbell graph. (b) Convergence rate for the accelerated gossip procedure
on a barbell graph K50 − K50 using both the edge weights given by our SDP
and the uniform ones. For reference, we plot the theoretical rates, denoting
by χ∗

1, χ
∗
2 the values obtained using the SDP weights, and by χ1, χ2 the ones

obtained with 1/|E|. Averaged over 20 runs.

5 Practical implementation

5.1 Algorithm

To study the trajectories of Xt , (xt, x̃t, ỹt), Yt , (yt, zt, z̃t), we use the follow-
ing, equivalent to (3):

dXt = a1(Xt, Yt)dt+ b1(Xt)dN(t) (6)

dYt = a2(Xt, Yt)dt+
∑

(i,j)∈E
bij2 (Yt)dMij(t) ,

where a1, a2, b1 = (bi1)i, (b
ij
2)ij are smooth functions. We now describe the algo-

rithm used to implement the dynamics of Eq. (3). Let us write T
(i)
1 < T

(i)
2 <

... < T
(i)
k < ... the time of the k-th event on the i-th node, which is either an

edge activation, either a gradient update. We remind that the spiking times of
a specific event correspond to random variables with independent exponential
increments and can thus be generated at the beginning of our simulation. They
can also be generated on the fly and locally to stress the locality and asyn-

chronicity of our algorithm. We write Xt = (X
(i)
t)i and Yt = (Y

(i)
t)i, then on

the i-th node, at the k-th iteration, we integrate on [T
(i)
k ;T

(i)
k+1] the ODE

dXt = a1(Xt, Yt)dt

dYt = a2(Xt, Yt)dt

13

to define the values right before the spike. One can easily find the matrix
A ∈ R

6×6 such that:

X
(i)

T
(i)−
k+1

Y
(i)

T
(i)−
k+1

 = exp
(

(T
(i)
k+1 − T

(i)
k)A

)

X
(i)

T
(i)
k

Y
(i)

T
(i)
k

 . (7)

Next, if one has a gradient update, then:

X
(i)

T
(i)
k+1

= X
(i)

T
(i)−
k+1

+ b1

(

X
(i)

T
(i)−
k+1

)

.

Otherwise, if the edge (i, j) or (j, i) is activated, a communication bridge is
created between both nodes i and j. In this case, the local update on i writes:

Y
(i)

T
(i)
k+1

= Y
(i)

T
(i)−
k+1

+ b2

(

Y
(i)

T
(i)−
k+1

, Y
(j)

T
(i)−
k+1

)

.

Note that, even if this event takes place along an edge (i, j), we can write it

separately for nodes i and j by making sure they both have the events T
(i)
ki

=

T
(j)
kj

, for some ki, kj ∈ N corresponding to this communication. As advocated,
all those operations are local, and we summarize in the Alg. 1 the algorithmic
block corresponding to our implementation. See Appendix H for more details.

Algorithm 1: This algorithm block describes our implementation on
each local machine. The ODE routine is described by Eq. 7.

Input: On each machine i ∈ {1, ..., n}, gradient oracle ∇fi, parameters
µ, L, χ1, tmax.

1 Initialize on each machine i ∈ {1, ..., n}:
2 Set X(i), Y (i), T (i) to 0 and set A via Eq. (88);
3 Synchronize the clocks of all machines ;
4 In parallel on workers i ∈ {1, ..., n}, while t < tmax, continuously

do:
5 t← clock() ;
6 if there is an event at time t then

7 (X(i), Y (i))← ODE(A, t− T (i), X(i), Y (i));
8 if the event is to take a gradient step then
9 X(i) ← X(i) + b1(X

(i)) ;
10 else if the event is to communicate with j then
11 Y (i) ← Y (i) + b2(Y

(i), Y (j)) ; // Happens at j simultaneously.

12 T (i) ← t ;

13 return (x
(i)
tmax

)1≤i≤n.

14

5.2 Numerical results

In this section, we study the behavior of our method in a standard experimental
setting (e.g., see[27, 12]). In order to compare to methods using the gradient of
the Fenchel conjugate [12] in our experiments, we restrict ourselves to a situation
where it is easily computable. Thus, we perform the empirical risk minimization
for the decentralized linear regression task given by:

fi(x) =
1

m

m
∑

j=1

‖a⊤ijx− cij‖2, (8)

where aij ∈ R
d, and cij ∈ R correspond to m local data points stored at node

i. We follow a protocol similar to [27]: we generate n independent synthetic
datasets with the make_regression functions of scikit-learn [40], each worker
storing m = 100 data points. We recall that the metrics of interest are the
total number of local gradient steps and the total number of individual mes-
sages exchanged (i.e., number of edges that fired) to reach an ǫ-precision. We
systematically used the proposed hyper-parameters of each reference paper for
our implementation without any specific fine-tuning.

� ������ ������
�� ����!�������������

��
$�

��
$�

��
�

��
�

1 n

n ∑ i=
1‖
x i
−

x
‖ ‖

2

"��������� ����� ���� �

��� ��� ���
�� ����!��������������	

��
$�

��
$�

��
�

��
�
"��������� ����� ���� �

��������

���
��� ��!�#��
��

�
�
�

� ������ ������

��������������������

��
��

��
��

��
��

��
�

��
�

1 n

n ∑ i=
1‖
x i
−

x
‖ ‖

2

	����������������������

��� ��� ���

���������������������

��
��

��
��

��
��

��
�

��
�

	����������������������

Figure 2: Comparison between ADOM+ [27], the continuized framework [12],
MSDA [42] and DADAO, using the same data for the linear regression task, and
the same graphs (from left to right: line with n = 150, complete with n = 250).

Comparison between all methods. We fix the Laplacian matrix via Eq.
(3.3) to compare simultaneously to the continuized framework [12], MSDA [42]
and ADOM+ [27]. We compare ourselves to both versions of ADOM+: with and
without the Multi-Consensus (M.-C.). We report in Fig. 2 results corresponding
to the complete graph with n = 250 nodes and the line graph of size n =
150. While sharing the same asymptotic rate (see Fig. 7 for experimental
confirmation), we note that the Continuized framework [12] and MSDA [42]
have better absolute constants than DADAO, giving them an advantage both
in terms of the number of communication and gradient steps. However, in the
continuized framework, the gradient and communication steps being coupled,
the number of gradient computations can potentially be orders of magnitude
worse than our algorithm, which is reflected by Fig. 2 for the line graph. As for
MSDA, Tab. 2 showed they do not have the best communication rates on certain

15

classes of graphs, as confirmed to the right in Fig. 2 for MSDA and in Fig. 7.
Thanks to its M.-C. procedure, ADOM+ can significantly reduce the number of
necessary gradient steps. Yet, consistently with our analysis in Prop. 3.3, our
method is systematically better in all settings in terms of communications.

In conclusion, while several methods can share similar convergence rates,
ours is the only one to perform at least as well as its competitors in every
setting for different graph’s topology, as predicted by Tab. 1.

6 Conclusion

In this work, we have proposed a novel stochastic algorithm for the decentralized
optimization of a sum of smooth and strongly convex functions. We have demon-
strated, theoretically and empirically, that this algorithm leads systematically
to a substantial acceleration compared to state-of-the-art works. Furthermore,
our algorithm is asynchronous, decoupled, primal, and does not rely on an extra
inner loop: each of these properties makes it suitable for real applications. We
also proposed a novel approach for minimizing the accelerated communication
rate of asynchronous gossip algorithms. In future work, we would like to explore
the robustness of such algorithms to more challenging variabilities occurring in
real-life applications such as time-varying networks and to extend our work to
less regular functions and stochastic analysis.

Acknowledgements

This work was supported by Project ANR-21-CE23-0030 ADONIS and EMERG-
ADONIS from Alliance SU. In addition, the authors would like to thank Raphaël
Berthier, Mathieu Even, Hadrien Hendrikx, and Dmitry Kovalev for their help-
ful discussions.

References

[1] Ludwig Arnold. Stochastic differential equations. New York, 1974.

[2] Necdet Serhat Aybat and Mert Gürbüzbalaban. Decentralized computation
of effective resistances and acceleration of consensus algorithms. In 2017
IEEE Global Conference on Signal and Information Processing (GlobalSIP),
pages 538–542, 2017.

[3] Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Decoupled
greedy learning of CNNs. In Hal Daumé III and Aarti Singh, editors, Pro-
ceedings of the 37th International Conference on Machine Learning, volume
119 of Proceedings of Machine Learning Research, pages 736–745. PMLR,
13–18 Jul 2020.

16

[4] Eugene Belilovsky, Louis Leconte, Lucas Caccia, Michael Eickenberg, and
Edouard Oyallon. Decoupled greedy learning of cnns for synchronous and
asynchronous distributed learning. arXiv preprint arXiv:2106.06401, 2021.

[5] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Randomized gossip algo-
rithms. IEEE Transactions on Information Theory, 52(6):2508–2530, 2006.

[6] Bugra Can, Saeed Soori, Necdet Serhat Aybat, Maryam Mehri Dehnavi,
and Mert Gürbüzbalaban. Randomized gossiping with effective resistance
weights: Performance guarantees and applications. IEEE Transactions on
Control of Network Systems, 9(2):524–536, 2022.

[7] Ashok K Chandra, Prabhakar Raghavan, Walter L Ruzzo, Roman Smolen-
sky, and Prasoon Tiwari. The electrical resistance of a graph captures its
commute and cover times. computational complexity, 6(4):312–340, 1996.

[8] Laurent Condat, Daichi Kitahara, Andrés Contreras, and Akira
Hirabayashi. Proximal splitting algorithms for convex optimization: A
tour of recent advances, with new twists, 2019.

[9] Easley David and Kleinberg Jon. Networks, Crowds, and Markets: Reason-
ing About a Highly Connected World. Cambridge University Press, USA,
2010.

