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Quantitative propagation of chaos for mean field Markov decision

process with common noise

Médéric MOTTE ∗ Huyên PHAM †

July 25, 2022

Abstract

We investigate propagation of chaos for mean field Markov Decision Process with common

noise (CMKV-MDP), and when the optimization is performed over randomized open-loop con-

trols on infinite horizon. We first state a rate of convergence of order M
γ
N , where MN is the

mean rate of convergence in Wasserstein distance of the empirical measure, and γ P p0, 1s is an

explicit constant, in the limit of the value functions of N -agent control problem with asymmetric

open-loop controls, towards the value function of CMKV-MDP. Furthermore, we show how to

explicitly construct pǫ`OpMγ
N qq-optimal policies for the N -agent model from ǫ-optimal policies

for the CMKV-MDP. Our approach relies on sharp comparison between the Bellman operators

in the N -agent problem and the CMKV-MDP, and fine coupling of empirical measures.

1 Introduction

We consider a social planner problem with N cooperative agents in a mean-field discrete time

model with common noise over an infinite horizon. The controlled state process X “ pX iqiPJ1,NK

of the N -agent model is given by the dynamical random system
#

X i
0 “ xi

0,

X i
t`1 “ F pX i

t , α
i
t,

1
N

řN
j“1 δpXj

t ,α
j
tq, ε

i
t`1, ε

0
t`1q, t P N.

(1.1)

Here, xi
0, i P J1, NK, are the initial states valued in a compact Polish space X with metric d,

pεitqiPJ1,NKtPN‹ is a family of mutually i.i.d. random variables on some probability space pΩ,F ,Pq,

valued in some measurable space E, and representing idiosyncratic noises, while pε0t qtPN‹ is

another family of i.i.d. random variables valued in some measurable space E0, and representing

the common noise (independent of idiosyncratic noise). The control αi followed by agent i, is

a process, valued in some compact Polish space A with metric dA, and adapted with respect to

the filtration pFN
t qtPN generated by ε “

`
pεitqiPJ1,NK, ε

0
t

˘
tPN‹ and also completed with a family of
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mutually i.i.d. uniform random variables U “ pU i
t qiPJ1,NK,tPN that are used for randomization of

the controls. The mean-field interaction between the agents is formalized via the state transition

function F by the dependence upon the empirical measure of both state/action of all the other

agents: here F is a measurable function from X ˆAˆPpX ˆAqˆEˆE0 into X , where PpX ˆAq

is the space of probability measures on the product space X ˆ A.

The objective of the social planner is to maximize over the set A of AN -valued pFN
t qtPN-

adapted processes α “ pαi
tqiPJ1,NK,tPN a criterion in the form

V α
N px0q :“ E

” 1

N

Nÿ

i“1

8ÿ

t“0

βtf
`
X i

t , α
i
t,

1

N

Nÿ

j“1

δpXj
t ,α

j
tq

˘ı
,

where we set x0 “ pxi
0qiPJ1,NK P XN for the initial state of the N agent system. Here β P p0, 1q

is a discount factor, and f is a bounded measurable real-valued function on X ˆ A ˆ PpX ˆ Aq.

The value function for this optimization problem is defined on XN as

VN px0q :“ sup
αPA

V α
N px0q, (1.2)

and we notice that problem (1.1)-(1.2) is a standard Markov Decision Process (MDP) with state

space XN , action space AN , and (randomized) open-loop controls, and is the mathematical

framework for reinforcement learning with multiple agents in interaction.

Let us now formulate the asymptotic mean-field problem when the number of agents N goes

to infinity. This consists formally in replacing empirical distributions by theoretical ones in the

dynamic system and gain functions. The controlled state process X of the representative agent

is given by #
X0 “ ξ0,

Xt`1 “ F pXα
t , αt,P

0
pXt,αtq, εt`1, ε

0
t`1q, t P N,

(1.3)

where we have renamed the uniform random sequence pU1
t qtPN and the noise pε1t qtPN by pUtqtPN

and pεtqtPN, and the initial state ξ0 is a G-measurable random variable, with G a σ-algebra in-

dependent of pUtqtPN, pεtqtPN, pε0t qtPN‹ , with distribution law µ0 P PpX q (the set of probability

measures on X ). The control process α is an A-valued process, adapted with respect to the filtra-

tion generated by G, pUtqtPN, pεtqtPN, pε0t qtPN‹ , denoted by α P A. Here P
0 and E

0 represent the

conditional probability and expectation knowing the common noise ε0, and then, given a random

variable Y , we denote by P
0
Y or L0pY q its conditional law knowing ε0. The McKean-Vlasov (or

mean-field) control problem consists in maximizing over randomized open-loop controls α in A

the gain functional

V αpξ0q :“ E

” 8ÿ

t“0

βtf
`
Xt, αt,P

0
pXt,αtq

˘ı
.

The value function to this optimization problem is defined on PpX q by

V pξ0q :“ sup
αPA

V αpξ0q, (1.4)

and we recall from [16] that V depends on ξ0 only through its distribution (invariance in law),

and we denote by misuse of notation: V pµ0q “ V pξ0q. Problem (1.3)-(1.4) is called mean-field
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Markov Decision Process with common noise, or conditional McKean-Vlasov Markov Decision

Process (CMKV-MDP in short), with the peculiarity compared to standard MDP coming from

the dependence of the state transition on the conditional distribution of the state/action. In

view of propagation of chaos for particle systems usually derived for mean-field diffusion process

(see [18]), it is expected that CMKV-MDP provides a mean-field approximation of the N -agent

MDP model.

While the literature on mean-field control in continuous time, in particular the optimal control

of McKean-Vlasov equations, is quite important, see the monograph [5] for an overview and

related references, there are rather few papers devoted to the discrete time framework. One

of the first works is [11] which studies the convergence of large interacting population process

to a simple mean-field model when the state space is finite. The paper [17] studies a discrete-

time McKean-Vlasov control problem with feedback controls on finite horizon, and derive the

corresponding dynamic programming equation which is explicitly solved in the linear quadratic

case. In [6], the authors consider mean-field control on infinite horizon with common noise

with a discussion about connections between closed-loop and open-loop policies, and propose Q-

learning algortithms. Our companion paper [16] deals with open-loop control and highlights the

role of randomized controls with respect to standard Markov Decision Process (MDP). The value

function is characterized as a fixed point Bellman equation defined on the space of probability

measures, and existence of ǫ-optimal randomized feedback controls is proved. The recent paper

[1] studies mean-field control with deterministic closed-loop policies through the lens of MDP

theory, and discusses the existence of optimal policies for the limiting mean-field problem as well

as for the N -agent problem.

Main contributions. In this paper, we establish a quantitative propagation of result for the

N -agent MDP towards the CMKV-MDP. Our contributions are twofold:

1. We show in Theorem 2.1 an explicit rate of convergence of the value functions under some

assumptions to be precised later: there exists some positive constant C (depending on the

data of the problem) such that for all x “ pxiqiPJ1,NK P XN ,

ˇ̌
ˇVN pxq ´ V

` 1

N

Nÿ

i“1

δxi

˘ˇ̌
ˇ ď CM

γ
N ,

where MN is the mean rate of convergence in Wasserstein distance of the empirical measure

(see [9]), and γ P p0, 1s is an explicit constant depending on β and F .

2. We prove that any ǫ-optimal randomized feedback policy for the CMKV-MDP (including

the case ǫ “ 0, i.e., optimal randomized feedback policy whose existence is shown) yields

either an approximate optimal feedback control or an approximate randomized feedback

control for the N -agent MDP problem, in a constructive sense to be precised later with an

explicit rate of convergence, see Theorems 2.2 and 2.3.

While the first statement for convergence of value function is important in theory, the second

statement is particularly interesting in practice (but often less studied in the literature) since

it means that if the McKean-Vlasov MDP is simpler to solve than the N -agent MDP (some

examples and applications to targeted advertising are developed in the PhD thesis [15]), then

one can compute an almost optimal randomized feedback policy for the McKean-Vlasov MDP,

and then use it in the N -agent MDP: this will guaranty us to have an almost optimal control.
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Related literature. The convergence of theN -individual problem to the limiting mean-field control

problem has been first rigorously proved in [14] by tightness and martingale arguments for

continuous-time controlled McKean-Vlasov equations. This result has been extended in [8] to

the common noise case and when there is interaction via the joint distribution of the state and

control. The paper [10] proved by viscosity solutions method via the characterization of the

Hamilton-Jacobi-Bellman equation the convergence of the value function towards the N -agent

problem to the value function of the mean-field control problem in the common noise case but

without idiosyncratic noise. Rate of convergence of order 1{N has been stated in [12] by Backward

Stochastic Differential Equations techniques but under the strong condition that there exists a

smooth solution to the Master Bellman equation. The recent paper [4] removed this regularity

assumption on the value function, and obtained an algebraic rate of convergence of order N´γ

for some constant γ P p0, 1s. We mention also in the continuous-time framework the paper [7]

which derived a rate of convergence of order N´1{2 when the state space is finite.

The convergence of the value function in the N -agent problem in a discrete-time mean field

framework has been studied in our companion paper [16]. However, it was assumed there that

each agent used the same open-loop policy, applied to her own idiosyncratic noise and the common

noise. In particular, agent’s controls cannot depend upon other agent’s idiosyncratic noises,

and they have symmetric (or exchangeable) behaviours. This restriction was crucial for using

propagation of chaos argument relying on a pathwise comparison between the state and control

processes in the N -individual model and the McKean-Vlasov MDPs.

In this paper, we consider that the control of each agent can also depend upon the idiosyn-

cratic noises of all the population, and that they can do so in a completely asymmetric way (i.e.

each agent can use a different open-loop policy). This additional flexibility and generality in the

definition of controls prevents us from coupling controls between the N -agent and the McKean-

Vlasov MDPs in a one-to-one fashion as in [16]. In order to overcome this difficulty, we adopt

quite different arguments by coupling the Bellman operators instead of the state/control process

of the N -agent and CMKV MDPs. More precisely, the strategy of the proof is the following:

Idea of the proof.

