
HAL Id: hal-03737675
https://hal.science/hal-03737675

Submitted on 25 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Attacks on Pseudo Random Number Generators Hiding
a Linear Structure

Florette Martinez

To cite this version:
Florette Martinez. Attacks on Pseudo Random Number Generators Hiding a Linear Structure. Cryp-
tographers’ Track at the RSA Conference 2022, Mar 2022, Virtual Event, United States. pp.145-168,
�10.1007/978-3-030-95312-6_7�. �hal-03737675�

https://hal.science/hal-03737675
https://hal.archives-ouvertes.fr

Attacks on Pseudo Random Number Generators
Hiding a Linear Structure

Florette Martinez
florette.martinez@lip6.fr

Sorbonne Université, CNRS, LIP6, F-75005 Paris, France

Abstract. We introduce lattice-based practical seed-recovery attacks
against two efficient number-theoretic pseudo-random number genera-
tors: the fast knapsack generator and a family of combined multiple re-
cursive generators. The fast knapsack generator was introduced in 2009
by von zur Gathen and Shparlinski. It generates pseudo-random numbers
very efficiently with strong mathematical guarantees on their statistical
properties but its resistance to cryptanalysis was left open since 2009.
The given attacks are surprisingly efficient when the truncated bits do
not represent a too large proportion of the internal states. Their com-
plexities do not strongly increase with the size of parameters, only with
the proportion of discarded bits.
A multiple recursive generator is a pseudo-random number generator
based on a constant-recursive sequence. A combined multiple recursive
generator is a pseudo-random number generator based on combining two
or more multiple recursive generators. L’Écuyer presented the general
construction in 1996 and a popular instantiation deemed MRG32k3a in
1999. We use algebraic relations of both pseudo-random generators with
underlying algebraic generators to show that they are cryptographically
insecure. We provide a theoretical analysis as well as efficient implemen-
tations.

Keywords: Pseudo-random number generators, Knapsack problem, Copper-
smith Methods, Cryptanalysis.

1 Introduction

A pseudo-random number generator (PRNG) is an efficient deterministic algo-
rithm that stretches a small random seed into a longer pseudo-random sequence
of numbers. These generators can be used to emulate randomness in games,
numerical simulations or cryptographic protocols. These different situations call
for PRNGs with different properties. A cryptographic application will need a
strong PRNG that produces a sequence of bits indistinguishable from “truly”
random bits by efficient adversaries while a numerical simulation or a game will
ask for a fast and light PRNG.

Analysing the quality of randomness for a PRNG suited for cryptographic
applications is natural as a failure in these PRNGs would lead to problematic

security breaches. Rueppel and Massey introduced the knapsack generator [16]
in 1985 for cryptographic purposes. One chooses n secret bits u0, . . . un−1 and
n secret weights ω0, . . . , ωn to form the seed. A linear feedback shift register
(LFSR) generates the control bits (ui) from the n secret bits and a public feed-
back polynomial of order n. At step i, the generator computes vi ≡

∑n−1
j=0 ui+jωj

mod 2n, discards the least significant bits and outputs the remaining. In 2011,
Knellwolf and Meier [11] presented the main attack against this generator . They
used a guess-and-determine strategy coupled with lattice-based techniques to re-
cover most of the key in relevant instances of the generator. In order to run said
attack, they needed to guess all the n initial control bits. Hence their attack
had a time complexity Ω(2n). This attack is not fast enough to definitively keep
the knapsack generator away from cryptographic applications. In 2009, von zur
Gathen and Shparlinski presented a faster and lighter version of the knapsack
generator called the fast knapsack generator [7]. The main modification was a
specialisation of the weights. In their paper, the authors mention that it was not
clear if that specialisation had an impact on the security of this generator. Thus
it was not known if it was suited for cryptographic purposes. In this article, we
notice similarities between the fast knapsack generator and a linear congruential
generator (LCG). Because of the specialisation of the weights, the fast knap-
sack generator tends to act like a LCG one iteration out of four. We present here
lattice-based attacks exploiting this new weakness. We first describe three differ-
ent algorithms to attack the underlying LCG, two using Coppersmith Methods
and one based on Stern’s attack against the LCG. Then we present how such
algorithms can be used to break the fast knapsack generator. These algorithms
allow us to completely recover the seed when less than a quarter of the bits are
discarded.

Attacking a non-cryptographic PRNG is not irrelevant. Non-cryptographic
PRNGs tend to be faster and lighter than their cryptographic counterparts. As
they do not pretend to achieve some kind of security, they are less studied by
cryptanalysts hence there might not exist any known attack against them. Be-
cause of that, one might be tempted to replace a strong but slow cryptographic
PRNG with a faster non-cryptographic one. Breaking non-cryptographic PRNGs
could deter anyone to use them outside of what they are made for. This had al-
ready been done with the PCG64 by Bouillaguet et al. in 2020 [2]. The PCG64
is the default pseudo-random number generator in the popular NumPy [18] sci-
entific computing package for Python.

A combined linear congruential generator (CLCG) is a pseudo-random num-
ber generator algorithm based on combining two or more linear-congruential
generators. The general construction was proposed in 1982 by Wichmann and
Hill in [19]. A multiple recursive generator (MRG) is a pseudo-random genera-
tor based on a constant-recursive sequence. Like the LCGs, the MRGs can be
combined to obtain CMRGs. In 1999, L’Écuyer presented a family of parame-
ters giving CMRGs with good properties. These PRNGs are fast and pass the
“spectral test” evaluating their closeness to the uniform distribution. The more
famous of these CMRGs is the MRG32k3a, largely used for producing multi-

2

ple streams of pseudo random numbers, as seen in [13]. It is one of the PRNGs
implanted in Matlab and the native PRNG of the programming language Racket.

This PRNG had already been used once in place of a secure one for the
website Hacker news. In 2009, Franke [4] managed to hack this website and was
able to steal accounts. His attack was not based on breaking the MRG32k3a
but on guessing how the seed was generated. In fact the seed was the time (in
milliseconds) when the Hacker News software was last started. After crashing
the website he had access to the information he needed. In this case, breaking the
MRG32k3a could have lead us to an other real life attack against this website. In
our paper we will present an attack against CMRGs that output the difference
between two MRG of order three. The trick will be to see the two congruential
constant-recursive sequences as two projections of a single larger congruential
constant-recursive sequence. This attack will cover the particular case of the
MRG32k3a. Even if we reduce our study to those specific CMRGs, the same
techniques can be used on CMRGs combining more than two MRGs or MRGs
of larger orders.

Attacking a non-cryptographic PRNG is not only security-related. As men-
tioned earlier, PRNGs can be used in numerical simulations and a hidden struc-
ture in a PRNG could cause bias in said simulation. In [3], Ferrenberg et al. ran
classical Ferromagnetic Ising model Monte-Carlo simulations in specific cases
where exact results were known, with different PRNGs. They observed that the
choice of the PRNG had a significant impact on the outcome. For example, a
given LFSR tented to give energy levels that were too low and a critical tem-
perature that was to high.