[10] Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded mod-
eling language for convex optimization. Journal of Machine Learning Re-
search, 17(83):1–5, 2016.

[11] Wendy Ellens, Floske M Spieksma, Piet Van Mieghem, Almerima Ja-
makovic, and Robert E Kooij. Effective graph resistance. Linear algebra
and its applications, 435(10):2491–2506, 2011.

[12] Mathieu Even, Raphaël Berthier, Francis Bach, Nicolas Flammarion,
Hadrien Hendrikx, Pierre Gaillard, Laurent Massoulié, and Adrien Taylor.
A continuized view on nesterov acceleration for stochastic gradient descent
and randomized gossip. In A. Beygelzimer, Y. Dauphin, P. Liang, and
J. Wortman Vaughan, editors, Advances in Neural Information Processing
Systems, 2021.

[13] Mathieu Even, Hadrien Hendrikx, and Laurent Massoulie. Decentralized
optimization with heterogeneous delays: a continuous-time approach. arXiv
preprint arXiv:2106.03585, 2021.

[14] Mathieu Even, Hadrien Hendrikx, and Laurent Massoulié. Asynchrony and
acceleration in gossip algorithms, 2020.

[15] Marguerite Frank. The braess paradox. Mathematical Programming,
20(1):283–302, 1981.

17

[16] Arpita Ghosh, Stephen Boyd, and Amin Saberi. Minimizing effective resis-
tance of a graph. SIAM review, 50(1):37–66, 2008.

[17] Eduard Gorbunov, Alexander Rogozin, Aleksandr Beznosikov, Darina
Dvinskikh, and Alexander Gasnikov. Recent Theoretical Advances in De-
centralized Distributed Convex Optimization, pages 253–325. Springer In-
ternational Publishing, Cham, 2022.

[18] Hadrien Hendrikx. A principled framework for the design and analysis of
token algorithms, 2022.

[19] Hadrien Hendrikx, Francis Bach, and Laurent Massoulié. Accelerated de-
centralized optimization with local updates for smooth and strongly convex
objectives. In The 22nd International Conference on Artificial Intelligence
and Statistics, pages 897–906. PMLR, 2019.

[20] Hadrien Hendrikx, Francis Bach, and Laurent Massoulié. An accelerated
decentralized stochastic proximal algorithm for finite sums. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d Alché-Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019.

[21] Hadrien Hendrikx, Francis Bach, and Laurent Massoulié. Dual-free stochas-
tic decentralized optimization with variance reduction. Advances in neural
information processing systems, 33:19455–19466, 2020.

[22] Hadrien Hendrikx, Francis Bach, and Laurent Massoulié. An optimal al-
gorithm for decentralized finite-sum optimization. SIAM Journal on Opti-
mization, 31(4):2753–2783, 2021.

[23] Douglas J Klein. Resistance-distance sum rules. Croatica chemica acta,
75(2):633–649, 2002.

[24] Douglas J Klein and Milan Randić. Resistance distance. Journal of math-
ematical chemistry, 12(1):81–95, 1993.

[25] Anastasia Koloskova, Nicolas Loizou, Sadra Boreiri, Martin Jaggi, and Se-
bastian Stich. A unified theory of decentralized sgd with changing topology
and local updates. In International Conference on Machine Learning, pages
5381–5393. PMLR, 2020.

[26] Anastasiia Koloskova, Tao Lin, and Sebastian U Stich. An improved anal-
ysis of gradient tracking for decentralized machine learning. Advances in
Neural Information Processing Systems, 34:11422–11435, 2021.

[27] Dmitry Kovalev, Elnur Gasanov, Alexander Gasnikov, and Peter Richtárik.
Lower bounds and optimal algorithms for smooth and strongly convex de-
centralized optimization over time-varying networks. In A. Beygelzimer,
Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in
Neural Information Processing Systems, 2021.

18

[28] Dmitry Kovalev, Alexander Gasnikov, and Peter Richtárik. Accelerated
primal-dual gradient method for smooth and convex-concave saddle-point
problems with bilinear coupling. arXiv preprint arXiv:2112.15199, 2021.

[29] Dmitry Kovalev, Adil Salim, and Peter Richtarik. Optimal and practi-
cal algorithms for smooth and strongly convex decentralized optimization.
In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, edi-
tors, Advances in Neural Information Processing Systems, volume 33, pages
18342–18352. Curran Associates, Inc., 2020.

[30] Dmitry Kovalev, Egor Shulgin, Peter Richtárik, Alexander V Rogozin,
and Alexander Gasnikov. Adom: accelerated decentralized optimization
method for time-varying networks. In International Conference on Ma-
chine Learning, pages 5784–5793. PMLR, 2021.

[31] Günter Last and Mathew Penrose. Lectures on the Poisson process, vol-
ume 7. Cambridge University Press, 2017.

[32] Jonas Latz. Analysis of stochastic gradient descent in continuous time.
Statistics and Computing, 31(4):1–25, 2021.

[33] Rémi Leblond, Fabian Pedregosa, and Simon Lacoste-Julien. Improved
asynchronous parallel optimization analysis for stochastic incremental
methods. arXiv preprint arXiv:1801.03749, 2018.

[34] Huan Li and Zhouchen Lin. Accelerated gradient tracking over time-varying
graphs for decentralized optimization. arXiv preprint arXiv:2104.02596,
2021.

[35] Hongzhou Lin, Julien Mairal, and Zaid Harchaoui. A universal catalyst for
first-order optimization. Advances in neural information processing systems,
28, 2015.

[36] Konstantin Mishchenko, Grigory Malinovsky, Sebastian Stich, and Peter
Richtárik. Proxskip: Yes! local gradient steps provably lead to communi-
cation acceleration! finally! arXiv preprint arXiv:2202.09357, 2022.

[37] Angelia Nedic, Alex Olshevsky, and Wei Shi. Achieving geometric conver-
gence for distributed optimization over time-varying graphs. SIAM Journal
on Optimization, 27(4):2597–2633, 2017.

[38] Yurii Nesterov. Introductory lectures on convex optimization: A basic
course, volume 87. Springer Science & Business Media, 2003.

[39] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary De-
Vito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative
style, high-performance deep learning library. In H. Wallach, H. Larochelle,

19

A. Beygelzimer, F. d Alché-Buc, E. Fox, and R. Garnett, editors, Advances
in Neural Information Processing Systems 32, pages 8024–8035. Curran
Associates, Inc., 2019.

[40] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[41] Adil Salim, Laurent Condat, Dmitry Kovalev, and Peter Richtárik. An
optimal algorithm for strongly convex minimization under affine constraints.
In International Conference on Artificial Intelligence and Statistics, pages
4482–4498. PMLR, 2022.

[42] Kevin Scaman, Francis Bach, Sébastien Bubeck, Yin Tat Lee, and Laurent
Massoulié. Optimal algorithms for smooth and strongly convex distributed
optimization in networks. In Doina Precup and Yee Whye Teh, editors,
Proceedings of the 34th International Conference on Machine Learning, vol-
ume 70 of Proceedings of Machine Learning Research, pages 3027–3036.
PMLR, 06–11 Aug 2017.

[43] Wei Shi, Qing Ling, Gang Wu, and Wotao Yin. Extra: An exact first-
order algorithm for decentralized consensus optimization. SIAM Journal
on Optimization, 25(2):944–966, 2015.

[44] Zhuoqing Song, Lei Shi, Shi Pu, and Ming Yan. Optimal gradient tracking
for decentralized optimization. arXiv preprint arXiv:2110.05282, 2021.

[45] Sebastian U. Stich and Sai Praneeth Karimireddy. The error-feedback
framework: Sgd with delayed gradients. Journal of Machine Learning Re-
search, 21(237):1–36, 2020.

[46] Vaya Sapobi Samui Vos. Methods for determining the effective resistance.
Mestrado, Mathematisch Instituut Universiteit Leiden, 2016.

[47] Lin Xiao and S. Boyd. Fast linear iterations for distributed averaging. In
42nd IEEE International Conference on Decision and Control (IEEE Cat.
No.03CH37475), volume 5, pages 4997–5002 Vol.5, 2003.

[48] Lin Xiao, Stephen Boyd, and Seung-Jean Kim. Distributed average consen-
sus with least-mean-square deviation. Journal of Parallel and Distributed
Computing, 67(1):33–46, 2007.

20

Appendix

Table of Contents

A Communication bounds 21

B Saddle Point Reformulation 23

C Proof of the main Theorem (Th. 3.2) 23

C.1 Proof of the Lemma C.1 . 26

D Comparison of complexities with related work 31

E Optimizing the communication rates with a SDP 34

E.1 Convexity lemmas . 35

E.2 Problem relaxation . 36

E.3 SDP formulation . 37

E.4 Optimal weights for the Barbell Graph 38

E.5 Results from our SDP solver 42

F Physical interpretation of the sufficient condition 43

G DADAO vs MSDA on the star graph 43

H Practical Implementation 44

H.1 Simulating the Poisson Point Processes 44

H.2 Pseudo Code . 45

A Communication bounds

The following properties will be used all along the proofs of the Lemmas and
Theorems and are related to the communication of our nodes.

Lemma A.1. Under the assumptions of Theorem 3.2, if z0, z̃0 ∈ span(π), then
zt, z̃t ∈ span(π) almost surely.

Proof. It’s clear that for any i, j, we get:

π(ei − ej)(ei − ej)
T = (ei − ej)(ei − ej)

T .

Thus, the variations of (zt, z̃t) belong to span(π), and so is the trajectory.

21

Lemma A.2 (Effective resistance contraction). For (i, j) ∈ E and any x ∈ R
d,

we have:

‖(ei − ej)(ei − ej)
Tx‖2

Λ+ ≤ χ2‖(ei − ej)(ei − ej)
Tx‖ .