(i) We first derive the Bellman equation for the N -agent MDP, with arguments similar to [16],

i.e. we prove that TNVN “ VN , where TN is the operator defined by

TNW pxq :“ sup
aPAN

T
a
NW pxq, x P XN ,

with

T
a
NW pxq :“

1

N

Nÿ

i“1

fpxi, ai,
1

N

Nÿ

j“1

δpxj,ajqq ` βE
“
W

`
pF pxi, ai,

1

N

Nÿ

j“1

δpxj,ajq, ε
i
1, ε

0
1qiPJ1,NK

˘‰
,

for x “ pxiqiPJ1,NK P XN , a “ paiqiPJ1,NK P AN . This property is obtained by seeing the

N -agent MDP as a standard MDP on XN with actions space AN .

(ii) Then, we observe that the operators Ta of the McKean-Vlasov MDP, derived in [16], are,

formally, the limits of Ta
N when N Ñ 8, for a P L0pX ˆ r0, 1s, Aq and a P AN well coupled.

Inspired by this formal observation, we “compare” Ta
N to T

a and prove that they are indeed

“close” in some sense, for N large. A key point is that Ta
N is defined on L8

mpXN q (the set
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of bounded measurable functions on XN , valued in R) while T
a is defined on L8

mpPpX qq

(the set of bounded measurable functions on PpX q, valued in R). To compare both type

of objects, we introduce a canonical way to associate to a function W P L8
mpPpX qq the

function |W P L8
mpXN q by setting |W pxq “ W

`
1
N

řN
i“1 δxi

˘
.

(iii) Once the proximity between T
a
N and T

a is established in a general sense, we prove the

proximity of the value functions VN and V by seeing them as the unique fixed points of the

Bellman operators TN “ supaPAN T
a
N and T “ supaPL0pXˆr0,1s,Aq T

a, following the intuition

that if two contracting operators are close, their unique fixed points should also be close.

(iv) Finally, we provide two procedures to build Opǫ ` M
γ
Nq-optimal policies for the N -agent

MDP from an ǫ-optimal stationary randomized feedback policy for the McKean-Vlasov

MDP. The idea is to view, for each MDP, any ǫ-optimal policy as a policy satisfying

the verification theorem, which is a property only linked to the Bellman operator, again

following the intuition that if two Bellman operators are close, the policies satisfying their

verification results should also be close.

Outline of the paper. The rest of the paper is organized as follows. We state the assumptions

and the main results in Section 2, while Section 3 is devoted to their proofs. Finally, we give in

Appendix A the proof of existence for optimal randomized feedback policy, and put in Appendix

B some results about the Bellman operator for the N -agent MDP problem that are needed in

the proof of our convergence results.

2 Main results

2.1 Notations and assumptions

The product space X ˆ A is equipped with the metric dppx, aq, px1, a1qq “ dpx, x1q ` dApa, a1q,

x, x1 P X , a, a1 P A. Likewise, we shall endow XN with the metric dN px,x1q “ 1
N

řN
i“1 dpxi, x1iq

for x “ pxiqiPJ1,NK,x
1 “ px1iqiPJ1,NK P XN , AN with the metric dA,N pa, a1q “ 1

N

řN
i“1 dApai, a1iq

for a “ paiqiPJ1,NK, a
1 “ pa1iqiPJ1,NK P AN , and pX ˆ AqN with the metric dN ppx, aq, px1, a1qq “

1
N

řN
i“1 dppxi, aiq, px1i, a1iqq for x,x1 P X and a, a1 P AN . When pY, dq is a compact metric space,

the set PpYq of probability measures on Y is equipped with the Wasserstein distance

Wdpµ, µ1q :“ inf
! ż

Y2

dpy, y1qµpdy, dy1q : µ P Πpµ, µ1q
)
,

where Πpµ, µ1q is the set of (coupling) probability measures on Y ˆ Y with marginals µ and µ1,

and we recall the dual Kantorovich-Rubinstein representation

Wdpµ, µ1q “ sup
φPLip1

ż

Y

φpyqpµ ´ µ1qpdyq, (2.1)

where Lip1 is the set of Lipschitz functions on Y with Lipschitz constant bounded by 1.

Given x “ pxiqiPJ1,NK P XN , and a “ paiqiPJ1,NK P AN , we denote by

µ
N

rxs :“
1

N

Nÿ

i“1

δxi P PpX q, µ
N

rx, as :“
1

N

Nÿ

i“1

δpxi,aiq P PpX ˆ Aq,
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and we recall that

Wdpµ
N

rx, as, µ
N

rx1, a1sq ď dN ppx, aq, px1, a1qq. (2.2)

Given a random variable Y on pΩ,F ,Pq, we denote by PY or LpY q its distribution law.

We make the following standing assumptions on the state transition function F and on the

running reward function f .

pHFlipq There exists KF ą 0, such that for all a, a1 P A, e0 P E0, x, x1 P X , µ, µ1 P PpX ˆ Aq,

E
“
d
`
F px, a, µ, ε11, e

0q, F px1, a1, µ1, ε11, e
0q
˘‰

ď KF

`
dppx, aq, px1, a1qq ` Wdpµ, µ1q

˘
q.

pHflipq There exists Kf ą 0, such that for all x, x1 P X , a, a1 P A, µ, µ1 P PpX ˆ Aq,

|fpx, a, µq ´ fpx1, a1, µ1q| ď Kf

`
dppx, aq, px1, a1qq ` Wdpµ, µ1q

˘
.

Remark 2.1 We stress the importance of making the regularity assumptions for F in expectation

only. When X is finite, F cannot be, strictly speaking, Lipschitz (or even continuous) unless it

is constant w.r.t. its mean-field argument (µ and µ1 in pHFlipq). However, F can be Lipschitz

in expectation, e.g. once integrated w.r.t. the idiosyncratic noise.

Under Assumption pHFlipq, we define the constant

γ :“ min
“
1,

| lnβ|

lnp2KF q`

‰
P p0, 1s.

In the sequel, we denote by ∆X (resp. ∆A and ∆XˆA) the diameter of the compact metric

space X (resp. A and X ˆ A), and define

MN :“ sup
µPPpXˆAq

ErWdpµN , µqs, (2.3)

where µN is the empirical measure µN “ 1
N

řN
n“1 δYn

, pYnq1ďnďN are i.i.d. random variables

with law µ. It is know that MN Ñ
NÑ8

0, and we recall from [9], and [3] some results about non

asymptotic bounds for the mean rate of convergence in Wasserstein distance of the empirical

measure.

• If X ˆA Ă R
d for some d P N

‹, then: MN “ OpN´ 1

2 q for d “ 1, MN “ OpN´ 1

2 logp1`Nqq

for d “ 2, and MN “ OpN´ 1

d q for d ě 3.

• If for all δ ą 0, the smallest number of balls with radius δ covering the compact metric set

X ˆA with diameter ∆XˆA is smaller than O

´`
∆XˆA

δ

˘θ¯
for θ ą 2, then MN “ OpN´1{θq.

In the sequel C will denote a generic constant that depends only on the data of the problem,

namely ∆X , ∆XˆA, β, KF and Kf .
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2.2 Convergence of value functions

Our first main result is to quantify the rate of convergence of the value function of the N -agent

MDP towards the value function of the CMKV-MDP.

Theorem 2.1 There exists some positive constant C such that for all x “ pxiqiPJ1,NK P XN ,

ˇ̌
ˇVN pxq ´ V

`
µ

N
rxs

˘ˇ̌
ˇ ď CM

γ
N .

2.3 Approximate optimal policies

Our next results are to show how to obtain approximate optimal control for the N agent MDP

from ε-optimal control for CKMV-MDP, and to quantify the accuracy of this approximation.

First, let us recall from [16] the construction of ε-optimal control for CKMV-MDP. The

value function V is characterized as the unique fixed point in L8
mpPpX qq, the set of bounded

measurable real-valued functions on PpX q, of the Bellman equation V “ T V , where T is the

Bellman operator defined on L8
mpPpX qq by

T W pµq :“ sup
aPL0pXˆr0,1s;Aq

T
aW pµq,

with T
aW pµq :“ E

”
fpξ, apξ, Uq,Lpξ, apξ, Uqqq ` βW

`
P
0
F pξ,apξ,Uq,Lpξ,apξ,Uqq,ε1,ε01q

˘ı
, (2.4)

for any pξ, Uq „ µbUpr0, 1sq (it is clear that the right-hand side in (2.4) does not depend on the

choice of such pξ, Uq), where L0pX ˆ r0, 1s;Aq is the set of measurable functions from X ˆ r0, 1s

into A. Then, for all ǫ ą 0, there exists a randomized feedback policy aǫ, i.e. a measurable

function from PpX q ˆX ˆ r0, 1s into A, denoted by aǫ P L0pPpX q ˆ X ˆ r0, 1s;Aq, such that for

all µ P PpX q:

V pµq ´ ǫ ď T
aǫpµ,.qV pµq,

and we say that aǫ is an ǫ-optimal randomized feedback policy for CMKV-MDP. By considering

the randomized feedback control αǫ P A defined by

αǫ
t “ aǫpP

0
Xt

, Xt, Utq, t P N, (2.5)

where pUtqtPN is an i.i.d. sequence of random variables, Ut „ Upr0, 1sq, independent of ξ0 „ µ0,

and ε, this yields an Opǫq-optimal control for V pµ0q, namely

V pµ0q ´
ǫ

1 ´ β
ď V αǫ

pξ0q.

