
HAL Id: hal-03737694
https://hal.science/hal-03737694v1

Preprint submitted on 25 Jul 2022 (v1), last revised 15 Nov 2023 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DADAO: Decoupled Accelerated Decentralized
Asynchronous Optimization for Time-Varying Gossips

Adel Nabli, Edouard Oyallon

To cite this version:
Adel Nabli, Edouard Oyallon. DADAO: Decoupled Accelerated Decentralized Asynchronous Opti-
mization for Time-Varying Gossips. 2022. �hal-03737694v1�

https://hal.science/hal-03737694v1
https://hal.archives-ouvertes.fr

DADAO: Decoupled Accelerated Decentralized

Asynchronous Optimization for Time-Varying

Gossips

Adel Nabli

ISIR, CNRS, Sorbonne University

nabli@isir.upmc.fr

Edouard Oyallon

ISIR, CNRS, Sorbonne University

July 25, 2022

Abstract

DADAO is a novel decentralized asynchronous stochastic algorithm to

minimize a sum of L-smooth and µ-strongly convex functions distributed

over a time-varying connectivity network of size n. We model the lo-

cal gradient updates and gossip communication procedures with sepa-

rate independent Poisson Point Processes, decoupling the computation

and communication steps in addition to making the whole approach com-

pletely asynchronous. Our method employs primal gradients and do not

use a multi-consensus inner loop nor other ad-hoc mechanisms as Error

Feedback, Gradient Tracking or a Proximal operator. By relating spatial

quantities of our graphs χ∗
1, χ

∗
2 to a necessary minimal communication

rate between nodes of the network, we show that our algorithm requires

O(n
√

L

µ
log ǫ) local gradients and only O(n

√

χ∗
1
χ∗
2

√

L

µ
log ǫ) communica-

tions to reach a precision ǫ. If SGD with uniform noise σ2 is used, we reach

a precision ǫ with same speed, up to a bias term in O(σ2
√

µL
). This improves

upon the bounds obtained with current state-of-the-art approaches, our

simulations validating the strength of our relatively unconstrained method.

Our source-code is released on a public repository.

1 Introduction

With the rise of highly-parallelizable and connected hardware, distributed op-
timization for machine learning is a topic of significant interest helding many
promises. In a typical distributed training framework, the goal is to minimize
a sum of functions (fi)i≤n splitted across n nodes of a compute network. A
corresponding optimization procedure consists in alternating local computation

1

and communication rounds between the nodes. Spreading the compute load is
done to ideally obtain a linear speedup in the number of nodes. In the decen-
tralized setting, there is no central machine aggregating the information sent
by the workers: nodes are only allowed to communicate with their neighbours
in the network. In this setup, optimal methods [34, 17] have been derived for
synchronous first-order algorithms, whose executions are blocked until a subset
(or all) nodes have reached a predefined states: the instructions must be per-
formed in a specific order (e.g., all nodes must perform a local gradient step
before the round of communication begins), which is one of the locks limiting
their efficiency in practice.

This work attempts to address simultaneously multiple limitations of exist-
ing decentralized algorithms, while guaranteeing fast rates of convergence. To
tackle the synchronous lock, we rely on the continuized framework [9], origi-
nally introduced to allow asynchrony in a fixed topology setting: iterates are
labelled with a continuous-time index (in opposition to a global iteration count)
and performed locally with no regards to a specific global ordering of events.
This is more practical, while being theoretically grounded and simplifying the
analysis. However, in [9], gradient and gossip operations are still coupled: each
communication along an edge requires the computation of the gradients of the
two functions locally stored on the corresponding nodes and vice-versa. As more
communications than gradient computations are necessary to reach an ǫ preci-
sion, even in an optimal framework [17, 34], the coupling directly implies an
overload in terms of gradient steps. Another limitation is the restriction to a
fixed topology: in a more practical setting, connections between nodes should
be allowed to disappear or new ones to appear over time. The procedures of
[19, 23] are the first to obtain an optimal complexity in terms of gradient steps
while being robust to topological change. Unfortunately, synchrony is manda-
tory in their frameworks as they either rely on the Error-Feedback mechanism
[35] or the Gradient Tracking one [26]. Moreover, they both use an inner-loop
to control the number of gradient steps, at the cost of a significant increase of
the amount of activated communication edges. To our knowledge, we are the
first work to tackle those locks simultaneously.

In this paper, we propose a novel algorithm (DADAO: Decoupled Accelerated
Decentralized Asynchronous Optimization) based on a combination of similar
formulations to [17, 10, 12] in the continuized framework of [9]. We study:

inf
x∈Rd

n∑

i=1

fi(x) , (1)

where each fi : R
d → R is a µ-strongly convex and L-smooth function computed

in one of the n nodes of a network. We derive a first-order optimization algo-
rithm which only uses primal gradients and relies on a time-varying Point-wise
Poisson Processe (P.P.P.s [20]) modeling of the communication and gradient oc-
currences, leading to accelerated communication and computation rates. Our
framework is based on a simple fixed point iteration and kept minimal: it only
involves primal computations with an extra momentum term and works in both

2

the Gradient and Stochastic Gradient Descent (SGD) settings. Thus, we do not
add other cumbersome designs such as the Error Feedback or Forward Backward
used in [17], which are intrinsically not amenable in the continuized framework
as they require synchrony. While we do not take into account the delays bound
to appear in practice (we assume instantaneous communications and gradient
computations), we show that the ordering of the gradient and gossip steps can
be variable, removing the coupling lock.

Our contributions are as follows: (1) first, we propose the first primal al-
gorithm with provable guarantees in the context of asynchronous decentralized
learning with time-varying connectivity. (2) Compared to any reference work,
this algorithm reaches accelerated rates of communication and computations
while not requiring ad-hoc mechanisms obtained from an inner-loop. (3) Our
algorithm also leads to accelerated rate with SGD with a minor modification.
(4) We propose a simple theoretical framework compared to concurrent works
and (5) we demonstrate its optimality numerically.

Our paper is structured as follows: in Sec. 3.1, we describe our work hy-
pothesis as well as our model of a decentralized environment while Sec. 3.2
describes our dynamic. Sec. 3.3 sketches the proof of our convergence guar-
antees which is fully detailed in the Appendix. Then, Sec. 4.1 compares our
work with its competitors, Sec. 4.2 explains our implementation of this al-
gorithm and finally Sec. 4.3 verifies numerically our claims. All our experi-
ments are reproducible, using PyTorch [29] and our code can be found online:
https://github.com/AdelNabli/DADAO/.

2 Related Work

Table 1: This table highlights the strength of our method compared to con-
current works. Here, n is the number of node, |E| the number of edges, 1

χ1
is

the smallest strictly positive eigenvalue of a fixed stochastic Gossip matrix, also
1 ≤ χ2 ≤ χ1 for acceleration, and γ is the eigengap. Note that under reasonable
assumptions |E|√γ ≥ √χ1χ2n. Async., Comm., Grad., M.-C. and Prox. stand
respectively for Asynchrony, Communication steps and Gradient steps., Multi-
consensus and Proximal operator.

Method Async. Varying Decoupled No Inner Loop Primal Total Total
Topology (M.-C. or Prox.) Oracle # Comm. # Grad.

MSDA [34] ✗ ✗ ✗ ✗ ✗
√
γ|E|

√

L
µ

n

√

L
µ

AGT [23] ✗ ✓ ✗ ✗ ✓ χ1|E|
√

L
µ

n

√

L
µ

ADOM+ [17] ✗ ✓ ✗ ✗ ✓ χ1|E|
√

L
µ

n

√

L
µ

Continuized [9] ✓ ✗ ✗ ✓ ✗
√
χ1χ2n

√

L
µ

√
χ1χ2n

√

L
µ

ADFS [14] ✗ ✗ ✓ ✗ ✗
√
γ|E|

√

L
µ

n
√

L
µ

TVR [12] ✓ ✗ ✓ ✓ ✓ γ|E|L
µ

nL
µ

Ours ✓ ✓ ✓ ✓ ✓
√
χ1χ2n

√

L
µ

n

√

L
µ

Tab. 1 compares our contribution with other references, in order to highlight
the benefits of our method.

3

https://github.com/AdelNabli/DADAO/

Continuized and asynchronous algorithms. We highly rely on the ele-
gant continuized framework [9], which allows to obtain simpler proofs along
with bringing the flexibility of asynchronous algorithms. However in our work,
we significantly reduce the necessary amount of gradient steps compared to [9],
while maintaining the same amount of activated edges. Another type of asyn-
chronous algorithms can also be found in [21], yet it fails to obtain Nesterov’s
accelerated rates for a lack of momentum. We note that [22] studies the ro-
bustness to delays, yet requires a shared memory and thus applies to a different
context than decentralized optimization. [12] is a promising approach for mod-
eling random communication on graphs yet fails, for now, to obtain acceleration
in a neat framework that does not use inner-loops.

Decentralized algorithms with fixed topology. [34] is the first work to
derive an accelerated algorithm for decentralized optimization, and it links the
convergence speed to the Laplacian eigen-gap. The corresponding algorithm
uses a dual formulation as well as a Chebychev acceleration (which is syn-
chronous and for a fixed topology), yet as stated in Tab. 2, it still requires
a significant amount of edges activated. Furthermore, under a relatively flexible
condition on the intensity of our P.P.P.s, we show that our work improves over
bounds that depend on the spectral gap. An emerging line of work following
this formulation employs the continuized framework [11, 9, 10], but are unfor-
tunately not amenable to incorporate a time varying topology by essence, as
they rely on a coordinate descent scheme in the dual [28]. We note that [10]
incorporates delays in their model, using the same technique as our work, yet
transferring this robustness to another setting remains unclear. Reducing the
number of communication has been studied in [25], only in the context of con-
stant topology and without obtaining accelerated rates. [14] allows to obtain
fast communication and gossip rates, yet requires a proximal step as well as
synchrony between nodes to apply a momentum variable.

Decentralized algorithms with varying topology. We highlight that [17,
23, 15] are some of the first works to propose a framework for decentralized
learning in the context of varying topology. However, they rely on an inner-loop
propagating variables multiple times through a network, which imposes full
synchrony and a communication overhead. In addition, as noted empirically in
[24], inner-loops lead to a plateau-effect. Furthermore, we note that [18, 31]
employ a formulation derived from [33, 7], casting decentralized learning as a
monotonous inclusion, obtaining a linear rate thanks to a preconditioning step
of a Forward-Backward like algorithm. However, being sequential by nature,
this type of algorithm is not amenable to a continuized framework.

