Florette Martinez
email: florette.martinez@lip6.fr

Attacks on Pseudo Random Number Generators Hiding a Linear Structure

Keywords: Pseudo-random number generators, Knapsack problem, Coppersmith Methods, Cryptanalysis

We introduce lattice-based practical seed-recovery attacks against two efficient number-theoretic pseudo-random number generators: the fast knapsack generator and a family of combined multiple recursive generators. The fast knapsack generator was introduced in 2009 by von zur Gathen and Shparlinski. It generates pseudo-random numbers very efficiently with strong mathematical guarantees on their statistical properties but its resistance to cryptanalysis was left open since 2009. The given attacks are surprisingly efficient when the truncated bits do not represent a too large proportion of the internal states. Their complexities do not strongly increase with the size of parameters, only with the proportion of discarded bits. A multiple recursive generator is a pseudo-random number generator based on a constant-recursive sequence. A combined multiple recursive generator is a pseudo-random number generator based on combining two or more multiple recursive generators. L'Écuyer presented the general construction in 1996 and a popular instantiation deemed MRG32k3a in 1999. We use algebraic relations of both pseudo-random generators with underlying algebraic generators to show that they are cryptographically insecure. We provide a theoretical analysis as well as efficient implementations.

Introduction

A pseudo-random number generator (PRNG) is an efficient deterministic algorithm that stretches a small random seed into a longer pseudo-random sequence of numbers. These generators can be used to emulate randomness in games, numerical simulations or cryptographic protocols. These different situations call for PRNGs with different properties. A cryptographic application will need a strong PRNG that produces a sequence of bits indistinguishable from "truly" random bits by efficient adversaries while a numerical simulation or a game will ask for a fast and light PRNG.

Analysing the quality of randomness for a PRNG suited for cryptographic applications is natural as a failure in these PRNGs would lead to problematic security breaches. Rueppel and Massey introduced the knapsack generator [START_REF] Rueppel | Knapsack as a nonlinear fonction[END_REF] in 1985 for cryptographic purposes. One chooses n secret bits u 0 , . . . u n-1 and n secret weights ω 0 , . . . , ω n to form the seed. A linear feedback shift register (LFSR) generates the control bits (u i) from the n secret bits and a public feedback polynomial of order n. At step i, the generator computes v i ≡ ∑ n-1 j=0 u i+j ω j mod 2 n , discards the least significant bits and outputs the remaining. In 2011, Knellwolf and Meier [START_REF] Knellwolf | Cryptanalysis of the knapsack generator[END_REF] presented the main attack against this generator . They used a guess-and-determine strategy coupled with lattice-based techniques to recover most of the key in relevant instances of the generator. In order to run said attack, they needed to guess all the n initial control bits. Hence their attack had a time complexity Ω (2 n). This attack is not fast enough to definitively keep the knapsack generator away from cryptographic applications. In 2009, von zur Gathen and Shparlinski presented a faster and lighter version of the knapsack generator called the fast knapsack generator [START_REF] Von Zur Gathen | Subset sum pseudorandom numbers: fast generation and distribution[END_REF]. The main modification was a specialisation of the weights. In their paper, the authors mention that it was not clear if that specialisation had an impact on the security of this generator. Thus it was not known if it was suited for cryptographic purposes. In this article, we notice similarities between the fast knapsack generator and a linear congruential generator (LCG). Because of the specialisation of the weights, the fast knapsack generator tends to act like a LCG one iteration out of four. We present here lattice-based attacks exploiting this new weakness. We first describe three different algorithms to attack the underlying LCG, two using Coppersmith Methods and one based on Stern's attack against the LCG. Then we present how such algorithms can be used to break the fast knapsack generator. These algorithms allow us to completely recover the seed when less than a quarter of the bits are discarded.

Attacking a non-cryptographic PRNG is not irrelevant. Non-cryptographic PRNGs tend to be faster and lighter than their cryptographic counterparts. As they do not pretend to achieve some kind of security, they are less studied by cryptanalysts hence there might not exist any known attack against them. Because of that, one might be tempted to replace a strong but slow cryptographic PRNG with a faster non-cryptographic one. Breaking non-cryptographic PRNGs could deter anyone to use them outside of what they are made for. This had already been done with the PCG64 by Bouillaguet et al. in 2020 [START_REF] Bouillaguet | Practical seed-recovery for the pcg pseudo-random number generator[END_REF]. The PCG64 is the default pseudo-random number generator in the popular NumPy [START_REF] Van Der Walt | The NumPy array: A structure for efficient numerical computation[END_REF] scientific computing package for Python.

A combined linear congruential generator (CLCG) is a pseudo-random number generator algorithm based on combining two or more linear-congruential generators. The general construction was proposed in 1982 by Wichmann and Hill in [START_REF] Wichmann | Algorithm as 183: An efficient and portable pseudorandom number generator[END_REF]. A multiple recursive generator (MRG) is a pseudo-random generator based on a constant-recursive sequence. Like the LCGs, the MRGs can be combined to obtain CMRGs. In 1999, L'Écuyer presented a family of parameters giving CMRGs with good properties. These PRNGs are fast and pass the "spectral test" evaluating their closeness to the uniform distribution. The more famous of these CMRGs is the MRG32k3a, largely used for producing multi-ple streams of pseudo random numbers, as seen in [START_REF] L'écuyer | Random number generation with multiple streams for sequential and parallel computing[END_REF]. It is one of the PRNGs implanted in Matlab and the native PRNG of the programming language Racket. This PRNG had already been used once in place of a secure one for the website Hacker news. In 2009, Franke [START_REF] Franke | How I hacked hacker news (with arc security advisory[END_REF] managed to hack this website and was able to steal accounts. His attack was not based on breaking the MRG32k3a but on guessing how the seed was generated. In fact the seed was the time (in milliseconds) when the Hacker News software was last started. After crashing the website he had access to the information he needed. In this case, breaking the MRG32k3a could have lead us to an other real life attack against this website. In our paper we will present an attack against CMRGs that output the difference between two MRG of order three. The trick will be to see the two congruential constant-recursive sequences as two projections of a single larger congruential constant-recursive sequence. This attack will cover the particular case of the MRG32k3a. Even if we reduce our study to those specific CMRGs, the same techniques can be used on CMRGs combining more than two MRGs or MRGs of larger orders.

