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Abstract

We investigate propagation of chaos for mean field Markov Decision Process with common
noise (CMKV-MDP), and when the optimization is performed over randomized open-loop con-
trols on infinite horizon. We first state a rate of convergence of order My, where My is the
mean rate of convergence in Wasserstein distance of the empirical measure, and v € (0,1] is an
explicit constant, in the limit of the value functions of N-agent control problem with asymmetric
open-loop controls, towards the value function of CMKV-MDP. Furthermore, we show how to
explicitly construct (e + O(M};))-optimal policies for the N-agent model from e-optimal policies
for the CMKV-MDP. Our approach relies on sharp comparison between the Bellman operators
in the N-agent problem and the CMKV-MDP, and fine coupling of empirical measures.

1 Introduction

We consider a social planner problem with N cooperative agents in a mean-field discrete time
model with common noise over an infinite horizon. The controlled state process X = (X i)ie[[l) N]
of the N-agent model is given by the dynamical random system

X, = i,
io ; i i 15NV i 0 (1.1)
Xig = F(Xi o, NZj:l 5(Xg,a{)75t+1a5t+1)7 teN.

Here, :vg, i € [1,N], are the initial states valued in a compact Polish space X with metric d,
(ai)ie[[L NJten+ is a family of mutually i.i.d. random variables on some probability space (€2, F,P),
valued in some measurable space E, and representing idiosyncratic noises, while (£9)en« is
another family of i.i.d. random variables valued in some measurable space E°, and representing
the common noise (independent of idiosyncratic noise). The control o followed by agent i, is
a process, valued in some compact Polish space A with metric d 4, and adapted with respect to
the filtration (F}Y)en generated by € = ((})ieq1,n],€f) ;o a0 also completed with a family of
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mutually i.i.d. uniform random variables U = (Uti)ie[[l) N],ten that are used for randomization of
the controls. The mean-field interaction between the agents is formalized via the state transition
function F' by the dependence upon the empirical measure of both state/action of all the other
agents: here F is a measurable function from X x A x P(X x A) x E x EY into X, where P(X x A)
is the space of probability measures on the product space X x A.

The objective of the social planner is to maximize over the set A of AN-valued (F}¥)ien-
adapted processes o« = (ai)ie[LNﬂ’teN a criterion in the form

0 ) 1 N
Z XZI’QLNZ(S(X,?,QZ))]’
=0 j=1

where we set ¢y = (xé)ie[l’Nﬂ e XN for the initial state of the N agent system. Here 5 € (0, 1)
is a discount factor, and f is a bounded measurable real-valued function on X x A x P(X x A).
The value function for this optimization problem is defined on X% as

VE (o) = [

uMz

Vv (xo) := sup Vi (zo), (1.2)
acA
and we notice that problem (LI))-(2) is a standard Markov Decision Process (MDP) with state
space XV, action space AV, and (randomized) open-loop controls, and is the mathematical
framework for reinforcement learning with multiple agents in interaction.

Let us now formulate the asymptotic mean-field problem when the number of agents N goes
to infinity. This consists formally in replacing empirical distributions by theoretical ones in the
dynamic system and gain functions. The controlled state process X of the representative agent
is given by

Xo 507 (1 3)
Xt+1 = F(Xélaata]P)?Xt’at)aEt-Q—lagtoJrl)u tENu '

where we have renamed the uniform random sequence (U})en and the noise (¢} )en by (Uy)ien
and (g¢)sen, and the initial state &y is a G-measurable random variable, with G a o-algebra in-
dependent of (Up)ien, (g¢)ten, (€9)ten, with distribution law pg € P(X) (the set of probability
measures on X). The control process « is an A-valued process, adapted with respect to the filtra-
tion generated by G, (Uy)wen, (£¢)ten, (€9)ten+, denoted by o € A. Here P° and EY represent the
conditional probability and expectation knowing the common noise €%, and then, given a random
variable Y, we denote by PJ. or £°(Y) its conditional law knowing . The McKean-Vlasov (or
mean-field) control problem consists in maximizing over randomized open-loop controls « in A
the gain functional

[ee]
VOC( = I:Z Xt,Oét, ?Xt,at))]'
The value function to this optimization problem is defined on P(X) by

V(&) = SIEIEV“(So), (1.4)

and we recall from [16] that V' depends on &y only through its distribution (invariance in law),
and we denote by misuse of notation: V(ug) = V(& ). Problem (L3)-(T4) is called mean-field



Markov Decision Process with common noise, or conditional McKean-Vlasov Markov Decision
Process (CMKV-MDP in short), with the peculiarity compared to standard MDP coming from
the dependence of the state transition on the conditional distribution of the state/action. In
view of propagation of chaos for particle systems usually derived for mean-field diffusion process
(see [18]), it is expected that CMKV-MDP provides a mean-field approximation of the N-agent
MDP model.