Error feedback/Gradient tracking. A major lock for asynchrony is the use
of Gradient Tracking [16, 26, 23] or Error Feedback [35, 18]. Indeed, gradient op-
erations are locally tracked by a running mean variable which must be updated
at each gradient update: this operation is not compatible with an asynchronous

4

framework as it requires communication between nodes. Furthermore, to obtain
accelerated rates, a multi-consensus inner-loop seems mandatory, which is again
not desirable.

Decoupling procedures Decoupling subsequent steps of an optimization
procedures traditionally allows subsequent speed-ups [14, 12, 2, 3]. This con-
trasts with methods which couple gradient and gossip updates, such that they
happen in a predefined order, i.e. simultaneously [9] or sequentially [17, 15]. In
decoupled optimization procedures, inner-loops are not desirable because they
require an external procedure that can be potentially slow and require a block-
barrier instruction during the execution of the algorithm (e.g., [14, 13]).

Notations

We introduce our necessary notations: for a positive semi-definite matrix A,
‖x‖A , xTAx, f = O(g) means there is a constant C > 0 such that |f | ≤ C|g|,
ei is the canonical basis, 1 is the vector of 1, I the identity, A+ is the pseudo-
inverse of A and for a smooth convex functions F , dF (x, y) , F (x) − F (y) −
〈∇F (y), x− y〉 is its Bregman divergence. We further write ei , ei ⊗ I.

3 Fast Asynchronous Algorithm for Time-Varying

Connectivity Networks

3.1 Gossip Framework

We consider the problem defined by Eq. 1 in a distributed environment consti-
tuted by n nodes whose dynamic is indexed by a continuous time index t ∈ R

+.
Each node has a local memory and can compute a local gradient ∇fi, as well
as elementary operations, in an instantaneous manner. As said above, having
no delay is less realistic, yet adding them also leads to significantly more diffi-
cult proofs whose adaptation to our framework remains largely unclear. Next,
we will assume that our computations and gossip result from independent in-
homogeneous piecewise constant P.P.P. with no delay. For the sake of simplicity,
we assume that all nodes can compute a gradient at the same rate:

Assumption 3.1 (Homogeneous gradient computations). The gradient compu-
tations are re-normalized to fire independently at a rate of 1 computation per
second. For the i-th worker, we write Ni(t) the corresponding P.P.P. of rate 1,
as well as N(t) = (Ni(t))i≤n.

Next, we will also model the bandwidth of each machine. For an edge
(i, j) ∈ E(t), we write Mij(t) the P.P.P. with rate λij(t) ≥ 0. When this P.P.P.
fires, both nodes can potentially share their local memories. The rate λij(t)
is adjustable locally by machine i, which can decide to speed or slow-down its
local communication. While λij(t) and λji(t) may refer to different quantities,
we highlight that this communication process is symmetric and we denote by

5

Ē(t) the corresponding undirected graph. Given our notations, we note that if
(i, j) 6∈ E(t), then the connexion between (i, j) can be thought as a P.P.P. with
intensity 0. We now introduce the instantaneous expected gossip matrix of our
graph:

Λ(t) ,
∑

(i,j)∈E(t)
λij(t)(ei − ej)(ei − ej)

T .

We also write Λ(t) ,
∑

(i,j)∈E(t) λij(t)(ei − ej)(ei − ej)
T its tensorized counter-

part that will be useful for our proofs and defining our Lyapunov potential.
Following [34], we will further compare this quantity to the centralized gossip
matrix:

π , I− 1

n
11

T =
1

2n

∑

i,j

(ei − ej)(ei − ej)
T .

In order to characterize the connectivity of Λ(t), we introduce its instanta-
neous connectivity which is similar to [17], given by:

1

χ1(t)
, inf

x⊥1,‖x‖=1
xTΛ(t)x .

We might also write χ1[Λ(t)] in order to avoid confusions, depending on the
context. Next, we introduce the maximal effective resistance of the network, as
in [9, 8]:

χ2(t) ,
1

2
sup

(i,j)∈E(t)
(ei − ej)

TΛ+(t)(ei − ej) .

We remind the following Lemma, which will be useful to control χ1(t), χ2(t)
and to compare our bounds with the bounds that make use of the spectral gap
of a graph:

Lemma 3.1 (Bound on the connectivity constants). The spectrum of Λ(t) is
non-negative. Furthermore, we have χ1(t) = +∞ iff Ē(t) is not a connected
graph. Also, if the graph is connected, then:

n− 1

TrΛ(t)
≤ min(χ1(t), χ2(t)) .

Also, assume in addition that cλij(t) ≥ TrΛ(t)
2|E(t)| for some c > 0, then c ≥ 1 and:

χ2(t) ≤
(n− 1)|E(t)|
cTrΛ(t)

.

Proof. We note that Λ(t) is symmetric and has a non-negative spectrum, as:

xTΛ(t)x =
∑

(i,j)∈E(t)
λij(t)‖xi − xj‖2 .

6

From this, we also clearly see that χ1(t) = +∞ iff the graph is disconnected.
Next, we note that:

∑

(i,j)∈E(t)
λij(t)(ei − ej)

TΛ+(t)(ei − ej) = Tr(Λ+(t)Λ(t)) = n− 1 . (2)

Thus,

n− 1 ≤ 2χ2(t)
∑

(i,j)∈E(t)
λij(t) = χ2(t)Tr(Λ(t)) .

Next, it’s clear that Tr(Λ(t)) = 2
∑

(i,j)∈E(t) λij(t) ≥ Tr(Λ(t))|E(t)|
c|E(t)| and thus c ≥ 1.

Following the same reasonning, we also got that:

λij(t)(ei − ej)
TΛ+(t)(ei − ej) ≤ n− 1 , (3)

and

c
TrΛ(t)

2|E(t)| (ei − ej)
TΛ+(t)(ei − ej) ≤ n− 1 . (4)

Thus,

χ2(t) ≤
(n− 1)|E(t)|
cTr(Λ(t))

. (5)

The last part of this Lemma allows to bound χ2(t) when no degenerated be-
havior on the edge sampling happens: c = 1 corresponds to a uniform sampling
of edges. The following assumption is necessary to avoid oscillatory effects due
to the variations of Λ(t):

Assumption 3.2 (Slowly varying graphs). Assume that Λ(t) is piecewise con-
stant on time intervals.

In particular, it implies that each λij(t) is piece-wise constant. Next we
bound uniformly the connectivity of our gossip environment in order to avoid
the degenerated effect of an unbounded spectral gap and is similar to [17]:

Assumption 3.3 (Strongly connected topology of the expected gossip). As-
sume that there is χ∗

1 > 0 such that χ1(t) ≤ χ∗
1.

We might write this quantity χ∗
1[Λ] to stress the depdency in Λ(t). From

supra, it’s clear that χ2(t) ≤ χ1(t) so that under 3.3, χ2(t) is upper bounded by
0 < χ∗

2 ≤ χ∗
1, and this quantity will allow to get accelerated rates.

7

3.2 Dynamic to optimum

Next, we follow a standard approach [19, 17, 32, 12] for solving Eq. 1, which
consists in introducing an extra-dual variable x̂, for 0 < ν < µ:

(1) = inf
x=x̂,πx̂=0

n∑

i=1

fi(xi)−
ν

2
‖x‖2 + ν

2
‖x̂‖2

= inf
x,x̂

sup
y,z

n∑

i=1

fi(xi)−
ν

2
‖x‖2 + ν

2
‖x̂‖2 + yT(x̂− x) + zT(πx̂)

= inf
x
sup
y,z

inf
x̂

n∑

i=1

fi(xi)−
ν

2
‖x‖2 + ν

2
‖x̂‖2 + yT(x̂− x) + zT(πx̂)

= inf
x
sup
y,z

n∑

i=1

fi(xi)−
ν

2
‖x‖2 − xTy − 1

2ν
‖πz + y‖2 .

Introducing the convex function F (x) =
∑n

i=1 fi(xi)− ν
2 ‖x‖2, the saddle points

(x∗, y∗, z∗) of this Lagrangian, are given by:

∇F (x∗)− y∗ = 0
y∗+πz∗

ν + x∗ = 0
πz∗ + πy∗ = 0 .

(6)

Contrary to [17], we do not employ a Forward-Backward algorithm, which re-
quires both an extra-inversion step and additional regularity on the considered
proximal operator. Not only this condition does not hold in this precise case, but
this is not desirable in a continuized framework where iterates are not ordered
in a predefined sequence and requires a local descent at each instant. Another
major difference is that no Error-feedback is required by our approach, which is
a lock for asynchrony, makes the proof more challenging and leads to additional
communications. Instead, we show it is enough to incorporate a standard fixed
point algorithm, without any specific preconditioning (see [6]). We consider the
following dynamic:

dxt = η(x̃t − xt)dt− γ(∇F (xt)− ỹt) dN(t)

dx̃t = η̃(xt − x̃t)dt− γ̃(∇F (xt)− ỹt) dN(t)

dỹt = −θ(yt + zt + νx̃t)dt+ (δ + δ̃)(∇F (xt)− ỹt)dN(t)

dyt = α(ỹt − yt)dt

dzt = α(z̃t − zt)dt− β
∑

(i,j)∈E(t)(ei − ej)(ei − ej)
T(yt + zt)dMij(t)

dz̃t = α̃(zt − z̃t)dt− β̃
∑

(i,j)∈E(t)(ei − ej)(ei − ej)
T(yt + zt)dMij(t) ,

(7)

where ν, η̃, η, γ, α, α̃, θ, δ, δ̃, β, β̃ are undetermined parameters yet. As in [27],
variables are paired in order to obtain a Nesterov acceleration. The variables
(x, y) allow to decouple the gossip steps from the gradient steps by using in-
dependent P.P.P.s. Furthermore, the Lebesgue integrable path of ỹt does not

8

correspond to a standard momentum, as in a continuized framework [9]; how-
ever it turns out to be a crucial component of our method. Compared to [17], no
extra multi-consensus step needs to be integrated. Our formulation of an asyn-
chronous gossip step is similar to [9] which introduces a stochastic variable on
edges; however, contrary to this work, our gossip and gradient computations are
decoupled and our rates are accelerated. In fact, we can also consider SGD [4],
by replacing ∇F (x) by an estimate ∇F (x, ξ), for ξ ∈ Ξ, some measurable space.
We will need the following assumption on the bias and variance of the gradient:

Assumption 3.4 (Unbiased gradient with uniform additive noise). We assume
that the estimate of the gradient has no bias:

Eξ∇F (x, ξ) = ∇F (x) ,

and that its quadratic error is uniformly bounded by σ > 0:

Eξ‖∇F (x, ξ)−∇F (x)‖2 ≤ σ2 .