Actually, we can even take ǫ “ 0, i.e., get optimal randomized feedback control. The proof for

the existence of an optimal randomized feedback policy is inspired by the paper [6], which states

the existence of an optimal policy in a closely related model, and is reported in Appendix A.

We now provide two procedures to construct approximate optimal control for the N -agent

MDP from an ǫ-optimal randomized feedback policy for CMKV-MDP. The first procedure gives

a general approach for getting approximate feedback control for the N -agent MDP.
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Theorem 2.2 Let aǫ be an ǫ-optimal randomized feedback policy for CMKV-MDP. Then, there

exists a measurable function πaǫ,N from XN into AN , called feedback policy for the N -agent

MDP, such that

πaǫ,N pxq P argmin
aPAN

Wd

`
L
`
ξx, aǫpµN

rxs, ξx, Uq
˘
, µ

N
rx, as

˘
, x P XN , (2.6)

with pξx, Uq „ µ
N

rxs b Upr0, 1sq. This yields a feedback control αǫ,N P A defined by

α
ǫ,N
t “ πaǫ,N pXtq, t P N,

which is Opε ` M
γ
N q-optimal control for VN px0q, namely:

VN px0q ´ C
“
ǫ ` M

γ
N s ď V αǫ,N

N px0q.

Theorem 2.2 provides a generic way to obtain a Opǫ ` M
γ
N q-optimal feedback policy for the

N -agent MDP from an ε-optimal randomized feedback policy aε for CMKV-MDP, simply by

sending actions a “ paiqiPJ1,NK to the population so that, once in state x, the state-action pair

px, aq is empirically distributed as closely as possible to L
`
ξx, aǫpµN

rxs, ξx, Uq
˘
. However, the

computation of this argmin in (2.6) can be difficult in practice.

We propose a second approach which provides a more practical derivation of an approximate

optimal control for the N -agent MDP. It will use randomized feedback policy for the N -agent

model, defined as a measurable function from XN ˆ r0, 1sN into AN .

Theorem 2.3 Let aǫ be an ǫ-optimal randomized feedback policy for CMKV-MDP, assumed to

satisfy the regularity condition

ErdApaǫpµ, x, Uq, aǫpµ, x
1, Uqqs ď Kdpx, x1q, @x, x1 P X , µ P PpX q, (2.7)

(here U „ Upr0, 1sq) for some positive constant K. Consider the randomized feedback policy in

the N -agent model defined by

πaǫ,N
r px,uq :“

`
aǫpµN

rxs, xi, uiq
˘
iPJ1,NK

,

for x “ pxiqiPJ1,NK P XN , u “ puiqiPJ1,NK P r0, 1sN . Then, the randomized feedback control

αr,ε,N P A defined as

α
r,ǫ,N
t “ πaǫ,N

r pXt,U tq, t P N,

where tU t “ pU i
t qiPJ1,NK, t P Nu is a family of mutually i.i.d. uniform random variables on r0, 1s,

independent of G, ε “
`
pεitqiPJ1,NK, ε

0
t

˘
tPN‹ , is an Opǫ`M

γ
N q-optimal control for VN px0q, namely:

VN px0q ´ Cp1 ` Kqpε ` M
γ
Nq ď V αr,ε,N

N px0q.

Theorem 2.3 provides a simple and natural procedure to get an approximate policy for the

N -agent MDP: it corresponds to using an ǫ-optimal randomized feedback policy aǫ of the CMKV-

MDP, but instead of inputting the theoretical state distribution of the McKean-VlasovMDP in its

mean-field argument, we input the empirical state distribution of the N -agent MDP, and instead

of inputting the McKean-Vlasov state in its state argument, we input the N -agent individual

states, and moreover, we use a randomization by tossing a coin at any time and for any agent.

Notice that the validity of this procedure requires the Lipschitz condition (2.7), which always

holds true when the state space X is finite. Indeed, in this case, the metric on X is the discrete

distance dpx, x1q “ 1x‰x1 , and (2.7) is clearly satisfied with K “ ∆A.
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3 Proof of main results

This section is devoted to the proofs of Theorems 2.1, 2.2, and 2.3 about rate of convergence in

the propagation of chaos between the N -agent MDP and the limiting conditional McKean-Vlasov

MDP. Our approach relies on the Bellman operators of each MDP. By proving their proximity

(in a sense to be precised), we will be able to prove on the one hand the proximity of their

unique fixed points, hence the convergence of the value functions, and on the other hand that

almost optimal randomized feedback policies are directly related to the Bellman operators via

the verification result, which will give the convergence of the approximate controls.

3.1 Comparing the Bellman operators

We first introduce the following useful measurable optimal permutation for the coupling of em-

pirical measures.

Definition 3.1 (Measurable optimal permutation) Let pY, dq be a metric space. There

exists a measurable map σ : py,y1q P pYN q2 Ñ σy,y1

P SN (where SN denotes the set of

permutations on J1, NK) such that for all py,y1q P pYN q2, we have

Wd

`
µ

N
rys, µ

N
ry1s

˘
“ dN py,y1

σy,y1 q, (3.1)

where we set y1
σy,y1 “ py1σy,y1

i qiPJ1,NK for y1 “ py1iqiPJ1,NK.

Proof. It is a well known result (see [19]) that, given py,y1q P pYN q2, there exists a permutation

σy,y1

P SN realizing an optimal coupling between µN rys, µ
N

ry1s P PpYq, i.e., s.t. (3.1) holds.

Let us check that this optimal permutation can be represented as a measurable function of

py,y1q P pYN q2. Let n P J1, N !K ÞÑ σn P SN be some bijection. Notice that the function

y,y1 P YN ÞÑ
`
dN py,y1

σnq
˘
nPJ1,N !K

P R
N !

is continuous, hence measurable. Furthermore, it is clear that the function

z P R
N ! ÞÑ min

“
argmin
nPN !

znq
‰

is measurable. Denoting by

nminpy,y1q :“ min
“
argmin
nPN !

dN py,y1
σnq

‰
,

it follows that the function y,y1 P XN ÞÑ σy,y1

“ σnminpy,y1q is a measurable representation of

the optimal permutation. l

We now study the “proximity” between the Bellman operator of the CMKV-MDP given in

(2.4), and the Bellman operator of the N -agent problem, viewed as a MDP with state space XN ,

action space AN , noise sequence ε “ pεtqtPN‹ with εt :“ ppεitqiPJ1,NK, ε
0
t q valued in EN ˆE0, state

transition function

F px, a, eq :“
´
F pxi, ai, µ

N
rx, as, ei, e0q

¯
iPJ1,NK

, e “ ppeiqiPJ1,NK, e
0q P EN ˆ E0,
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and reward function

fpx, aq “
1

N

Nÿ

i“1

f
`
xi, ai, µ

N
rx, as

˘
, x “ pxiqiPJ1,NK, a “ paiqiPJ1,NK.

Denoting by L8
mpXN q the subset of measurable functions in L8pXN q (the set of bounded real-

valued functions on XN ), the Bellman “operator” TN : L8
mpXN q Ñ L8pXN q of the N -agent

MDP is defined for any W P L8
mpXN q by:

TNW pxq :“ sup
aPAN

T
a
NW pxq, x P XN ,

where

T
a
NW pxq :“ fpx, aq ` βE

“
W

`
F px, a, ε1q

˘‰
, x P XN , a P AN .

The characterization of the value function VN and optimal controls for the N -agent MDP via

the Bellman operator TN is stated in Appendix B.

We aim to quantify how “close” T
a
N and T

a are when a and a are close in a sense to be

precised. Notice that the N -agent operator Ta
N is defined on L8

mpXN q while the McKean-Vlasov

operator Ta is defined on L8
mpPpX qq. There is however a natural way to compare them by means

of an “unlifting” procedure. To any function W P L8
mpPpX qq, we associate the unlifted function

|W P L8
mpXN q defined by

|W pxq :“ W pµ
N

rxsq, @x P XN .

We recall from [16] that the value function V of the CMKV-MDP is γ-Hölder:

|V pµq ´ V pµ1q| ď K‹

`
Wdpµ, µ1q

˘γ
, @µ, µ1 P PpX q, (3.2)

for some constant K‹ depending on KF , β and ∆X .

Lemma 3.1 There exists some positive constant C such that for all a P L0pX ˆ r0, 1s;Aq,

a P AN , x P XN and pξx, Uq „ µ
N

rxs b Upr0, 1sq,

|~TaV pxq ´ T
a
N
qV pxq| ď C

”`
WdpLpξx, apξx, Uqq, µ

N
rx, asq

˘γ
` M

γ
N

ı
.

Proof. For any a P L0pX ˆ r0, 1s;Aq, and a “ paiqiPJ1,NK P AN , we have

~TaV pxq ´ T
a
N
qV pxq

“ E

”
fpξx, apξx, Uq,Lpξx, apξx, Uqqq ´

1

N

Nÿ

i“1

fpxi, ai, µ
N

rx, asq
ı

` βE
”
V
`
P
0
F pξx,apξx,Uq,Lpξx,apξx,Uqq,ε1,ε01q

˘
´ V

` 1

N

Nÿ

i“1

δF pxi,ai,µ
N

rx,as,εi
1
,ε0

1
q

˘ı
. (3.3)

We write

E

”
fpξx, apξx, Uq,Lpξx, apξx, Uqqq

ı
´

1

N

Nÿ

i“1

fpxi, ai, µ
N

rx, asq “ f̂pLpξx, apξx, Uqqq ´ f̂pµ
N

rx, asq,
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where f̂pµq “
ş
fpx1, a1, µqµpdx1, da1q for all µ P PpX ˆ Aq. Notice that for µ, µ1 P PpX ˆ Aq, we

have

f̂pµq ´ f̂pµ1q “

ż
fpx1, a1, µqpµ ´ µ1qpdx1, da1q `

ż
pfpx1, a1, µq ´ fpx1, a1, µ1qqµ1pdx1, da1q

ď KfWdpµ, µ1q ` KfWdpµ, µ1q “ 2KfWdpµ, µ1q,

from the Kantorovich-Rubinstein dual representation (2.1) and pHflipq. It follows that

ˇ̌
ˇE
”
f
`
ξx, apξx, Uq,Lpξx, apξx, Uqq

˘ı
´

1

N

Nÿ

i“1

fpxi, ai, µ
N

rx, asq
ˇ̌
ˇ (3.4)

ď 2KfWdpLpξx, apξx, Uqq, µ
N

rx, asq.