In Section 2, we will present a simplified version of the Coppersmith method,
used in the attacks against both PRNGs. The different attacks on the fast knap-
sack generator will be discussed in Sections 3 and 4 while the attack against the
CMRGs will be presented in Section 5.

2 Coppersmith Method

In this section, we give a short description of a Coppersmith method used to solve
a multivariate modular polynomial system of equations over a single modulus.
We refer the reader to [8] for proofs.

We consider P1(y0, . . . , yn), . . . , Ps(y0, . . . , yn) s irreducible multivariate poly-
nomials defined over Z, having a common small root (x0, . . . , xn) modulo a
known integer N . Said root is said small because it must be bounded by known
values, namely |x0| < X0, . . . , |xn| < Xn. In order to find this root, we may
want to increase the number of polynomials by adding polynomials of the form
yk1
1 . . . ykn

n P
kn+1

i . We suppose we have now r polynomials P1, . . . , Pr linearly in-
dependent but not necessarily irreducible. To each of these polynomials Pi we
associate a number ki that will be the multiplicity of (x0, . . . , xn) as a root of
Pi mod N (in other terms, ki is the largest integer such that Pi(x0, . . . , xn) ≡
0 mod Nki). We construct the real matrix M as follows:

3

M =

P1 · · · Pr

↓ · · · ↓



1

⋆
1

X−1
0 y0

.
X−a0

0 × · · · ×X−an
n ya0

0 × · · · × yan
n

0 Nk1

. . .
Nkr

We denote M the set of monomials that appear at least in one Pi and |M| its
cardinality. Each one of the upper rows (between 1 and |M|) corresponds to one
of these monomials and each one of the latest columns (from |M|+1 to |M|+ r)
corresponds to one of the polynomials.

Let i be in {1, . . . , |M|}, we denote mi the i-th monomial of M, mi =
yb00 . . . ybnn . The value of Mi,i will be the inverse of the bound on mi, hence
X−b0

0 . . . X−bn
n . For all j between 1 and r, the value of Mi,|M|+j will be the co-

efficient of mi in Pj . Finally, the value of M|M|+j,|M|+j will be kj as described
in the previous paragraph.

We want to show that the smallest vector of the lattice spanned by the rows
of M contains the solution (x0, . . . , xn). We denote by ci the integer such that
Pi(x0, . . . , xn) = ciN

ki . We can construct v:
v = (1, x0, . . . , x

a0
0 . . . xan

m−1,−c1, . . . ,−cr)×M

=

(
1,

x0

X0
, . . . ,

xa0
0 . . . xan

n

Xa0
0 . . . Xan

n
, 0, . . . , 0

)
.

By construction, the vector v is in the lattice. Its first |M| coordinates are
smaller than one and the remaining ones are null, hence it is a small vector. In
general, retrieving the shortest vector of a lattice is a hard problem (called the
SVP for Shortest Vector Problem), but if this short vector is abnormally short,
it can be far easiest. A common method to find such a vector is applying the LLL
algorithm to the lattice. The LLL [12] is a polynomial-time reduction algorithm
presented by Lenstra, Lenstra and Lovász in 1982. It takes as input a basis of a
lattice and outputs a short and nearly orthogonal basis of the same lattice. The
smallest vector of this basis is, as a consequence, a small vector of the lattice.
We will thus apply LLL on the matrix M to obtain the small vector v.

The conditions on the bounds that make this method works are given by the
following (simplified) equation:∏

y
a0
0 ...yan

n ∈M

Xa0
0 . . . Xan

n < N
∑r

i=1 ki . (1)

For further details see [15].

4

3 Attacks on the Linear Congruential Generator

A Linear Congruential Generator (LCG) is a pseudo-random number generator
whose internal states are of the form vi+1 = zvi+C mod N . The parameter z is
called the multiplier, C is the increment and N is the modulus. Those generators
have been largely studied in various cases. In 1984, Frieze et al. [6] showed that,
provided both the modulus N and and the multiplier z, the sequence output
by a LCG was completely predictable as long as more than 2/5 of the bits were
output. In 1987, Stern [17] presented two algorithms to predict a sequence output
by a LCG with O(

√
log(N)) outputs. The first algorithm treated the case where

only the modulus N was known and the second one treated the case where all the
parameters were secret. In 1988, Frieze and al. proposed in [5] a polynomial-time
algorithm to retrieve the seed when the multiplier z and the modulus N were
known. In 1997, Joux and Stern presented in [9] a polynomial-time algorithm
against the LCG to retrieve the parameters z, c and N when they are kept secret.

3.1 Attacks via a Coppersmith Method

In the following, we will study the LCG underlying in the fast knapsack gener-
ator. This LCG is particular in the sense that z is unknown, c = 0 and N = 2n.
We have two options to retrieve the seed of this generator. We can create new at-
tacks specifically against this type of LCG or adapt existing attacks like Stern’s.
In this subsection we will explore the first option and use our own algorithm
based on a Coppersmith method to retrieve z. We also notice that our strategy
is easy to adapt to the case where the outputs we have are no longer consecutive.

Let v0 and z be two n-bits integers. The integer v0 is the seed and z the multi-
plier. We choose z odd (hence coprime to 2n), otherwise v1 would be divisible by
2, v2 by 22 and vk by 2k. At step i+1, our LCG computes vi+1 = z× vi mod 2n

and outputs the n− ℓ most significant bits.
For an internal state vi, we introduce the following notations:

– Hi = (vi quo 2ℓ)×2ℓ+2ℓ−1, where quo denotes the quotient of the Euclidean
division (Hi is constructed from the output, hence it is known)

– δi = vi −Hi (δi represents the ℓ discarded bits, it is unknown)

Attack 1: Consecutive outputs Let v0, v1, v2 be 3 consecutive internal states
of the LCG. We have v1 = zv0 mod 2n and v2 = zv1 mod 2n. As z and 2n are
coprime, we obtain:

v21 = v0v2 mod 2n.

We replace vi by Hi + δi:

H2
1 + 2H1δ1 + δ21 = H0H2 +H0δ2 +H2δ0 + δ0δ2 mod 2n,

and notice that (δ0, δ1, δ2) is a small root of the polynomial P mod 2n where

P (y0, y1, y2) = y21 − y0y2 + 2H1y1 −H0y2 −H2y0 +H2
1 −H0H2.

5

We will apply the Coppersmith method on P with bounds X0 = X1 = X2 = 2ℓ.
The set of monomials is M = {y0, y1, y2, y21 , y0y2} hence, by eq.1, we should
heuristically recover the root if (2ℓ)7 = X0 ×X1 ×X2 ×X2

1 ×X0X2 < 2n, that
is to say if ℓ/n < 1/7.