Next, for SGD use, we simply modify the three first lines of Eq. (7) that we
replace by:

dxt = η(x̃t − xt)dt− γ
∫

Ξ(∇F (xt, ξ)− ỹt) dN(t, ξ)

dx̃t = η̃(xt − x̃t)dt− γ̃
∫

Ξ
(∇F (xt, ξ)− ỹt) dN(t, ξ)

dỹt = −θ(yt + zt + νx̃t)dt+ (δ + δ̃)
∫

Ξ(∇F (xt, ξ)− ỹt)dN(t, ξ) ,

Simulating those SDEs [1] can be efficiently done in standard numerical
frameworks, as explained in Sec. 4.3.

3.3 Theoretical guarantees

We follow the approach introduced in [9] for studying the convergence of (7).
To do so, we introduce the following Lyapunov potential X , (x, x̃, ỹ), Y ,

(y, z, z̃,m):

Φ(t,X, Y) , At‖x− x∗‖2 + ÃtdF (x, x
∗) +Bt‖y − y∗‖2 + B̃t‖ỹ − y∗‖2

+ Ct‖z + y − z∗ − y∗‖2 + C̃t‖z̃ − z∗‖2
Λ(t)+ ,

where At, Ãt, Bt, B̃t, Ct, C̃t, Dt are non-negative functions to be defined. We will
use this potential to control the trajectories of Xt , (xt, x̃t, ỹt), Yt , (yt, zt, z̃t),
and we note that our dynamic can be conveniently rewritten as:

{

dXt = a1(Xt, Yt)dt+ b1(Xt)dN(t)

dYt = a2(Xt, Yt)dt+
∑

(i,j)∈E(t) b
ij
2 (Yt)dMij(t) ,

where a1, a2, b1 = (bi1)i, (b
ij
2)ij are smooth functions.

9

Theorem 3.2 (Gradient Descent). Assume each fi is µ-strongly convex and
L-smooth. We assume 3.1-3.3, and we also assume that χ∗

1χ
∗
2 ≤ 1

2 . Then there
exists some parameters for the dynamic Eq. (7) and c > 0 (independent from
χ∗
2), such that for any initialization x0, x̃0, y0, ỹ0, z0 ∈ span(π), z̃0 ∈ span(π), we

get for t ∈ R
+:

E[‖xt − x∗‖2] ≤ C0e
−ct
√

µ
L ,

where x∗ is the solution of 1 and C0 > 0 is a constant which depends only on
the initialization.

Proof. Because Φ is smooth and E(t) is constant on intervals, we get via Ito’s
formula [20] applied to the semi-martingale (Xt, Yt), gluing intervals where E(t)
is constant (as well as the weights λij(t)), that:

Φ(t,Xt, Yt) = Φ(0, X0, Y0) +

∫ T

0

〈∇Φ(t,Xt, Yt),

1
a1(Xt, Yt)
a2(Xt, Yt)

〉dt

+
n∑

i=1

∫ T

0

(
Φ(t,Xt + bi1(Xt), Yt)− Φ(t,Xt, Yt)

)
dt

+
∑

(i,j)∈E(t)

∫ T

0

(
Φ(t,Xt, Yt + b

ij
2 (Yt))− Φ(t,Xt, Yt)

)
λij(t)dt +ΘT ,

where:

ΘT ,

n∑

i=1

∫ T

0

(
Φ(t,Xt− , Yt− + bi1(Xt−))− Φ(u,Xt− , Yt−)

)
(dNi(t)− dt)

+
∑

(i,j)∈E(t)

∫ T

0

(
Φ(t,Xt− + b

ij
2 (Xt−), Yt−)− Φ(t,Xt− , Yt−)

)
(dMij(t)− λij(t)dt) .

We will use the following technical Lemma, which is also difficult to prove and
whose proof is deferred to the appendix:

Lemma 3.3. There exists some parameters ν, η̃, η, γ, γ̃, α, α̃, θ, δ, δ̃, β, β̃ and c >

0 such that:

〈∇Φ(t,Xt, Yt),

1
a1(Xt, Yt)
a2(Xt, Yt)

〉+
(
Φ(t,Xt + b1(Xt), Yt)− Φ(t,Xt, Yt)

)

+
∑

(i,j)∈E(t)
λij(t)

(
Φ(t,Xt, Yt + b

ij
2 (Yt))− Φ(t,Xt, Yt)

)
≤ 0 a.s. ,

with A′
t = c

√ µ
LAt, with A0 = 1.

Following the two lemma above, we get that:

0 ≤ E[Φ(t,Xt, Yt)] ≤ E[Φ(0, X0, Y0)] .

10

We thus know that At = ec
√

µ
L , which implies that:

E[At‖xt − x∗‖2] ≤ E[Φ(0, X0, Y0)] ,

and we can obtain the conclusion of the theorem.

We can obtain the following corollary, with a minor modification of our
current proof:

Corollary 3.3.1 (Stochastic Gradient Descent). Assume each fi is µ-strongly
convex and L-smooth. We assume 3.1-3.4, and we also assume that χ∗

1χ
∗
2 ≤ 1

2 .
Then, for the SGD-dynamic Eq. (8), the same parameters as Thm. 3.2 allows
to obtain for t ∈ R

+:

E[‖xt − x∗‖2] ≤ C0e
−ct
√

µ
L + C1

1√
µL

,

where x∗ is the solution of 1, C0 > 0 is the same constant as in Thm. 3.2 and
C1 is an absolute constant.

Proof. We remind the SGD version of our Lemma:

Lemma 3.4. There exists some parameters ν, η̃, η, γ, γ̃, α, α̃, θ, δ, δ̃, β, β̃ and c >

0, C > 0 such that:

〈∇Φ(t,Xt, Yt),

1
a1(Xt, Yt)
a2(Xt, Yt)

〉+
(
Φ(t,Xt + b1(Xt), Yt)− Φ(t,Xt, Yt)

)
(8)

+
∑

(i,j)∈E(t)
λij(t)

(
Φ(t,Xt, Yt + b

ij
2 (Yt))− Φ(t,Xt, Yt)

)
≤ CAt

1

L
a.s. , (9)

with A′
t = c

√
µ
LAt, with A0 = 1.

The proof follows the same path, except that we have an extra term which
writes:

∫ T

0

At

L
= ec
√

µ
LO(1√

µL
) (10)

which leads to the conclusion following an identical path.

We note that as claimed in [9], it would be possible to optimize L in order
to adjust the trace-off bias-variance of our descent.

11

4 Practical implementation

4.1 Expected computational complexity

For a given graph E(t), multiple choices of Λ(t) are possible and would still
lead to accelerated rates as long as the condition 2χ∗

1[Λ]χ
∗
2[Λ] ≤ 1 is verified.

Thus, we discuss how to chose our instantaneous expected gossip matrix in or-
der to compare to concurrent work. From the previous theorem and under the
assumptions from the previous subsection, we deduce that to get a precision ǫ,

a total of T = O(
√

L
µ log ǫ) local gradient computations is required for each ma-

chine, which will happen, in expectation, at time T . Furthermore, the expected
number of edges activated is given by:

E[

∫ T

0

∑

(i,j)∈E(t)
λij(t) dt] =

1

2

∫ T

0

E[TrΛ(t)] dt . (11)

More details can be found in Appendix C on our methodology for comparing
with other methods, in particular the way to recover the order of magnitudes
we mention. In the following, each algorithm to which we compare ourselves is
parameterized by a Laplacian matrix with various properties. Systematically,
for an update frequency f and a family of Laplacians {Lq}q (which can be
potentially reduced to a single element) given by concurrent work, we will set:

Λ(t) =
√

2χ∗
1[L]χ∗

2[L]
︸ ︷︷ ︸

,λ∗

L⌊tf⌋ , (12)

where λ∗ can be understood as a lower bound on the instantaneous expected
rate of communication. In this case, it is clear that Λ(t) satisfies the conditions
of Thm. 3.2 or Corollary 3.3.1. From a physical point of view, it allows to relate
the spatial quantities of our graphs to a necessary minimal communication rate
between nodes of the network, see Appendix B for a discussion on this topic.

Comparison with ADOM+. In ADOM+ [17], one picks χ∗
1[L] ≥ 1 and

f = χ∗
1[L]. Then, the number of gossip steps of our algorithm is at most:

√

χ∗
1[L]χ∗

2[L] sup
q

Tr(Lq)
√

L

µ
log ǫ = O(

√

χ∗
1[L]χ∗

2[L]n
√

L

µ
log ǫ)

In this case, the expected computational complexity of ADOM+ is given by:

T∑

t=1

χ∗
1[L]|E(t)| ≥ O(

√

χ∗
1[L]χ∗

2[L]n
√

L

µ
log ǫ) ,

which is potentially substentially higher than ours.

12

Comparison with standard Continuized. If L is a Laplacian picked such
that TrL = 2, as in [9], then [9] claims that at least

O(
√

L

µ
log ǫ

√

χ∗
1[L]χ∗

2[L]) (13)

gradient and gossip iterations are needed. The number of gossip iterations is
the same as ours, yet, thanks to Lemma 3.1, the number of gradient iterations
can be substantially higher without any additional assumptions, as n − 1 ≤
2
√

χ∗
1[L]χ∗

2[L]. Furthermore, the computations of [9] still use the dual gradients
and are for a fixed topology.

Comparison with methods that depends on the spectral gap. For
instance, MSDA relies on a Tchebychev acceleration of the number of gossip
steps (which is possible because [34] uses a fixed gossip matrix) and which
allows to get a number of edges activated of the order of magnitude of:

γ∗|E|
√

L

µ
log ǫ ,

where γ∗ is the spectral gap. For our algorithm, the number of gossip writes,
with f = 1:

√

L

µ
log ǫ

√

χ∗
1[L]χ∗

2[L]TrL ≤ O(γ∗|E|
√

L

µ
log ǫ) ,

where the details of this bound can be found in the Appendix and relies solely
on an assumption on the minimal weights in the Laplacian. We highlight that
[34, 17] claimed that their respective algorithms are optimal because they can
solve a worst-case graph in term of computations and number of synchronized
gossips; our claim is, by nature different, as we are interested by the number
of edges fired rather than the number of synchronized gossip rounds. Tab. 2
predicts the behavior of our algorithm for various class of graphs which are
encoded via the Laplacian of a stochastic matrix. It shows that systematically,
our algorithm leads to the best speed1. We note that the class of graph depicted
in the Tab. 2 were used as worst case examples of [34, 17]. The next section
implements and validates our ideas.