Proof. Indeed, we note that:

‖(ei − ej)(ei − ej)
Tx‖2

Λ+ = xT(ei − ej)(ei − ej)
T
Λ

+(ei − ej)(ei − ej)
Tx (9)

≤ 2χ2x
T(ei − ej)(ei − ej)

Tx (10)

= χ2‖(ei − ej)(ei − ej)
Tx‖2 (11)

Lemma A.3 (Bound on the resistance).
For (i, j) ∈ E, (ei − ej)TΛ+(ei − ej) ≤ 1

λij+λji
.

Proof. For a graph such that |Ē | = 1, the inequality is trivial. Now, we assume
that there are other edges than (i, j) or (j, i). Thus, we have:

Λ < (λij + λji)(ei − ej)(ei − ej)T + λ̃π̃

where π̃(ei−ej) = 0, π̃1 = 0, rank(π̃) = n−1, π̃ orthogonal projector and λ̃ > 0

small enough. In this case:
(

(λij + λji)(ei − ej)(ei − ej)T + λ̃π̃
)+

< Λ+, but

this implies that 1
λij+λji

≥ (ei − ej)TΛ+(ei − ej).

Proof of Lemma 3.1. First, we note that Λ is symmetric and has a non-negative
spectrum, as:

xTΛx =
∑

(ij)∈E
λij‖xi − xj‖2 .

From this, we also clearly see that χ1 = +∞ iff the graph is disconnected. Next,
assuming that the graph is connected, 0 is an eigenvalue of Λ with multiplicity
1 and by definition of χ1, we have χ1 ≥ χ2. As we also have the following:

∑

(i,j)∈E
λij(ei − ej)TΛ+(ei − ej) = Tr (Λ+Λ) = n− 1 ,

we can write:
n− 1 ≤ 2χ2

∑

(i,j)∈E
λij = χ2TrΛ

and get n−1
TrΛ ≤ χ2. Finally, note that: Tr (Λ) = 2

∑

(i,j)∈E λij ≤ 2|Ē | sup(i,j)∈E(λij+

λji) and Tr (Λ) ≤ (n− 1)‖Λ‖, so that, using Lemma A.3:

22

√
χ2Tr(Λ) ≤

1
√

2 inf(i,j)∈E(λij + λji)

√
TrΛ
√
TrΛ (12)

≤
√

TrΛ

2 inf(i,j)∈E(λij + λji)

√

2|Ē | sup
(i,j)∈E

(λij + λji) (13)

≤
√
κ
√

|Ē |
√

(n− 1)‖Λ‖ (14)

B Saddle Point Reformulation

With 0 < ν < µ and introducing an extra dual variable x̂, we get:

inf
x∈Rd

n
∑

i=1

fi(x) = inf
x,x̂∈R

n×d

x=x̂,πx̂=0

n
∑

i=1

fi(xi)−
ν

2
‖x‖2 + ν

2
‖x̂‖2

= inf
x,x̂∈Rn×d

sup
y,z∈Rn×d

n
∑

i=1

fi(xi)−
ν

2
‖x‖2 + ν

2
‖x̂‖2 + 〈y, x̂− x〉+ 〈z, πx̂〉

= inf
x∈Rn×d

sup
y,z∈Rn×d

inf
x̂∈Rn×d

n
∑

i=1

fi(xi)−
ν

2
‖x‖2 + ν

2
‖x̂‖2 + 〈y, x̂− x〉+ 〈z, πx̂〉

= inf
x∈Rn×d

sup
y,z∈Rn×d

n
∑

i=1

fi(xi)−
ν

2
‖x‖2 − 〈x, y〉 − 1

2ν
‖πz + y‖2 .

C Proof of the main Theorem (Th. 3.2)

Basic reminds about the Bregman divergence For a smooth convex func-
tion F ,

dF (x, y) , F (x)− F (y)− 〈∇F (y), x− y〉
is its Bregman divergence. Next, we set ν = µ

2 such that, for F (x) =
∑n

i=1 fi(xi)−
ν
2‖x‖2, then F is L-smooth, ν-strongly convex, and we get:

1

2L
‖∇F (x) −∇F (y)‖2 ≤ dF (x, y) ≤

L

2
‖x− y‖2 ,

and
ν

2
‖x− y‖2 ≤ dF (x, y) ≤

1

2ν
‖∇F (x)−∇F (y)‖2 ,

Proof of Theorem 3.2. We introduce for a positive semi-definite matrixA, ‖x‖A ,
xTAx. For our proof, we rely on the notation of Eq. 6, and we introduce

23

X , (x, x̃, ỹ), Y , (y, z, z̃) and the following Lyapunov potential:

Φ(t,X, Y) , AtdF (x, x
∗) + Ãt‖x̃− x∗‖2 +Bt‖y − y∗‖2 + B̃t‖ỹ − y∗‖2

+ Ct‖z + y − z∗ − y∗‖2 + C̃t‖z̃ − z∗‖2Λ+ ,

where At, Ãt, Bt, B̃t, Ct, C̃t are non-negative functions to be defined. We will
use this potential to control the trajectories.

Because Φ is smooth, the SDE is a smooth trajectory, we get via Ito’s for-
mula [31] applied to the semi-martingale (Xt, Yt) on any intervals [0, T]:

Φ(T,XT , YT) = Φ(0, X0, Y0) +

∫ T

0

〈∇Φ(t,Xt, Yt),

1
a1(Xt, Yt)
a2(Xt, Yt)

〉dt

+

n
∑

i=1

∫ T

0

(

Φ(t,Xt + bi1(Xt), Yt)− Φ(t,Xt, Yt)
)

dt

+
∑

(i,j)∈E

∫ T

0

(

Φ(t,Xt, Yt + bij2 (Yt))− Φ(t,Xt, Yt)
)

λijdt

+ΘT ,

where the following quantity is a Martingale:

Θu ,
n
∑

i=1

∫ u

0

(

Φ(t,Xt− , Yt− + bi1(Xt−))− Φ(u,Xt− , Yt−)
)

(dNi(t)− dt)

+
∑

(i,j)∈E

∫ u

0

(

Φ(t,Xt− + bij2 (Xt−), Yt−)− Φ(t,Xt− , Yt−)
)

(dMij(t)− λijdt) .

Taking the expectation, we get that, as the initialization is deterministic:

E[Φ(T,XT , YT)] = Φ(0, X0, Y0) +

∫ T

0

〈∇Φ(t,Xt, Yt),

1
a1(Xt, Yt)
a2(Xt, Yt)

〉dt

+
n
∑

i=1

∫ T

0

(

Φ(t,Xt + bi1(Xt), Yt)− Φ(t,Xt, Yt)
)

dt

+
∑

(i,j)∈E

∫ T

0

(

Φ(t,Xt, Yt + bij2 (Yt))− Φ(t,Xt, Yt)
)

λijdt ,

To show that the integrand term is negative, we will use the following tech-
nical Lemma, which is also difficult to prove and whose proof is deferred to
Appendix C.1:

24

Lemma C.1. If:

η = 1
8

√

ν
L γ = 1

4L δ = 1
4

√

ν
L α = 1

4

√

ν
L β = 1

2 θ = 1
2

√

L
ν

η̃ = 1
8

√

ν
L γ̃ = 1

4
√
νL

δ̃ = 1 α̃ = 1
8

√

ν
L β̃ = 2χ1[Λ]

√

L
ν ν = µ

2

and

At = e
t

8
√

2

√
µ
L Ãt =

µ
8 e

t
8
√

2

√
µ
L B̃t =

1
8Le

t
8
√

2

√
µ
L

Bt =
1

16Le
t

8
√

2

√
µ
L Ct =

1
2µe

t
8
√

2

√
µ
L C̃t =

1
32χ1L

e
t

8
√

2

√
µ
L .

then:

〈∇Φ(t,Xt, Yt),

1
a1(Xt, Yt)
a2(Xt, Yt)

〉+
(

Φ(t,Xt + b1(Xt), Yt)− Φ(t,Xt, Yt)
)

+
∑

(i,j)∈E
λij
(

Φ(t,Xt, Yt + bij2 (Yt))− Φ(t,Xt, Yt)
)

≤ 0 a.s. .

Now, we remark that if we have F (x) = f(x) − µ
4 ‖x‖2, and initialize with

x̃0 = x0, y0 = ỹ0 = ∇F (x0) and z0 = z̃0 = −π∇F (x0), then, given the linear
relation between At, Ãt, Bt, B̃t, Ct, C̃t, the L smoothness and the fact π is an
orthogonal projection, we get:

Φ(0, X0, Y0) ≤ dF (x0, x∗) +
µ

8
‖x0 − x∗‖2 +

1

16L
‖∇F (x0)−∇F (x∗)‖2

+
1

8L
‖∇F (x0)−∇F (x∗)‖2 +

1

2µ
‖(I− π)(∇F (x0)−∇F (x∗))‖2

+
1

32

χ1(0)

Lχ1
‖π(∇F (x0)−∇F (x∗))‖2

≤ (
L

2
+
µ

8
+
L

16
+
L

8
+
L2

2µ
+
L

32
)‖x0 − x∗‖2

In particular, as µ
4 ‖x− x∗‖2 ≤ dF (x, x∗) it implies that:

E[‖xt − x∗‖2] ≤ (
1

2
+

23

8

L

µ
+ 2

L2

µ2
)‖x0 − x∗‖2e−

t
8
√

2

√
µ
L

Finally, we note that the expected number of gradients between [0, T] is
given by:

E[

n
∑

i=1

Ni(T)] = nT ,

and similarly, the number of edges activated is given by:

E[
∑

1≤i,j≤n

Mij(T)] =
∑

1≤i,j≤n

∫ T

0

λij dt =
T

2
TrΛ.

25

C.1 Proof of the Lemma C.1

We first state a couple of inequalities that we will combine to obtain a bound
on our Lyapunov function.