Let us next focus on the second term in (3.3). As V is γ-Hölder with constant factor K‹, we

have

ˇ̌
ˇE
”
V
`
P
0
F pξx,apξx,Uq,Lpξx,apξx,Uqq,ε1,ε01q

˘
´ V

` 1

N

Nÿ

i“1

δF pxi,ai,µ
N

rx,as,εi
1
,ε0

1
q

˘ıˇ̌
ˇ

ď K‹E

”
WdpP0

F pξx,apξx,Uq,Lpξx,apξx,Uqq,εi
1
,ε0

1
q,

1

N

Nÿ

i“1

δF pxi,ai,µ
N

rx,as,εi
1
,ε0

1
q

˘ıγ
, (3.5)

by Jensen’s inequality. Let pξi, U i
0qiPJ1,NK be N i.i.d. random variables, independent of ε1, such

that pξi, U i
0q „ µ

N
rxs bUpr0, 1sq, i P J1, NK. For any i.i.d. random variables pε̃i1qiPJ1,NK such that

ppξi, U i
0, ε̃

i
1qiPJ1,NK, ε

0
1q

d
“ ppξi, U i

0, ε
i
1qiPJ1,NK, ε

0
1q, (3.6)

we have

E

”
Wd

`
P
0
F pξx,apξx,Uq,Lpξx,apξx,Uqq,εi

1
,ε0

1
q,

1

N

Nÿ

i“1

δF pxi,ai,µ
N

rx,as,εi
1
,ε0

1
q

˘ı

ď E

”
Wd

`
P
0
F pξx,apξx,Uq,Lpξx,apξx,Uqq,εi

1
,ε0

1
q,

1

N

Nÿ

i“1

δF pξi,apξi,Ui
0

q,Lpξx,apξx,Uqq,ε̃i
1
,ε0

1
q

˘ı

` E

”
Wd

` 1

N

Nÿ

i“1

δF pξi,apξi,Ui
0

q,Lpξx,apξx,Uqq,ε̃i
1
,ε0

1
q,

1

N

Nÿ

i“1

δF pxi,ai,µ
N

rx,as,εi
1
,ε0

1

˘ı

ď MN ` E

”
Wd

` 1

N

Nÿ

i“1

δF pξi,apξi,Ui
0

q,Lpξx,apξx,Uqq,ε̃i
1
,ε0

1
q,

1

N

Nÿ

i“1

δF pxi,ai,µ
N

rx,as,εi
1
,ε0

1

˘ı
, (3.7)

by definition ofMN in (2.3). Let us now consider the random permutation σpξi,apξi,Ui
0

qqiPJ1,NK,px
i,aiqiPJ1,NK

defined in Definition 3.1 that we shall, to simplify notations, simply denote by σ. Notice that as

pξi, apξi, U i
0qqiPJ1,NK KK pεi1qiPJ1,NK, we clearly see that pε̃i1qiPJ1,NK :“ pε

pσ´1qi
1 qiPJ1,NK satisfies the

required condition (3.6). Therefore the above relation applies to pε̃i1qiPJ1,NK “ pε
pσ´1qi
1 qiPJ1,NK.
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For such pε̃i1qiPJ1,NK, we get

E

”
Wd

` 1

N

Nÿ

i“1

δ
F pξi,apξi,Ui

0
q,Lpξx,apξx,Uqq,ε

pσ´1qi
1

,ε0
1

q
,
1

N

Nÿ

i“1

δF pxi,ai,µ
N

rx,as,εi
1
,ε0

1
q

˘ı

“ E

”
Wd

` 1

N

Nÿ

i“1

δF pξσi ,apξσi ,U
σi
0

q,Lpξx,apξx,Uqq,εi
1
,ε0

1
q,

1

N

Nÿ

i“1

δF pxi,ai,µ
N

rx,as,εi
1
,ε0

1
q

˘ı

ď
1

N

Nÿ

i“1

E

”
d
`
F pξσi , apξσi , Uσi

0 q,Lpξx, apξx, Uqq, εi1, ε
0
1q, F pxi, ai, µ

N
rx, as, εi1, ε

0
1q
˘ı

ď KF

1

N

Nÿ

i“1

E

”
d
`
pξσi , apξσi , Uσi

0 qq, pxi, aiq
˘

` Wd

`
Lpξx, apξx, Uqq, µ

N
rx, as

˘ı

“ KFErWdp
1

N

Nÿ

i“1

δpξi,apξi,Ui
0

qq, µN
rx, asq ` Wd

`
Lpξx, apξx, Uqq, µ

N
rx, as

˘ı

ď KF

´
MN ` 2E

“
WdpLpξx, apξx, Uqq, µ

N
rx, as

˘‰¯
,

where the first inequality comes from (2.2), the second one is derived by conditioning w.r.t.

ppξi, U i
0qiPJ1,NK, ε

0
1q and using the regularity in expectation of F in pHFlipq, the last equality

holds true by definition of the permutation σ realizing the optimal coupling (3.1), and the last

inequality from the definition of MN . Recalling (3.7), we then have

E

”
Wd

`
P
0
F pξx,apξx,Uq,Lpξx,apξx,Uqq,εi

1
,ε0

1
q,

1

N

Nÿ

i“1

δF pxi,ai,µ
N

rx,as,εi
1
,ε0

1
q

˘ı

ď p1 ` KF qMN ` 2KFE
“
WdpLpξx, apξx, Uqq, µ

N
rx, as

˘‰

which implies by (3.5)

E

”
V
`
P
0
F pξx,apξx,Uq,Lpξ,apξ,Uqq,ε1,ε01q

˘
´ V

` 1

N

Nÿ

i“1

δF pxi,ai,µ
N

rx,as,εi
1
,ε0

1
q

˘ı

ď K‹

´
p1 ` KF qMN ` 2KFE

“
WdpLpξx, apξx, Uqq, µ

N
rx, as

˘‰¯γ

.

Together with (3.4), and plugging into (3.3), we obtain finally
ˇ̌
ˇ~TaV pxq ´ T

a
N
qV pxq

ˇ̌
ˇ

ď 2KfE

”
WdpLpξx, apξx, Uqq, µ

N
rx, asq

ı
` K‹

´
p1 ` KF qMN ` 2KFE

“
WdpLpξx, apξx, Uqq, µ

N
rx, as

˘‰¯γ

ď C
!
WdpLpξx, apξx, Uqq, µ

N
rx, asq `

´
WdpLpξx, apξx, Uqq, µ

N
rx, asq

¯γ

` M
γ
N

)

(recall that γ ď 1), for some constant C depending only on K‹, Kf , KF , where we also use the

fact that WdpLpξx, apξx, Uqq, µ
N

rx, asq is bounded by a constant depending on the diameter of

the compact set X ˆ A. This ends the proof. l

3.2 Proof of Theorem 2.1

Lemma 3.1 means that given a P L0pX ˆ r0, 1s;Aq, a P AN , and for x P XN , the Wasserstein

distance between the distribution law of pξx, apξx, Uqq (where pξx, Uq „ µ
N

rxs b Upr0, 1sq), and
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the empirical measure µ
N

rx, as is small (and N large), then T
aV » T

a
N
qV . It is thus natural to

look for suitable choices of a P L0pX ˆ r0, 1s;Aq, a P AN so that the above Wasserstein distance

is as small as possible. This is quantified in the following result.

Lemma 3.2 Fix x P XN . Then, for any a P L0pX ˆ r0, 1s;Aq, there exists aa P AN such that

Wd

`
Lpξx, apξx, Uqq, µ

N
rx, aas

˘
ď 2MN ,

where pξx, Uq „ µ
N

rxsbUpr0, 1sq. Conversely, for any a P AN , there exists aa P L0pX ˆr0, 1s;Aq

such that

Wd

`
Lpξx, a

apξx, Uqq, µ
N

rx, as
˘

“ 0.

Proof. Fix a P L0pX ˆ r0, 1s;Aq. Let us consider ξ “ pξiqiPJ1,NK i.i.d. with common distribution

µ
N

rxs, independent from U0 “ pU i
0qiPJ1,NK i.i.d. „ Upr0, 1sq. We have

E
“
Wd

`
Lpξx, apξx, Uqq,

1

N

Nÿ

i“1

δ
xi,apξσ

ξ,x
i ,Ui

0
q

˘‰

ď E
“
W

`
Lpξx, apξx, Uqq,

1

N

Nÿ

i“1

δ
ξσ

ξ,x
i ,apξσ

ξ,x
i ,Ui

0
q

˘
` Wdp

1

N

Nÿ

i“1

δ
ξσ

ξ,x
i ,apξσ

ξ,x
i ,Ui

0
q
,
1

N

Nÿ

i“1

δ
xi,apξσ

ξ,x
i ,Ui

0
q

˘‰

ď MN ` Er
1

N

Nÿ

i“1

dpξσ
ξ,x
i , xiqs ď 2MN ,

where we used the definition of MN and (2.2) in the second inequality, and definition of σξ,x in

the last inequality. It follows that

P
“
Wd

`
Lpξx, apξx, Uqq,

1

N

Nÿ

i“1

δ
xi,apξσ

ξ,x
i ,Ui

0
q

˘
ď 2MN

‰
ą 0,

which implies that there exists a vector a P AN such that

Wd

`
Lpξx, apξx, Uqq, µ

N
rx, as

˘
ď 2MN .