Generalization Let v0, . . . , vk be k+1 consecutive internal states. We will ob-
tain

(
k
2

)
equations of the form vjvi+1 = vivj+1 mod 2n. Hence we will construct(

k
2

)
polynomials Pi of which (δ0, . . . , δk) is a simple root mod 2n. The set of

appearing monomials will be:

M = {yi|i ∈ {0, . . . , k}}
∪

{yiyj+1|i, j ∈ {0, . . . , k − 1}, i ̸= j}.

We find that
∏

yi|i∈{0,...,k} Xi×
∏

yiyj+1|i,j∈{0,...,k−1},i̸=j XiXj+1 = (2ℓ)Γ (k) where
Γ (k) = (k + 1) + 2 × 2

(
k
2

)
. Thus, by eq.1, the attack should work as long as

ℓ/n <
(
k
2

)
/Γ (k). This theoretical bound increases toward 1/4.

As usual with Coppersmith methods, the theoretical bound is smaller than
what we can really achieve.

k 2 3 4 5
ℓ/n (theoretical) < 1/7 3/16 6/29 5/23

ℓ/n (experimental) < 0.3 0.35 0.38 0.40

We also present the computing times for different n and k.

n\k 2 3 4 5
32 0.002s 0.005s 0.01s 0.04s
64 0.003s 0.009s 0.03s 0.1s
1024 0.02s 0.1s 0.7s 2s

These computing times are averages of a hundred instances of the algorithm
running on a standard laptop: a Dell Latitude 7400, running on Ubuntu 18.04
with Sagemath version 8.1. The same laptop with the same configuration will
be used for the rest of the experiments of this paper.

Remark 1 As mentioned in Section 2, we could try to optimise our Coppersmith
method by adding polynomials of the form yk1

1 . . . ykn
n P

kn+1

i , but we refrained for
two main reasons. The first one is that without any other polynomial, the size
of our lattice remains small and our attack practical. The second reason is that
we tried in Appendix B to find a suitable family of polynomials to improve our
attack and the results are not encouraging. This will remains true for the next
attack

Attack 2: Not consecutive outputs Now we suppose we have two pairs of
two consecutive internal states (v0, v1) and (vi, vi+1). Then (δ0, δ1, δi, δi+1) is a
small root of P mod 2n where

P = y0yi+1 − y1yi +H0yi+1 +Hi+1y0 −H1yi −Hiy1 +H0Hi+1 −H1Hi.

6

We will apply the Coppersmith method on P with X0 = X1 = Xi = Xi+1 =
2ℓ. The set of monomials is M = {y0, y1, yi, yi+1, y0yi+1, y1yi} hence, by eq.1, we
should heuristically recover the root if (2ℓ)8 = X0×X1×Xi×Xi+1×X0Xi+1×
X1Xi < 2n, that is to say if ℓ/n < 1/8.

Generalisation Let S be a set of k distinct integers (the larger being iS) and∪
i∈S{vi, vi+1} be at most 2k internal states. We will obtain

(
k
2

)
equations of the

form vjvi+1 = vivj+1 mod 2n hence
(
k
2

)
polynomials Pi of which (δ0, . . . , δiS+1)

is a simple root mod 2n. The set of appearing monomials will be:

M = {yi, yi+1|i ∈ S}
∪

{yiyj+1|i, j ∈ S, i ̸= j}.

We will have at most 2k monomials of degree 1 and 2
(
k
2

)
monomials of degree

2. Heuristically, our attack should work if (2ℓ)2k+4(k2) < (2n)(
k
2). In other words,

our attack should work if ℓ/n < k−1
4k . This theoretical bound increases toward

1/4.
As usual with Coppersmith methods, the theoretical bound is smaller than

what we can really achieve.

k 2 3 4 5 6 7 8
ℓ/n (theoretical) < 1/8 1/6 3/16 1/5 5/24 3/14 7/32

ℓ/n (experimental) < 0.16 0.25 0.31 0.34 0.36 0.38 0.4

We also present the computing time for different n and k.

n\k 2 3 4 5 6 7 8
32 0.001s 0.003s 0.008s 0.02s 0.04s 0.09s 0.2s
64 0.002s 0.004s 0.02s 0.04s 0.08s 0.2s 0.5s

1024 0.003s 0.2s 0.2s 0.8s 1.6s 5s 13s

These computing times are averages of a hundred instances of the algorithm.

3.2 Attack 3: with Stern’s algorithm

Let us consider a LCG with internal states given by vi+1 = zvi mod N with v0
and z secret, N public. To obtain the output yi, we discard the last ℓ bits δi of
the internal state vi.

Gaussian Heuristic

The Gaussian heuristic “predicts” that if Λ is a full-rank lattice and C is a mea-
surable subset of Rd, then the number of points of Λ∩C is roughly vol(C)/ vol(Λ).
In particular, this asserts that the norm of the shortest (non-zero) vector of Λ
should be close to

√
d vol(Λ)1/d.

7

Stern’s algorithm Let d and r be two integer parameters to be discussed later.
We consider the first lattice Λ1 given by the rows of the following matrix:

N 0 0 . . . 0
z −1 0 . . . 0
z2 0 −1 . . . 0

. . .
zd−1 0 0 . . . −1


As z is unknown, we cannot construct this lattice. But we can compute its

determinant, which is N . By the Gaussian heuristic we can expect its shorter
vector to have coefficient smaller than N1/d.

An interesting property of this lattice is that it contains all the vectors
(x0, . . . , xd−1) in Λ1 satisfying

d−1∑
i=0

xiz
i ≡ 0 mod N.

We consider the vectors:
−→
Vi = (vi, . . . , vi+r−1),

−→
Yi = (yi, . . . , yi+r−1) and −→

∆i = (δi, . . . , δi+r−1).

They satisfy the property −→
Vi = 2ℓ

−→
Yi +

−→
∆i. Only −→

Yi is known. Then we con-
struct Λ2, the lattice spanned by the rows the following matrix:

2ℓ 2ℓ
−→
Y0

2ℓ 2ℓ
−→
Y1

.
2ℓ 2ℓ

−−→
Yr−1

N

0
. . .

N


,

Unlike Λ1, Λ2 only depends on known values. We consider the following vector
in Λ2:

T = (2ℓλ0, . . . , 2
ℓλd−1, 2

ℓ
d−1∑
i=0

λi
−→
Yi mod N).

where (λ0, . . . , λd−1) is a short vector in Λ1.
We want to prove that T is a short vector. As (λ0, . . . , λd−1) is a vector of

Λ1, we have
∑d−1

i=0 λiz
i ≡ 0 mod N , hence

∑d−1
i=0 λiVi ≡ 0 mod N . We obtain

2ℓ
d−1∑
i=0

λiYi =

d−1∑
i=0

λiVi −
d−1∑
i=0

λi∆i ≡ −
d−1∑
i=0

λi∆i mod N

8

As the λi are bounded by N1/d (by the Gaussian heuristic on Λ1), the eu-
clidean norm of the vector T is bounded by

√
d+ rd2ℓN1/d.