Lemma C.2. First:

φA , At(dF (x
+, x∗)− dF (x, x∗)) + Ãt(‖x̃+ − x∗‖2 − ‖x̃− x∗‖2)

+ ηAt〈x̃− x,∇F (x) −∇F (x∗)〉+ 2η̃Ãt〈x− x̃, x̃− x∗〉 (15)

≤ ‖∇F (x)− ỹ‖2
(

At
Lγ2

2
−Atγ + Ãtγ̃

2

)

+Atγ〈∇F (x)− ỹ, y∗ − ỹ〉+ 2γ̃Ãt〈ỹ − y∗, x̃− x∗〉 (16)

− 2γ̃Ãt (dF (x̃, x
∗) + dF (x

∗, x)− dF (x̃, x))
− ηAt(dF (x̃, x) + dF (x, x

∗)− dF (x̃, x∗))− Ãtη̃‖x̃− x∗‖2 + Ãtη̃‖x− x∗‖2

Proof. First, we have to use optimality conditions and smoothness, as well as
the separability of F :

dF (x
+, x∗)− dF (x, x∗) = dF (x

+, x)− 〈x+ − x,∇F (x∗)−∇F (x)〉 (17)

≤ L

2
‖x+ − x‖2 − 〈x+ − x,∇F (x∗)−∇F (x)〉 (18)

=
Lγ2

2
‖ỹ −∇F (x)‖2 − γ‖∇F (x)− ỹ‖2

+ γ〈∇F (x) − ỹ, y∗ − ỹ〉 (19)

Next, we note that, again using optimality conditions:

‖x̃+ − x∗‖2 − ‖x̃− x∗‖2 = 2〈x̃+ − x̃, x̃− x∗〉+ ‖x̃+ − x̃‖2 (20)

= −2γ̃〈∇F (x) − ỹ, x̃− x∗〉+ γ̃2‖∇F (x)− ỹ‖2 (21)

= −2γ̃〈∇F (x) −∇F (x∗), x̃− x∗〉+ 2γ̃〈ỹ − y∗, x̃− x∗〉+ γ̃2‖∇F (x)− ỹ‖2
(22)

= −2γ̃(dF (x̃, x∗) + dF (x
∗, x)− dF (x̃, x)) + 2γ̃〈ỹ − y∗, x̃− x∗〉+ γ̃2‖∇F (x)− ỹ‖2

(23)

Momentum in x associated with the term dF (x, x
∗) gives:

η〈x̃ − x,∇F (x) −∇F (x∗)〉 = −η(dF (x̃, x) + dF (x, x
∗)− dF (x̃, x∗)) (24)

and momentum in x̃ associated with ‖x̃− x∗‖2 leads to:

2η̃〈x− x̃, x̃−x∗〉 = −2η̃‖x̃−x∗‖2+2η̃〈x−x∗, x̃−x∗〉 ≤ −η̃‖x̃−x∗‖2+ η̃‖x−x∗‖2
(25)

26

Lemma C.3. Next, we show that if αBt =
δ
2 B̃t:

φB , Bt(‖y+ − y∗‖2 − ‖y − y∗‖2) + B̃t(‖ỹ+ − y∗‖2 − ‖ỹ − y∗‖2)
+ 2αBt〈y − y∗, ỹ − y〉 − 2θB̃t〈y + z + νx̃, ỹ − y∗〉+ 2αCt〈ỹ − y, z + y − y∗ − z∗〉

(26)

≤ − δ
2
B̃t‖ỹ − y∗‖2 −

δ

2
B̃t‖y − y∗‖2 − 2δ̃B̃t〈∇F (x) − ỹ, y∗ − ỹ〉

+ δB̃t‖∇F (x)−∇F (x∗)‖2 +
(

(δ + δ̃)2 − δ
)

B̃t‖∇F (x)− y‖2

− 2θB̃t〈y + z − y∗ − z∗, ỹ − y∗〉 − 2θνB̃t〈x̃− x∗, ỹ − y∗〉+ 2αCt〈ỹ − y, z + y − y∗ − z∗〉
(27)

Proof. Using optimality conditions:

‖ỹ+ − y∗‖2 − ‖ỹ − y∗‖2 = 2〈ỹ − y∗, ỹ+ − ỹ〉+ ‖ỹ+ − ỹ‖2 (28)

= 2δ〈∇F (x)− ỹ, ỹ − y∗〉+ 2δ̃〈∇F (x) − ỹ, ỹ − y∗〉+ (δ + δ̃)2‖∇F (x) − ỹ‖2
(29)

= −2δ̃〈∇F (x) − ỹ, y∗ − ỹ〉+ δ‖∇F (x)−∇F (x∗)‖2 − δ‖ỹ − y∗‖2

+
(

(δ + δ̃)2 − δ
)

‖∇F (x)− ỹ‖2 (30)

The momentum in ỹ associated with the term ‖ỹ − y∗‖2 gives:

−2θB̃t〈y + z + νx̃, ỹ − y∗〉 =− 2θB̃t〈y + z − y∗ − z∗, ỹ − y∗〉 − 2θνB̃t〈x̃ − x∗, ỹ − y∗〉
(31)

The momentum in y associated with the term ‖y − y∗‖2 gives:

2αBt〈ỹ − y, y − y∗〉 = −αBt‖y − y∗‖2 − αBt‖ỹ − y‖2 + αBt‖ỹ − y∗‖2 (32)

and the one associated with ‖y + z − y∗ − z∗‖2:

2αCt〈ỹ − y, z + y − y∗ − z∗〉 (33)

Lemma C.4. Finally, assuming θB̃t = β̃C̃t = αCt, letting 1 ≥ τ̃ > 0,

27

z+ij = z − β(ei − ej)(ei − ej)
T(y + z) and z̃+ij = z̃ − β̃(ei − ej)(ei − ej)

T(y + z):

φC − 2θB̃t〈y + z − y∗ − z∗, ỹ − y∗〉+ 2αCt〈ỹ − y, z + y − y∗ − z∗〉 ,
∑

ij

λijCt

(

‖y + z+ij − y∗ − z∗‖2 − ‖y + z − y∗ − z∗‖2
)

+
∑

ij

λijC̃t

(

‖z̃+ij − z∗‖2Λ+ − ‖z̃ − z∗‖2Λ+

)

+ 2α̃C̃t〈z − z̃, z̃ − z∗〉Λ+ (34)

+ 2αCt〈z̃ + ỹ − z − y, z + y − y∗ − z∗〉 − 2θB̃t〈y + z − y∗ − z∗, ỹ − y∗〉
≤ β̃2χ2C̃t

∑

(i,j)∈E
λij‖(ei − ej)(ei − ej)

T(y + z)‖2

+ β(β − 1)Ct

∑

(i,j)∈E
λij‖(ei − ej)(ei − ej)

T(y + z)‖2

− αCt‖y + z − y∗ − z∗‖2 + α̃χ1C̃t‖z − z∗‖2 − α̃C̃t‖z̃ − z∗‖2Λ+

− τ̃ 1
2
β̃
ν

L
C̃t‖z − z∗‖2 + τ̃

ν

L

2αθ

δ
Bt‖y − y∗‖2 (35)

Proof. Having in mind that π(y∗+z∗) = 0 and Λ
+
Λ = π, we get, using Lemma

A.1 and Lemma A.2 on the inequality (39):

∆z̃ ,
∑

(i,j)∈E
λij
(

‖z̃+ij − z∗‖2Λ+ − ‖z̃ − z∗‖2Λ+

)

(36)

=
∑

(i,j)∈E
λij2〈z̃ − z∗, z̃+ij − z̃〉Λ+ + ‖z̃+ij − z̃‖2Λ+ (37)

= −2β̃
∑

(i,j)∈E
λij〈z̃ − z∗, (ei − ej)(ei − ej)

T(y + z − y∗ − z∗)〉Λ+

+
∑

(i,j)∈E
λij β̃

2‖(ei − ej)(ei − ej)
T(y + z)‖2

Λ+ (38)

≤ −2β̃〈z̃ − z∗,Λ+
Λ(y + z)〉+ χ2β̃

2
∑

(i,j)∈E
λij‖(ei − ej)(ei − ej)

T(y + z)‖2

(39)

= −2β̃〈z̃ − z∗, π(y + z)〉+ χ2β̃
2
∑

(i,j)∈E
λij‖(ei − ej)(ei − ej)

T(y + z)‖2

(40)

28

We also have, as y+ = y:

∆z ,
∑

(i,j)∈E
λij(‖y+ + z+ij − y∗ − z∗‖2 − ‖y + z − y∗ − z∗‖2) (41)

= 2
∑

(i,j)∈E
λij〈y + z+ij − y − z, y + z − y∗ − z∗〉+

∑

(i,j)∈E
λij‖y + z+ij − y − z‖2

(42)

= −2
∑

(i,j)∈E
βλij〈(ei − ej)(ei − ej)

T(y + z), y + z − y∗ − z∗〉

+
∑

(i,j)∈E
β2λij‖(ei − ej)(ei − ej)

T(y + z)‖2 (43)

= β(β − 1)
∑

(i,j)∈E
λij‖(ei − ej)(ei − ej)

T(y + z)‖2 (44)

The momentum in z̃ associated with ‖z̃ − z∗‖2
Λ+ gives:

2α̃C̃t〈z − z̃, z̃ − z∗〉Λ+ ≤ α̃χ1C̃t‖z − z∗‖2 − α̃C̃t‖z̃ − z∗‖2Λ+ (45)

And the one in z associated with ‖y + z − y∗ − z∗‖2 gives:

2αCt〈z̃ − z, z + y − y∗ − z∗〉 (46)

Then, assuming that θB̃t = β̃C̃t = αCt, we have:

2αCt〈ỹ − y, z + y − y∗ − z∗〉 − 2β̃C̃t〈z̃ − z∗, y + z − y∗ − z∗〉
− 2θB̃t〈y + z − y∗ − z∗, ỹ − y∗〉+ 2αCt〈z̃ − z, z + y − y∗ − z∗〉 (47)