While the literature on mean-field control in continuous time, in particular the optimal control
of McKean-Vlasov equations, is quite important, see the monograph [5] for an overview and
related references, there are rather few papers devoted to the discrete time framework. One
of the first works is [I1] which studies the convergence of large interacting population process
to a simple mean-field model when the state space is finite. The paper [I7] studies a discrete-
time McKean-Vlasov control problem with feedback controls on finite horizon, and derive the
corresponding dynamic programming equation which is explicitly solved in the linear quadratic
case. In [0], the authors consider mean-field control on infinite horizon with common noise
with a discussion about connections between closed-loop and open-loop policies, and propose Q-
learning algortithms. Our companion paper [16] deals with open-loop control and highlights the
role of randomized controls with respect to standard Markov Decision Process (MDP). The value
function is characterized as a fixed point Bellman equation defined on the space of probability
measures, and existence of e-optimal randomized feedback controls is proved. The recent paper
[1] studies mean-field control with deterministic closed-loop policies through the lens of MDP
theory, and discusses the existence of optimal policies for the limiting mean-field problem as well
as for the N-agent problem.

Main contributions. In this paper, we establish a quantitative propagation of result for the
N-agent MDP towards the CMKV-MDP. Our contributions are twofold:

1. We show in Theorem 2.I] an explicit rate of convergence of the value functions under some
assumptions to be precised later: there exists some positive constant C' (depending on the
data of the problem) such that for all & = (2%);e1,n] € XAV,

1N
’VN(w) ~V(5 20| < oM,
i=1
where My is the mean rate of convergence in Wasserstein distance of the empirical measure
(see [9]), and « € (0,1] is an explicit constant depending on 5 and F.

2. We prove that any e-optimal randomized feedback policy for the CMKV-MDP (including
the case € = 0, i.e., optimal randomized feedback policy whose existence is shown) yields
either an approximate optimal feedback control or an approximate randomized feedback
control for the N-agent MDP problem, in a constructive sense to be precised later with an
explicit rate of convergence, see Theorems and

While the first statement for convergence of value function is important in theory, the second
statement is particularly interesting in practice (but often less studied in the literature) since
it means that if the McKean-Vlasov MDP is simpler to solve than the N-agent MDP (some
examples and applications to targeted advertising are developed in the PhD thesis [I5]), then
one can compute an almost optimal randomized feedback policy for the McKean-Vlasov MDP,
and then use it in the N-agent MDP: this will guaranty us to have an almost optimal control.



Related literature. The convergence of the N-individual problem to the limiting mean-field control
problem has been first rigorously proved in [I4] by tightness and martingale arguments for
continuous-time controlled McKean-Vlasov equations. This result has been extended in [8] to
the common noise case and when there is interaction via the joint distribution of the state and
control. The paper [10] proved by viscosity solutions method via the characterization of the
Hamilton-Jacobi-Bellman equation the convergence of the value function towards the N-agent
problem to the value function of the mean-field control problem in the common noise case but
without idiosyncratic noise. Rate of convergence of order 1/N has been stated in [12] by Backward
Stochastic Differential Equations techniques but under the strong condition that there exists a
smooth solution to the Master Bellman equation. The recent paper [4] removed this regularity
assumption on the value function, and obtained an algebraic rate of convergence of order N—7
for some constant v € (0,1]. We mention also in the continuous-time framework the paper [7]
which derived a rate of convergence of order N~'/2 when the state space is finite.

The convergence of the value function in the N-agent problem in a discrete-time mean field
framework has been studied in our companion paper [16]. However, it was assumed there that
each agent used the same open-loop policy, applied to her own idiosyncratic noise and the common
noise. In particular, agent’s controls cannot depend upon other agent’s idiosyncratic noises,
and they have symmetric (or exchangeable) behaviours. This restriction was crucial for using
propagation of chaos argument relying on a pathwise comparison between the state and control
processes in the N-individual model and the McKean-Vlasov MDPs.