On the other hand, given such an a P AN , there clearly exists aa P L0pX ˆ r0, 1s;Aq such that

Lpξx, a
apξx, Uqq “ µ

N
rx, as: indeed, by considering pξ̃, α̃q „ µ

N
rx, as, it suffices to choose aa as

a kernel for simulating the conditional distribution of α̃ knowing ξ̃. We then have

W
`
Lpξx, a

apξx, Uqq, µ
N

rx, as
˘

“ 0.

l

By combining the general comparison of Bellman operators in Lemma 3.1 with the coupling

result in Lemma 3.2, we can now prove the propagation of chaos of value functions.

Proof of Theorem 2.1. From the fixed point equation for V with Bellman operator T in (2.4),

we have

qV pxq “ }T V pxq

“ sup
aPL0pXˆr0,1s;Aq

~TaV pxq ď sup
aPL0pXˆr0,1s;Aq

T
aa

N
qV pxq ` CM

γ
N

ď TN qV pxq ` CM
γ
N ,
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where we used Lemma 3.1 and Lemma 3.2 in the first inequality, and the definition of TN in the

last one. Since VN is a fixed point of TN (see Proposition B.2), we then have:

pqV ´ VN qpxq ď pTN qV ´ TNVN qpxq ` CM
γ
N ,

and thus by definition of TN ,

pqV ´ VN qpxq ď β sup
x1PXN

pqV ´ VN qpx1q ` CM
γ
N ,

which implies

sup
xPXN

pqV ´ VN qpxq ď CM
γ
N .

Likewise, by Lemma 3.1 and Lemma 3.2, we have

qV pxq “ }T V pxq “ sup
aPL0pXˆr0,1s;Aq

~TaV pxq ě sup
aPAN

­TaaV pxq

ě sup
aPAN

T
a
N
qV pxq ´ CM

γ
N “ TN qV pxq ´ CM

γ
N ,

and using the fact that VN is a fixed point of TN , we obtain similarly

sup
xPXN

pVN ´ qV qpxq ď CM
γ
N ,

which concludes the proof.

3.3 Proof of Theorem 2.2

We start with a general result estimating the efficiency of a feedback policy for the N -agent MDP

by “comparing” it to an ǫ-optimal randomized feedback policy for the CMKV- MDP.

Lemma 3.3 Let aǫ be an ǫ-optimal randomized feedback policy for the CMKV-MDP, and a P

AN . Then, there exists some positive constant C (depending only on ∆XˆA, β, KF , Kf ) such

that for all x P XN ,

T
a
NVN pxq ě VN pxq ´ ǫ ´ C

“
Wd

`
Lpξx, aǫpµN

rxs, ξx, Uqq, µ
N

rx, as
˘γ

` M
γ
N

‰
.

Proof. Fix x P XN , a P AN , and define aǫ P L0pX ˆ r0, 1s;Aq by aǫpx, uq “ aǫpµN
rxs, x, uq for

x P X , u P r0, 1s. By Theorem 2.1 and the β-contracting property of Ta
N , we have

|Ta
NVN pxq ´ T

a
N
qV pxq| ď β}VN pxq ´ qV pxq}XN ď CM

γ
N ,

and so

T
a
NVN pxq ě T

a
N
qV pxq ´ CM

γ
N .

Together with Lemma 3.1, this yields

T
a
NVN pxq ě ~TaǫV pxq ´ C

“
Wd

`
Lpξ, aǫpξ, Uqq, µ

N
rx, as

˘γ
` M

γ
N

‰
. (3.8)
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Denote by αǫ the randomized feedback control associated via (2.5) to the randomized feedback

policy aǫ. Then, notice that the gain functional V αǫ

pξq depends on ξ only through its law µ “

Lpξq, and we set V αǫ

pµq “ V αǫ

pξq when ξ „ µ. Since V ě V αǫ

, and by the monotonicity of Taǫ ,

we have

T
aǫV pµ

N
rxsq ě T

aǫV αǫpµ
N

rxsq “ V αǫ

pµ
N

rxsq ě V pµ
N

rxsq ´ Cǫ

by recalling that V αǫ

is a fixed point of Taǫ , and using the fact that aǫ is an ǫ-optimal randomized

feedback policy for the CMKV-MDP. From Theorem 2.1, this implies that

~TaǫV pxq ě VN pxq ´ C
“
ǫ ` M

γ
N

‰
,

which proved the required result when combined with (3.8). l

Let us denote by L0pXN ;AN q the set of measurable functions from XN into AN . Given a

feedback policy π P L0pXN ;AN q for the N -agent problem, the associated feedback control is the

unique control απ defined by απ
t “ πpXtq, t P N. By misuse of notation, we denote V π

N “ V απ

N .

Let us then introduce the operator T π
N on L8

mpXN q, defined by

T π
N W pxq “ fpx,πpxqq ` βE

“
W

`
F px,πpxq, ε1q

˘‰
, x P XN .

Proposition 3.1 Let aǫ be an ǫ-optimal randomized feedback policy for the CMKV-MDP, and

consider any feedback policy π for the N -agent MDP. Then, the feedback control απ is

Opǫ ` sup
xPXN

Wd

`
Lpξx, aǫpµN

rxs, ξx, Uqq, µ
N

rx,πpxqs
˘γ

` M
γ
N q-optimal for VN px0q,

where pξx, Uq „ µ
N

rxs b Upr0, 1sq, namely

VN px0q ´ C
“
ǫ ` sup

xPXN

Wd

`
Lpξx, aǫpµN

rxs, ξx, Uqq, µ
N

rx,πpxqs
˘γ

` M
γ
N

‰
ď V π

N px0q.

Proof. Fix x P XN , and let a “ πpxq P AN . By definition, we have T π
N VN pxq “ T

a
NVN pxq. By

Lemma 3.3, we thus have

T π
N VN pxq ě VN pxq ´ ǫ ´ C

“
sup

xPXN

Wd

`
Lpξx, aǫpµN

rxs, ξx, Uqq, µ
N

rx, as
˘γ

` M
γ
N

‰
,

and we conclude by the verification result in Lemma B.5. l

Proposition 3.1 has an important implication: it means that a feedback policy π for the N -

agent MDP yields the better performance whenever it assigns for each state x the action πpxq

that achieves the minimum of

a P AN ÞÑ Wd

`
Lpξx, aεpµ

N
rxs, ξx, Uqq, µ

N
rx, as

˘
.

Let us check that one can choose a measurable version of this argmin.

Lemma 3.4 Let a P L0pPpX q ˆ X ˆ r0, 1s;Aq. Then, there exists a measurable function π‹ :

XN Ñ AN such that

π‹pxq P argmin
aPAN

Wd

`
Lpξx, apµ

N
rxs, ξx, Uqq, µ

N
rx, as

˘
, x P XN .
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Proof. Notice that the function

hpx, aq :“ Wd

`
Lpξx, apµ

N
rxs, ξx, Uqq, µ

N
rx, as

˘

is such that for a P AN , hp¨, aq is measurable, and for x P XN , hpx, ¨q is continuous. Let us

then show that one can measurably select argmin
aPAN

hpx, aq w.r.t. x. Consider a dense sequence

panqnPN Ă AN (its existence is guaranteed by the fact that AN is a compact metric space), and

define by recursion the sequence of measurable functions πn : XN Ñ AN as

π0pxq “ a0

πn`1pxq “

#
πnpxq if hpx,πnpxqq ď hpx, an`1q

an`1 else.

The measurability of πn is easily established by induction on n: For n “ 0, it is clear. Assuming

that πn is measurable, and denoting

gnpxq “ hpx,πnpxqq ´ hpx, an`1q,@x P XN ,

notice that for any measurable set B Ă AN , we have

rπn`1s´1pBq “

#
rπns´1pBq X g´1

n pR´q if an`1 R B,`
rπns´1pBq X g´1

n pR´q
˘

Y g´1
n pR‹

`q if an`1 P B,

which is clearly a measurable set, and proves the induction. Then, let us consider an embedding

φ : AN Ñ r0, 1s such that φ and φ´1 are uniformly continuous (see Lemma C.2 in [16]). Then,

pφ ˝ πnqnPN denotes a sequence of measurable functions from XN to φpAN q Ă r0, 1s. It is well

known that the function lim infnPNpφ ˝ πnq is then measurable from XN to φpAN q (we here use

the fact that φ is continuous and φpAN q is closed, which ensures that the lim inf takes its values

in φpAN q). Finally, let us denote π‹ : XN Ñ AN defined by

π‹ “ φ´1 ˝ lim inf
nPN

pφ ˝ πnq.

π‹ is then measurable by composition. Furthermore, for any x P XN , φ ˝π‹pxq “ lim infnPNpφ ˝

πnpxqq is an accumulation point of the sequence pφ ˝ πnpxqqnPN, which implies, by conti-

nuity of φ´1, that π‹pxq is an accumulation point of pπnpxqqnPN. Given the definition of

πnpxq, it is clear by induction that for any n P N, hpx,πnpxqq ď minmďn hpx,π‹
mq, and thus

hpx,π‹pxqq ď minnPN hpx,πnq. By density of panqnPN and by continuity of hpx, ¨q, this implies

that hpx,π‹pxqq “ minaPAN hpx, aq for all x P XN , i.e. π‹pxq P argmin
aPAN

hpx, aq. We conclude

that π‹ is thus a measurable selection of argmin
aPAN

hp., aq. l

By Lemma 3.4, there exists a randomized feedback policy πaǫ,N s.t.