= −2αCt‖y + z − y∗ − z∗‖2 (48)

At this stage, we split the negative term (48) into two halves, upper-bounding
one of the halves by remembering that ν

L ≤ 1 and introducing 1 ≥ τ̃ > 0:

−αCt‖y + z − y∗ − z∗‖2 ≤− τ̃ ν
L
αCt‖y + z − y∗ − z∗‖2 (49)

= −τ̃ β̃ ν
L
C̃t‖y + z − y∗ − z∗‖2 (50)

≤ −τ̃ 1
2
β̃
ν

L
C̃t‖z − z∗‖2 + τ̃ β̃

ν

L
C̃t‖y − y∗‖2 (51)

= −τ̃ 1
2
β̃
ν

L
C̃t‖z − z∗‖2 + τ̃

ν

L

2αθ

δ
Bt‖y − y∗‖2 (52)

Keeping in mind that θB̃t = β̃C̃t = αCt and δ
2 B̃t = αBt, we put everything

together. Defining Ψ = ∂Φ
∂t + φA + φB + φC , we have:

29

Ψ ≤ ‖∇F (x)− ỹ‖2
(

At
Lγ2

2
−Atγ + Ãtγ̃

2 +
(

(δ + δ̃)2 − δ
)

B̃t

)

(53)

+ ‖z̃ − z∗‖2
Λ+

(

−α̃C̃t + C̃′
t

)

(54)

+ ‖ỹ − y∗‖2(B̃′
t −

δ

2
B̃t) (55)

+ ‖x− x∗‖2(Ãtη̃ − Ãt
νγ̃

2
) (56)

+ ‖x̃− x∗‖2(Ã′
t − Ãtη̃) (57)

+ ‖∇F (x)−∇F (x∗)‖2(δB̃t −
γ̃

2L
Ãt) (58)

+
∑

(i,j)∈E
λij‖(ei − ej)(ei − ej)

T(y + z)‖2
(

χ2β̃
2C̃t + β(β − 1)Ct

)

(59)

+ ‖z − z∗‖2(χ1α̃− τ̃
1

2
β̃
ν

L
)C̃t (60)

+ ‖y − y∗‖(B′
t − (1− τ̃ ν

L

2θ

δ
)αBt) (61)

+ ‖y + z − y∗ − z∗‖2(C′
t − αCt) (62)

+ dF (x, x
∗)(A′

t − ηAt) (63)

+ dF (x̃, x)(−Atη + 2γ̃Ãt) (64)

+ dF (x̃, x
∗)(Atη − 2γ̃Ãt) (65)

+ 〈∇F (x) − ỹ, y∗ − ỹ〉(−2δ̃B̃t + γAt) (66)

+ 〈ỹ − y∗, x̃− x∗〉
(

2γ̃Ãt − 2θνB̃t

)

(67)

Resolution

Proof of Lemma C.1. Our goal is to put to zero all of the terms appearing next
to scalar products and make the factors of positive quantities (norms or diver-
gences) less or equal to zero. Given our relations, we guess that each exponential
has the same rate. Thus, with τ > 0, we fix δ

2 = η̃ = η = α̃ = τ
√

ν
L , which

leads to γ̃ = 2τ√
νL

using Eq. (56). Also, from Eq. (65):

4Ãt = νAt.

Next, from Eq. (58) and Eq. (67), it’s necessary that:

2Lδ = θν ,

thus θ = 4τ
√

L
ν . From Eq. (67), we get:

Ãt = 2LνB̃t.

30

Combining this previous equation with Eq. (66), as 4Ãt = νAt, we have δ̃ = 4Lγ.
Next, Eq. (53) gives, with the equations above:

At(
Lγ2

2
− γ) + Ãtγ̃

2 +
(

(δ + δ̃)2 − δ
)

B̃t = At
Lγ2

2
−Atγ +

ν

4
γ̃2At +

(

δ2 + δ̃2 + δ
) At

8L

= At

(

Lγ2

2
− γ +

ν

4

4τ2

νL

)

+At(2τ

√

ν

L
+ 4τ2

ν

L
+ 16L2γ2)

1

8L

≤ At(γ
2 5

2
L− γ +

5

4

τ2

L
+

√
2

8

τ

L
)

We thus pick γ = 1
4L and τ = 1

8 , so that δ̃ = 1. Via Eq. (61), we fix τ̃ = 1
8 < 1.

With Eq. (60), we then get:

β̃ = 2χ1

√

L

ν

We also put α = 2τ
√

ν
L and only one last equation, Eq. (59), needs to be

satisfied, for which we pick β = 1
2 :

χ2β̃
2C̃t + β(β − 1)Ct = (χ2β̃α−

1

4
)Ct

This implies that χ2χ1 ≤ 1
2 . In summary, we set:

η = 1
8

√

ν
L γ = 1

4L δ = 1
4

√

ν
L α = 1

4

√

ν
L β = 1

2 θ = 1
2

√

L
ν τ̃ = 1

8

η̃ = 1
8

√

ν
L γ̃ = 1

4
√
νL

δ̃ = 1 α̃ = 1
8

√

ν
L β̃ = 2χ1

√

L
ν ν = µ

2 τ = 1
8

Now, let’s pick: At = etτ
√

ν
L = e

t
8
√

2

√
µ
L so that:

At = e
t

8
√

2

√
µ
L Ãt =

µ
8 e

t
8
√

2

√
µ
L B̃t =

1
8Le

t
8
√

2

√
µ
L

Bt =
1

16Le
t

8
√

2

√
µ
L Ct =

1
2µe

t
8
√

2

√
µ
L C̃t =

1
32χ1L

e
t

8
√

2

√
µ
L .

This implies that Ψ ≤ 0.

D Comparison of complexities with related work

Proof of Prop. 3.3. We consider the settings of concurrent works and, given any
gossip matrix admissible for them, we show that DADAO has better rates.

Comparison with ADOM+ [27]. The ADOM+ setting is:

• Gossip matrices: Laplacians L with ‖Lx − x‖2 ≤ (1 − 1
χ)‖x‖2 for χ ≥ 1

and x ∈ 1
⊥.

• Total number of gradients to reach ǫ precision: O(n
√

L
µ log 1

ǫ).

31

• Total number of edges activated to reach ǫ precision: O(|E|χ
√

L
µ log 1

ǫ).

If we take an eigenvector of L for the eigenvalue 1
χ1[L] , then the Laplacian

inequality directly leads to
(

1− 1
χ1[L]

)2

≤ 1− 1
χ and we have:

1

χ1[L]

(

1

χ1[L]
− 2

)

≤ − 1

χ
,

leading to:

2

χ1[L]
≥ 1

χ1[L]

(

2− 1

χ1[L]

)

≥ 1

χ
.

Thus, χ1[L] ≤ 2χ. Remind that, by definition, χ2 ≤ χ1. Note that in ADOM+,
we also have ‖L‖ ≤ 2, so that Tr(L) ≤ 2n. Then, for any Laplacian matrix L
valid for ADOM+, we consider for DADAO a Λ defined as followed:

Λ =
√

2χ1[L]χ2[L]L

Then, DADAO has the same gradient complexity as ADOM+, but the number
of communications of DADAO is:

T

2
TrΛ ≤ 1

2

√

2χ1[L]χ2[L]
√

L

µ
log

(

1

ǫ

)

2n = O(|E|χ
√

L

µ
log

1

ǫ
)

Consequently, DADAO is better than ADOM+ for all valid configurations of
ADOM+ (in the fixed graph topology setting) and DADAO. We note that for the
complete graph, χ = O(1) and |E| = O(n2), whereas n

√

2χ1[L]χ2[L] = O(n)
and DADAO has strictly better communication rates than ADOM+ on this
graph.

Comparison with Gradient Tracking methods AGT, OGT [34, 44].
The setting is described by:

• Gossip matrices: Any matrix L = I − W with W symmetric doubly-
stochastic, i.e. such that

∑

iWij = 1 and
∑

j Wij = 1.

• Total number of gradients to reach ǫ precision: O(n
√

L
µ log 1

ǫ).

• Total number of edges activated to reach ǫ precision: O(|E| 1√
θ

√

L
µ log 1

ǫ),

where θ = 1− ‖W − 1
n11

T‖.

If κ = O(|E|n), using Lemma 3.1, we have:

1

2

√

2χ1[L]χ2[L]TrL = O(|E|
√

ρ[L])

32

Furthermore, as W is stochastic, ‖L‖ ≤ 2 and θ ≤ 1
χ1[L] , leading to ρ ≤ 2

θ .

Consequently, the communication complexity of DADAO run for O(
√

L
µ log 1

ǫ)

iterations recovers the rate of GT. Furthermore, for the complete graph, for
any Laplacian L with ρ[L] = O(1) (remind that, by definition ρ ≥ 1), we have
√

2χ1[L]χ2[L]TrL = O(n) whereas |E| = O(n2), thus DADAO uses an order of
magnitude less communications than GT need to.

Note that for the Star-graph, there is no admissible Laplacian in the frame-
work of [44].

Comparison with MSDA [42]. The setting is described by:

• Gossip matrices: any Laplacians admissible for DADAO.

• Total number of gradients to reach ǫ precision: O(n
√

L
µ log 1

ǫ).

• Total number of edges activated to reach ǫ precision: O(|E|√ρ
√

L
µ log 1

ǫ).

If κ = O(|E|n), using Lemma 3.1, we see that, for any Laplacian L:

1

2

√

2χ1[L]χ2[L]TrL = O(|E|√ρ)

Consequently, the communication complexity of DADAO run forO(
√

L
µ log 1

ǫ)

iterations is better than MSDA. Furthermore, for the complete graph, for any
Laplacian L with ρ[L] = O(1) (remind that, by definition ρ ≥ 1), we have
√

2χ1[L]χ2[L]TrL = O(n) whereas |E| = O(n2), thus DADAO uses an order of
magnitude less communications than MSDA need to.