Attacking a non-cryptographic PRNG is not only security-related. As mentioned earlier, PRNGs can be used in numerical simulations and a hidden structure in a PRNG could cause bias in said simulation. In [START_REF] Ferrenberg | Monte carlo simulations: Hidden errors from "good" random number generators[END_REF], Ferrenberg et al. ran classical Ferromagnetic Ising model Monte-Carlo simulations in specific cases where exact results were known, with different PRNGs. They observed that the choice of the PRNG had a significant impact on the outcome. For example, a given LFSR tented to give energy levels that were too low and a critical temperature that was to high.

In Section 2, we will present a simplified version of the Coppersmith method, used in the attacks against both PRNGs. The different attacks on the fast knapsack generator will be discussed in Sections 3 and 4 while the attack against the CMRGs will be presented in Section 5.

Coppersmith Method

In this section, we give a short description of a Coppersmith method used to solve a multivariate modular polynomial system of equations over a single modulus. We refer the reader to [START_REF] Jochemsz | A strategy for finding roots of multivariate polynomials with new applications in attacking RSA variants[END_REF] for proofs.

We consider P 1 (y 0 , . . . , y n), . . . , P s (y 0 , . . . , y n) s irreducible multivariate polynomials defined over Z, having a common small root (x 0 , . . . , x n) modulo a known integer N . Said root is said small because it must be bounded by known values, namely |x 0 | < X 0 , . . . , |x n | < X n . In order to find this root, we may want to increase the number of polynomials by adding polynomials of the form y k1 1 . . . y kn n P kn+1 i

. We suppose we have now r polynomials P 1 , . . . , P r linearly independent but not necessarily irreducible. To each of these polynomials P i we associate a number k i that will be the multiplicity of (x 0 , . . . , x n) as a root of P i mod N (in other terms, k i is the largest integer such that P i (x 0 , . . . , x n) ≡ 0 mod N ki). We construct the real matrix M as follows:

M = P 1 • • • P r ↓ • • • ↓                           1 ⋆ 1 X -1 0 y 0 X -a0 0 × • • • × X -an n y a0 0 × • • • × y an n 0 N k1 . . .

N kr

We denote M the set of monomials that appear at least in one P i and |M| its cardinality. Each one of the upper rows (between 1 and |M|) corresponds to one of these monomials and each one of the latest columns (from |M| + 1 to |M| + r) corresponds to one of the polynomials.

Let i be in {1, . . . , |M|}, we denote m i the i-th monomial of M, m i = y b0 0 . . . y bn n . The value of M i,i will be the inverse of the bound on m i , hence X -b0 0 . . . X -bn n . For all j between 1 and r, the value of M i,|M|+j will be the coefficient of m i in P j . Finally, the value of M |M|+j,|M|+j will be k j as described in the previous paragraph.

We want to show that the smallest vector of the lattice spanned by the rows of M contains the solution (x 0 , . . . , x n). We denote by c i the integer such that

P i (x 0 , . . . , x n) = c i N ki . We can construct v: v = (1, x 0 , . . . , x a0 0 . . . x an m-1 , -c 1 , . . . , -c r) × M = (1,
x 0 X 0 , . . . , x a0 0 . . . x an n X a0 0 . . . X an n , 0, . . . , 0

) .

By construction, the vector v is in the lattice. Its first |M| coordinates are smaller than one and the remaining ones are null, hence it is a small vector. In general, retrieving the shortest vector of a lattice is a hard problem (called the SVP for Shortest Vector Problem), but if this short vector is abnormally short, it can be far easiest. A common method to find such a vector is applying the LLL algorithm to the lattice. The LLL [START_REF] Lenstra | Factoring polynomials with rational coefficients[END_REF] is a polynomial-time reduction algorithm presented by Lenstra, Lenstra and Lovász in 1982. It takes as input a basis of a lattice and outputs a short and nearly orthogonal basis of the same lattice. The smallest vector of this basis is, as a consequence, a small vector of the lattice. We will thus apply LLL on the matrix M to obtain the small vector v.

The conditions on the bounds that make this method works are given by the following (simplified) equation:

∏ y a 0 0 ...y an n ∈M X a0 0 . . . X an n < N ∑ r i=1 ki . (1
)
For further details see [START_REF] Ritzenhofen | On efficiently calculationg small solutions of systmes of polynomial equations: lattice-based methods and applications to cryptography[END_REF].

Attacks on the Linear Congruential Generator

A Linear Congruential Generator (LCG) is a pseudo-random number generator whose internal states are of the form v i+1 = zv i + C mod N . The parameter z is called the multiplier, C is the increment and N is the modulus. Those generators have been largely studied in various cases. In 1984, Frieze et al. [START_REF] Frieze | Linear congruential generators do not produce random sequences[END_REF] showed that, provided both the modulus N and and the multiplier z, the sequence output by a LCG was completely predictable as long as more than 2/5 of the bits were output. In 1987, Stern [START_REF] Stern | Secret linear congruential generators are not cryptographically secure[END_REF] presented two algorithms to predict a sequence output by a LCG with O(√ log(N)) outputs. The first algorithm treated the case where only the modulus N was known and the second one treated the case where all the parameters were secret. In 1988, Frieze and al. proposed in [START_REF] Frieze | Reconstructing truncated integer variables satisfying linear congruences[END_REF] a polynomial-time algorithm to retrieve the seed when the multiplier z and the modulus N were known. In 1997, Joux and Stern presented in [START_REF] Joux | Lattice reduction: A toolbox for the cryptanalyst[END_REF] a polynomial-time algorithm against the LCG to retrieve the parameters z, c and N when they are kept secret.