To retrieve this vector, we will want it to be abnormally short in Λ2. The ex-
pected norm of a short vector in Λ2 is ((2ℓ)kNr)1/(r+d) (by the Gaussian heuris-
tic). Hence we must choose r and d such that

√
d+ rd2ℓN1/d < (2ℓdNr)1/(r+d).

Thanks to that short vector we obtain a polynomial of which z is a root
modN . As N = 2n, the polynomial can have too much roots. We avoid the
problem by bounding the number of authorized roots for a polynomial.

Experimental results
We present the experimental parameters giving a rate of success superior to 50%
while having k+1 outputs available. The timer stops when the algorithm returns
the list of potential z.

k 4 6 8 10
r = d 3 4 5 6

ℓ/n (experimental) ≤ 0.3 0.45 0.55 0.6
time for n = 32 0.008s 0.01s 0.02s 0.02s
time for n = 64 0.02s 0.02s 0.02s 0.03s

time for n = 1024 1s 1s 1.2s 1.3s

4 Attacks Against the Fast Knapsack Generator
Let ω0, . . . , ωn−1 be n n-bits integers and let u0, u1, . . . be a sequence of bits
generated by a linear feedback shift register (LFSR) over F2 with an irreducible
characteristic polynomial of order n. At step i, the knapsack generator computes

vi =

n−1∑
i=0

ui+jωj mod 2n

and outputs the leading n− ℓ bits of vi.
This generator is defined by n2 + 2n bits: n bits for the public feedback

polynomial, n bits for the initial control bits and n2 bits for the weights.
The fast knapsack generator is a knapsack generator with special weights

introduced by von zur Gathen and Shparlinski in 2009 [7]. We replace the arbi-
trary weights by ωi = zn−iy, for y, z two integers of n bits. This new generator is
defined by 4n bits (as we only need 2n bits for the weights) and faster. Instead
of computing vi+1 =

∑n−1
i=0 ui+1+jωj mod 2n, with n additions, we directly

compute
vi+1 = uizy + zvi − un+iz

n+1y mod 2n (2)
with only three additions. The control bits (ui) come from a LFSR. Even if
the LFSR is not cryptographically secure, as its characteristic polynomial is
irreducible, we can assume the (ui) follow a uniform distribution, at least from
a statistical view point [14]. Hence the case where vi+1 = zvi mod 2n (i.e. ui =
un+i = 0) appears with probability 1

4 . Then again we will need some notations.

9

– Hi = (vi quo 2ℓ)×2ℓ+2ℓ−1, where quo denotes the quotient of the Euclidean
division (Hi is constructed from the output, hence it is known)

– δi = vi −Hi (δi represents the ℓ discarded bits, it is unknown)
– m is the number of outputs we have.

The trick in this attack is to notice our PRNG behaves like a LCG in one
iteration with probability 1/4. As we have two different algorithms to attack our
specific LCG, we will have two different algorithms to attack the fast knapsack
generator. These two attacks follow the same scheme: choosing when we are
going to assume the PRNG behaves like a LCG, using an attack against the
assumed LCG, obtain a z and some complete internal states, using the following
outputs to guess the y and finally check the consistency.

4.1 Attack via Coppersmith method with consecutive outputs

Finding z: We choose k + 1 consecutive outputs out of m, hence we choose k
steps where we assume the PRNG acts as a LCG. On these k + 1 outputs Hi’s
we apply the first algorithm we have against our specific LCG and obtain the
δi’s completing the k+1 chosen outputs (as vi = Hi + δi). If our assumptions is
false, the δi’s returned by our Coppersmith method might not be integers. If it
is the case, we start again with other sets of k+ 1 consecutive outputs until the
δi’s are integers. Then we can complete our outputs to obtain k + 1 complete
consecutive internal states. Due to the use of a highly composite modulus 2n,
computing the z is not completely straightforward. If we know vi and vi+1 such
that vi+1 = zvi mod 2n we might have to deal with a vi non-invertible mod 2n.
But usually the exponent of the factor 2 in vi does not exceed 5 so it is never a
problem to do an exhaustive search on the possible values for z.

Finding y: Based on our first assumption, we know z and k+1 complete internal
states of our PRNG. We call vi our last known complete internal state and
concentrate on vi+1 and vi+2. Based on the structure of the PRNG, there is only
16 possibilities for the relations between vi, vi+1 and vi+2. If these relations are
part of the 8 following possibilities, we can recover y again with a Coppersmith
method using a lattice of dimension 4.

{
vi+1 = zvi + zy mod 2n

vi+2 = zvi+1 + zy mod 2n

{
vi+1 = zvi − zn+1y mod 2n

vi+2 = zvi+1 − zn+1y mod 2n{
vi+1 = zvi + zy mod 2n

vi+2 = zvi+1 − zn+1y mod 2n

{
vi+1 = zvi − zn+1y mod 2n

vi+2 = zvi+1 + zy mod 2n{
vi+1 = zvi + zy mod 2n

vi+2 = zvi+1 + zy − zn+1y mod 2n

{
vi+1 = zvi + zy − zn+1y mod 2n

vi+2 = zvi+1 + zy mod 2n{
vi+1 = zvi − zn+1y mod 2n

vi+2 = zvi+1 + zy − zn+1y mod 2n

{
vi+1 = zvi + zy − zn+1y mod 2n

vi+2 = zvi+1 − zn+1y mod 2n

10

For example, we assume we are in the first case, hence{
vi+1 = zvi + zy mod 2n

vi+2 = zvi+1 + zy mod 2n.

Subtracting the first equation to the second and replacing vi+1 by Hi+1+δi+1

and vi+2 by Hi+2 + δi+2, we obtain:

Hi+2 + δi+2 −Hi+1 − δi+1 = zHi+1 + zδi+1 − zvi mod 2n

(we recall that, at this point, vi and z are assumed to be known). Hence (δi+1, δi+2)
is a root of a polynomial in two variables of degree 1 mod 2n. It can be recovered
thanks to a Coppersmith method. Once we have vi+1, computing y is straightfor-
ward (once again, if the δi are not integers it means either our first assumption
is false either the couple (vi+1, vi+2) is not of this form).

Remark 2 There are several little optimisations/improvements we can do in
this step. But it is mostly finding more particular cases so, for the sake of
simplicity, we decided to not describe them here.

Checking consistency: We have made a first assumption: the k+1 chosen outputs
of our PRNG can be seen as truncated outputs of a LCG. We have made a second
assumption: (vi+1, vi+2) is of a chosen form between the eight listed possibilities.
If y and z are the correct ones, we should be able to check consistency from one
to the next (for example Hi+3 should be given by one of the four following
internal states: zvi+2, zy + zvi+2, zvi+2 − zn+1y or zy + zvi+2 − zn+1y). If the
consistency is not obtained, it means one of our assumption is false and we must
either change our assumption on (vi+1, vi+2) if we did not explore the eight
possibilities, either start again from the beginning with a new set of consecutive
outputs.