Comparison with the Continuized framework [12]. In this framework
and using their notations, we have:

• Gossip matrices: all Laplacian matrices L verifying TrL = 2.

• Total number of gradients to reach ǫ precision: O(1
θ′
ARG

√

L
µ log 1

ǫ).

• Total number of edges activated to reach ǫ precision: O(1
θ′
ARG

√

L
µ log 1

ǫ).

First, we slightly rephrase one of the proposition of [12] to match our notations:

Lemma D.1. For a Laplacian L with TrL = 2, the communication and gradi-
ent complexity of the continuized framework is given by:

O(
√

χ1[L]χ2[L]
√

L

µ
log

1

ǫ
) .

33

Proof. Under the notation of [12], θ′ARG =
√

µgossip/max{v,w}
Rvw

Pvw
, with µgossip =

1
χ1[L] in our setting. Moreover, we remind that in [12], L = AAT and that

Aevw =
√
Pvw(ev − ew). Thus, by definition:

Rvw

Pvw
,
eTvwA

+Aevw
Pvw

(68)

=
eTvwA

+(ev − ew)√
Pvw

(69)

=
(A+Tevw)

T(ev − ew)√
Pvw

(70)

=
((AAT)+TAevw)

T(ev − ew)√
Pvw

(71)

= (ev − ew)TL+(ev − ew) , (72)

and we have θ′ARG = 1√
2χ1[L]χ2[L]

.

Next, if TrL = 2, we proved in Lemma 3.1that 2
√

χ1[L]χ2[L] ≥ (n − 1).

Thus, we see that the gradient complexity of DADAO in O(n
√

L
µ log 1

ǫ) is always

better than the one of the continuized framework. If we write f(n) = Ω(g(n))
the fact that there is a constant C > 0 and n0 ∈ N such that ∀n ≥ n0, Cg(n) ≤
f(n), then, in the cycle graph, for any L with TrL = 2, χ1[L] = Ω(n3) and
χ2[L] = Ω(n). Thus DADAO uses an order of magnitude less gradients than
the continuized framework for this graph.

E Optimizing the communication rates with a
SDP

We remind the following useful Lemma:

Lemma E.1 (Generalized Schur complement). Let M be a symmetric matrix
defined as:

M =

(

A B
BT C

)

.

Then:

• M < 0⇔ A ≻ 0 , C −BTA−1B < 0.

• M < 0⇔ A < 0 , (I−AA+)B = 0 , C −BTA+B < 0.

34

E.1 Convexity lemmas

Proposition E.2 (log-convexity lemma). Fix ‖u‖ = 1, u ⊥ 1 and let λ =

(λij) ∈ R
n2

+ such that Λ(λ) =
∑

1≤i,j≤n λij(ei − ej)(ei − ej)T, and let:

ψ(λ, u) = uTΛ(λ)+u .

Then, λ → ψ(λ, u) is log-convex on R
n2

+ . Furthermore, λ → ψ(λ, u) is strictly
convex on the convex set {λ, χ1[Λ(λ)] <∞} of the connected graphs.

Next, we prove our convexity bounds:

Proof of Lemma E.2. We want to show that λ → ψ(λ, u) is log-convex on R
n2

+

and strictly convex on the convex set {λ, χ1(Λ(λ)) < ∞} of the connected
graphs. Having in mind that:

d

dt
X+(t) = −X+(t)

d

dt
X(t)X+(t) ,

we note that:

∂

∂λij
logψ(Λ) = −u

TΛ+(ei − ej)(ei − ej)TΛ+u

uTΛ+u
(73)

= − (uTΛ+(ei − ej))2
uTΛ+u

(74)

and next:

∂2

∂λij∂λi′j′
logψ(Λ) =

2uTΛ+(ei − ej)uTΛ+(ei′ − ej′)(ei′ − ej′)TΛ+(ei − ej)uTΛ+u

(uTΛ+u)2

− (uTΛ+(ei − ej))2(uTΛ+(ei′ − ej′))2
(uTΛ+u)2

(75)

Now, let the (δij)1≤i,j≤n be positive and introduce ∆ =
∑

ij δij(ei−ej)(ei−ej)T.
Then, with H(ψ) the hessian of logψ, we observe that:

∆TH(ψ)∆ =
∑

ij,i′j′

δijδi′j′
∂2

∂λij∂λi′j′
ψ(Λ) (76)

=
2uTΛ+∆Λ+∆Λ+u(uTΛ+u)− (uTΛ+∆Λ+u)2

(uTΛ+u)2
(77)

As uTΛ+∆Λ+∆Λ+u(uTΛ+u) ≥ 0, ∆TH(ψ)∆ would be positive if we show

uTΛ+∆Λ+∆Λ+u(uTΛ+u)− (uTΛ+∆Λ+u)2 ≥ 0 . (78)

As u ⊥ 1, by Schur complement, this would be the case if:

(

uTΛ+∆Λ+∆Λ+u uTΛ+∆Λ+u
uTΛ+∆Λ+u uTΛ+u

)

< 0 , (79)

35

but this also writes:

(

u
u

)T(

Λ+∆Λ+∆Λ+ Λ+∆Λ+

Λ+∆Λ+ Λ+

)(

u
u

)

< 0 . (80)

For this to be true for any u, by Schur complement, this would be implied by:

Λ+ < 0 , (I− Λ+Λ)Λ+∆Λ+ = 0

and
Λ+∆Λ+∆Λ+ − Λ+∆Λ+ΛΛ+∆Λ+ < 0 .

As Λ+Λ = π, all conditions are met. In particular, the last inequality is an
equality, and so is (78). Thus, having:

∆TH(ψ)∆ = 0

would imply that:
uTΛ+∆Λ+∆Λ+uuTΛ+u = 0

As u 6= 0, if ∆ represents a connected graph, this can never be equal to 0.

Corollary E.2.1 (Strict convexity of the relaxed communication rate). Fix a

directed graph E so that Ē is connected. Then, λ→
√

χ1[Λ(λ)]χE
2 (λ) is strictly

convex on R
E
+.

Proof of Corollary E.2.1. We note that the supremum of logarithmic convex
functions is logarithmically convex, thus λ → χ1[Λ(λ)], λ → χ2[Λ(λ)] are loga-
rithmically convex and so is their square root. Furthermore, λ→ χ2[Λ(λ)] is a
finite supremum (ie, a maximum) of strictly convex function, thus it is strictly
convex and so is λ→

√

χ1[Λ(λ)]χ2[Λ(λ)].

E.2 Problem relaxation

We want to consider the following:

minimize TrΛ(λ)
√

2χ1[Λ(λ)]χ2[Λ(λ)] (81)

subject to λ ∈ C ∩ R
E
+ .

For C1, by homogeneity (the quantity of interest is invariant by rescaling),
the optimal solution can be picked as equality in the inequality constraints. For
C2, C3, we have an obvious upper bound on the trace, so we can consider:

minimize
√

2χ1[Λ(λ)]χ2[Λ(λ)] (82)

subject to λ ∈ C ∩ R
E
+ .

However, λ → χ2[Λ(λ)] is not convex as explained above. Hence, we relax the
problem by considering:

minimize
√

2χ1[Λ(λ)]χE
2 (λ) (83)

subject to λ ∈ C ∩ R
E
+ .

36

Remark E.1. We note that we have here a Braess paradox [15]: minimizing
Eq. 82 compared to minimizing Eq. 83 can lead to a substantially better com-
munication rate. However, finding a solution to problem 82 requires in practice
knowing the support of the optimal graph in advance. If some edges are dropped
during the optimization procedure (i.e., allocated with a 0 weight), minimizing
Eq. 83 with the optimal support would lead to the optimal communication rate.

E.3 SDP formulation

Proof of Prop. 4.1. First, note that ϕ(u) , ut1 +
t2
u satisfies ϕ′(u) = t1 − t2

u2

so that the minimum is reached in u∗ =
√

t2
t1

, with ϕ(u∗) = 2
√
t1t2. Now, if

t2 ≥ t1, u∗ ≥ 1 and we note that ϕ(u∗) = infu≥1 ϕ(u).

Our initial problem writes:

minimize

√

2‖Λ+‖1
2

sup
(ij)∈E

(ei − ej)TΛ+(ei − ej)

subject to λ ∈ C, λij ≥ 0, ∀(i, j) ∈ E
Λ =

∑

ij λij(ei − ej)(ei − ej)T

Thus, as χ2 ≤ χ1, it is equivalent to solving:

minimize u sup
(ij)∈E

(ei − ej)TΛ+(ei − ej) +
‖Λ+‖
u

subject to λ ∈ C, u ≥ 1, λij ≥ 0, ∀(i, j) ∈ E
Λ =

∑

ij λij(ei − ej)(ei − ej)T

which also writes:

minimize ut1 +
t2
u

subject to λ ∈ C, u ≥ 1, λij ≥ 0, ∀(i, j) ∈ E
Λ =

∑

ij λij(ei − ej)(ei − ej)T
t1 ≥ (ei − ej)TΛ+(ei − ej) ∀(i, j) ∈ E
t2 ≥ ‖Λ+‖

equivalent to (with λ̃ij = uλ so that Λ̃ = uΛ, Λ̃+ = 1
uΛ

+ and λ̃ ∈ uC):

37

minimize ut1 +
t2
u

subject to λ̃ ∈ uC, u ≥ 1, λ̃ij ≥ 0, ∀(i, j) ∈ E
Λ̃ =

∑

ij λ̃ij(ei − ej)(ei − ej)T
t1 ≥ u(ei − ej)TΛ̃+(ei − ej) ∀(i, j) ∈ E
t2 ≥ u‖Λ̃+‖

equivalent to (with t′1 = ut1, t
′
2 = t2

u):

minimize t′1 + t′2
subject to λ ∈ uC, u ≥ 1, λij ≥ 0, ∀(i, j) ∈ E

Λ =
∑

ij λij(ei − ej)(ei − ej)T
t′1 ≥ u2(ei − ej)TΛ+(ei − ej) ∀(i, j) ∈ E
t′2 ≥ ‖Λ+‖

equivalent to, via Schur Complement:

minimize t1 + t2

subject to λ ∈ uC, u ≥ 1, λij ≥ 0, ∀(i, j) ∈ E
Λ =

∑

ij λij(ei − ej)(ei − ej)T

(

Λ u(ei − ej)
u(ei − ej)T t1

)

< 0 ∀(i, j) ∈ E

(

Λ I− 1
n11

T

I− 1
n11

T t2I

)

< 0

E.4 Optimal weights for the Barbell Graph

In this section, following [16], we make an in-depth study of the communication
rates given by our SDP on the Barbell graph Kn − Kn on 2n nodes. First,
we propose an analytical solution to problem (83) under the global bandwidth
constraint C1. In this setting, we show that the optimal communication strategy
can be unboundedly better than using uniform communication rates on the
edges. Then, we illustrate the Braess paradox on the Barbell graph by showing
that removing some edges leads to better convergence rates.