Attacks via a Coppersmith Method

In the following, we will study the LCG underlying in the fast knapsack generator. This LCG is particular in the sense that z is unknown, c = 0 and N = 2 n . We have two options to retrieve the seed of this generator. We can create new attacks specifically against this type of LCG or adapt existing attacks like Stern's. In this subsection we will explore the first option and use our own algorithm based on a Coppersmith method to retrieve z. We also notice that our strategy is easy to adapt to the case where the outputs we have are no longer consecutive.

Let v 0 and z be two n-bits integers. The integer v 0 is the seed and z the multiplier. We choose z odd (hence coprime to 2 n), otherwise v 1 would be divisible by 2, v 2 by 2 2 and v k by 2 k . At step i + 1, our LCG computes v i+1 = z × v i mod 2 n and outputs the n -ℓ most significant bits.

For an internal state v i , we introduce the following notations:

-H i = (v i quo 2 ℓ)×2 ℓ +2 ℓ-1
, where quo denotes the quotient of the Euclidean division (H i is constructed from the output, hence it is known)

-δ i = v i -H i (δ i represents the ℓ discarded bits, it is unknown) Attack 1: Consecutive outputs Let v 0 , v 1 , v 2 be
3 consecutive internal states of the LCG. We have v 1 = zv 0 mod 2 n and v 2 = zv 1 mod 2 n . As z and 2 n are coprime, we obtain:

v 2 1 = v 0 v 2 mod 2 n . We replace v i by H i + δ i : H 2 1 + 2H 1 δ 1 + δ 2 1 = H 0 H 2 + H 0 δ 2 + H 2 δ 0 + δ 0 δ 2 mod 2 n ,
and notice that (δ 0 , δ 1 , δ 2) is a small root of the polynomial P mod 2 n where

P (y 0 , y 1 , y 2) = y 2 1 -y 0 y 2 + 2H 1 y 1 -H 0 y 2 -H 2 y 0 + H 2 1 -H 0 H 2 .
We will apply the Coppersmith method on P with bounds

X 0 = X 1 = X 2 = 2 ℓ .
The set of monomials is M = {y 0 , y 1 , y 2 , y 2 1 , y 0 y 2 } hence, by eq.1, we should heuristically recover the root if

(2 ℓ) 7 = X 0 × X 1 × X 2 × X 2 1 × X 0 X 2 < 2 n , that is to say if ℓ/n < 1/7.
Generalization Let v 0 , . . . , v k be k + 1 consecutive internal states. We will obtain

(k 2) equations of the form v j v i+1 = v i v j+1 mod 2 n . Hence we will construct (k 2)
polynomials P i of which (δ 0 , . . . , δ k) is a simple root mod 2 n . The set of appearing monomials will be:

M = {y i |i ∈ {0, . . . , k}} ∪ {y i y j+1 |i, j ∈ {0, . . . , k -1}, i ̸ = j}. We find that ∏ yi|i∈{0,...,k} X i × ∏ yiyj+1|i,j∈{0,...,k-1},i̸ =j X i X j+1 = (2 ℓ) Γ (k) where Γ (k) = (k + 1) + 2 × 2 (k 2)
. Thus, by eq.1, the attack should work as long as We also present the computing times for different n and k. n\k 2 3 4 5 32 0.002s 0.005s 0.01s 0.04s 64 0.003s 0.009s 0.03s 0.1s 1024 0.02s 0.1s 0.7s 2s

ℓ/n < (k 2) /Γ (k).
These computing times are averages of a hundred instances of the algorithm running on a standard laptop: a Dell Latitude 7400, running on Ubuntu 18.04 with Sagemath version 8.1. The same laptop with the same configuration will be used for the rest of the experiments of this paper.

Remark 1 As mentioned in Section 2, we could try to optimise our Coppersmith method by adding polynomials of the form y k1

1 . . . y kn n P kn+1 i

, but we refrained for two main reasons. The first one is that without any other polynomial, the size of our lattice remains small and our attack practical. The second reason is that we tried in Appendix B to find a suitable family of polynomials to improve our attack and the results are not encouraging. This will remains true for the next attack Attack 2: Not consecutive outputs Now we suppose we have two pairs of two consecutive internal states (v 0 , v 1) and (v i , v i+1). Then (δ 0 , δ 1 , δ i , δ i+1) is a small root of P mod 2 n where

P = y 0 y i+1 -y 1 y i + H 0 y i+1 + H i+1 y 0 -H 1 y i -H i y 1 + H 0 H i+1 -H 1 H i .
We will apply the Coppersmith method on P with X 0 = X 1 = X i = X i+1 = 2 ℓ . The set of monomials is M = {y 0 , y 1 , y i , y i+1 , y 0 y i+1 , y 1 y i } hence, by eq.1, we should heuristically recover the root if

(2 ℓ) 8 = X 0 × X 1 × X i × X i+1 × X 0 X i+1 × X 1 X i < 2 n , that is to say if ℓ/n < 1/8.
Generalisation Let S be a set of k distinct integers (the larger being i S) and ∪ i∈S {v i , v i+1 } be at most 2k internal states. We will obtain

(k 2) equations of the form v j v i+1 = v i v j+1 mod 2 n hence (k 2) polynomials P i of which (δ 0 , . . . , δ i S +1
) is a simple root mod 2 n . The set of appearing monomials will be:

M = {y i , y i+1 |i ∈ S} ∪ {y i y j+1 |i, j ∈ S, i ̸ = j}.
We 8 32 0.001s 0.003s 0.008s 0.02s 0.04s 0.09s 0.2s 64 0.002s 0.004s 0.02s 0.04s 0.08s 0.2s 0.5s 1024 0.003s 0.2s 0.2s 0.8s 1.6s 5s 13s

These computing times are averages of a hundred instances of the algorithm.

Attack 3: with Stern's algorithm

Let us consider a LCG with internal states given by v i+1 = zv i mod N with v 0 and z secret, N public. To obtain the output y i , we discard the last ℓ bits δ i of the internal state v i .