4.2 Algorithm

We now describe the algorithm used to implement the dynamics of Eq. (7), and

in particular our simulator of P.P.P.. Let us write T
(i)
1 < T

(i)
2 < ... < T

(i)
k < ...

the time of the k-th event on the i-th node, which is either an edge activation,
either a gradient update. We remind that the spiking times of a specific event

1For the case 2-grid, logarithmic term should appear yet we decided to neglect them.

13

Table 2: Complexity for various graphs using a stochastic matrix. For a star
graph, χ∗

1 = O(1) and γ∗ = O(n); for a line (or cyclic) graph, χ∗
1 = O(n2),

γ∗ = O(n2), χ∗
2 = O(1); or the full (complete) graph, χ∗

1 = O(1) and γ∗ = O(1);
For the d-dimensional grid, χ∗

1 = O(n2/d) and γ∗ = O(n2/d), χ∗
2 = O(1).

Method # edges activated # total gradient iterations
Graph Star Line Complete d-grid Star Line Complete d-grid

[17] ADOM+ n n3 n2 n1+2/d n n n n

[34] MSDA n3/2 n2 n2 n1+1/d n n n n

[9] Continuized n n2 n n1+1/d n n2 n n1+1/d

Centralized n - - - n - - -

Ours n n2 n n1+1/d n n n n

corresponds to random variables with independent exponential increments and
can thus be generated at the beginning of our simulation. They can also be
generated on the fly and locally to stress the locality and asynchronicity of our

algorithm. Let’s write Xt = (X
(i)
t)i and Yt = (Y

(i)
t)i, then on the i-th node

and at the k-th iteration, we integrate the linear Ordinary Differential Equation

(ODE) on [T
(i)
k ;T

(i)
k+1]: {

dXt = a1(Xt, Yt)dt

dYt = a2(Xt, Yt)dt ,

in order to define the values right before the spike, for A the corresponding
constant matrix, we thus have:

X
(i)

T
(i)−
k+1

Y
(i)

T
(i)−
k+1

 = exp
(

(T
(i)
k+1 − T

(i)
k)A

)

X
(i)

T
(i)
k

Y
(i)

T
(i)
k

 . (14)

Next, if one has a gradient update, then:

X
(i)

T
(i)
k+1

= X
(i)

T
(i)−
k+1

+ b1

(

X
(i)

T
(i)−
k+1

)

.

Otherwise, if the edge (i, j) or (j, i) is activated, a communication bridge is
created between both nodes i and j. In this case, the local update on i writes:

Y
(i)

T
(i)
k+1

= Y
(i)

T
(i)−
k+1

+ b2

(

Y
(i)

T
(i)−
k+1

, Y
(j)

T
(i)−
k+1

)

.

Note that, even if this event takes place along an edge (i, j), we can write it

separately for nodes i and j by making sure they both have the events T
(i)
ki

=

T
(j)
kj

, for some ki, kj ∈ N, corresponding to this communication. As advocated,
all those operations are local and we summarize in the Alg. 1 the algorithmical
block which corresponds to our implementation. See Appendix D for more
details on our implementation.

14

Algorithm 1: This algorithm block describes our implementation on
each local-machine. The ODE routine is described by Eq. 14 and Ping
is an instantaneous routine.
Input: On each machine i ∈ {1, ..., n}, an oracle able to evaluate ∇fi,

Parameters µ, L, χ∗
1, tmax.

1 Initialize on each machine i ∈ {1, ..., n}:
2 Set X(i), Y (i) to 0 ;
3 Set A ;

4 T (i) ← 0 ;

5 Synchronize the clocks of all machines ;
6 In parallel on workers i ∈ {1, ..., n}, while t < tmax, continuously

do:
7 t← clock() ;
8 Ping surrounding machines and adjust λij(t) ;
9 if there is an event at time t then

10 (X(i), Y (i))← ODE(A, t− T (i), (X(i), Y (i))) ;
11 if the event is to take a gradient step then
12 X(i) ← X(i) + b1(X

(i)) ;
13 else if the event is to communicate with j then
14 Y (i) ← Y (i) + b2(Y

(i), Y (j)) ; // Happens at j simultaneously.

15 T (i) ← t ;

16 return x
(i)
tmax

, the estimate of x∗ on each worker i.

4.3 Numerical results

In this section, we study the behaviour of our method and compare to several
settings inspired by [17, 9]. In our experiments, we perform the empirical risk
minimization for both the decentralized linear and logistic regression tasks given
either by:

fi(x) =
1

m

m∑

j=1

log(1 + exp(−bija⊤ijx)) +
µ

2
‖x‖2 , (15)

or

fi(x) =
1

m

m∑

j=1

‖a⊤ijx− cij‖2, (16)

where aij ∈ R
d, bij ∈ {−1, 1} and cij ∈ R correspond to m local data points

stored at node i. For both varying and fixed topology settings, we follow a
protocol similar to [17]: we generate n independent synthetic datasets with
the make_classification and make_regression functions of scikit-learn [30],
each worker storing m = 100 data points. We recall that the metrics of interest
are the total number of local gradient steps and total number of individual
messages exchanged (i.e., number of edges that fired) to reach an ǫ-precision.
We systematically used the proposed hyper-parameters of each reference paper
for our implementation without any specific fine-tuning.

15

Comparison in the time-varying setting. We compare our method to
ADOM+ [17] on a sequence of 50 random geometric graphs of size n = 20 in Fig.
1. To construct the graphs, we sample uniformly n points in [0, 1]2 ⊂ R

2 and con-
nect each of them to all at a distance less than some user-specified radius, which
allows to control the constant χ∗

1 (we consider values in {3, 33, 180, 233}). We
ensure the connectedness of the graphs by arbitrarily ordering their connected
components and linking one to the next via an edge between two randomly se-
lected nodes in each, exactly as done in [18]. We then use the instantaneous
gossip matrix introduced in Eq. (12) with f = χ∗

1. We compare ourselves
to both versions of ADOM+: with and without the Multi-Consensus (M.-C.).
Thanks to its M.-C. procedure, ADOM+ can significantly reduce the number
of necessary gradient steps. However, consistently with our analysis in Sec. 4.1,
our method is systematically better in all settings in terms of communications.

(a)
� ����� ����� ����� ����� 	����

�� ����!��������������� �

��
#��

��
#

��
#�

��
#�

��
�

1 n

n ∑ i=
1‖
x i
−

x
‖ ‖

2

�"��������� ����� ���� �����"��!�

����������
����
�!��

(b)
� ����� ����� ����� ����� 	����

��!����"���������������!

��
$��

��
$�

��
$

��
$�

��
$�

��
�

1 n

n ∑ i=
1‖
x i
−

x
‖ ‖

2

�#�������� !�����!����!�����#��"�

����������
�����
�"�

(c)
��� ��� ��� ��� ��
 ���

�� ����!������������!���� ���� ���

��
#��

��
#	

��
#�

��
#�

��
�

1 n

n ∑ i=
1‖
x i
−

x
‖ ‖

2

�"��������� ����� ���� �����"��!�

����������
����
�!��

(d)
��� ��� ��� ��� ��	 ���

������� ������������ ��������� ���

��
"��

��
"	

��
"�

��
"�

��
"�

��
�

1 n

n ∑ i=
1‖
x i
−

x
‖ ‖

2

!��������������������������!�� �

��������

���
� ��

Figure 1: Comparison between ADOM+ [17] and DADAO, using the same data
((a,c) linear regression, (b,d) binary classification) and the same sequence of
random connected graphs with χ∗

1 = 180 linking n = 20 workers.

Comparison with accelerated methods in the fixed topology setting.
Now, we fix the Laplacian matrix via Eq. (12) to compare simultaneously to
the continuized framework [9] and ADOM+ [17]. We reports in Fig. 2 results
corresponding to the complete graph with n = 250 nodes and the line graph
of size n = 150. While sharing the same asymptotic rate, we note that the
Continuized framework [9] and MSDA [34] have better absolute constants than
DADAO, giving them an advantage both in terms of number of communica-

16

tion and gradients. However, in the continuized framework, the gradient and
communication steps being coupled, the number of gradient computations can
potentially be orders of magnitude worse than our algorithm, which is reflected
by Fig. 2.b for the line graph. As for MSDA and ADOM+, Tab. 2 showed they
do not have the best communication rates on certain classes of graphs, which
is indeed confirmed in Fig. 2.c for MSDA and both communication plots for
ADOM+.

(a)
� ����� ������ ������ ������

��!����"���������������!

��
%

��
%	

��
%�

��
%�

��
%�

��
�

��
�

1 n

n ∑ i=
1‖
x i
−

x
‖ ‖

2

�#�������� !�����!����!�����#��"�

����������
����
���!��"�$��
���
�"�

(b)
� ����� ������ ������ ������

���������	��������������

��
��

��
��

��
��

��
�

��
�

1 n

n ∑ i=
1‖
x i
−

x
‖ ‖

2

��������������
������������������

(c)
��� ��� ��� ��
 ��� ���

� $����%���"� ��� ��%����$� �# ��

��
(

��
(�

��
(

��
(�

��
(�

��
�

��
�

1 n

n ∑ i=
1‖
x i
−

x
‖ ‖

2

�&�"������#$�����$ � !$�����&��%�

�����������
�����
� �$��%�'��
����
�%"#

(d)
��� ��� ��� ��� ��
 ���

���������������������������� ��	

��
��

��
��

��
��

��
�

��
�

1 n

n ∑ i=
1‖
x i
−

x
‖ ‖

2
�����������������������������

Figure 2: Comparison between ADOM+ [17], the continuized framework [9],
MSDA [34] and DADAO, using the same data for the linear regression task,
and the same graphs ((a,c) complete with n = 250, (b,d) line with n = 150).

In conclusion, while several methods can share similar rates of convergence,
ours is the only one to perform at least as well as its concurrent in every settings,
for different graph’s topology and 2 different tasks, as predicted by Tab. 1.

5 Conclusion

In this work, we have proposed a novel stochastic algorithm for the decentralized
optimization of a sum of smooth and strongly convex functions. We have demon-
strated, both theoretically and empirically, that this algorithm leads systemati-
cally to a substantial acceleration when compared to state-of-the-art works. Our
algorithm is asynchronous, decoupled, primal and does not relies on an extra
inner-loop, while being amenable to varying topology settings: each of those
properties make it suitable for real applications.

17

In a future work, we would like to explore the robustness of such algorithm
to more challenging variabilities occurring in real-life applications.

Acknowledgements

This work was supported by the Project ANR-21-CE23-0030 ADONIS and
EMERG-ADONIS from Alliance SU. The authors would like to thank Math-
ieu Even, Hadrien Hendrikx and Dmitry Kovalev for helpful discussions.