E.4.1 Analytical study

Using the same symmetry argument than [16], we know the problem actually
depends on three variables a, b, c as illustrated on Fig. 3. We then have the

38

a

a a

b

a a

b

a

b b

c
b

a a

a

b b

b

a

a a

Figure 3: The barbell graph K5 −K5.

following Lemma, proved in Appendix E.4, which shows that using uniform
weights is sub-optimal on the barbell graph.

Lemma E.3 (Barbell graph). For Kn −Kn with n ≥ 3, under the constraint
∑

(i,j)∈E λij ≤ 1, the optimal parameters for problem (83) are given by: c∗ =

4−n+
√

2n(n−1)

2(8+n) ∼
n→∞

√
2−1
2 , b∗ = c∗

n−2

(

√

2(n−1)
n − 2

n

)

∼
n→∞

√
2−1

n
√
2
, a∗ = 1−c∗−2b∗(n−1)

(n−1)(n−2) ∼
n→∞

√
2−1
2n2 . In this case,

√
2χ1χ2 ≃

n→∞
2.4n. Using uniform weights a = b = c = 1

|E|

leads to
√
2χ1χ2 ∼

n→∞
n5/2
√
2

.

Proof of Lemma E.3. Via a symmetry argument similar to [16], we know that
the problem actually depends on three variables a, b, c.

1
/b

01 1/a

1/a 1/a

1/a 1/a

1/b 1/b4

3

2

1
/b

Figure 4: Equivalent resistance network if some current passes between node
0 and node 1 of the Barbell graph K5 − K5. By symmetry of the resistance
network, no current passes through the edges 2 − 3 and 3 − 4 and we have
1

2Ra
= a+ 2

1
a+ 1

a

+ 1
1
b+

1
b

= 2a+ b
2 .

By symmetry and using the Ohm law, we know that the resistance of the

39

corresponding edges are given by:

2Rc =
1

c
,

1

2Ra
= a+

a

2
(n− 3) +

b

2
=

1

2
(a(n− 1) + b),

1

2Rb
= b+

1
1
a + 1

b

(n− 2) ,

see Fig. 4 for an example of such computation on the Barbell graph K5 −K5.
We can simplify the expressions as follows:

Ra =
1

a(n− 1) + b
, Rb =

a+ b

2b
Ra , Rc =

1

2c
.

Directly using the results of [16], the eigenvalues of the graph’s Laplacian are:

a(n− 1) + b, nb,
1

2
(nb + 2c±

√

(2c+ nb)2 − 8bc)

and the global bandwidth constraint C1 translates into:

1 = c+ 2(n− 1)b+ (n− 1)(n− 2)a .

From the drawing, it is natural that a∗ ≤ b∗ ≤ c∗.

Finding the effective resistance of the graph:
We want to find χ∗

2 = max(Ra∗ , Rb∗ , Rc∗). We can directly eliminate Rb∗ from
the list as b∗ ≥ a∗, leading to Rb∗ ≤ Ra∗ . From the constraints, we have:

1

n− 1
=

c∗

n− 1
+ 2b∗ + (n− 2)a∗ ≥ b∗ + (n− 1)a∗ ,

meaning Ra∗ ≥ n − 1. Thus, if we assume from the drawing c∗ = O(1), then
Rc∗ = O(1) and χ∗

2 = Ra∗ . Let us make this assumption for now.

Finding the inverse of the smallest eigenvalue of the Laplacian:

We want to find 1
χ∗
1
= min

(

a∗(n− 1) + b∗, nb∗, 12 (nb
∗ + 2c∗ ±

√

(2c∗ + nb∗)2 − 8b∗c∗)
)

.

As b∗ ≥ a∗ and for obvious reasons, we directly have:

1

χ∗
1

= min

(

a∗(n− 1) + b∗,
1

2
(nb∗ + 2c∗ −

√

(2c∗ + nb∗)2 − 8b∗c∗)

)

.

For now, we will also assume that χ∗
2 < χ∗

1, and as a∗(n − 1) + b∗ = 1
χ∗
2
, this

means 1
χ∗
1
= 1

2 (nb
∗ + 2c∗ −

√

(2c∗ + nb∗)2 − 8b∗c∗).

Solving the system:
Now, we define f(a, b, c) = 1

2χ1(a,b,c)χ2(a,b,c)
. We want to find a∗, b∗, c∗ solving

the following:

maximize f(a, b, c) = (a(n− 1) + b)
(

nb+ 2c−
√

(2c+ nb)2 − 8bc
)

subject to 1 = c+ 2(n− 1)b+ (n− 1)(n− 2)a

40

First, from the constraints, we have a = 2c
(n−1)(n−2) − 2b

n−2 . Substituting a in

f(a, b, c) leads to:

f(a, b, c) =

(

1− c− bn
n− 2

)

(

nb+ 2c−
√

(2c+ nb)2 − 8bc
)

.

Differentiating with respect to b and c leads to:

∂f

∂b
= 0⇔ n

(

nb+ 2c−
√

(2c+ nb)2 − 8bc
)

= (1− c− bn)
(

n− n(2c+ nb)− 4c
√

(2c+ nb)2 − 8bc

)

∂f

∂c
= 0⇔

(

nb+ 2c−
√

(2c+ nb)2 − 8bc
)

= (1− c− bn)
(

2− 2(2c+ nb)− 4b
√

(2c+ nb)2 − 8bc

)

Subtracting n times the second line to the first leads to the following system:

(

nb+ 2c−
√

(2c+ nb)2 − 8bc
)

= (1− c− bn)
(

n− n(2c+nb)−4c√
(2c+nb)2−8bc

)

√

(2c+ nb)2 − 8bc = 2c+ nb+ 4
(

c
n − b

)

Assuming n > 3, solving the system leads to:

c∗ =
4− n+

√

2n(n− 1)

2(8 + n)
∼

n→∞

√
2− 1

2

b∗ =
c∗

n− 2

(
√

2(n− 1)

n
− 2

n

)

∼
n→∞

√
2− 1

n
√
2

a∗ =
1− c∗ − 2b∗(n− 1)

(n− 1)(n− 2)
∼

n→∞

√
2− 1

2n2
.

We verify that indeed c∗ = O(1) and that χ∗
2 < χ∗

1, validating our assumptions.
Finally, we compute:

√

2χ∗
1χ

∗
2 =

1
√

f(a∗, b∗, c∗)
= 2(
√
2− 1)

√

2(2 +
√
2)

80− 56
√
2
n+O(1) .

The case for uniform weights:
Now, we assume a = b = c = 1

|E| . Then, we necessarily have χ2 = 1
2c =

|E|
2 = n(n−1)+1

2 . We also evidently have 1
χ1

= 1
2 (nb+2c−

√

(2c+ nb)2 − 8bc) =

c
2

(

n+ 2−
√

(n+ 2)2 − 8
)

. Thus, in the end:

√

2χ1χ2 = (n(n− 1) + 1)

√

2

n+ 2−
√

(n+ 2)2 − 8
=
n5/2

√
2

+O(
√
n) .

41

2.7

2.
7 2.7

5.9

2.7 2.7

5.9

2.7

5.9 5.
9

20.5
5.9

2.
7 2.7

2.7

5.9 5.9

5.9

2.7

2.7 2.
7

0

1

2 3

4

5

6

7 8

9

(a)

9.4

9.4

9.4 9.
4

24.5
9.4

9.4 9.4

9.4

0

1

2 3

4

5

6

7 8

9

(b)

Figure 5: (a) Weights found by our SDP for the Barbell graph K5−K5, leading
to
√
χ1χ2 ≃ 12.9. (b) Optimal weights for the subgraph where edges a were

removed, leading to a value of
√
χ1χ2 ≃ 10.2. For the sake of readibility, all

values were multiplied by a factor of 100.

E.4.2 Effect of the relaxation

As discussed in Rem.E.1, relaxing our problem from Eq. (82) to Eq. (83)
prohibits the removal of edges from the given graph. However, as in traffic
networks where doing so can sometimes speed up the overall traffic flow [9],
considering sub-graphs might lead to better values of

√
χ1χ2. As it happens,

this is actually the case on the Barbell graph. As shown in Fig. 5, removing
edges with weight a leads to a better communication complexity. Thus, the
relaxation Eq. (83) cannot find the optimal solution of Eq. (82) in this example.
However, it is still orders of magnitude better than putting uniform weights on
the edges. In fact, a solution of problem Eq. (83) will always lead to faster rates
than using any heuristics putting non 0 weight on the edges of the graph.