Gaussian Heuristic

The Gaussian heuristic "predicts" that if Λ is a full-rank lattice and C is a measurable subset of R d , then the number of points of Λ∩C is roughly vol(C)/ vol(Λ). In particular, this asserts that the norm of the shortest (non-zero) vector of Λ should be close to

√ d vol(Λ) 1/d .
Stern's algorithm Let d and r be two integer parameters to be discussed later. We consider the first lattice Λ 1 given by the rows of the following matrix:

      N 0 0 . . . 0 z -1 0 . . . 0 z 2 0 -1 . . . 0 . . . z d-1 0 0 . . . -1      
As z is unknown, we cannot construct this lattice. But we can compute its determinant, which is N . By the Gaussian heuristic we can expect its shorter vector to have coefficient smaller than N 1/d .

An interesting property of this lattice is that it contains all the vectors (x 0 , . . . ,

x d-1) in Λ 1 satisfying d-1 ∑ i=0 x i z i ≡ 0 mod N.
We consider the vectors:

-→ V i = (v i , . . . , v i+r-1), -→ Y i = (y i , . . . , y i+r-1) and -→ ∆ i = (δ i , . . . , δ i+r-1).
They satisfy the property

-→ V i = 2 ℓ -→ Y i + -→ ∆ i . Only -→ Y i is known.
Then we construct Λ 2 , the lattice spanned by the rows the following matrix:

             2 ℓ 2 ℓ -→ Y 0 2 ℓ 2 ℓ -→ Y 1 2 ℓ 2 ℓ --→ Y r-1 N 0 . . . N              ,
Unlike Λ 1 , Λ 2 only depends on known values. We consider the following vector in Λ 2 :

T = (2 ℓ λ 0 , . . . , 2 ℓ λ d-1 , 2 ℓ d-1 ∑ i=0 λ i -→ Y i mod N).
where (λ 0 , . . . , λ d-1) is a short vector in Λ 1 .

We want to prove that T is a short vector. As (λ 0 , . . . , λ d-1) is a vector of Λ 1 , we have

∑ d-1 i=0 λ i z i ≡ 0 mod N , hence ∑ d-1 i=0 λ i V i ≡ 0 mod N . We obtain 2 ℓ d-1 ∑ i=0 λ i Y i = d-1 ∑ i=0 λ i V i - d-1 ∑ i=0 λ i ∆ i ≡ - d-1 ∑ i=0 λ i ∆ i mod N
As the λ i are bounded by N 1/d (by the Gaussian heuristic on Λ 1), the euclidean norm of the vector T is bounded by √ d + rd2 ℓ N 1/d . To retrieve this vector, we will want it to be abnormally short in Λ 2 . The expected norm of a short vector in Λ 2 is ((2 ℓ) k N r) 1/(r+d) (by the Gaussian heuristic). Hence we must choose r and d such that r+d) . Thanks to that short vector we obtain a polynomial of which z is a root modN . As N = 2 n , the polynomial can have too much roots. We avoid the problem by bounding the number of authorized roots for a polynomial.

√ d + rd2 ℓ N 1/d < (2 ℓd N r) 1/(

Experimental results

We present the experimental parameters giving a rate of success superior to 50% while having k +1 outputs available. The timer stops when the algorithm returns the list of potential z.

Attacks Against the Fast Knapsack Generator

Let ω 0 , . . . , ω n-1 be n n-bits integers and let u 0 , u 1 , . . . be a sequence of bits generated by a linear feedback shift register (LFSR) over F 2 with an irreducible characteristic polynomial of order n. At step i, the knapsack generator computes

v i = n-1 ∑ i=0 u i+j ω j mod 2 n
and outputs the leading n -ℓ bits of v i . This generator is defined by n 2 + 2n bits: n bits for the public feedback polynomial, n bits for the initial control bits and n 2 bits for the weights.

The fast knapsack generator is a knapsack generator with special weights introduced by von zur Gathen and Shparlinski in 2009 [START_REF] Von Zur Gathen | Subset sum pseudorandom numbers: fast generation and distribution[END_REF]. We replace the arbitrary weights by ω i = z n-i y, for y, z two integers of n bits. This new generator is defined by 4n bits (as we only need 2n bits for the weights) and faster. Instead of computing v i+1 = ∑ n-1 i=0 u i+1+j ω j mod 2 n , with n additions, we directly compute

v i+1 = u i zy + zv i -u n+i z n+1 y mod 2 n (2)
with only three additions. The control bits (u i) come from a LFSR. Even if the LFSR is not cryptographically secure, as its characteristic polynomial is irreducible, we can assume the (u i) follow a uniform distribution, at least from a statistical view point [START_REF] Mitra | On the properties of pseudo noise sequences with a simple proposal of randomness test[END_REF]. Hence the case where v i+1 = zv i mod 2 n (i.e. u i = u n+i = 0) appears with probability 1 4 . Then again we will need some notations.

-

H i = (v i quo 2 ℓ)×2 ℓ +2 ℓ-1
, where quo denotes the quotient of the Euclidean division (H i is constructed from the output, hence it is known) δ i = v i -H i (δ i represents the ℓ discarded bits, it is unknown) m is the number of outputs we have.

The trick in this attack is to notice our PRNG behaves like a LCG in one iteration with probability 1/4. As we have two different algorithms to attack our specific LCG, we will have two different algorithms to attack the fast knapsack generator. These two attacks follow the same scheme: choosing when we are going to assume the PRNG behaves like a LCG, using an attack against the assumed LCG, obtain a z and some complete internal states, using the following outputs to guess the y and finally check the consistency.

Attack via Coppersmith method with consecutive outputs

Finding z: We choose k + 1 consecutive outputs out of m, hence we choose k steps where we assume the PRNG acts as a LCG. On these k + 1 outputs H i 's we apply the first algorithm we have against our specific LCG and obtain the δ i 's completing the k + 1 chosen outputs (as v i = H i + δ i). If our assumptions is false, the δ i 's returned by our Coppersmith method might not be integers. If it is the case, we start again with other sets of k + 1 consecutive outputs until the δ i 's are integers. Then we can complete our outputs to obtain k + 1 complete consecutive internal states. Due to the use of a highly composite modulus 2 n , computing the z is not completely straightforward. If we know v i and v i+1 such that v i+1 = zv i mod 2 n we might have to deal with a v i non-invertible mod 2 n . But usually the exponent of the factor 2 in v i does not exceed 5 so it is never a problem to do an exhaustive search on the possible values for z.