Analysis of the attack For a given k, we want to know m the number of
outputs needed such that the probability of the PRNG acting as a LCG at least
k times in a row is greater than 1/2. We have done the computation and we do
not obtain a nice formula for m. The details are given in Appendix A and here
we will only give the numerical result for k = {2, 3, 4, 5}.

Once m is greater than the computed bound, we hope there will be a set of
k+1 consecutive outputs acting like a LCG. The two outputs following the last
chosen one need to be in eight possibilities out of sixteen. Again it happens with
probability 1/2.

Hence, for a given k, the attack should work with probability greater than
1/4 if m is greater than what is given in the table and l/n <

(
k
2

)
/Γ (k) (as seen

in Section 3). In this case we will have to run in the worst case m− k instances
of LLL on a lattice of dimension k+ 1+ 3

(
k
2

)
and 8(m− k) instances of LLL on

a lattice of dimension 4, each with entries of size n.

11

k 2 3 4 5
m 15 58 236 944

number of lattices ⩽ 13 55 232 939
dimension of lattices 6 13 23 36
ℓ/n (theoretical) < 1/7 3/16 6/29 5/23

ℓ/n (experimental) ⩽ 0.3 0.35 0.38 0.40
computing time for n = 32 0.02s 0.11s 0.9s 10s
computing time for n = 64 0.02s 0.15s 2s 28s

computing time for n = 1024 0.04s 1.1s 31s (950s)

The computing time is an average of ten instances of the algorithm. When
the algorithm becomes too slow to compute the average we give an estimation.
The estimation comes from the execution time for one lattice multiplied by half
the number of lattices. These specials cases are between parenthesis.

4.2 Attack via Coppersmith method without consecutive outputs

Finding z We choose k outputs Hi out of m − 1 outputs (we cannot choose
the last one) and consider k pairs of outputs (Hi,Hi+1). It does not mean we
work with 2k outputs as some pairs can overlap. On these k pairs of outputs we
apply the second algorithm we have against our specific LCG and obtain δi’s.
If our assumption is false, the δi’s might not be integers. If it is the case, we
start again with other sets of k pairs of outputs until the δi’s are integers. Then
we can complete our outputs (as vi = Hi + δi) to obtain at most 2k complete
consecutive internal states. Computing the z is not completely straightforward.
If we know vi and vi+1 such that vi+1 = zvi mod 2n we might have to deal with
a vi non-invertible mod 2n. But usually the exponent of the factor 2 in vi does
not exceed 5 so it is never a problem to do an exhaustive search on the possible
values for z.

The steps of Finding y and Checking consistency are the same as for the
previous attack.

Analysis of the attack We want our PRNG to act at least k times like a LCG
with probability greater than 1/2. We suppose we clock our PRNG m− 1 times
(so we obtain m outputs). The probability that the PRNG acts as a LCG on
one iteration is 1/4. Hence we want k to be the unique median of a Binomial
distribution of parameters (m−1, 1/4). We consider the following theorem from
[10].

Theorem 1. If X is a B(n, p), the median can be found by rounding off np to
k if the following condition holds:

|k − np| ⩽ min(p, 1− p)

k is the unique median except when p = 1/2 and n is odd.

12

In our case where p = 1/4 we see that given a k the smaller number of trials
satisfying this inequality is 4k − 1. Hence we choose m = 4k.

Once m is greater than 4k, we hope our PRNG will act at least k times
like a LCG. The two outputs following the last chosen one need to be in eight
possibilities out of sixteen. Again it happens with probability 1/2.

Hence, for a given k, the attack should work with probability greater than
1/4 if m is greater than 4k and l/n < (k − 1)/4k (as seen in Section 3). In this
case we will have to run in the worst case

(
4k
k

)
instances of LLL on a lattice of

dimension at worst 2k+3
(
k
2

)
and 8

(
4k
k

)
instances of LLL on a lattice of dimension

4, each with entries of size n.

k 2 3 4 5 6 7 8
m 8 12 16 20 24 28 32

number of lattices ≤ 21 165 1365 11628 100947 888030 7888725
dimension of lattices ≤ 7 15 26 40 57 77 100
ℓ/n (theoretical) < 1/8 1/6 3/16 1/5 5/24 3/14 7/32

ℓ/n (experimental) ⩽ 0.16 0.25 0.31 0.34 0.36 0.38 0.40
computing time for n = 32 0.04s 0.6s 11s (115s) (2000s) (11h) (219h)
computing time for n = 64 0.03s 0.7s 21s (230s) (4000s) (25h) (548h)

computing time for n = 1024 0.06s 4s (130s) (4500s) (22h) (617h) (1.6y)

Again, the computing time is an average of ten instances of the algorithm
running on the same laptop. When the algorithm becomes too slow to compute
the average, we give an estimation. The estimation comes from the execution
time for one lattice multiplied by half the number of lattices. These specials cases
are between parenthesis.

Remark 3 To compute these probabilities, we assumed we always had two out-
puts (vi+1, vi+2) following our output vi. This is not always the case but this
problem can be easily solved by choosing either another known vi or the two
preceding values of vi instead of the following ones.

Remark 4 As the number of instances of LLL needed is
(
4k
k

)
, the computing

time of the algorithm quickly explodes.

4.3 Attack via Stern’s attack on the LCG

Finding z: We choose k + 1 consecutive outputs out of m, hence we choose k
steps where we assume the PRNG acts as a LCG. On these k + 1 outputs Hi’s
we apply the modified algorithm we have against our specific LCG and obtain
a list of possible values for z. For each of these values, we are going to compute
what we assume the internal states are. If we have the right value of z, then the
vector of internal states (vi, . . . , vi+k) is in the lattice spanned by the rows of

13

the following matrix: 
1 z . . . zk

0 2n . . . 0
. . .

0 0 0 2n

 .

Also, this vector is close to the target vector (Hi, . . . , Hi+k). Hence we use
a CVP solver on our matrix and the target vector to find our vector of internal
states.

Remark 5 CVP stands for Closest Vector Problem. Given a lattice Λ and an
arbitrary target vector T , a CVP solver outputs the closest vector to T which is
in the lattice Λ.

The steps of Finding y and Checking consistency are the same as for the
previous attack.

4.4 Summary of our results

These computing times are averages on a hundred instances of the algorithm. As
usual between parenthesis are the estimations given by the time for one lattice
multiplied by half the number of lattices.

– Attack via a Coppersmith method with consecutive outputs

ℓ/n 0.2 0.3 0.4 0.5
m 15 236 944 none

computing time for n = 32 0.02s 0.02s 10s none
computing time for n = 64 0.02s 0.02s 28s none

computing time for n = 1024 0.04 0.04s (950s) none

– Attack via a Coppersmith method without consecutive outputs

ℓ/n 0.2 0.3 0.4 0.5
m 12 16 32 none

computing time for n = 32 0.6s 11s (219h) none
computing time for n = 64 0.7s 21s (548h) none

computing time for n = 1024 4s (130s) (1.6y) none

– Attack via Stern’s algorithm

ℓ/n 0.3 0.45 0.55 0.6
m 236 3783 60565 969085

computing time for n = 32 3.6s 1m (25m) (7h)
computing time for n = 64 4s 1m (25m) (7h)

computing time for n = 1024 2m (20m) (6h) (110h)

14

We see that each of these approaches cover different cases of attack (if we
have access to many outputs, if many bits are truncated, etc.).