Wd

`
Lpξx, aǫpµN

rxs, ξx, Uqq, µ
N

rx,πaǫ,N s
˘

“ inf
aPAN

Wd

`
Lpξx, aǫpµN

rxs, ξx, Uqq, µ
N

rx, as
˘
,

and the r.h.s. of the above equality is bounded by 2MN from Lemma 3.2. Together with

Proposition 3.1, this proves Theorem 2.2.
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3.4 Proof of Theorem 2.3

Given a randomized feedback policy πr P L0pXN ˆr0, 1sN ;AN q), the set of measurable functions

from XN ˆ r0, 1sN) into AN , the associated feedback control is the unique control απ given by

απ
t “ πrpXt,U tq, t P N, where tU t “ pU i

t qiPJ1,NK, t P Nu is a family of mutually i.i.d. uniform

random variables on r0, 1s, independent of G, ε. By misuse of notation, we denote V π
N “ V απ

N .

For πr P L0pXN ˆ r0, 1sN ;AN q, we introduce the operator T πr

N on L8
mpXN q, defined by

T
πr

N W pxq :“ Erfpx,πrpx,U0qq ` βW pF px,πrpx,U0q, ε1qs, @x P XN ,

where U0 “ pU i
0qiPJ1,NK is a family of i.i.d. „ Upr0, 1sq, independent of G, ε.

We adapt Proposition 3.1 to the case of randomized feedback policies.

Proposition 3.2 Let aǫ be an ε-optimal randomized feedback policy for the CMKV-MDP, and

consider any feedback policy πr for the N -agent MDP. Then, the feedback control απr is

Opǫ ` sup
xPXN

E

”
Wd

`
Lpξx, aǫpµN

rxs, ξx, Uqq, µ
N

rx,πrpx,U0qs
˘ıγ

` M
γ
Nq-optimal for VN px0q,

namely

VN px0q ´ C
´
ǫ ` sup

xPXN

E

”
Wd

`
Lpξx, aǫpµN

rxs, ξx, Uqq, µ
N

rx,πrpx,U0qs
˘ıγ

` M
γ
N

¯
ď V π

N px0q.

Here pξx, Uq „ µ
N

rxs b Upr0, 1sq, and U0 “ pU i
0qiPJ1,NK is a family of i.i.d. „ Upr0, 1sq, inde-

pendent of ε.

Proof. Fix x P XN , and let a “ πrpx,U0q be the random variable valued in AN . By definition,

we have T
πr

N VN pxq “ E
“
T
a
NVN pxq

‰
. By Lemma 3.3, we have

T
a
NVN pxq ě VN pxq ´ ǫ ´ C

“
Wd

`
Lpξx, aǫpµN

rxs, ξx, Uqq, µ
N

rx,πrpx,U0qs
˘γ

` M
γ
N

‰
.

Taking the expectation, and by Jensen’s inequality, we then get

T
πr

N VN pxq ě VN pxq ´ ǫ ´ C
´

sup
xPXN

E

”
Wd

`
Lpξx, aǫpµN

rxs, ξx, Uqq, µ
N

rx,πrpx,U0qs
˘ıγ

` M
γ
N

¯
,

and we conclude by the verification result in Lemma B.5. l

Compared to Proposition 3.1, Proposition 3.2 means that with a randomized feedback policy

πr, one can obtain a “good” performance whenever it produces empirical state-action distribu-

tions that are close the theoretical state-action distribution generated by aǫ on average, i.e., that

makes the quantity

E

”
Wd

`
Lpξx, aǫpµN

rxs, ξx, Uqq, µ
N

rx,πrpx,U0qs
˘ı

as small as possible. More precisely, if we can design a randomized policy πr such that

E

”
Wd

`
Lpξx, aǫpµN

rxs, ξx, Uqq, µ
N

rx,πrpx,U0qs
˘ı

ď CMN ,

then by Proposition 3.2, this will prove the statement of Theorem 2.3. The next result shows

how it can be achieved.
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Lemma 3.5 Let a : PpX q ˆ X ˆ r0, 1s Ñ A be any (if it exists) randomized feedback policy for

the CMKV-MDP such that

ErdApapµ, x, Uq, apµ, x1, Uqqs ď Kdpx, x1q, @µ P PpX q, x, x1 P X , (3.9)

(here U „ Ur0, 1sq) for some positive constant K. Consider the randomized feedback policy for

the N -agent MDP defined by

πa,N
r px,uq “

´
apµ

N
rxs, xi, uiq

¯
iPJ1,NK

, x “ pxiqiPJ1,NK P XN , u “ puiqiPJ1,NK P r0, 1sN .

Then,

E

”
Wd

`
Lpξx, apµ

N
rxs, ξx, Uqq, µ

N
rx,πa,N

r px,U0qs
˘ı

ď p2 ` KqMN ,

where pξx, Uq „ µ
N

rxs b Upr0, 1sq.

Proof. Fix x P XN , and set axpx, uq “ apµ
N

rxs, x, uq for px, uq P X ˆ r0, 1s. Let us consider

a family ξ “ pξiqiPJ1,NK of N i.i.d. random variables such that ξi „ µ
N

rxs, and independent of

U0. Let us consider σξ,x, the optimal permutation defined in Definition 3.1 between ξ and x.

We have

Wd

`
Lpξx, apµ

N
rxs, ξx, Uqq, µ

N
rx,πa,N

r px,U0qs
˘

“ Wd

`
Lpξx, axpξx, Uqq,

1

N

Nÿ

i“1

δxi,axpxi,Ui
0

q

˘

ď Wd

`
Lpξx, axpξx, Uqq,

1

N

Nÿ

i“1

δ
ξ
σ
ξ,x
i ,axpξσ

ξ,x
i ,Ui

0
q

˘
` Wd

` 1

N

Nÿ

i“1

δ
ξ
σ
ξ,x
i ,axpξσ

ξ,x
i ,Ui

0
q
,
1

N

Nÿ

i“1

δxi,axpxi,Ui
0

q

˘

ď Wd

`
Lpξx, axpξx, Uqq,

1

N

Nÿ

i“1

δ
ξi,axpξi,U

pσξ,xq
´1

i
0

q

˘
` dN

`
pξσ

ξ,x

,πa,N
r pξσ

ξ,x

,U0qq, px,πa,N
r px,U0qq

˘
,

where we set ξσ
ξ,x

“ pξσ
ξ,x
i qiPJ1,NK, and use (2.2) in the last inequality. Taking the expectation,

we then obtain under condition (3.9)

Wd

`
Lpξx, apµ

N
rxs, ξx, Uqq, µ

N
rx,πa,N

r px,U0qs
˘

ď MN ` p1 ` KqErdN pξσ
ξ,x

,xqs

“ MN ` p1 ` KqE
“
Wd

`
µ

N
rξs, µ

N
rxs

˘‰
ď p2 ` KqMN ,

where we use (3.1) in the last equality. This concludes the proof. l

We now apply Lemma 3.5 with an ε-optimal randomized feedback policy aǫ for the CMKV-

MDP, and combined with Proposition 3.2, this proves the required result in Theorem 2.3.

A Existence of optimal randomized control for CMKV-

MDP

Recall from Proposition 4.1 in [16] that the Bellman operator T of the CMKV-MDP is written

in the lifted form as

rT W spµq “ sup
aPA

!
f̃pµ,aq ` βE

“
W

`
F̃ pµ,a, ε01q

˘‰)
, µ P PpX q, (A.1)
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for W P L8
mpPpX qq, where A “ PpX ˆ Aq, F̃ is the measurable function on PpX q ˆ A ˆ E0 Ñ

PpX q defined by

F̃ pµ,a, e0q “ F p¨, ¨,ppµ,aq, ¨, e0q ‹
`
ppµ,aq b Lpε1q

˘
,

and f̃ is the measurable function on PpX q ˆ A defined by

f̃pµ,aq “

ż

XˆA

fpx, a,ppµ,aqqppµ,aqpdx, daq.

Here ‹ is the pushforward measure notation, p is a measurable coupling projection from PpX qˆA

into A: ppµ,aq “ ppµ,ppµ,aqq, satisfying pr
1

‹ ppµ,aq “ µ, and ppµ,aq “ a if pr1 ‹ a “ µ

(where pr1 is the projection function on the first coordinate). Since f̃ and F̃ depend upon a only

through ppµ,aq, it is clear that the supremum in (A.1), for each µ P PpX q, can be taken actually

over the the subset Γµ :“ ta : pµ,aq P Γu Ă A, where Γ :“ tpµ,aq P PpX q ˆ A : pr1 ‹ a “ µu

is closed in PpX q ˆ A from the continuity of a ÞÑ pr1 ‹ a. Moreover, since V is continuous (see

(3.2)), it is straightforward to prove that

pµ,aq P Γ ÞÑ f̃pµ,aq ` βE
”
V
`
F̃ pµ,a, ε01q

˘ı

“

ż

XˆA

fpx, a,aqapdx, daq ` βE
”
V
`
F p¨, ¨, µ, ¨, e0q ‹

`
a b Lpε1q

˘˘ı

is continuous and thus upper continuous on Γ. Therefore, by [2], Proposition 7.33, there exists

a measurable function φ : PpX q Ñ A whose graph is included in Γ and such that

f̃pµ, φpµqq ` βE
“
V
`
F̃ pµ, φpµq, ε01q

˘‰
“ sup

aPΓµ

!
f̃pµ,aq ` βE

“
V
`
F̃ pµ,a, ε01q

˘‰)
,

“ rT V spµq “ V pµq, @µ P PpX q, (A.2)

where the last equality follows from the fixed point equation of V . By the universal disintegra-

tion theorem (see [13], Corollary 1.26), there exists κ : X ˆ PpX ˆ Aq ˆ PpX q Ñ PpAq such

that for all a P PpX ˆ Aq, µ P PpX q with pr1 ‹ a “ µ, we have a “ µb̂κp¨,a, µq (where b̂

denotes the probability-kernel product). Furthermore, by Blackwell-Dubins Lemma, there exists

a measurable function ρ : PpAq ˆ r0, 1s Ñ A such that for all π P PpAq, if U denotes a uniform

random variable, then ρpπ, Uq „ π. We can then define the randomized feedback policy

a0pµ, x, uq “ ρpκpx, φpµq, µq, uq,

which satisfies by construction Lpξ, a0pµ, ξ, Uqq “ φpµq for pξ, Uq „ µ b Upr0, 1sq so that

f̃pµ, φpµqq “ E

”
f
`
ξ, a0pµ, ξ, Uq,Lpξ, a0pµ, ξ, Uqq

˘ı

F̃ pµ, φpµq, ε01q “ P
0
F pξ,a0pµ,ξ,Uq,Lpξ,a0pµ,ξ,Uqq,ε1,ε01q.