Finding y: Based on our first assumption, we know z and k +1 complete internal states of our PRNG. We call v i our last known complete internal state and concentrate on v i+1 and v i+2 . Based on the structure of the PRNG, there is only 16 possibilities for the relations between v i , v i+1 and v i+2 . If these relations are part of the 8 following possibilities, we can recover y again with a Coppersmith method using a lattice of dimension 4.

{ v i+1 = zv i + zy mod 2 n v i+2 = zv i+1 + zy mod 2 n { v i+1 = zv i -z n+1 y mod 2 n v i+2 = zv i+1 -z n+1 y mod 2 n { v i+1 = zv i + zy mod 2 n v i+2 = zv i+1 -z n+1 y mod 2 n { v i+1 = zv i -z n+1 y mod 2 n v i+2 = zv i+1 + zy mod 2 n { v i+1 = zv i + zy mod 2 n v i+2 = zv i+1 + zy -z n+1 y mod 2 n { v i+1 = zv i + zy -z n+1 y mod 2 n v i+2 = zv i+1 + zy mod 2 n { v i+1 = zv i -z n+1 y mod 2 n v i+2 = zv i+1 + zy -z n+1 y mod 2 n { v i+1 = zv i + zy -z n+1 y mod 2 n v i+2 = zv i+1 -z n+1 y mod 2 n
For example, we assume we are in the first case, hence

{ v i+1 = zv i + zy mod 2 n v i+2 = zv i+1 + zy mod 2 n .
Subtracting the first equation to the second and replacing v i+1 by H i+1 +δ i+1 and v i+2 by H i+2 + δ i+2 , we obtain:

H i+2 + δ i+2 -H i+1 -δ i+1 = zH i+1 + zδ i+1 -zv i mod 2 n
(we recall that, at this point, v i and z are assumed to be known). Hence (δ i+1 , δ i+2) is a root of a polynomial in two variables of degree 1 mod 2 n . It can be recovered thanks to a Coppersmith method. Once we have v i+1 , computing y is straightforward (once again, if the δ i are not integers it means either our first assumption is false either the couple (v i+1 , v i+2) is not of this form).

Remark 2 There are several little optimisations/improvements we can do in this step. But it is mostly finding more particular cases so, for the sake of simplicity, we decided to not describe them here.

Checking consistency: We have made a first assumption: the k+1 chosen outputs of our PRNG can be seen as truncated outputs of a LCG. We have made a second assumption: (v i+1 , v i+2) is of a chosen form between the eight listed possibilities. If y and z are the correct ones, we should be able to check consistency from one to the next (for example H i+3 should be given by one of the four following internal states: zv i+2 , zy + zv i+2 , zv i+2 -z n+1 y or zy + zv i+2 -z n+1 y). If the consistency is not obtained, it means one of our assumption is false and we must either change our assumption on (v i+1 , v i+2) if we did not explore the eight possibilities, either start again from the beginning with a new set of consecutive outputs.

Analysis of the attack

For a given k, we want to know m the number of outputs needed such that the probability of the PRNG acting as a LCG at least k times in a row is greater than 1/2. We have done the computation and we do not obtain a nice formula for m. The details are given in Appendix A and here we will only give the numerical result for k = {2, 3, 4, 5}.

Once m is greater than the computed bound, we hope there will be a set of k + 1 consecutive outputs acting like a LCG. The two outputs following the last chosen one need to be in eight possibilities out of sixteen. Again it happens with probability 1/2.

Hence The computing time is an average of ten instances of the algorithm. When the algorithm becomes too slow to compute the average we give an estimation. The estimation comes from the execution time for one lattice multiplied by half the number of lattices. These specials cases are between parenthesis.

Attack via Coppersmith method without consecutive outputs

Finding z We choose k outputs H i out of m -1 outputs (we cannot choose the last one) and consider k pairs of outputs (H i , H i+1). It does not mean we work with 2k outputs as some pairs can overlap. On these k pairs of outputs we apply the second algorithm we have against our specific LCG and obtain δ i 's. If our assumption is false, the δ i 's might not be integers. If it is the case, we start again with other sets of k pairs of outputs until the δ i 's are integers. Then we can complete our outputs (as v i = H i + δ i) to obtain at most 2k complete consecutive internal states. Computing the z is not completely straightforward. If we know v i and v i+1 such that v i+1 = zv i mod 2 n we might have to deal with a v i non-invertible mod 2 n . But usually the exponent of the factor 2 in v i does not exceed 5 so it is never a problem to do an exhaustive search on the possible values for z.

The steps of Finding y and Checking consistency are the same as for the previous attack.

Analysis of the attack

We want our PRNG to act at least k times like a LCG with probability greater than 1/2. We suppose we clock our PRNG m -1 times (so we obtain m outputs). The probability that the PRNG acts as a LCG on one iteration is 1/4. Hence we want k to be the unique median of a Binomial distribution of parameters (m -1, 1/4). We consider the following theorem from [START_REF] Kaas | Mean, median and mode in binomial distributions[END_REF].

Theorem 1. If X is a B(n, p), the median can be found by rounding off np to k if the following condition holds:

|k -np| ⩽ min(p, 1 -p) k is the unique median except when p = 1/2 and n is odd.

In our case where p = 1/4 we see that given a k the smaller number of trials satisfying this inequality is 4k -1. Hence we choose m = 4k.

Once m is greater than 4k, we hope our PRNG will act at least k times like a LCG. The two outputs following the last chosen one need to be in eight possibilities out of sixteen. Again it happens with probability 1/2.

Hence, for a given k, the attack should work with probability greater than 1/4 if m is greater than 4k and l/n < (k -1)/4k (as seen in Section 3). In this case we will have to run in the worst case

(4k k) instances of
) (4500s) (22h) (617h) (1.6y)
Again, the computing time is an average of ten instances of the algorithm running on the same laptop. When the algorithm becomes too slow to compute the average, we give an estimation. The estimation comes from the execution time for one lattice multiplied by half the number of lattices. These specials cases are between parenthesis.