The next generator we are going to analyse is based on constant-recursive
sequences. These mathematical objects are completely linear. In the one hand
it means they are fairly easy to manipulate. In the other hand it makes them
very vulnerable to algebraic attacks. To hides the linear properties of its internal
states, the generator uses two different moduli (as the reduction by two different
moduli does not commute: (a + b mod m1) mod m2 tends to be different from
(a+ b mod m2) mod m1).

5 Combined Multiple Recursive Generators (CMRG)

These PRNGs output a linear operation between two or more congruential
constant-recursive sequences over different moduli, pairwise coprime, of the same
length. The coefficients of the sequences and the moduli are known, only the
initial conditions are secret. We are going to focus on CMRG outputting the
difference between two constant-recursive sequences of order three, (xi) and (yi)
over two different moduli m1 and m2 of the same length n.

At step i, the generator computes

xi = a11xi−1 + a12xi−2 + a13xi−3 mod m1

yi = a21yi−1 + a22yi−2 + a23yi−3 mod m2

zi = xi − yi mod m1

and outputs zi.
The values a11, a12, a13, , a21, a22, a23, m1 and m2 are known. The values

x0, x1, x2, y0,y1 and y2 form the seed of the generator.

As m1 and m2 are coprime, by the Chinese Reminder Theorem we know
that the sequences (xi) and (yi) are projections of a lifted constant-recursive
sequence modulo m1m2 that we will call (Xi). This new sequence will be defined
by Xi+3 = AXi+2 +BXi+1 + CXi mod m1m2 where A,B,C are given by:

A ≡ a11 mod m1 and A ≡ a21 mod m2

B ≡ a12 mod m1 and B ≡ a22 mod m2

C ≡ a13 mod m1 and C ≡ a23 mod m2

and the initial conditions X0, X1, X2 in {0, . . . ,m1m2 − 1} satisfy:

X0 ≡ x0 mod m1 and X0 ≡ y0 mod m2

X1 ≡ x1 mod m1 and X1 ≡ y1 mod m2

X2 ≡ x2 mod m1 and X2 ≡ y2 mod m2.

The sequences (xi) and (yi) are given by xi = Xi mod m1 and yi = Xi mod
m2.

15

5.1 Attack on the MRG32

Notations: We denote by z′i the integer value xi−yi which can be different from
zi = xi − yi mod m1. As xi is already in {0, . . . ,m1 − 1} and yi is already in
{0, . . . ,m2 − 1}, we have that z′i = zi or z′i = zi −m1. We also denote by u the
inverse of m1 modulo m2 (um1 ≡ 1 mod m2).

Proposition 1 For every i ≥ 0, (xi, xi+1, xi+2, xi+3) is a root modulo m1m2 of

Pi(vi, vi+1, vi+2, vi+3) = ki+3m1+vi+3−A(ki+2m1+vi+2)−B(ki+1m1+vi+1)−C(kim1+vi)

where ki is the only integer in {0, . . . ,m2 − 1} such that ki ≡ −z′iu mod m2.

Proof. As Xi ≡ xi mod m1, there exists an integer ki such that Xi = kim1+xi.
For the same reason, there exists an integer k̂i such that Xi = k̂im2 + yi. Hence

z′i = xi − yi = k̂im2 − kim1.

Thus ki ≡ −z′iu mod m2. As Xi is in {0, . . . ,m1m2−1}, then ki is in {0, . . . ,m2−
1}. To obtain the polynomial Pi we need to remember that Xi+3 = AXi+2 +
BXi+1 + CXi mod m1m2.

We have established that (x0, x1, x2, x3) is a root modulo m1m2 of

P1(v0, v1, v2, v3) = k3m1 + v3 −A(k2m1 + v2)−B(k1m1 + v1)− C(k0m1 + v0)

and each of its coordinates is bounded by m1.
If this root is the only small one, we can expect to retrieve it thanks to a

Coppersmith method. But it tends not to be the case. We will consider Λ the
lattice containing all the differences between two roots of P1 modulo m1m2. If
the smallest vector v of Λ has its coordinates smaller than m1, then the vector
(x0, x1, x2, x3)−v could be a smaller root of P1 mod m1m2 and our attack might
not work.

If we have two roots (x0, x1, x2) and (x′
0, x

′
1, x

′
2) then

(x3 − x′
3)−A(x2 − x′

2)−B(x1 − x′
1)− C(x0 − x′

0) ≡ 0 mod m1m2.

Hence the lattice Λ is spanned by the rows of the following matrix:
1 0 0 C
0 1 0 B
0 0 1 A
0 0 0 m1m2

 .

Following the Gaussian heuristic, we can expect the shortest vector of this
lattice to be of norm

√
4(m1m2)

1/4 ≈
√
4×2n/2 <

√
4×2n ≈

√
4m1 . Hence it is

unlikely that (x0, x1, x2, x3) is the only root of P1 modulo m1m2 such that each
of its coordinates is bounded by m1. We try to add other polynomials, hoping
it will reduce the number of common roots.

16

If we consider the three polynomials P1, P2 and P3, the lattice containing
the difference between two commons roots will be spanned by the rows of the
following matrix: 

1 0 0 C AC BC +A2C
0 1 0 B C B2 +AC
0 0 1 A (B +A2) C + 2AB +A3

0 0 0 m1m2 0 0
0 0 0 0 m1m2 0
0 0 0 0 0 m1m2

 .

Following the Gaussian heuristic, we can expect the shortest vector of this lattice
to be of norm

√
6(m1m

3
2)

1/6 ≈
√
6×2n ≈

√
6m1. We are at the limit, we have no

clear indication that the smallest vector of Λ is big enough. We cannot say that
(x0, x1, x2, x3, x4, x5) is the only common root of P1, P2 and P3 modulo m1m2

such that each of its coordinates is bounded by m1. Adding two polynomials
was not enough. But the smallest difference between two common roots is far
greater than before. So we keep adding polynomials.

If we consider the four polynomials P1, P2, P3 and P4, the lattice containing
the difference between two commons roots will be spanned by the rows of the
following matrix:

1 0 0 C AC BC +A2C C2 + 2ABC +A3C
0 1 0 B C B2 +AC 2BC +AB2 +A2C
0 0 1 A (B +A2) C + 2AB +A3 2AC +B2 + 2A2B +A4

0 0 0 m1m2 0 0 0
0 0 0 0 m1m2 0 0
0 0 0 0 0 m1m2 0
0 0 0 0 0 0 m1m2


.