E.5 Results from our SDP solver

Efficient SDP solvers exist [10], and we display on Fig. 6 several results obtained
thanks to the formulation of Prop. 4.1. Note that the solutions in Fig. 6(a,b)

1.41.4
1.4

1.
4 1.4

1.4
1.4

2.5

3.7 3.7

2.5
3.7

3.
7

2.5

3.
7

3.7

2.
53.7

3.7

2.5

3.7

3.7

2.5

3.7

3.7

2.5

3.7

3.7

(a)

5.0

5.0

3.
3

3.4

3.3

5.
0

5.0

3.3 3.3

3.4

2.5

2.
5

2.5

2.5

3.3

3.
4

3.3

5.0

5.0

3.4

3.
3

3.3

5.0

5.
0

(b)

5.5

5.5

5.5

5.
5 5.5

5.5

5.5

8.8 8.8

8.
8

8.8

8.8

8.8

8.8

(c)

9.1

9.1

6.7

9.1

9.1

9.1

6.7

6.7

6.7

9.1

9.1
9.1

(d)

Figure 6: Optimal communication rates for the problem 83 obtained by solving
the SDP from Prop. 4.1, under constraints ∀i, ∑j,(i,j)∈E λij ≤ 1 for (a,b) and
∑

(i,j)∈E λij ≤ 1 for (c,d). For the sake of readability, we multiplied the values

by 10 in (a,b), and by 100 in (c,d).

42

differ from what the simple heuristic of weighting each directed edge (i, j) with
its degree 1

di
would give or what would be prescribed with Metropolis weights,

i.e. using 1
1+max{di,dj} [48, 43, 37, 17]. Also, solutions in Fig. 6(c,d) do not

follow the naive approach of putting uniform weights 1
|E| on every edge.

F Physical interpretation of the sufficient condi-
tion

Introducing λ ,
∑

(ij)∈E λij and PΛ , 2Λ
Tr Λ , we write Λ as the product of

these two more interpretable quantities to gain more insight on the condition
2χ1[Λ]χ2[Λ] ≤ 1:

Λ = λPΛ. (84)

In this setting, λ is the expected rate of communication over the whole graph,
while PΛ can be interpreted as the Laplacian of E with each edge weighted with
its probability of having spiked given a communication happened in the graph.
We have:

χ1[Λ] =
χ1[PΛ]

λ
; χ2[Λ] =

χ2[PΛ]

λ
. (85)

PΛ being normalized, we could say that the quantities χ1[PΛ], χ2[PΛ] character-
ize the graph’s connectivity while λ is the global rate of communication. Then,
using (85), the condition 2χ1[Λ]χ2[Λ] ≤ 1 is equivalent to saying

√

2χ1[PΛ]χ2[PΛ] ≤ λ, (86)

meaning that the global communication rate should be larger than some spectral
quantity quantifying the graph’s connectivity. If structural constraints on the
network makes it impossible to verify this condition, as the notion of time is only
defined through the rate of gradient steps given by Assumption 3.1 (λ can be
interpreted as "the expected number of communications in the graph between the
expected duration separating two subsequent gradient steps on a given node"),
it only means that the gradient steps are happening too fast compared to the
ability of the network to communicate, and the rate of gradient steps should be
slow-down by a factor of

√
2χ1χ2.

G DADAO vs MSDA on the star graph

To experimentally confirm that our communication complexity is better than
accelerated methods using the spectral gap and abstract away the better abso-
lute constants for MSDA, we ran DADAO and MSDA on the task of distributed
linear regression for star graphs of size n ∈ {10, 20, 70, 200, 300, 1000, 2000}. We
considered the evolution of the average distance to the optimal with the num-
ber of gradient steps and commmunication steps in log scale for each run, and
computed the slope of each line. For each graph size, we report in Fig. 7 the

43

0 250 500 750 1000 1250 1500 1750 2000
size n of the star graph.

0.00

0.02

0.04

0.06

0.08

0.10
Computation rate

measure
1/14

0 250 500 750 1000 1250 1500 1750 2000
size n of the star graph.

0

1

2

3

4

5
Communication rate

measure
(1/14)n1/2

Rate between the slopes of DADAO and MSDA in log scale for star graphs of size n.

Figure 7: Rate between the slopes in log scale of DADAO and MSDA for star
graphs of size n ∈ {10, 20, 70, 200, 300, 1000, 2000}.

rate between the slope for DADAO and the slope for MSDA. We remark that
the rate between the gradient complexities of DADAO and MSDA is indeed a
O(1) (with a constant value of ≃ 1/14) while MSDA is indeed O(√n) worse
than DADAO for communications on the star graph, as stated in Tab. 2.

H Practical Implementation

In this section, we describe in more detail the implementation of our algorithm.
As we did not physically execute our method on a compute network but carried it
out on a single machine, all the asynchronous computations and communications
had to be simulated. Thus, we will first discuss the method we followed to
simulate our asynchronous framework before detailing the practical steps of our
algorithm through a pseudo-code.

H.1 Simulating the Poisson Point Processes

To emulate the asynchronous setting, before running our algorithm, we generate
2 independent sequences of jump times at the graph’s scale: one for the compu-
tations and one for the communications. As we considered independent P.P.Ps,
the time increments follow a Poisson distribution. At the graph’s scale, each
node spiking at a rate of 1, the Poisson parameter for the gradient steps process
is n. Following the experimental setting of the Continuized framework [12], we
considered that all edges in E had the same probability of spiking. Thus, given
any graph E and L its corresponding standard Laplacian with unit edge weights,

44

we computed the parameter λ of the communication process:

λ =

√

2χ1

[L
|E|

]

χ2

[L
|E|

]

. (87)

Having generated the 2 sequences of spiking times at the graph’s scale, we run
our algorithm playing the events in order of appearance, attributing the location
of the events by sampling uniformly one node if the event is a gradient step or
sampling uniformly an edge in E if it is a communication.

H.2 Pseudo Code

We keep the notations introduced in Eq. (3) and recall the following constant
values specified in Appendix C.1:

η = 1
8

√

ν
L γ = 1

4L δ = 1
4

√

ν
L α = 1

4

√

ν
L β = 1

2 θ = 1
2

√

L
ν

η̃ = 1
8

√

ν
L γ̃ = 1

4
√
νL

δ̃ = 1 α̃ = 1
8

√

ν
L β̃ = 2χ1[Λ]

√

L
ν ν = µ

2

For the sake of completeness, we also specify the matrix A describing the linear
ODE (7):

A =

−η η 0 0 0 0
η̃ −η̃ 0 0 0 0
0 0 −α α 0 0
0 −θν −θ 0 −θ 0
0 0 0 0 −α α
0 0 0 0 α̃ −α̃

(88)

As described in Appendix H.1, we call PPPspikes the process mentioned above,
returning the ordered sequence of events and time of spikes of the two P.P.Ps.
Then, we can write the pseudo-code of our implementation of the DADAO
optimizer in Algorithm 2.

45

Algorithm 2: Pseudo-code of our implementation of DADAO on a
single machine.

Input: On each machine i ∈ {1, ..., n}, an oracle able to evaluate ∇fi,
Parameters µ, L, χ1, tmax, n, λ.
The graph E .

1 Initialize on each machine i ∈ {1, ..., n}:
2 Set X(i) = (xi, x̃i, ỹi) and Y (i) = (yi, zi, z̃i) to 0 ;

3 Set constants ν, η̃, η, γ, α, α̃, θ, δ, δ̃, β, β̃ using µ, L, χ1;
4 Set A;

5 T (i) ← 0 ;

6 ListEvents, ListTimes← PPPspikes(n, λ, tmax) ;
7 nevents ← |ListEvents| ;
8 for k ∈ [[1, nevents]] do
9 if ListEvents[k] is to take a gradient step then

10 i ∼ U([[1, n]]) ;

11

(

X(i)

Y (i)

)

← exp
(

(ListTimes[k]− T (i))A
)

(

X(i)

Y (i)

)

;

12 gi ← (∇fi(xi)− νxi − ỹi); // Local gradient computation.

13 xi ← xi − γgi ;
14 x̃i ← x̃i − γ̃gi ;

15 ỹi ← ỹi + (δ + δ̃)gi ;

16 T (i) ← ListTimes[k] ;

17 else if ListEvents[k] is to take a communication step then
18 (i, j) ∼ U(E) ;

19

(

X(i)

Y (i)

)

← exp
(

(ListTimes[k]− T (i))A
)

(

X(i)

Y (i)

)

;

20

(

X(j)

Y (j)

)

← exp
(

(ListTimes[k]− T (j))A
)

(

X(j)

Y (j)

)

;

21 mij ← (yi + zi − yj − zj); // Message exchanged.

22 zi ← zi − βmij ;

23 z̃i ← z̃i − β̃mij ;
24 zj ← zj + βmij ;

25 z̃j ← z̃j + β̃mij ;

26 T (i) ← ListTimes[k];

27 T (j) ← ListTimes[k];

28 return (xi)1≤i≤n, the estimate of x∗ on each worker i.

46

	Introduction
	Related Work
	Accelerated Asynchronous Algorithm
	Gossip Framework
	Dynamic to optimum
	Theoretical guarantees

	Minimizing the communication rate as a SDP
	Practical implementation
	Algorithm
	Numerical results

	Conclusion
	Appendix
	 Appendix
	Communication bounds
	Saddle Point Reformulation
	Proof of the main Theorem (Th. 3.2)
	Proof of the Lemma C.1

	Comparison of complexities with related work
	Optimizing the communication rates with a SDP
	Convexity lemmas
	Problem relaxation
	SDP formulation
	Optimal weights for the Barbell Graph
	Analytical study
	Effect of the relaxation

	Results from our SDP solver

	Physical interpretation of the sufficient condition
	DADAO vs MSDA on the star graph
	Practical Implementation
	Simulating the Poisson Point Processes
	Pseudo Code