Remark 3

To compute these probabilities, we assumed we always had two outputs (v i+1 , v i+2) following our output v i . This is not always the case but this problem can be easily solved by choosing either another known v i or the two preceding values of v i instead of the following ones.

Remark 4 As the number of instances of LLL needed is

(4k k)
, the computing time of the algorithm quickly explodes.

Attack via Stern's attack on the LCG

Finding z: We choose k + 1 consecutive outputs out of m, hence we choose k steps where we assume the PRNG acts as a LCG. On these k + 1 outputs H i 's we apply the modified algorithm we have against our specific LCG and obtain a list of possible values for z. For each of these values, we are going to compute what we assume the internal states are. If we have the right value of z, then the vector of internal states (v i , . . . , v i+k) is in the lattice spanned by the rows of the following matrix:

     1 z . . . z k 0 2 n . . . 0 . . . 0 0 0 2 n      .
Also, this vector is close to the target vector (H i , . . . , H i+k). Hence we use a CVP solver on our matrix and the target vector to find our vector of internal states.

Remark 5 CVP stands for Closest Vector Problem. Given a lattice Λ and an arbitrary target vector T , a CVP solver outputs the closest vector to T which is in the lattice Λ.

The steps of Finding y and Checking consistency are the same as for the previous attack.

Summary of our results

These computing times are averages on a hundred instances of the algorithm. As usual between parenthesis are the estimations given by the time for one lattice multiplied by half the number of lattices.

-Attack via a Coppersmith method with consecutive outputs We see that each of these approaches cover different cases of attack (if we have access to many outputs, if many bits are truncated, etc.).

The next generator we are going to analyse is based on constant-recursive sequences. These mathematical objects are completely linear. In the one hand it means they are fairly easy to manipulate. In the other hand it makes them very vulnerable to algebraic attacks. To hides the linear properties of its internal states, the generator uses two different moduli (as the reduction by two different moduli does not commute: (a + b mod m 1) mod m 2 tends to be different from (a + b mod m 2) mod m 1).

Combined Multiple Recursive Generators (CMRG)

These PRNGs output a linear operation between two or more congruential constant-recursive sequences over different moduli, pairwise coprime, of the same length. The coefficients of the sequences and the moduli are known, only the initial conditions are secret. We are going to focus on CMRG outputting the difference between two constant-recursive sequences of order three, (x i) and (y i) over two different moduli m 1 and m 2 of the same length n.

At step i, the generator computes

x i = a 11 x i-1 + a 12 x i-2 + a 13 x i-3 mod m 1 y i = a 21 y i-1 + a 22 y i-2 + a 23 y i-3 mod m 2 z i = x i -y i mod m 1
and outputs z i . The values a 11 , a 12 , a 13 , , a 21 , a 22 , a 23 , m 1 and m 2 are known. The values x 0 , x 1 , x 2 , y 0 ,y 1 and y 2 form the seed of the generator.

As m 1 and m 2 are coprime, by the Chinese Reminder Theorem we know that the sequences (x i) and (y i) are projections of a lifted constant-recursive sequence modulo m 1 m 2 that we will call (X i). This new sequence will be defined by X i+3 = AX i+2 + BX i+1 + CX i mod m 1 m 2 where A, B, C are given by: A ≡ a 11 mod m 1 and A ≡ a 21 mod m 2 B ≡ a 12 mod m 1 and B ≡ a 22 mod m 2 C ≡ a 13 mod m 1 and C ≡ a 23 mod m 2 and the initial conditions X 0 , X 1 , X 2 in {0, . . . , m 1 m 2 -1} satisfy:

X 0 ≡ x 0 mod m 1 and X 0 ≡ y 0 mod m 2 X 1 ≡ x 1 mod m 1 and X 1 ≡ y 1 mod m 2 X 2 ≡ x 2 mod m 1 and X 2 ≡ y 2 mod m 2 .
The sequences (x i) and (y i) are given by x i = X i mod m 1 and y i = X i mod m 2 .

If we consider the three polynomials P 1 , P 2 and P 3 , the lattice containing the difference between two commons roots will be spanned by the rows of the following matrix:

        1 0 0 C AC BC + A 2 C 0 1 0 B C B 2 + AC 0 0 1 A (B + A 2) C + 2AB + A 3 0 0 0 m 1 m 2 0 0 0 0 0 0 m 1 m 2 0 0 0 0 0 0 m 1 m 2        
.

Following the Gaussian heuristic, we can expect the shortest vector of this lattice to be of norm

√ 6(m 1 m 3 2) 1/6 ≈ √ 6×2 n ≈ √ 6m 1 .
We are at the limit, we have no clear indication that the smallest vector of Λ is big enough. We cannot say that (x 0 , x 1 , x 2 , x 3 , x 4 , x 5) is the only common root of P 1 , P 2 and P 3 modulo m 1 m 2 such that each of its coordinates is bounded by m 1 . Adding two polynomials was not enough. But the smallest difference between two common roots is far greater than before. So we keep adding polynomials.

If we consider the four polynomials P 1 , P 2 , P 3 and P 4 , the lattice containing the difference between two commons roots will be spanned by the rows of the following matrix:

          1 0 0 C AC BC + A 2 C C 2 + 2ABC + A 3 C 0 1 0 B C B 2 + AC 2BC + AB 2 + A 2 C 0 0 1 A (B + A 2) C + 2AB + A 3 2AC + B 2 + 2A 2 B + A 4 0 0 0 m 1 m 2 0 0 0 0 0 0 0 m 1 m 2 0 0 0 0 0 0 0 m 1 m 2 0 0 0 0 0 0 0 m 1 m 2          
.

Following the Gaussian heuristic, we can expect the shortest vector of this lattice to be of norm

√ 7(m 1 m 4 2) 1/7 ≈ √ 7 × 2 8n/7 > √ 7 × 2 n ≈ √ 7m 1 . Hence (x 0 , x 1 , x 2 , x 3 , x 4 , x 5 , x 6
) is likely to be the only common root of P 1 , P 2 , P 3 and P 4 modulo m 1 m 2 such that each of its coordinates is bounded by m 1 . We could wonder if it is relevant to use the Gaussian heuristic in such specific cases but the parameters given by this reasoning are experimentally recovered.