In this paper, we consider that the control of each agent can also depend upon the idiosyn-
cratic noises of all the population, and that they can do so in a completely asymmetric way (i.e.
each agent can use a different open-loop policy). This additional flexibility and generality in the
definition of controls prevents us from coupling controls between the N-agent and the McKean-
Vlasov MDPs in a one-to-one fashion as in [16]. In order to overcome this difficulty, we adopt
quite different arguments by coupling the Bellman operators instead of the state/control process
of the N-agent and CMKV MDPs. More precisely, the strategy of the proof is the following:
Idea of the proof.

(i) We first derive the Bellman equation for the N-agent MDP, with arguments similar to [16],
i.e. we prove that Ty Vy = Vi, where Ty is the operator defined by

TaW(x) := sup TaW(x), xex?,

acAN
with

1

N
:]iVW(m) = N wﬂ ,al) +ﬁE[ Z (x7,a7) 51751)16[1 N]])]

an
an

for & = (:vi)iE[LN]] e XN a-= (ai)ie{[l,N]] e AN. This property is obtained by seeing the
N-agent MDP as a standard MDP on XV with actions space AN.

(ii) Then, we observe that the operators T? of the McKean-Vlasov MDP, derived in [16], are,
formally, the limits of T%, when N — o, for a € LO(X x [0,1], A) and a € AN well coupled.
Inspired by this formal observation, we “compare” T% to T* and prove that they are indeed
“close” in some sense, for N large. A key point is that T% is defined on L% (X%) (the set



of bounded measurable functions on X, valued in R) while T¢ is defined on L% (P (X))
(the set of bounded measurable functions on P(X), valued in R). To compare both type
of objects, we introduce a canonical way to associate to a function W € L (P(X)) the
function W e LP(XN) by setting W(w) =W(% vazl Oyi).

(iii) Once the proximity between T3 and T® is established in a general sense, we prove the
proximity of the value functions Vy and V' by seeing them as the unique fixed points of the
Bellman operators Ty = supaeav T and T = Sup,c o0 (xx[0,1],4) T, following the intuition
that if two contracting operators are close, their unique fixed points should also be close.

(iv) Finally, we provide two procedures to build O(e 4+ M};)-optimal policies for the N-agent
MDP from an e-optimal stationary randomized feedback policy for the McKean-Vlasov
MDP. The idea is to view, for each MDP, any e-optimal policy as a policy satisfying
the verification theorem, which is a property only linked to the Bellman operator, again
following the intuition that if two Bellman operators are close, the policies satisfying their
verification results should also be close.

Outline of the paper. The rest of the paper is organized as follows. We state the assumptions
and the main results in Section [2] while Section Blis devoted to their proofs. Finally, we give in
Appendix [Al the proof of existence for optimal randomized feedback policy, and put in Appendix
[B] some results about the Bellman operator for the N-agent MDP problem that are needed in
the proof of our convergence results.

2 Main results

2.1 Notations and assumptions

The product space X x A is equipped with the metric d((z,a), (2',a’)) = d(z,2") + dA(a,a’
, T

for @ = (2")iep,np @' = (@")iepi,np € XN, AN with the metric da,y(a,a’) = & sz\il dA( ' a

for a = (a)iep, v, @ = (@)iei,n) € AV, and (X x A)N with the metric dy((z,a), (2, a’ ))

% Zf\il d((«%,a?), (2%, a"")) for z, 2’ € X and a,a’ € AN. When (), d) is a compact metric space,
the set P()) of probability measures on ) is equipped with the Wasserstein distance

Wa(p, p') := inf { Lz d(y,y")p(dy,dy’) : p € T (p, u’)},

where II(u, it') is the set of (coupling) probability measures on ) x ) with marginals p and ',
and we recall the dual Kantorovich-Rubinstein representation

Walp, 1) = sup f o) (1 — )(dy), (2.1)

¢€Lip1 y

where Lip, is the set of Lipschitz functions on ) with Lipschitz constant bounded by 1.
Given @ = (2 );ep1,n) € XY, and a = (a');ep,n] € AN, we denote by

N
6y € P(X piy [z, a] Z (wiaiy € P(X x A),

1:1 z:l

Mz



and we recall that
Wal(py [z, a], py[2',a']) < dn((z,a), (@',2")). (2.2)
Given a random variable Y on (2, F,P), we denote by Py or £(Y) its distribution law.