Following the Gaussian heuristic, we can expect the shortest vector of this lat-
tice to be of norm

√
7(m1m

4
2)

1/7 ≈
√
7 × 28n/7 >

√
7 × 2n ≈

√
7m1. Hence

(x0, x1, x2, x3, x4, x5, x6) is likely to be the only common root of P1, P2, P3 and
P4 modulo m1m2 such that each of its coordinates is bounded by m1. We could
wonder if it is relevant to use the Gaussian heuristic in such specific cases but
the parameters given by this reasoning are experimentally recovered.

We can now describe the attack. From a11, a12, a13, , a21, a22 and a23 we
construct A, B and C. Then we consider 7 outputs z0, . . . , z6, and from them
we guess z′0, . . . , z

′
6 (we recall that z′i = zi or z′i = zi −m1). Now we have all the

values we need to construct P1, P2, P3 and P4 as described in Proposition 1.
We use a Coppersmith method to find the only common root of P1, P2, P3

and P4 mod m1m2 with all of its coordinates bound by m1. If we have correctly
guessed the z′i’s, this root has to be (x0, x1, x2, x3, x4, x5, x6), hence the initial
conditions we were searching for. Finally we check the consistency thanks to an
eighth output.

Knowing the zi’s we have 27 set of possible values for the z′is. For each set
we run one instance of LLL on a lattice of dimension 12 (8 monomials + 4
polynomials) and entries of size n. So the time complexity is O(n3).

17

5.2 The MRG32k3a by L’Écuyer

For this particular PRNG, the public values are m1 = 232 − 209, m2 = 232 −
22853, a11 = 0 a12 = 1403580, a13 = 810728, a21 = 527612, a22 = 0 and
a23 = 1370589.

If we consider the four polynomials P1, P2, P3, P4 we find that the smallest dif-
ference between two common roots modulo m1m2 is (-12600073455, 8717013482,
35458453228, 57149468535, 25239696855, -3505005772, 66309741613). We can
see that each of its coordinates is greater than 2 × m1, this ensures that (x0,
x1, x2, x3, x4, x5, x6) will be the only small common root of P1,P2,P3 and P4

modulo m1m2. Our algorithm retrieves the initial conditions in 0.01 second with
8 outputs.

References

1. Benhamouda, F., Chevalier, C., Thillard, A., Vergnaud, D.: Easing Coppersmith
methods using analytic combinatorics: Applications to public-key cryptography
with weak pseudorandomness. In: Cheng, C.M., Chung, K.M., Persiano, G., Yang,
B.Y. (eds.) PKC 2016, Part II. LNCS, vol. 9615, pp. 36–66. Springer, Heidelberg
(Mar 2016). https://doi.org/10.1007/978-3-662-49387-8_3

2. Bouillaguet, C., Martinez, F., Sauvage, J.: Practical seed-recovery for the pcg
pseudo-random number generator. IACR Transactions on Symmetric Cryptology
2020(3), 175–196 (Sep 2020)

3. Ferrenberg, A.M., Landau, D.P., Wong, Y.J.: Monte carlo simulations: Hidden
errors from “good” random number generators. Phys. Rev. Lett. 69, 3382–3384
(Dec 1992)

4. Franke, D.: How I hacked hacker news (with arc security advisory).
https://news.ycombinator.com/item?id=639976 (2009)

5. Frieze, A.M., Hastad, J., Kannan, R., Lagarias, J.C., Shamir, A.: Re-
constructing truncated integer variables satisfying linear congruences. SIAM
J. Comput. 17(2), 262–280 (Apr 1988). https://doi.org/10.1137/0217016,
http://dx.doi.org/10.1137/0217016

6. Frieze, A.M., Kannan, R., Lagarias, J.C.: Linear congruential generators do not
produce random sequences. In: 25th FOCS. pp. 480–484. IEEE Computer Society
Press (Oct 1984). https://doi.org/10.1109/SFCS.1984.715950

7. Von zur Gathen, J., Shparlinski, I.E.: Subset sum pseudorandom numbers: fast
generation and distribution. Journal of Mathematical Cryptology 3(2), 149–163
(2009)

8. Jochemsz, E., May, A.: A strategy for finding roots of multivariate polynomials
with new applications in attacking RSA variants. In: Lai, X., Chen, K. (eds.)
ASIACRYPT 2006. LNCS, vol. 4284, pp. 267–282. Springer, Heidelberg (Dec 2006).
https://doi.org/10.1007/11935230_18

9. Joux, A., Stern, J.: Lattice reduction: A toolbox for the cryptanalyst. Journal of
Cryptology 11(3), 161–185 (Jun 1998). https://doi.org/10.1007/s001459900042

10. Kaas, R., Buhrman, J.: Mean, median and mode in binomial distributions. Statis-
tica Neerlandica 34, 13–18 (1980)

11. Knellwolf, S., Meier, W.: Cryptanalysis of the knapsack generator. In: Joux, A.
(ed.) FSE 2011. LNCS, vol. 6733, pp. 188–198. Springer, Heidelberg (Feb 2011).
https://doi.org/10.1007/978-3-642-21702-9_11

18

12. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational co-
efficients. Mathematische annalen 261(ARTICLE), 515–534 (1982)

13. L’Écuyer, P.: Random number generation with multiple streams for sequential and
parallel computing. In: 2015 Winter Simulation Conference (WSC). pp. 31–44.
IEEE (2015)

14. Mitra, A.: On the properties of pseudo noise sequences with a simple proposal of
randomness test. International Journal of Electrical and Computer Engineering
3(3), 164–169 (2008)

15. Ritzenhofen, M.: On efficiently calculationg small solutions of systmes of poly-
nomial equations: lattice-based methods and applications to cryptography. Ph.D.
thesis, Verlag nicht ermittelbar (2010)

16. Rueppel, R.A., Massey, J.L.: Knapsack as a nonlinear fonction. In: IEEE Interna-
tional Symposium on Information Theory. IEEE Press, NY (1985)

17. Stern, J.: Secret linear congruential generators are not cryptographically se-
cure. In: 28th FOCS. pp. 421–426. IEEE Computer Society Press (Oct 1987).
https://doi.org/10.1109/SFCS.1987.51

18. Van der Walt, S., Colbert, S.C., Varoquaux, G.: The NumPy array: A structure for
efficient numerical computation. Computing in Science Engineering 13(2), 22–30
(2011)

19. Wichmann, B.A., Hill, I.D.: Algorithm as 183: An efficient and portable pseudo-
random number generator. Journal of the Royal Statistical Society. Series C (Ap-
plied Statistics) 31(2), 188–190 (1982)

19

A Bernoulli trials

We suppose that we have n Bernoulli trials, each with a probability of success of
p. We want to compute the probability of having a run of at least k consecutive
successes. We denote this probability Pr(n, p, k).

As we cannot have more successes than trials, if k > n then Pr(n, p, k) = 0.
If k = n, it means all the trials must be successes, hence Pr(n, p, k) = pk.