We can now describe the attack. From a 11 , a 12 , a 13 , , a 21 , a 22 and a 23 we construct A, B and C. Then we consider 7 outputs z 0 , . . . , z 6 , and from them we guess z ′ 0 , . . . , z ′ 6 (we recall that

z ′ i = z i or z ′ i = z i -m 1
). Now we have all the values we need to construct P 1 , P 2 , P 3 and P 4 as described in Proposition 1.

We use a Coppersmith method to find the only common root of P 1 , P 2 , P 3 and P 4 mod m 1 m 2 with all of its coordinates bound by m 1 . If we have correctly guessed the z ′ i 's, this root has to be (x 0 , x 1 , x 2 , x 3 , x 4 , x 5 , x 6), hence the initial conditions we were searching for. Finally we check the consistency thanks to an eighth output.

Knowing the z i 's we have 2 7 set of possible values for the z ′ i s. For each set we run one instance of LLL on a lattice of dimension 12 (8 monomials + 4 polynomials) and entries of size n. So the time complexity is O(n 3).

The MRG32k3a by L'Écuyer

For this particular PRNG, the public values are m 1 = 2 32 -209, m 2 = 2 32 -22853, a 11 = 0 a 12 = 1403580, a 13 = 810728, a 21 = 527612, a 22 = 0 and a 23 = 1370589.

If we consider the four polynomials P 1 , P 2 , P 3 , P 4 we find that the smallest difference between two common roots modulo m 1 m 2 is (-12600073455, 8717013482, 35458453228, 57149468535, 25239696855, -3505005772, 66309741613). We can see that each of its coordinates is greater than 2 × m 1 , this ensures that (x 0 , x 1 , x 2 , x 3 , x 4 , x 5 , x 6) will be the only small common root of P 1 ,P 2 ,P 3 and P 4 modulo m 1 m 2 . Our algorithm retrieves the initial conditions in 0.01 second with 8 outputs.

A Bernoulli trials

We suppose that we have n Bernoulli trials, each with a probability of success of p. We want to compute the probability of having a run of at least k consecutive successes. We denote this probability P r(n, p, k).

As we cannot have more successes than trials, if k > n then P r(n, p, k) = 0. If k = n, it means all the trials must be successes, hence P r(n, p, k) = p k .

If n > k we have two excluding possibilities to have k successes. First possibility, a run of k successes happen in the last n -1 trials. Second possibility, a run of k successes happen in the k first trial an there is no run of k successes in the last n -1 trials. It means the first k trials are successes, then the k + 1-th trial is a failure and there is no run of k successes in the n -k -1 remaining trials. Hence the probability of having a run of k successes in n trials when n > k is

P r(n, p, k) = P r(n -1, p, k) + p k × (1 -p) × (1 -P r(n -k -1, p, k))
We fix k and p and consider S[n] = 1 -P r(n, p, k). We notice that (S[n]) n∈N is a constant-recursive sequence:

S[n + 1] = S[n] -p k (1 -p)S[n -k -1] of order k +1 with initial terms being S[0] = • • • = S[k -1] = 1 and S[k] = 1-p k .
The explicit values of the sequence are given by S

[n] = C 1 (r 1) n + • • • + C k+1 (r k+1
) n where the r i are the roots of the characteristic polynomial x k+1x k + p k (1 -p) and the C i are constants given by the initial terms.

In our case, we have m outputs and we want to know the probability of having k + 1 consecutive internal states of the form v i+1 = zv i mod 2 n . Given a v i , the probability that v i+1 = zv i mod 2 n is 1/4. So our problem is to compute the probability of having a run of at least k successes in a sequence of m -1 Bernoulli trials, the probability of success of each trial being 1/4.

In the following table we give the minimal values of m such that the probability of having a run of k successes in m -1 trials is greater than 1/2. (Warning, these values are given by numerical approximations, they might not be exact.)

B Improvement of Coppersmith ?

Let P be the polynomial constructed thanks to the outputs of our LCG. We are searching for a root of P modulo N . In Section 2, we saw that we had two possibilities. We could directly construct the matrix used in the Coppersmith method M with only P or we could build a bigger set of polynomials P i of the form f = y k0 0 , . . . , y kn n P kp . In Section 3, we presented attacks were the set of polynomials was not extended. The goal of this appendix will be to try to find a family of polynomials P i 's such that we can retrieve the root even when more bits are discarded.

For the reader familiar with [START_REF] Benhamouda | Easing Coppersmith methods using analytic combinatorics: Applications to public-key cryptography with weak pseudorandomness[END_REF] by Benhamouda et al., we will use the same notations. We denote P the bigger set constructed from P . The polynomials in P are of the form f = y k0 0 , . . . , y kn n P kp and all linearly independent. We denote by χ P (f) the multiplicity of our small root as a root of f mod N : χ P (f) = k p . We denote M the set of all the monomials appearing in P. If m in M is of the form y k0 0 . . . y kn n , we denote χ M (m) = k 0 + • • • + k n . We know by equation (1) that the attack is suppose to work as long as

ℓ/n ≤ ∑ f ∈P χ P (f) ∑ m∈M χ M (m)
where ℓ is the number of discarded bits and n the size of the internal states of our generator.

B.1 Consecutive outputs

Here our Polynomial is P = y 2 1 + 2H 1 y 1 + H 2 1 -y 0 y 2 -H 0 y 2 -H 2 y 0 -H 0 H 2 . We fix a parameter T and choose P T as following: P T = {y k0 0 y ϵ 1 y k2 2 P kp |ϵ ∈ {0, 1}, k 0 + ϵ + k 2 + 2k p ≤ T } All the polynomials in P T are linearly independent. Indeed, if we consider the monomial order y 1 > y 0 > y 2 then the leading monomial of y k0 0 y ϵ 1 y k2 2 P kp is y Thus this new construction should allow us to recover the small root as long as ℓ/n ≤ ⌊ ((T + 1) 2 -1) × ((T + 1) 2 -3) 48 ⌋ × 8 T (T + 1)(T + 2)(T + 3) .