References

[1] Ludwig Arnold. Stochastic differential equations. New York, 1974.

[2] Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Decoupled
greedy learning of CNNs. In Hal Daumé III and Aarti Singh, editors, Pro-
ceedings of the 37th International Conference on Machine Learning, volume
119 of Proceedings of Machine Learning Research, pages 736–745. PMLR,
13–18 Jul 2020.

[3] Eugene Belilovsky, Louis Leconte, Lucas Caccia, Michael Eickenberg, and
Edouard Oyallon. Decoupled greedy learning of cnns for synchronous and
asynchronous distributed learning. arXiv preprint arXiv:2106.06401, 2021.

[4] Léon Bottou. Large-scale machine learning with stochastic gradient descent.
In Proceedings of COMPSTAT’2010, pages 177–186. Springer, 2010.

[5] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Randomized gossip algo-
rithms. IEEE Transactions on Information Theory, 52(6):2508–2530, 2006.

[6] Laurent Condat, Daichi Kitahara, Andrés Contreras, and Akira
Hirabayashi. Proximal splitting algorithms for convex optimization: A
tour of recent advances, with new twists, 2019.

[7] Laurent Condat, Grigory Malinovsky, and Peter Richtárik. Distributed
proximal splitting algorithms with rates and acceleration. Frontiers in
Signal Processing, page 12, 2022.

[8] Wendy Ellens, Floske M Spieksma, Piet Van Mieghem, Almerima Ja-
makovic, and Robert E Kooij. Effective graph resistance. Linear algebra
and its applications, 435(10):2491–2506, 2011.

[9] Mathieu Even, Raphaël Berthier, Francis Bach, Nicolas Flammarion,
Hadrien Hendrikx, Pierre Gaillard, Laurent Massoulié, and Adrien Taylor.
A continuized view on nesterov acceleration for stochastic gradient descent
and randomized gossip. In A. Beygelzimer, Y. Dauphin, P. Liang, and
J. Wortman Vaughan, editors, Advances in Neural Information Processing
Systems, 2021.

18

[10] Mathieu Even, Hadrien Hendrikx, and Laurent Massoulie. Decentralized
optimization with heterogeneous delays: a continuous-time approach. arXiv
preprint arXiv:2106.03585, 2021.

[11] Mathieu Even, Hadrien Hendrikx, and Laurent Massoulié. Asynchrony and
acceleration in gossip algorithms, 2020.

[12] Hadrien Hendrikx. A principled framework for the design and analysis of
token algorithms, 2022.

[13] Hadrien Hendrikx, Francis Bach, and Laurent Massoulié. An accelerated
decentralized stochastic proximal algorithm for finite sums. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019.

[14] Hadrien Hendrikx, Francis Bach, and Laurent Massoulié. An optimal al-
gorithm for decentralized finite-sum optimization. SIAM Journal on Opti-
mization, 31(4):2753–2783, 2021.

[15] Anastasia Koloskova, Nicolas Loizou, Sadra Boreiri, Martin Jaggi, and Se-
bastian Stich. A unified theory of decentralized sgd with changing topology
and local updates. In International Conference on Machine Learning, pages
5381–5393. PMLR, 2020.

[16] Anastasiia Koloskova, Tao Lin, and Sebastian U Stich. An improved anal-
ysis of gradient tracking for decentralized machine learning. Advances in
Neural Information Processing Systems, 34:11422–11435, 2021.

[17] Dmitry Kovalev, Elnur Gasanov, Alexander Gasnikov, and Peter Richtárik.
Lower bounds and optimal algorithms for smooth and strongly convex de-
centralized optimization over time-varying networks. In A. Beygelzimer,
Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in
Neural Information Processing Systems, 2021.

[18] Dmitry Kovalev, Alexander Gasnikov, and Peter Richtárik. Accelerated
primal-dual gradient method for smooth and convex-concave saddle-point
problems with bilinear coupling. arXiv preprint arXiv:2112.15199, 2021.

[19] Dmitry Kovalev, Egor Shulgin, Peter Richtárik, Alexander V Rogozin,
and Alexander Gasnikov. Adom: accelerated decentralized optimization
method for time-varying networks. In International Conference on Ma-
chine Learning, pages 5784–5793. PMLR, 2021.

[20] Günter Last and Mathew Penrose. Lectures on the Poisson process, vol-
ume 7. Cambridge University Press, 2017.

[21] Jonas Latz. Analysis of stochastic gradient descent in continuous time.
Statistics and Computing, 31(4):1–25, 2021.

19

[22] Rémi Leblond, Fabian Pedregosa, and Simon Lacoste-Julien. Improved
asynchronous parallel optimization analysis for stochastic incremental
methods. arXiv preprint arXiv:1801.03749, 2018.

[23] Huan Li and Zhouchen Lin. Accelerated gradient tracking over time-varying
graphs for decentralized optimization. arXiv preprint arXiv:2104.02596,
2021.

[24] Hongzhou Lin, Julien Mairal, and Zaid Harchaoui. A universal catalyst for
first-order optimization. Advances in neural information processing systems,
28, 2015.

[25] Konstantin Mishchenko, Grigory Malinovsky, Sebastian Stich, and Peter
Richtárik. Proxskip: Yes! local gradient steps provably lead to communi-
cation acceleration! finally! arXiv preprint arXiv:2202.09357, 2022.

[26] Angelia Nedic, Alex Olshevsky, and Wei Shi. Achieving geometric conver-
gence for distributed optimization over time-varying graphs. SIAM Journal
on Optimization, 27(4):2597–2633, 2017.

[27] Yurii Nesterov. Introductory lectures on convex optimization: A basic
course, volume 87. Springer Science & Business Media, 2003.

[28] Yurii Nesterov and Sebastian U Stich. Efficiency of the accelerated coordi-
nate descent method on structured optimization problems. SIAM Journal
on Optimization, 27(1):110–123, 2017.

[29] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary De-
Vito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative
style, high-performance deep learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances
in Neural Information Processing Systems 32, pages 8024–8035. Curran
Associates, Inc., 2019.

[30] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[31] Adil Salim, Laurent Condat, Dmitry Kovalev, and Peter Richtárik. An
optimal algorithm for strongly convex minimization under affine constraints.
arXiv preprint arXiv:2102.11079, 2021.

[32] Adil Salim, Laurent Condat, Dmitry Kovalev, and Peter Richtárik. An
optimal algorithm for strongly convex minimization under affine constraints.

20

In International Conference on Artificial Intelligence and Statistics, pages
4482–4498. PMLR, 2022.

[33] Adil Salim, Laurent Condat, Konstantin Mishchenko, and Peter Richtárik.
Dualize, split, randomize: Fast nonsmooth optimization algorithms. arXiv
preprint arXiv:2004.02635, 2020.

[34] Kevin Scaman, Francis Bach, Sébastien Bubeck, Yin Tat Lee, and Laurent
Massoulié. Optimal algorithms for smooth and strongly convex distributed
optimization in networks. In Doina Precup and Yee Whye Teh, editors,
Proceedings of the 34th International Conference on Machine Learning, vol-
ume 70 of Proceedings of Machine Learning Research, pages 3027–3036.
PMLR, 06–11 Aug 2017.

[35] Sebastian U. Stich and Sai Praneeth Karimireddy. The error-feedback
framework: Sgd with delayed gradients. Journal of Machine Learning Re-
search, 21(237):1–36, 2020.

21

A Proof of the theorem

A.1 Properties and assumptions

The following properties will be used all along the proofs of the Lemma and
Theorems and are totally related to the communication of our nodes.

Lemma A.1. Under the assumptions of Theorem 3.2, if z0, z̃0 ∈ span(π), then
zt, z̃t ∈ span(π) almost surely.

Proof. It’s clear that for any i, j, we get:

π(ei − ej)(ei − ej)
T = (ei − ej)(ei − ej)

T .

Thus, the variations of (zt, z̃t) belong to span(π), and thus so is the trajectory.

We derive the following Lemma, similar to a result from [5]:

Lemma A.2 (Spiking contraction). Under the assumptions of Theorem 3.2, we
have:

∑

(i,j)∈E(t)
λij(t)

[
‖(ei−ej)(ei−ej)Tx−πx‖2−‖πx‖2

]
= −xT

Λ(t)x ≤ − 1

χ∗
1

‖πx‖2 .

Proof. If i = j, then λii = 0. For a given (i, j), we get if i 6= j:

‖(ei − ej)(ei − ej)
Tx− πx‖2 = ‖πx‖2 + ‖xi − xj‖2 (17)

− 2〈π(x), (ei − ej)(ei − ej)
Tx〉

= ‖π(x)‖2 − 〈x, (ei − ej)(ei − ej)
Tx〉 . (18)

And this allows to conclude by sum.

Lemma A.3 (Resistance). For i, j and any x ∈ R
d, we have:

‖(ei − ej)(ei − ej)
Tx‖2

Λ(t)+ ≤ χ∗
2‖(ei − ej)(ei − ej)

Tx‖

Proof. Indeed, we note that:

‖(ei − ej)(ei − ej)
Tx‖2

Λ(t)+ = xT(ei − ej)(ei − ej)
T
Λ(t)+(ei − ej)(ei − ej)

Tx

(19)

≤ 2χ∗
2x

T(ei − ej)(ei − ej)
Tx (20)

= χ∗
2‖(ei − ej)(ei − ej)

Tx‖2 (21)

22

Next, we set ν = µ
2 such that:

1

2L
‖∇F (x) −∇F (y)‖2 ≤ dF (x, y) ≤

L

2
‖x− y‖2 ,

and
ν

2
‖x− y‖2 ≤ dF (x, y) ≤

1

2ν
‖∇F (x)−∇F (y)‖2 ,

and we remind that:

EξdF (.,ξ)(x, y) = dEξF (.,ξ)(x, y) . (22)

A.2 Proof of the Lemma 3.3 and Lemma 3.4

We first state a couple of inequalities that we will combine all together in order
to obtain a bound on our Lyapunov function.