We make the following standing assumptions on the state transition function F' and on the
running reward function f.

(HFjip) There exists Kr > 0, such that for all a,a’ € A, e € E®, x,2' € X, p, ' € P(X x A),
E[d(F(z,a,p, e1,e°), F(2' a1t €1, eo))] < Kp(d((z,a), (@', a")) + Walp, 1))
(Hfiip) There exists Ky > 0, such that for all z,2’ € X, a,a’ € A, p, 1 € P(X x A),
[f(a,a,p) = f(a',d', 1) < Kp(d((2,a), (¢, a")) + Walu, 1))

Remark 2.1 We stress the importance of making the regularity assumptions for F' in expectation
only. When X is finite, F' cannot be, strictly speaking, Lipschitz (or even continuous) unless it
is constant w.r.t. its mean-field argument (u and p’ in (HFy5p)). However, F' can be Lipschitz
in expectation, e.g. once integrated w.r.t. the idiosyncratic noise.

Under Assumption (HFyp), we define the constant

|In 3] ]

= in |1
7 min [1, m(2Kr)s

e (0,1].

In the sequel, we denote by Ay (resp. A and Ayxa) the diameter of the compact metric
space X (resp. A and X x A), and define

My := sup E[Wa(un,up), (2.3)
HEP(X xA)

. .. N .. .
where ppy is the empirical measure puy = % Dine10v,, (Yn)i<n<n are iid. random variables

with law p. Tt is know that My e 0, and we recall from [9], and [3] some results about non
—00
asymptotic bounds for the mean rate of convergence in Wasserstein distance of the empirical

measure.
o If X x A c R? for some d € N*, then: My = O(N~2)ford =1, My = O(N~2 log(1+ N))
for d = 2, and My = O(N~a) for d > 3.
e If for all 6 > 0, the smallest number of balls with radius § covering the compact metric set
A x A with diameter A4 is smaller than O( (25:2)") for > 2, then My = O(N~17).

In the sequel C will denote a generic constant that depends only on the data of the problem,
namely Ax, AXXA7 [‘3, KF and Kf.



2.2 Convergence of value functions

Our first main result is to quantify the rate of convergence of the value function of the N-agent
MDP towards the value function of the CMKV-MDP.

Theorem 2.1 There exists some positive constant C' such that for all x = (a:i)ie[[l)N]] e AN,
Viv(e) = V(uylal)| < M,

2.3 Approximate optimal policies

Our next results are to show how to obtain approximate optimal control for the N agent MDP
from e-optimal control for CKMV-MDP, and to quantify the accuracy of this approximation.

First, let us recall from [I6] the construction of e-optimal control for CKMV-MDP. The
value function V' is characterized as the unique fixed point in L¥(P(X)), the set of bounded
measurable real-valued functions on P(X), of the Bellman equation V' = TV, where T is the
Bellman operator defined on L¥ (P (X)) by

TW(p) = sup T*W (),
acL%(X x[0,1];A)

B[ £(6,a(6,U), £(&8(€, U) + BW (P e, ceme.vyercty) | (24)

with  T*W (p) :

for any (§,U) ~ p®U([0,1]) (it is clear that the right-hand side in (24]) does not depend on the
choice of such (&,U)), where LY(X x [0,1]; A) is the set of measurable functions from X x [0, 1]
into A. Then, for all ¢ > 0, there exists a randomized feedback policy a., i.e. a measurable
function from P(X) x X x [0, 1] into A, denoted by a. € L°(P(X) x X x [0,1]; A), such that for
all p e P(X):

Vip) —e < TV (p),

and we say that a. is an e-optimal randomized feedback policy for CMKV-MDP. By considering
the randomized feedback control a¢ € A defined by

o = a.(P%,, X:,Up), teN, (2.5)
where (U;)ten is an i.d.d. sequence of random variables, Uy ~ U([0,1]), independent of & ~ o,
and e, this yields an O(e)-optimal control for V' (ug), namely
€
1-8

Actually, we can even take ¢ = 0, i.e., get optimal randomized feedback control. The proof for
the existence of an optimal randomized feedback policy is inspired by the paper [6], which states
the existence of an optimal policy in a closely related model, and is reported in Appendix [Al

V(po) — < V(&)

We now provide two procedures to construct approximate optimal control for the N-agent
MDP from an e-optimal randomized feedback policy for CMKV-MDP. The first procedure gives
a general approach for getting approximate feedback control for the N-agent MDP.