This value tends to 1/6. To obtain a bound bigger than 1/7 (our already achieved result), we need T ≥ 13. But T = 13 means our lattice would be of dimension 924, and running the LLL algorithm on a lattice of dimension 900 is hardly doable.

B.2 Not consecutive outputs

Here our Polynomial is P = y 0 y i+1 -y 1 y i + H i+1 y 0 + H 0 y i+1 -H i y 1 -H 1 y i + H 0 H i+1 -H 1 H i . We fix a parameter T and choose P T as following: All the polynomials in P T are linearly independent. We are not going to precisely compute the set of monomial of P T instead we are going to approach it with M T = {y k0 0 y k1 1 y ki i y

P T =
ki+1 i+1 |k 0 + k 1 + k i + k i+1 ≤ T }.
Now we must compute ∑ f ∈P T χ P T (f) and This value tends to 1/8. But our second attack with one polynomial already recover the small root when ℓ/n ≤ 1/8. Hence adding more polynomials in our Coppersmith method does not seem relevant.

∑ m∈M T χ M T (m): ∑ f ∈P T χP T (f) = 2    T -2 ∑ k 0 =0 T -2-k 0 ∑ k 1 =0 T -2-k 0 -k 1 ∑ k i =0 ⌊ T -k 0 -k 1 -k 2 2

 (experimental) ≤ 0.3 0.45 0.55 0.6 time for n = 32 0.008s 0.01s 0.02s 0.02s time for n = 64 0.02s 0.02s 0.02s 0.03s time for n = 1024 1s 1s 1.2s 1.3s

 none computing time for n = 32 0.02s 0.02s 10s none computing time for n = 64 0.02s 0.02s 28s none computing time for n = 1024 0.04 0.04s (950s) none -Attack via a Coppersmith method without consecutive outputs computing time for n = 32 0.6s 11s (219h) none computing time for n = 64 0.7s 21s (548h) none computing time for n = 1024 4s (130s) (1.6y) none -Attack via Stern's algorithm computing time for n = 32 3.6s 1m (25m) (7h) computing time for n = 64 4s 1m (25m) (7h) computing time for n = 1024 2m (20m) (6h) (110h)

2kp+ϵ 1 y k0 0 y k2 2

 2 thus all leading monomials are different. We are not going to precisely compute the set of monomial of P T instead we are going to approach it withM T = {y k0 0 y k1 1 y k2 2 |k 0 + k 1 + k 2 ≤ T }. Now we must compute ∑ f ∈P T χ P T (f) and ∑ m∈M T χ M T (m): ∑ f ∈P T χ P T (f) = + 1) 2 -1) × ((T + 1) 2 -

T

 2)(2T 4 + 16T 3 + 28T 2 -16T + 15 × (-1) T --k 0 -k 1 -k i ∑ k i+1 =0 k0 + k1 + ki + ki+1 = T (T + 1)(T + 2)(T + 3)(T + 4) 30 .Thus this new construction should allow us to recover the small root as long asℓ/n ≤ (2T 4 + 16T 3 + 28T 2 -16T + 15 × (-1) T -15)T (T + 1)(T + 3)(T + 4) × 30 480 .

 This theoretical bound increases toward 1/4. As usual with Coppersmith methods, the theoretical bound is smaller than what we can really achieve.

	k	2	3	4	5
	ℓ/n (theoretical) <	1/7 3/16 6/29 5/23
	ℓ/n (experimental) < 0.3 0.35 0.38 0.40

 will have at most 2k monomials of degree 1 and 2We also present the computing time for different n and k.

							(k 2)	monomials of degree
	2. Heuristically, our attack should work if (2 ℓ) 2k+4(k 2) < (2 n) (k 2) . In other words,
	our attack should work if ℓ/n < k-1 4k . This theoretical bound increases toward 1/4.
	As usual with Coppersmith methods, the theoretical bound is smaller than
	what we can really achieve.						
	k		2	3	4	5	6	7	8
	ℓ/n (theoretical) <	1/8 1/6 3/16 1/5 5/24 3/14 7/32
	ℓ/n (experimental) < 0.16 0.25 0.31 0.34 0.36 0.38 0.4
	n\k	2	3	4	5	6	7

 {y k0 0 y k1 1 y ki i P kp |k 0 +k 1 +k i +2k p ≤ T } kp |k 1 +k i +k i+1 +2k p ≤ T }.

	∪ {y k1 1 y ki i y i+1 P ki+1

Attack on the MRG32

Notations: We denote by z ′ i the integer value x i -y i which can be different from z i = x i -y i mod m 1 . As x i is already in {0, . . . , m 1 -1} and y i is already in {0, . . . , m 2 -1}, we have that

We also denote by u the inverse of m 1 modulo m 2 (um 1 ≡ 1 mod m 2).

Proposition 1 For every

where

Proof. As X i ≡ x i mod m 1 , there exists an integer k i such that

For the same reason, there exists an integer ki such that X i = ki m 2 + y i . Hence

Thus

To obtain the polynomial P i we need to remember that

We have established that

and each of its coordinates is bounded by m 1 .

If this root is the only small one, we can expect to retrieve it thanks to a Coppersmith method. But it tends not to be the case. We will consider Λ the lattice containing all the differences between two roots of P 1 modulo m 1 m 2 . If the smallest vector v of Λ has its coordinates smaller than m 1 , then the vector (x 0 , x 1 , x 2 , x 3)-v could be a smaller root of P 1 mod m 1 m 2 and our attack might not work.

If we have two roots (x 0 , x 1 , x 2) and

Hence the lattice Λ is spanned by the rows of the following matrix:

Following the Gaussian heuristic, we can expect the shortest vector of this lattice to be of norm

Hence it is unlikely that (x 0 , x 1 , x 2 , x 3) is the only root of P 1 modulo m 1 m 2 such that each of its coordinates is bounded by m 1 . We try to add other polynomials, hoping it will reduce the number of common roots.