Proposition A.4. First:

φA , At(dF (x
+, x∗)− dF (x, x

∗)) + Ãt(‖x̃+ − x∗‖2 − ‖x̃− x∗‖2)
+ ηAt〈x̃− x, F (x) −∇F (x∗)〉+ 2η̃Ãt〈x− x̃, x̃− x∗〉 (23)

≤ ‖∇F (x) − ỹ‖2
(

At
Lγ2

2
−Atγ + Ãtγ̃

2

)

+Atγ〈∇F (x)− ỹ, y∗ − ỹ〉+ 2γ̃Ãt〈ỹ − y∗, x̃− x∗〉 (24)

− 2γ̃Ãt (dF (x̃, x
∗) + dF (x

∗, x)− dF (x̃, x))

− ηAt(dF (x̃, x) + dF (x, x
∗)− dF (x̃, x

∗))− Ãtη̃‖x̃− x∗‖2 + η̃‖x− x∗‖2

Proof. First, we have, using optimality conditions and smoothness:

dF (x
+, x∗)− dF (x, x

∗) = dF (x
+, x)− 〈x+ − x,∇F (x∗)−∇F (x)〉 (25)

≤ L

2
‖x+ − x‖2 − 〈x+ − x,∇F (x∗)−∇F (x)〉 (26)

=
Lγ2

2
‖ỹ −∇F (x)‖2 − γ‖∇F (x)− ỹ‖2

+ γ〈∇F (x) − ỹ, y∗ − ỹ〉 (27)

Next, we note that, again using optimality conditions:

‖x̃+ − x∗‖2 − ‖x̃+ − x∗‖2 = 2〈x̃+ − x̃, x̃− x∗〉+ ‖x̃+ − x̃‖2 (28)

= −2γ̃〈∇F (x) − ỹ, x̃− x∗〉+ γ̃2‖∇F (x)− ỹ‖2 (29)

= −2γ̃〈∇F (x) −∇F (x∗), x̃− x∗〉
+ 2γ̃〈ỹ − y∗, x̃− x∗〉+ γ̃2‖∇F (x)− ỹ‖2 (30)

= −2γ̃(dF (x̃, x∗) + dF (x
∗, x)− dF (x̃, x))

+ 2γ̃〈ỹ − y∗, x̃− x∗〉+ γ̃2‖∇F (x)− ỹ‖2 (31)

23

Momentum in x associated with the term dF (x, x
∗) gives:

η〈x̃ − x,∇F (x) −∇F (x∗)〉 = −η(dF (x̃, x) + dF (x, x
∗)− dF (x̃, x

∗)) (32)

and momentum in x̃ associated with ‖x̃− x∗‖2 leads to:

2η̃〈x− x̃, x̃−x∗〉 = −2η̃‖x̃−x∗‖2+2η̃〈x−x∗, x̃−x∗〉 ≤ −η̃‖x̃−x∗‖2+ η̃‖x−x∗‖2
(33)

Corollary A.4.1. Under Assumption 3.4, we have:

φ̃A , Eξ[At(dF (x
+, x∗)− dF (x, x

∗)) + Ãt(‖x̃+ − x∗‖2 − ‖x̃− x∗‖2)
+ ηAt〈x̃− x, F (x) −∇F (x∗)〉+ 2η̃Ãt〈x− x̃, x̃− x∗〉] (34)

≤ φA + σ2(At
Lγ2

2
−Atγ + Ãtγ̃) (35)

Proof. Using exactly the same computations and the Eq. (37), we next note
that:

Eξ[‖∇F (x, ξ)− y‖2] = Eξ[‖∇F (x, ξ)‖2 − 2〈∇F (x, ξ), y〉 + ‖y‖2] (36)

≤ ‖∇F (x)− y‖2 + σ2 (37)

Proposition A.5. Next, we show that if αBt =
δ
2 B̃t:

φB , Bt(‖y+ − y∗‖2 − ‖y − y∗‖2) + B̃t(‖ỹ+ − y∗‖2 − ‖ỹ − y∗‖2)
+ 2αBt〈y − y∗, ỹ − y〉 − 2θB̃t〈y + z + νx̃, ỹ − y∗〉
+ 2αCt〈ỹ − y, z + y − y∗ − z∗〉 (38)

= − δ

2
B̃t‖ỹ − y∗‖2 − δ

2
B̃t‖y − y∗‖2 − 2δ̃B̃t〈∇F (x) − ỹ, y∗ − ỹ〉

+ δB̃t‖∇F (x)−∇F (x∗)‖2 +
(

(δ + δ̃)2 − δ
)

B̃t‖∇F (x)− y‖2

− 2θB̃t〈y + z − y∗ − z∗, ỹ − y∗〉 − 2θνB̃t〈x̃ − x∗, ỹ − y∗〉
+ 2αCt〈ỹ − y, z + y − y∗ − z∗〉 (39)

Proof.

‖ỹ+ − y∗‖2 − ‖ỹ − y∗‖2 = 2〈ỹ − y∗, ỹ+ − ỹ〉+ ‖ỹ+ − ỹ‖2 (40)

= 2δ〈∇F (x)− ỹ, ỹ − y∗〉+ 2δ̃〈∇F (x) − ỹ, ỹ − y∗〉
(δ + δ̃)2‖∇F (x)− ỹ‖2 (41)

= −2δ̃〈∇F (x) − ỹ, y∗ − ỹ〉
+ δ‖∇F (x)−∇F (x∗)‖2 − δ‖ỹ − y∗‖2
(

(δ + δ̃)2 − δ
)

‖∇F (x)− ỹ‖2 (42)

24

The momentum in ỹ associated with the term ‖ỹ − y∗‖2 gives:

−2θB̃t〈y + z + νx̃, ỹ − y∗〉 =− 2θB̃t〈y + z − y∗ − z∗, ỹ − y∗〉
− 2θνB̃t〈x̃− x∗, ỹ − y∗〉 (43)

The momentum in y associated with the term ‖y − y∗‖2 gives:

2αBt〈ỹ − y, y − y∗〉 = −αBt‖y − y∗‖2 − αBt‖ỹ − y‖2 + αBt‖ỹ − y∗‖2 (44)

and the one associated with ‖y + z − y∗ − z∗‖2:

2αCt〈ỹ − y, z + y − y∗ − z∗〉 (45)

Corollary A.5.1. Under Assumption 3.4, we have:

φ̃B , Eξ[B̃t(‖y+ − y∗‖2 − ‖y − y∗‖2) + B̃t(‖ỹ+ − y∗‖2 − ‖ỹ − y∗‖2)
+ 2αBt〈y − y∗, ỹ − y〉 − 2θB̃t〈y + z + νx̃, ỹ − y∗〉] (46)

≤ φB + σ2((δ2 + (δ + δ̃)2)B̃t) (47)

Proof. Exactly as above.

Proposition A.6. Finally, assuming θB̃t = β̃C̃t = αCt, letting 1 ≥ τ̃ > 0,
z+ij = β(ei − ej)(ei − ej)

T(y + z) and z̃+ij = β̃(ei − ej)(ei − ej)
T(y + z), then:

φC+φD − 2θB̃t〈y + z − y∗ − z∗, ỹ − y∗〉 ,
∑

ij

λij(t)Ct

(

‖y + z+ij − y∗ − z∗‖2 − ‖y + z − y∗ − z∗‖2
)

+
∑

ij

λij(t)C̃t

(

‖z̃+ij − z∗‖2 − ‖z̃ − z∗‖2
)

+ 2α̃C̃t〈z − z̃, z̃ − z∗〉Λ(t)+ (48)

+ 2αCt〈z̃ + ỹ − z∗ − y∗, z + y − y∗ − z∗〉 − 2θB̃t〈y + z − y∗ − z∗, ỹ − y∗〉
≤ −2β̃C̃t〈z̃ − z∗, π(y + z)〉+ β̃2χ∗

2C̃t

∑

(i,j)∈E(t)
λij(t)‖(ei − ej)(ei − ej)

T(y + z)‖2

− β

χ∗
1

Ct‖π(y + z)‖2 + β(β − 1)Ct

∑

(i,j)∈E(t)
λij(t)‖(ei − ej)(ei − ej)

T(y + z)‖2

− αCt‖y + z − y∗ − z∗‖2 + α̃χ∗
1C̃t‖z − z∗‖2 − α̃C̃t‖z̃ − z∗‖2

Λ(t)+

− τ̃
1

2
β̃
ν

L
C̃t‖z − z∗‖2 + τ̃

ν

L

2αθ

δ
Bt‖y − y∗‖2 (49)

Proof. Having in mind that π(y∗ + z∗) = 0 and Λ(t)+Λ(t) = π, we get, using

25

Lemma A.1 and Lemma A.3 on the inequality (53):

∆z̃ ,
∑

(i,j)∈E(t)
λij(t)

(
‖z̃+ij − z∗‖2

Λ(t)+ − ‖z̃ − z∗‖2
Λ(t)+

)
(50)

=
∑

(i,j)∈E(t)
λij(t)2〈z̃ − z∗, z̃+ij − z̃〉Λ(t)+ + ‖z̃+ij − z̃‖2

Λ(t)+ (51)

= −2β̃
∑

(i,j)∈E(t)
λij(t)〈z̃ − z∗, (ei − ej)(ei − ej)

T(y + z − y∗ − z∗)〉Λ(t)+

+
∑

(i,j)∈E(t)
λij(t)β̃

2‖(ei − ej)(ei − ej)
T(y + z)‖2

Λ(t)+ (52)

≤ −2β̃〈z̃ − z∗,Λ(t)+Λ(t)(y + z)〉
+ χ∗

2β̃
2

∑

(i,j)∈E(t)
λij(t)‖(ei − ej)(ei − ej)

T(y + z)‖2 (53)

= −2β̃〈z̃ − z∗, π(y + z)〉+ χ∗
2β̃

2
∑

(i,j)∈E(t)
λij(t)‖(ei − ej)(ei − ej)

T(y + z)‖2

(54)

We also have, as y+ = y and using Lemma A.2:

∆z ,
∑

(i,j)∈E(t)
λij(t)(‖y+ + z+ij − y∗ − z∗‖2 − ‖y + z − y∗ − z∗‖2) (55)

= 2
∑

(i,j)∈E(t)
λij(t)〈y + z+ij − y − z, y + z − y∗ − z∗〉

+
∑

(i,j)∈E(t)
λij(t)‖y + z+ij − y − z‖2 (56)

= −2
∑

(i,j)∈E(t)
βλij(t)〈(ei − ej)(ei − ej)

T(y + z), y + z − y∗ − z∗〉

+
∑

(i,j)∈E(t)
β2λij(t)‖(ei − ej)(ei − ej)

T(y + z)‖2 (57)

=
∑

(i,j)∈E(t)
λij(t)

(

− β‖(ei − ej)(ei − ej)
T(y + z)‖2 − β‖π(y + z)‖2

+ β‖(ei − ej)(ei − ej)
T(y + z)− π(y + z)‖2

+ β2‖(ei − ej)(ei − ej)
T(y + z)‖2

)

(58)