Recalling notation in (2.4), and by (A.2), this shows that

T
a0pµ,.qV pµq “ V pµq.

According to the verification result (Proposition 4.3 in [16]), this ensures that that the randomized

feedback control α0 P A defined by

α0
t “ a0pP0

Xt
, Xt, Utq, t P N,

where pUtqtPN is an i.i.d. sequence of random variables, Ut „ Upr0, 1sq, independent of ξ0 „ µ0,

and ε, is an optimal control for V pµ0q.
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B Bellman equation for the N-agent MDP

In this section, we study and rigorously state properties on the Bellman equation for the N -agent

problem, viewed as a MDP with state space XN , action space AN , noise sequence ε “ pεtqtPN‹

with εt :“ ppεitqiPJ1,NK, ε
0
t q valued in EN ˆ E0, state transition function

F px, a, eq :“
´
F pxi, ai, µ

N
rx, as, ei, e0q

¯
iPJ1,NK

, e “ ppeiqiPJ1,NK, e
0q P EN ˆ E0,

and reward function

fpx, aq “
1

N

Nÿ

i“1

f
`
xi, ai, µ

N
rx, as

˘
, x “ pxiqiPJ1,NK, a “ paiqiPJ1,NK.

With respect to standard framework of MDP, we pay a careful attention when dealing with

possibly continuous state/action spaces pX , Aq, and optimizing in general over open-loop controls.

Let us consider the set V of sequences ν “ pνtqtPN with ν0 a measurable function from

pr0, 1sNqN into AN , and νt a measurable function from pr0, 1sNqN ˆ pEN ˆ E0qt into AN for t P

N
‹. For each ν P V, we can associate a control process αν P A given by

αν
t :“ νtpU , pεsqsPJ1,tKq, t P N,

(with the convention that αν
0 “ ν0pUq when t “ 0), where U “ pU i

t qiPJ1,NK,tPN is a family of

mutually i.i.d. uniform random variables on r0, 1s, independent of ε, and conversely any control

α P A can be represented as αν for some ν P V . We call V the set of randomized open-loop

policies. By misuse of notation, we write V ν
N “ V αν

N .

Let us denote by L8pXN q the set of bounded real-valued functions on XN , and by L8
mpXN q

the subset of measurable functions in L8pXN q. We then introduce the Bellman “operator”

TN : L8
mpXN q Ñ L8pXN q defined for any W P L8

mpXN q by:

rTNW spxq :“ sup
aPAN

T
a
NW pxq, x P XN .

where

T
a
NW pxq :“ fpx, aq ` βE

“
W

`
F px, a, ε1q

˘‰
, x P XN , a P AN .

Notice that the sup can a priori lead to a non measurable function TNW . Because of this, TN
is not an operator on L8

mpXN q in the strict sense. To see TN as an operator, we have to find a

subset in L8
mpXN q that is preserved by TN . The next result introduces such subset.

Lemma B.1 Let M be the set in L8
mpXN q defined by

M :“
!
W P L8

mpXN q :
ˇ̌
W pxq ´ W px1q

ˇ̌
ď 2Kf

8ÿ

t“0

βt min
“
p2KF qtdN px,x1q,∆X

‰
, @x,x1 P XN u.

(B.1)

Then M is a complete metric space under the } ¨ } norm, and T
a
N , for all a P AN , and TN ,

preserve M: T
a
NM Ă M, TNM Ă M.
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Proof. It is clear that M is closed in L8
mpXN q, and is therefore a complete metric space for } ¨ }.

Let W P M. Fix x,x1 P XN , and a P AN . Let us start with two preliminary estimations: under

(Hflip), and recalling (2.2), we clearly have

|fpx, aq ´ f px1, aq| ď 2KfdN px,x1q. (B.2)

Similarly, under (HFlip), for e
0 P E0, we have

ErdNpF px, a, pεi1qiPJ1,NK, e
0q,F px1, a, pεi1qiPJ1,NK, e

0qqs ď 2KFdN px,x1q. (B.3)

Thus, denoting by X1 “ F px, a, pεi1qiPJ1,NK, e
0q and X1

1 “ F px1, a, pεi1qiPJ1,NK, e
0q, we have, by

Jensen’s inequality and then (B.3),

E

«
8ÿ

t“0

βt min
“
p2KF qtdN pX1,X

1
1q,∆X

‰
ff

ď
8ÿ

t“0

βt min
“
p2KF qtErdN pX1,X

1
1qs,∆X

‰

ď
8ÿ

t“0

βt min
“
p2KF qt`1dN px,x1q,∆X

‰
. (B.4)

The definition of Ta
N combined with (B.2), the fact that W P M, and (B.4), implies that

|Ta
NW pxq ´ T

a
NW px1q| ď 2KfdN px,x1q ` β2Kf

8ÿ

t“0

βt min
“
p2KF qt`1dN px,x1q,∆X

‰

ď 2Kf

8ÿ

t“0

βt min
“
p2KF qtdN px,x1q,∆X

‰
,

which shows that Ta
NW P M, i.e. Ta

N preserves M. Furthermore, we have

|TNW pxq ´ TNW px1q| ď sup
aPAN

|Ta
NW pxq ´ T

a
NW px1q|

ď 2Kf

8ÿ

t“0

βt min
“
p2KF qtdN px,x1q,∆X

‰
,

which also shows that TNW P M. l

Lemma B.1 implies that by restricting TN and T
a
N to M, we can see TN and T

a
N as operators

on M, that is, TN : M Ñ M and T
a
N : M Ñ M. However, the property defining the functions in

M (see (B.1)) is not very natural and practical. The following result provides a more convenient

property satisfied by all functions in M.

Lemma B.2 There exists K‹ P R such that any function W P M is γ-Hölder with constant

factor K‹, i.e.

ˇ̌
W pxq ´ W px1q

ˇ̌
ď K‹dN px,x1qγ , @x,x1 P XN .

Proof. We have

|W pxq ´ W px1q| ď 2Kf

8ÿ

t“0

βt min
“
p2KF qtdNpx,x1q,∆X

‰
“: 2KfSpdN px,x1qq.
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where Spmq “
ř8

t“0 β
t minrp2KF qtm,∆X s. If 2βKF ă 1, we clearly have

Spmq ď m

8ÿ

t“0

pβ2KF qt “
m

1 ´ β2KF

,

and so W is 1-Hölder. Let us now study the case 2βKF ą 1. In this case, in particular, 2KF ą 1

since β P p0, 1q, thus t ÞÑ p2KF qt is nondecreasing, and so

Spmq ď
8ÿ

t“0

ż t`1

t

βt min
“
p2KF qsm,∆X

‰
ds

ď
1

β

8ÿ

t“0

ż t`1

t

βs min
“
p2KF qsm,∆X

‰
ds “

1

β

ż 8

0

es lnβ min
“
mes lnp2KF q,∆X

‰
ds.

Let t‹ “ t‹pmq be such that met‹ lnp2KF q “ ∆X , i.e. t‹ “ lnp∆X {mq
lnp2KF q . Then,

ż 8

0

es lnβ min
“
mes lnp2KF q,∆X

‰
ds ď m

ż t‹

0

es lnp2KFβqds ` ∆X

ż 8

t‹

es lnpβqds

“
m

lnp2KFβq

”
et‹ lnp2KFβq ´ 1

ı
´

∆X

lnβ
elnpβqt‹

“
m

lnp2KFβq

”´∆X

m

¯ lnp2KF βq

lnp2KF q

´ 1
ı

´
∆X

lnβ

ˆ
∆X

m

˙ lnpβq
lnp2KF q

“ ∆X

´ 1

lnp2KFβq
´

1

lnβ

¯´∆X

m

¯ lnpβq
lnp2KF q

´
m

lnp2KFβq

ď Cm
min

“
1,

| ln β|
lnp2KF q

‰
“ Cmγ ,

for some positive constant C depending on KF , β and ∆X . This implies that W is γ-Hölder

with a constant factor K‹ that is clearly independent of W P S. This concludes the proof. l

The consequence of Lemmas B.1 and B.2 is that the set M Ă L8
mpX q is a closed set, preserved

by TN and contains only functions that are γ-Hölder with factor K‹. We are now able to get the

existence of a unique fixed point to the Bellman operator TN .

Proposition B.1 (i) The operator TN is monotone increasing: for W1,W2 P L8
mpXN q, if W1 ď

W2, then TNW1 ď TNW2. (ii) Furthermore, it is contracting on L8
mpXN q with Lipschitz factor

β, and admits a unique fixed point in L8
mpXN q, denoted by V ‹

N , hence solution to:

V ‹
N “ TNV ‹

N .

Moreover, V ‹
N P M, and thus V ‹

N is γ-Hölder with constant factor K‹.

Proof. (i) The monotonicity of TN is clear. (ii) The β-contraction property of TN is obtained

by standard arguments, which implies the uniqueness of a fixed point (but not the existence).