If n > k we have two excluding possibilities to have k successes. First possi-
bility, a run of k successes happen in the last n − 1 trials. Second possibility, a
run of k successes happen in the k first trial an there is no run of k successes in
the last n − 1 trials. It means the first k trials are successes, then the k + 1-th
trial is a failure and there is no run of k successes in the n − k − 1 remaining
trials. Hence the probability of having a run of k successes in n trials when n > k
is Pr(n, p, k) = Pr(n− 1, p, k) + pk × (1− p)× (1− Pr(n− k − 1, p, k))

We fix k and p and consider S[n] = 1−Pr(n, p, k). We notice that (S[n])n∈N
is a constant-recursive sequence:

S[n+ 1] = S[n]− pk(1− p)S[n− k − 1]

of order k+1 with initial terms being S[0] = · · · = S[k−1] = 1 and S[k] = 1−pk.
The explicit values of the sequence are given by S[n] = C1(r1)

n + · · · +
Ck+1(rk+1)

n where the ri are the roots of the characteristic polynomial xk+1 −
xk + pk(1− p) and the Ci are constants given by the initial terms.

In our case, we have m outputs and we want to know the probability of
having k+ 1 consecutive internal states of the form vi+1 = zvi mod 2n. Given a
vi, the probability that vi+1 = zvi mod 2n is 1/4. So our problem is to compute
the probability of having a run of at least k successes in a sequence of m − 1
Bernoulli trials, the probability of success of each trial being 1/4.

In the following table we give the minimal values of m such that the proba-
bility of having a run of k successes in m− 1 trials is greater than 1/2.

k 2 3 4 5 6 7 8 10
m 15 58 236 944 3783 15138 60565 969085

(Warning, these values are given by numerical approximations, they might not
be exact.)

B Improvement of Coppersmith ?

Let P be the polynomial constructed thanks to the outputs of our LCG. We
are searching for a root of P modulo N . In Section 2, we saw that we had two
possibilities. We could directly construct the matrix used in the Coppersmith
method M with only P or we could build a bigger set of polynomials Pi of the
form f = yk0

0 , . . . , ykn
n P kp . In Section 3, we presented attacks were the set of

polynomials was not extended. The goal of this appendix will be to try to find

20

a family of polynomials Pi’s such that we can retrieve the root even when more
bits are discarded.

For the reader familiar with [1] by Benhamouda et al., we will use the same
notations. We denote P the bigger set constructed from P . The polynomials in
P are of the form f = yk0

0 , . . . , ykn
n P kp and all linearly independent. We denote

by χP(f) the multiplicity of our small root as a root of f mod N : χP(f) = kp.
We denote M the set of all the monomials appearing in P. If m in M is of the
form yk0

0 . . . ykn
n , we denote χM(m) = k0 + · · · + kn. We know by equation (1)

that the attack is suppose to work as long as

ℓ/n ≤
∑

f∈P χP(f)∑
m∈M χM(m)

where ℓ is the number of discarded bits and n the size of the internal states of
our generator.

B.1 Consecutive outputs
Here our Polynomial is P = y21 + 2H1y1 + H2

1 − y0y2 − H0y2 − H2y0 − H0H2.
We fix a parameter T and choose PT as following:

PT = {yk0
0 yϵ1y

k2
2 P kp |ϵ ∈ {0, 1}, k0 + ϵ+ k2 + 2kp ≤ T}

All the polynomials in PT are linearly independent. Indeed, if we consider the
monomial order y1 > y0 > y2 then the leading monomial of yk0

0 yϵ1y
k2
2 P kp is

y
2kp+ϵ
1 yk0

0 yk2
2 thus all leading monomials are different.

We are not going to precisely compute the set of monomial of PT instead we
are going to approach it with

MT = {yk0
0 yk1

1 yk2
2 |k0 + k1 + k2 ≤ T}.

Now we must compute
∑

f∈PT
χPT

(f) and
∑

m∈MT
χMT

(m):

∑
f∈PT

χPT
(f) =

T−2∑
k0=0

1∑
ϵ=0

T−2−k0−ϵ∑
k2=0

⌊T−k0−ϵ−k2
2 ⌋∑

kp=1

kp

= ⌊ ((T + 1)2 − 1)× ((T + 1)2 − 3)

48
⌋

∑
m∈MT

χMT
(m) =

T∑
k0=0

T−k0∑
k1=0

T−k0−k1∑
k2=0

k0 + k1 + k2

=
T (T + 1)(T + 2)(T + 3)

8
.

Thus this new construction should allow us to recover the small root as long
as

ℓ/n ≤ ⌊ ((T + 1)2 − 1)× ((T + 1)2 − 3)

48
⌋ × 8

T (T + 1)(T + 2)(T + 3)
.

21

This value tends to 1/6.
To obtain a bound bigger than 1/7 (our already achieved result), we need

T ≥ 13. But T = 13 means our lattice would be of dimension 924, and running
the LLL algorithm on a lattice of dimension 900 is hardly doable.

B.2 Not consecutive outputs

Here our Polynomial is P = y0yi+1 − y1yi +Hi+1y0 +H0yi+1 −Hiy1 −H1yi +
H0Hi+1 −H1Hi. We fix a parameter T and choose PT as following:

PT = {yk0
0 yk1

1 yki
i P kp |k0+k1+ki+2kp ≤ T}

∪
{yk1

1 yki
i y

ki+1

i+1 P kp |k1+ki+ki+1+2kp ≤ T}.

All the polynomials in PT are linearly independent.
We are not going to precisely compute the set of monomial of PT instead we

are going to approach it with

MT = {yk0
0 yk1

1 yki
i y

ki+1

i+1 |k0 + k1 + ki + ki+1 ≤ T}.

Now we must compute
∑

f∈PT
χPT

(f) and
∑

m∈MT
χMT

(m):

∑
f∈PT

χPT (f) = 2

T−2∑
k0=0

T−2−k0∑
k1=0

T−2−k0−k1∑
ki=0

⌊T−k0−k1−k2
2

⌋∑
kp=1

kp


=

(T + 2)(2T 4 + 16T 3 + 28T 2 − 16T + 15× (−1)T − 15)

480∑
m∈MT

χMT (m) =

T∑
k0=0

T−k0∑
k1=0

T−k0−k1∑
ki=0

T−k0−k1−ki∑
ki+1=0

k0 + k1 + ki + ki+1

=
T (T + 1)(T + 2)(T + 3)(T + 4)

30
.

Thus this new construction should allow us to recover the small root as long as

ℓ/n ≤ (2T 4 + 16T 3 + 28T 2 − 16T + 15× (−1)T − 15)

T (T + 1)(T + 3)(T + 4)
× 30

480
.

This value tends to 1/8. But our second attack with one polynomial already
recover the small root when ℓ/n ≤ 1/8. Hence adding more polynomials in our
Coppersmith method does not seem relevant.

22