≤ − β

χ∗
1

‖π(y + z)‖2 + β(β − 1)
∑

(i,j)∈E(t)
λij(t)‖(ei − ej)(ei − ej)

T(y + z)‖2

(59)

The momentum in z̃ associated with ‖z̃ − z∗‖2
Λ(t)+ gives:

2α̃C̃t〈z − z̃, z̃ − z∗〉Λ(t)+ ≤ α̃χ∗
1C̃t‖z − z∗‖2 − α̃C̃t‖z̃ − z∗‖2

Λ(t)+ (60)

26

And the one in z associated with ‖y + z − y∗ − z∗‖2 gives:

2αCt〈z̃ − z, z + y − y∗ − z∗〉 (61)

Then, assuming that θB̃t = β̃C̃t = αCt, we have:

2αCt〈ỹ − y, z + y − y∗ − z∗〉 − 2β̃C̃t〈z̃ − z∗, y + z − y∗ − z∗〉
− 2θB̃t〈y + z − y∗ − z∗, ỹ − y∗〉+ 2αCt〈z̃ − z, z + y − y∗ − z∗〉 (62)

= −2αCt‖y + z − y∗ − z∗‖2 (63)

At this stage, we split the negative term (63) in two halves, upper-bounding one
of the halves by remembering that ν

L ≤ 1 and introducing 1 ≥ τ̃ > 0:

−αCt‖y + z − y∗ − z∗‖2 ≤− τ̃
ν

L
αCt‖y + z − y∗ − z∗‖2 (64)

= −τ̃ β̃ ν

L
C̃t‖y + z − y∗ − z∗‖2 (65)

≤ −τ̃ 1
2
β̃
ν

L
C̃t‖z − z∗‖2 + τ̃ β̃

ν

L
C̃t‖y − y∗‖2 (66)

= −τ̃ 1
2
β̃
ν

L
C̃t‖z − z∗‖2 + τ̃

ν

L

2αθ

δ
Bt‖y − y∗‖2 (67)

Keeping in mind that θB̃t = β̃C̃t = αCt and δ
2 B̃t = αBt, we put everything

together. Defining Ψ = φA + φB + φC + φD, we have:

27

Ψ ≤ ‖∇F (x)− ỹ‖2
(

At
Lγ2

2
− Atγ + Ãtγ̃

2 +
(

(δ + δ̃)2 − δ
)

B̃t

)

(68)

+ ‖z̃ − z∗‖2
Λ(t)+

(

−α̃C̃t + C̃′
t

)

(69)

+ ‖ỹ − y∗‖2(B̃′
t −

δ

2
B̃t) (70)

+ ‖x− x∗‖2(Ãtη̃ − Ãt
νγ̃

2
) (71)

+ ‖x̃− x∗‖2(Ã′
t − Ãtη̃) (72)

+ ‖∇F (x)−∇F (x∗)‖2(δB̃t −
γ̃

2L
Ãt) (73)

+ ‖π(y + z)− π(y∗ + z∗)‖2(− β

χ∗
1

Ct) (74)

+
∑

(i,j)∈E(t)
λij(t)‖(ei − ej)(ei − ej)

T(y + z)‖2
(

χ∗
2β̃

2C̃t + β(β − 1)Ct

)

(75)

+ ‖z − z∗‖2(χ∗
1α̃− τ̃

1

2
β̃
ν

L
)C̃t (76)

+ ‖y − y∗‖(B′
t − (1− τ̃

ν

L

2θ

δ
)αBt) (77)

+ ‖y + z − y∗ − z∗‖2(C′
t − αCt) (78)

+ dF (x, x
∗)(A′

t − ηAt) (79)

+ dF (x̃, x)(−Atη + 2γ̃Ãt) (80)

+ dF (x̃, x
∗)(Atη − 2γ̃Ãt) (81)

+ 〈∇F (x)− ỹ, y∗ − ỹ〉(−2δ̃B̃t + γAt) (82)

+ 〈ỹ − y∗, x̃− x∗〉
(

2γ̃Ãt − 2θνB̃t

)

(83)

Resolution GD

Proof of Lemma 3.3. Our goal is to put to zero all of the terms appearing next
to scalar products, and make the factors of positive quantities (norms or di-
vergences) be less or equal to zero. Given our relations, we guess that each
exponential has the same rate. Thus, with τ > 0, we fix δ

2 = η̃ = η = α̃ = τ
√

ν
L ,

which leads to γ̃ = 2τ√
νL

using Eq. (71). Also, from Eq. (81):

4Ãt = νAt.

Next, from Eq. (73) and Eq. (83), it’s necessary that:

2Lδ = θν ,

thus θ = 4τ
√

L
ν . From Eq. (83), we get:

Ãt = 2LνB̃t. ,

28

Combining this previous equation with Eq. (82), as 4Ãt = νAt, we have δ̃ = 4Lγ.
Next, Eq. (68) gives, with the equations above:

At(
Lγ2

2
− γ) + Ãtγ̃

2 +
(

(δ + δ̃)2 − δ
)

B̃t = At
Lγ2

2
−Atγ +

ν

4
γ̃2At

+
(

δ2 + δ̃2 + δ
) At

8L

= At

(
Lγ2

2
− γ +

ν

4

4τ2

νL

)

+At(2τ

√
ν

L
+ 4τ2

ν

L
+ 16L2γ2)

1

8L

≤ At(γ
2 5

2
L− γ +

5

4

τ2

L
+

√
2

8

τ

L
)

We thus pick γ = 1
4L and τ = 1

8 , so that δ̃ = 1. Via Eq. (77), we fix τ̃ = 1
8 < 1.

With Eq. (76), we then get:

β̃ = 2χ∗
1

√

L

ν

We also put α = 2τ
√

ν
L and only one last equation, Eq. (75), needs to be

satisfied, for which we pick β = 1
2 :

χ∗
2β̃

2C̃t + β(β − 1)Ct = (χ∗
2β̃α−

1

4
)Ct

This implies that χ∗
2χ

∗
1 ≤ 1

2 . Finally, it’s clear that all the equations are satisfied

if we consider At, Ãt, Bt, B̃t, Ct, C̃t as exponentials proportional to eτ
√

ν
L .

Resolution SGD

Proof of Lemma 3.4. All the previous computations clearly hold, except that
the term in front of σ2 is given by:

(δ2 + (δ + δ̃)2)B̃t + (At
Lγ2

2
−Atγ + Ãtγ̃) = (δ2 + (δ + δ̃)2)

At

8L

+ (At
Lγ2

2
−Atγ + ν

At

4
γ̃) (84)

= O(At

L
) (85)

B Physical interpretation

To gain more insight on the condition 2χ∗
1[Λ]χ

∗
2[Λ] ≤ 1, we can write Λ(t) as the

product of two more interpretable quantities:

29

Λ(t) =
∑

(ij)∈E(t)
λij(t)

︸ ︷︷ ︸

,λ(t)

2Λ(t)

Tr Λ(t)
︸ ︷︷ ︸

,Λ̃(t)

(86)

In this setting, λ(t) is the instantaneous expected rate of communication over
the whole graph at time t, while Λ̃(t) can be interpreted as the Laplacian of E(t)
weighted with the probabilities of each edge firing between time t and t+ dt.

Being normalized, Λ̃(t) only contains the information about the graph’s con-
nectivity at time t while λ(t) is the global rate of communication. We have:

χ1[Λ(t)] =
χ1[Λ̃(t)]

λ(t)
; χ2[Λ(t)] =

χ2[Λ̃(t)]

λ(t)
. (87)

If we make the following assumptions,

Assumption B.1. There is a λ∗ > 0 such that, at all time t, λ(t) ≥ λ∗.

Assumption B.2. There are χ̃∗
1 > 0, χ̃∗

2 > 0 such that, for all t, χ1[Λ̃(t)] ≤ χ̃∗
1

and χ2[Λ̃(t)] ≤ χ̃∗
2.

meaning we assume bounds on the worst rate of communication and on the

worst graph connectivity, we immediately have χ1[Λ(t)] ≤ χ̃∗

1

λ∗
and χ2[Λ(t)] ≤ χ̃∗

2

λ∗
,

leading to χ∗
1 ≤

χ̃∗

1

λ∗
and χ∗

2 ≤
χ̃∗

2

λ∗
. Then, if the following condition on the worst

rate of communication is met

√

2χ̃∗
1χ̃

∗
2 ≤ λ∗, (88)

meaning that the instantaneous global rate of communication is always larger
than some spectral quantity quantifying the graph’s connectivity, it directly
implies 2χ∗

1[Λ]χ
∗
2[Λ] ≤ 1 and the convergence of our method.

C Comparison with other works

We now explain the results of Sec. 4.1.

C.1 Comparison with ADOM+

Using the notations of [17], we know that gossip matrices satisfy, for q ∈ N:

‖W (q)x− x‖2 ≤ (1− 1

χ
)‖x‖2 ,

for some χ ≥ 1. It implies that:

sp(W (q)) ⊂ [1−
√

1− 1

χ
, 2] ,

30

and for χ large enough, 1−
√

1− 1
χ ≈ 1

2χ . Consequently, up to a renormalization

factor, we have χ∗
1[W] ≈ 2χ and:

Tr(W (q)) ≤ 2n .

C.2 Acceleration of the continuized framework

Under the notation of [9], we note that, an additional simplification holds:
θ′
ARG

= θARG. We remind that L = AAT and that Aevw =
√
Pvw(ev − ew).

Next, we note that by definition:

Rvw

Pvw
,

eTvwA
+Aevw

Pvw
(89)

=
eTvwA

+(ev − ew)√
Pvw

(90)

=
(A+T evw)

T (ev − ew)√
Pvw

(91)

=
((AAT)+TAevw)

T (ev − ew)√
Pvw

(92)

= (ev − ew)
TL+(ev − ew) . (93)

And we get the conclusion.

C.3 Comparison with methods that use the spectral gap

We note that: γ∗|E| = √χ1

√

‖Λ(t)‖|E|, and using Lemma 3.1 with the assump-

tion that λij(t) ≥ 1
2c

‖Λ(t)‖
|E| , (for some c > 0 which should be about O(1) if no

degenerated effects happen) we obtain that :

√
χ2Tr(Λ(t)) ≤ 1

c

√

(n− 1)|E(t)|Tr(Λ(t)) (94)

≤ 1

c

√

(n− 1)|E(t)‖Λ(t)‖ (95)

≤ 1

c

√

‖Λ(t)‖|E(t)| . (96)

D Practical Implementation

In this section, we describe in more details the implementation of our algorithm.
As we did not physically executed our method on a compute network but rather
carried it out on a single machine, all the asynchronous computations and com-
munications had to be simulated. Thus, we will first discuss the method we
followed to simulate our asynchronous framework, before detailing the practical
steps of our algorithm through a pseudo-code.