Let us prove the existence of a fixed point. As M is preserved by TN , and is closed for } ¨ },

and therefore complete (as a closed subset of the complete space L8
mpXN q), by the Banach fixed

point theorem, TN admits a unique fixed point V ‹
N in M. By Lemma B.2, this implies that V ‹

N

is γ-Hölder with constant factor K‹, and concludes the proof. l
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Remark B.1 Notice that the above arguments would not work if we considered, instead of

M, directly the set of γ-Hölder continuous functions. Indeed, while it is true that such set is

stabilized by TN (it essentially follows from (B.2) and (B.3)), the set of γ-Hölder continuous

functions is not closed in L8
mpXN q (and thus not a complete metric space): there might indeed

exist a converging sequence of γ-Hölder continuous functions with multiplicative factors (in the

Hölder property) tending toward infinity, such that the limit function is not γ-Hölder anymore.

l

As a consequence of Proposition B.1, we can show the following relation between the value

function VN of the N -agent MDP, and the fixed point V ‹
N of the Bellman operator TN .

Lemma B.3 For all x P XN , we have VN pxq ď V ‹
N pxq.

Proof. For any x P XN , ν P V , we have

E

”
f px,ν0pUqq ` βV ‹

N

`
F px,ν0pU q, ε1q

˘ı
“ E

”!
f px,ν0puqq ` βErV ‹

N pF px,ν0puq, ε1qqs
)
u:“U

ı

“ E

”
T
ν0pUqV ‹

N pxq
ı

ď T V ‹
N pxq “ V ‹

N pxq. (B.5)

For any pu, eq P pr0, 1sNqN ˆ pEN ˆ E0q, and for any ν P V , we define ~ν
u,e P V by

~ν
u,e
t pu1, pe1

sqsPJ1,tKq :“ νt`1pu, e, pe1
sqsPJ1,tKq, pu1, pe1

sqsPJ1,tKq P pr0, 1sNqN ˆ pEN ˆ E0qt, t P N.

Standard Markov arguments imply the following flow property for randomized open-loop policies:

V ν
N pxq “ E

”
f px,ν0pUqq ` βV ~νU,ε1

N pF px,ν0pUq, εqq
ı
.

Together with (B.5), we then get

V ‹
N pxq ´ V ν

N pxq ě βE
”
V ‹
N pF px,ν0pU q, ε1q ´ V ~νU,ε1

N pF px,ν0pUq, ε1qq
ı

ě β inf
xPXN ,νPV

 
V ‹
N pxq ´ V ν

N pxq
(
.

Taking the infimum over x P XN ,ν P V on the left hand side of the above inequality, and since

β ă 1, this shows that V ν
N pxq ď V ‹

N pxq for all ν P V. We conclude that VN ď V ‹
N . l

We aim now to prove rigorously the equality VN “ V ‹
N , i.e., the value function VN of the

N -agent MDP satisfies the Bellman fixed point equation: VN “ TNVN , and also to show the

existence of ε-optimal (randomized) feedback control for VN .

A feedback policy (resp. randomized feedback policy) is an element π P L0pXN ;AN q (resp.

L0pXN ˆ r0, 1sN ;AN q), the set of measurable functions from XN (resp. XN ˆ r0, 1sN) into

AN . The associated feedback control is the unique control απ given by απ
t “ πpXtq, (resp.

πrpXt,U tq), t P N, where tU t “ pU i
t qiPJ1,NK, t P Nu is a family of mutually i.i.d. uniform

random variables on r0, 1s, independent of G, ε. By misuse of notation, we denote V π
N “ V απ

N .

Given π P L0pXN ;AN q (resp. L0pXN ˆr0, 1sN ;AN q), we introduce the operator T π
N on L8

mpXN q,

defined by

T π
N W pxq :“ fpx,πpxqq ` βE

“
W

`
F px,πpxq, ε1q

˘‰
, x P XN ,
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resp.

T π
N W pxq :“ Erfpx,πpx,U0qq ` βW pF px,πpx,U0q, ε1qs, @x P XN ,

where U0 “ pU i
0qiPJ1,NK is a family of i.i.d. „ Upr0, 1sq, independent of G, ε.

We have the basic and standard properties on the operator T π
N :

Lemma B.4 Fix π P L0pXN ;AN q (resp. L0pXN ˆ r0, 1sN ;AN q).

(i) The operator T π
N is β-contracting on L8

mpXN q, and V π
N is its unique fixed point.

(ii) Furthermore, it is monotone increasing: for W1,W2 P L8pXN q, if W1 ď W2, then T π
N W1

ď T π
N W2.

We state the standard verification type result for the N -individual MDP, by means of the

Bellman operator.

Lemma B.5 (Verification result)

Fix ǫ ě 0, and suppose that there exists an ǫ-optimal (randomized) feedback policy πǫ for V ‹
N in

the sense that

V ‹
N ď T πǫ

N V ‹
N ` ǫ.

Then, απǫ

P A is ǫ
1´β

-optimal for VN , i.e., V πǫ

N ě VN ´ ǫ
1´β

, and we have VN ě V ‹
N ´ ǫ

1´β
.

Proof. Since V πǫ

N “ T πǫ

N V πǫ

N , and recalling from Lemma B.3 that V ‹
N ě VN ě V πǫ

N , we have for

all x P XN ,
ˇ̌
ˇpV ‹

N ´ V πǫ

N qpxq
ˇ̌
ˇ ď

ˇ̌
ˇT πǫ

N V ‹
N pxq ´ T πǫ

N V πǫ

N pxq
ˇ̌
ˇ ` ǫ ď β}V ‹

N ´ V πǫ

N } ` ǫ,

where we used the β-contraction property of T πǫ

N in Lemma B.4. We deduce that }V ‹
N ´V πǫ

N } ď
ǫ

1´β
, and then, VN ě V πǫ

N ě V ‹
N ´ ǫ

1´β
, which combined with V ‹

N ě VN , concludes the proof. l

We finally conclude this section by showing the existence of an ε-optimal (randomized) feed-

back policy for N -agent MDP on XN , and obtain as a by-product the corresponding Bellman

fixed point equation for its value function.

Proposition B.2 For all ǫ ą 0, there exists a (randomized) feedback policy πǫ that is ǫ-optimal

for V ‹
N . Consequently, the control απǫ

P A is ǫ
1´β

-optimal for VN , and we have VN “ V ‹
N , which

thus satisfies the Bellman fixed point equation.

Proof. We prove the result for ǫ-optimal feedback policy (the case of ǫ-optimal randomized

feedback policy is dealt with similarly). Fix ǫ ą 0, and given η ą 0, consider a quantizing grid

Mη “ tx1, . . . ,xNηu Ă XN , and an associated partition C
η
k , k “ 1, . . . , Nη, of XN , satisfying

C
η
k Ă Bηpxkq :“

!
x P XN : dN px,xkq ď η

)
, k “ 1, . . . , Nη.

For any xk, k “ 1, . . . , Nη, there exists aεk P AN such that

V ‹
N pxkq ď T

aε
kV ‹

N pxkq `
ǫ

3
. (B.6)
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From the partition C
η
k , k “ 1, . . . , Nη of XN , associated to Mη, we construct the function πǫ :

XN Ñ AN as follows: we define, for all x P XN ,

πǫpxq “ aǫk, when x P C
η
k , k “ 1, . . . , Nη.

Such function πǫ is clearly measurable. Let us now check that such πǫ yields an ǫ-optimal

feedback policy for η small enough. For x P XN , we define xη “ xk, when x P C
η
k , k “ 1, . . . , Nη.

Observe that dN px,xηq ď η. We then write for any x P XN ,

rT πǫ

N V ‹
N spxq ´ V ‹

N pxq “
´

rT πǫ

N V ‹
N spxq ´ rT πǫ

N V ‹
N spxηq

¯
`
´

rT πǫ

N V ‹
N spxηq ´ V ‹

N pxηq
¯

`
`
V ‹
N pxηq ´ V ‹

N pxq
˘

ě
´

rT πǫ

N V ‹
N spxq ´ rT πǫ

N V ‹
N spxηq

¯
´

ǫ

3
´

ǫ

3
, (B.7)

where we used (B.6) and the fact that |V ‹
N pxηq ´ V ‹

N pxq| ď ǫ{3 for η small enough by uniform

continuity of V ‹
N in Proposition B.1. Moreover, by observing that πǫpxq “ πǫpxηq “: a, we have

rT πǫ

N V ‹
N spxq “ E

”
fpx, aq ` βV ‹

N pF px, a, ε1qq
ı
,

rT πǫ

N V ‹
N spxηq “ E

”
fpxη, aq ` βV ‹

N pF pxη, a, ε1qq
ı
.

Under pHFlipq-pHflipq, and by using the γ-Hölder property of V ‹
N with constant K‹ in Proposi-

tion B.1, we then get

ˇ̌
rT πǫ

N V ‹
N spxq ´ rT πǫ

N V ‹
N spxηq

ˇ̌

ď 2KfdN px,xηq ` βK‹E

”
E
“
dN

`
F px, a, pεi1qiPJ1,NK, eq,F pxη , a, pεi1qiPJ1,NK, eq

˘γ‰
e:“ε0

1

ı

ď 2KfdN px,xηq ` βK‹E

”
E
“
dN

`
F px, a, pεi1qiPJ1,NK, eq,F pxη, a, pεi1qiPJ1,NK, eq

˘‰
e:“ε0

1

ıγ

ď CdN px,xηqγ ď Cηγ .

for some constant C. Therefore,
ˇ̌
rT πǫ

N V ‹
N spxq ´ rT πǫ

N V ‹
N spxηq

ˇ̌
ď ǫ{3, and, plugging into (B.7),

we obtain T πǫ

N V ‹
N pxq ´ V ‹

N pxq ě ´ǫ, for all x P XN , which means that πǫ is ǫ-optimal for V ‹
N .

The rest of the assertions in the Theorem follows from the verification result in Lemma B.5. l
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