31

D.1 Simulating the Poisson Point Processes

To emulate the asynchronous setting, before running our algorithm, we gener-
ate 2 independent sequences of jump times at the graph’s scale: one for the
computations and one for the communications. As we considered independent
P.P.Ps, the time increments follow a Poisson distribution. At the graph’s scale,
each node spiking at a rate of 1, the Poisson parameter for the gradient steps
process is n. Following the experimental setting of the Continuized framework
[9], we considered that all edges in E(t) had the same probability of spiking
between t and t + dt. Thus, given the sequence of graphs E(t) and L(t) their
corresponding Laplacians, we computed the parameter λ∗ of the communication
process as such:

λ∗ =

√

2 sup
t

χ1

[L(t)
|E(t)|

]

sup
t

χ2

[L(t)
|E(t)|

]

. (97)

Having generated the 2 sequences of spiking times at the graph’s scale, we run
our algorithm playing the events in order of appearance, attributing the location
of the events by sampling uniformly one node if the event is a gradient step, and
sampling uniformly an edge in E(t) if it is a communication.

D.2 Pseudo Code

We keep the notations introduced in Eq. (7), and recall the following constant
values specified in Appendix A.2:

η = 1
8

√
ν
L γ = 1

4L δ = 1
4

√
ν
L α = 1

4

√
ν
L β = 1

2 θ = 1
2

√
L
ν

η̃ = 1
8

√
ν
L γ̃ = 1

4
√
νL

δ̃ = 1 α̃ = 1
8

√
ν
L β̃ = 2χ∗

1[Λ]
√

L
ν ν = µ

2

For the sake of completeness, we also specify the matrix A describing the linear
ODE (14):

A =

−η η 0 0 0 0
η̃ −η̃ 0 0 0 0
0 0 −α α 0 0
0 −θν −θ 0 −θ 0
0 0 0 0 −α α

0 0 0 0 α̃ −α̃

Described in Appendix D.1, we call PPPspikes the aforementioned process re-
turning the ordered sequence of events and time of spikes of the two P.P.Ps.
Then, we can write the pseudo-code of our implementation of the DADAO op-
timizer in Algorithm 2.

32

Algorithm 2: Pseudo-code of our implementation of DADAO on a
single machine.

Input: On each machine i ∈ {1, ..., n}, an oracle able to evaluate ∇fi,
Parameters µ, L, χ∗

1, tmax, n, λ
∗.

The sequence of time varying graphs E(t).
1 Initialize on each machine i ∈ {1, ..., n}:
2 Set X(i) = (xi, x̃i, ỹi) and Y (i) = (yi, zi, z̃i) to 0 ;

3 Set constants ν, η̃, η, γ, α, α̃, θ, δ, δ̃, β, β̃ using µ, L, χ∗
1;

4 Set A;

5 T (i) ← 0 ;

6 ListEvents, ListTimes← PPPspikes(n, λ∗, tmax) ;
7 nevents ← |ListEvents| ;
8 for k ∈ [[1, nevents]] do
9 if ListEvents[k] is to take a gradient step then

10 i ∼ U([[1, n]]) ;

11

(
X(i)

Y (i)

)

← exp
(
(ListTimes[k]− T (i))A

)
(
X(i)

Y (i)

)

;

12 xi ← xi − γ (∇fi(xi)− νxi − ỹi);
13 x̃i ← x̃i − γ̃ (∇fi(xi)− νxi − ỹi);

14 ỹi ← ỹi + (δ + δ̃) (∇fi(xi)− νxi − ỹi);

15 T (i) ← ListTimes[k] ;

16 else if ListEvents[k] is to take a communication step then
17 (i, j) ∼ U(E(ListTimes[k])) ;

18

(
X(i)

Y (i)

)

← exp
(
(ListTimes[k]− T (i))A

)
(
X(i)

Y (i)

)

;

19

(
X(j)

Y (j)

)

← exp
(
(ListTimes[k]− T (j))A

)
(
X(j)

Y (j)

)

;

20 mij ← (yi + zi − yj − zj); // Message exchanged.

21 zi ← zi − βmij ;

22 z̃i ← z̃i − β̃mij ;
23 zj ← zj + βmij ;

24 z̃j ← z̃j + β̃mij ;

25 T (i) ← ListTimes[k];

26 T (j) ← ListTimes[k];

27 return xi, the estimate of x∗ on each worker i.

E Further experiments

In this section, we present additional numerical results comparing our method
DADAO to ADOM+ [17] in the time varying setting, and report our results
using SGD.

33

E.1 Time-Varying setting

In this section, we study the effect of the parameter χ∗
1 on the convergence speed

of ADOM+ [17] and DADAO by varying it between χ∗
1 ∈ {3, 33, 180, 233} for

random geometric graphs of size n = 20 on the decentralized linear regression
task with time-varying topology. To visualize the difference in connectivity these
changes in χ∗

1 represent, we plot 4 examples of graphs of the said types with
varying values of χ∗

1 in Fig. 3. In Fig. 4, we show the different convergence
speeds it entails.

Figure 3: Examples of random geometric graphs of size n = 20 with χ∗
1 taking

values in, from left to right, χ∗
1 ∈ {3, 33, 180, 233}.

� ���� ���� ���� ���� ����� �����

������������������������

��
���

��
��

��
��

��
��

��
�

��
�

1 n

n ∑ i=
1‖
x i
−

x
‖ ‖

2

	�������������������������������

� ���� ���� ���� ���� ����� �����

������������������������

��
���

��
��

��
��

��
��

��
�

��
�

1 n

n ∑ i=
1‖
x i
−

x
‖ ‖

2

	�������������������������������

� ���� ���� ���� ���� ����� �����

������������������������

��
���

��
��

��
��

��
��

��
�

��
�

1 n

n ∑ i=
1‖
x i
−

x
‖ ‖

2

	�������������������������������

� ���� ���� ���� ���� ����� �����

������������������������

��
���

��
��

��
��

��
��

��
�

��
�

1 n

n ∑ i=
1‖
x i
−

x
‖ ‖

2

	�������������������������������

���� ���� ���� ��
� ���� ����
�� ����!������������!���� ���� ��	

��
#��

��
#

��
#�

��
#�

��
�

��
�

1 n

n ∑ i=
1‖
x i
−

x
‖ ‖

2

�"��������� ����� ���� �����"��!�

����������
����
�!��

���� ���� ���� ���� ���� ����

��������������������������� ���

��
���

��
��

��
��

��
��

��
�

��
�

1 n

n ∑ i=
1‖
x i
−

x
‖ ‖

2

	�������������������������������

���� ���� ���� ���� ���� ����

��������������������������� ���

��
���

��
��

��
��

��
��

��
�

��
�

1 n

n ∑ i=
1‖
x i
−

x
‖ ‖

2

	�������������������������������

���� ���� ���� ���� ���� ����

��������������������������� ���

��
���

��
��

��
��

��
��

��
�

��
�

1 n

n ∑ i=
1‖
x i
−

x
‖ ‖

2

	�������������������������������

� ����� ����� ����� ����� �����
	��
��������������������
�����

��
���

��
��

��
��

��
��

��
�

��
�

1 n

n ∑ i=
1‖
x i
−

x
‖ ‖

2

����
������
������������
���
���

� ����� ����� ����� ����� �����
	��
��������������������
�����

��
���

��
��

��
��

��
��

��
�

��
�

1 n

n ∑ i=
1‖
x i
−

x
‖ ‖

2

����
������
������������
���
���

� ����� ����� ����� ����� �����
	��
��������������������
�����

��
���

��
��

��
��

��
��

��
�

��
�

1 n

n ∑ i=
1‖
x i
−

x
‖ ‖

2

����
������
������������
���
���

� ����� ����� ����� ����� �����
	��
��������������������
�����

��
���

��
��

��
��

��
��

��
�

��
�

1 n

n ∑ i=
1‖
x i
−

x
‖ ‖

2

����
������
������������
���
���

Figure 4: Comparison between ADOM+ [17] and DADAO, using the same
data for linear regression on n = 20 workers and the same sequence of random
connected graphs with varying topology and χ∗

1 taking values in, from the left
to the right column, χ∗

1 ∈ {3, 33, 180, 233}.

As expected, we observe in Fig. 4 that varying χ∗
1 has no effect on the

number of gradient computations of both ADOM+ M.-C and DADAO, but the
smaller the χ∗

1, the better the slope for ADOM+ in terms of gradient steps. We
also confirm for all 3 methods that the smaller χ∗

1, the less communication is
needed to reach an ǫ-precision.

34

E.2 Stochastic Gradient Descent with DADAO

In the SGD setting, we sample uniformly at random a mini-batch of size B

data points on each worker and compute the losses and stochastic gradients
∇fi(xi, ξ) with respect to these samples. To study the effect of the quadratic
error σ2 of our gradients on the resulting biases of our parameters, we fix both
the data (for linear regression) and the communication network (graph star of
size n = 20) and try different values of B. To monitor our results, we plot the
mean distance to x∗ of the running average over time of our local parameters.
Taking the notations introduced in Sec. 4.2, this can be written as:

1

n

n∑

i=1

∥
∥
∥
∥
∥
∥

1

ki

ki∑

j=1

x
(i)
j − x∗

∥
∥
∥
∥
∥
∥

2

,

where ki designates a local event counter. We report our results in Fig. 5.

� ����� ������ ������ ������

���������������������������������

��
��

��
�

��
�

	
��
��
�
��
��
�x

*

��������������������������������

�����
������
������

Figure 5: Effect of the batch size B on the convergence of our method DADAO.

We confirm that the less variance on our stochastic gradients, the less our

estimates 1
ki

∑ki

j=1 x
(i)
j are biased.

35

	Introduction
	Related Work
	Fast Asynchronous Algorithm for Time-Varying Connectivity Networks
	Gossip Framework
	Dynamic to optimum
	Theoretical guarantees

	Practical implementation
	Expected computational complexity
	Algorithm
	Numerical results

	Conclusion
	Proof of the theorem
	Properties and assumptions
	Proof of the Lemma 3.3 and Lemma 3.4

	Physical interpretation
	Comparison with other works
	Comparison with ADOM+
	Acceleration of the continuized framework
	Comparison with methods that use the spectral gap

	Practical Implementation
	Simulating the Poisson Point Processes
	Pseudo Code

	Further experiments
	Time-Varying setting
	Stochastic Gradient Descent with DADAO