Theorem 2.2 Let a. be an e-optimal randomized feedback policy for CMKV-MDP. Then, there
exists a measurable function w*N from XN into AN, called feedback policy for the N-agent
MDP, such that

w“E’N(w) € argm]\i[an (E(fm, ac(py 2], &, U)),uN [, a]), xe VN, (2.6)
acA
with (€5, U) ~ uy[2] @U([0,1]). This yields a feedback control a®N € A defined by
ag’N = 7w%N(X,), teN,

which is O(e + My;)-optimal control for Viy(xo), namely:
Vn(zo) — Cle+ M3 < V™ (o).

Theorem provides a generic way to obtain a O(e + M};)-optimal feedback policy for the
N-agent MDP from an e-optimal randomized feedback policy a. for CMKV-MDP, simply by
sending actions a = (ai)iE[[LNﬂ to the population so that, once in state «, the state-action pair
(z,a) is empirically distributed as closely as possible to £(&z, ac(py [],&z,U)). However, the
computation of this argmin in (28) can be difficult in practice.

We propose a second approach which provides a more practical derivation of an approximate
optimal control for the N-agent MDP. It will use randomized feedback policy for the N-agent
model, defined as a measurable function from XV x [0,1]" into AV.

Theorem 2.3 Let a. be an e-optimal randomized feedback policy for CMKV-MDP, assumed to
satisfy the regularity condition

E[da(ac(u,z,U), ac(u, 2’ U))] < Kd(z,2'), Va,a'e X, peP(X), (2.7)

(here U ~ U([0,1])) for some positive constant K. Consider the randomized feedback policy in
the N-agent model defined by

wteN (@) = (o 2] ) o g

for x = (:vi)iE[LN]] e XN, u = (ui)ie{[l,N]] e [0,1]N. Then, the randomized feedback control
a™=N e A defined as

r,e,IN ac,N
Oy = 7, (Xt;Ut)a tGN,

where {U; = (Uti)ie[[LNﬂ,t € N} is a family of mutually i.i.d. uniform random variables on [0,1],
independent of G, € = ((5%)1’6[[171\7]]’5?)15.5&1“ is an O(e+ M};)-optimal control for Vi (o), namely:
V(o) — C(1+ K)(e+ M%) < VG (w).

Theorem 2.3] provides a simple and natural procedure to get an approximate policy for the
N-agent MDP: it corresponds to using an e-optimal randomized feedback policy a. of the CMKV-
MDP, but instead of inputting the theoretical state distribution of the McKean-Vlasov MDP in its
mean-field argument, we input the empirical state distribution of the N-agent MDP, and instead
of inputting the McKean-Vlasov state in its state argument, we input the N-agent individual
states, and moreover, we use a randomization by tossing a coin at any time and for any agent.
Notice that the validity of this procedure requires the Lipschitz condition ([2.7)), which always
holds true when the state space X is finite. Indeed, in this case, the metric on X is the discrete
distance d(z,2’) = 1,447, and (Z7) is clearly satisfied with K = Ay4.



3 Proof of main results

This section is devoted to the proofs of Theorems 211 2.2] and about rate of convergence in
the propagation of chaos between the N-agent MDP and the limiting conditional McKean-Vlasov
MDP. Our approach relies on the Bellman operators of each MDP. By proving their proximity
(in a sense to be precised), we will be able to prove on the one hand the proximity of their
unique fixed points, hence the convergence of the value functions, and on the other hand that
almost optimal randomized feedback policies are directly related to the Bellman operators via
the verification result, which will give the convergence of the approximate controls.

3.1 Comparing the Bellman operators
We first introduce the following useful measurable optimal permutation for the coupling of em-

pirical measures.

Definition 3.1 (Measurable optimal permutation) Let (Y,d) be a metric space. There
exists a measurable map o : (y,9y') € (YN)? — o¥¥ € Gy (where Sy denotes the set of
permutations on [1, N]) such that for all (y,y') € (YV)?, we have

Wa (/LN [y]v My [y/]) = dn (yv yi—;y,y’ )7 (3'1)

’
'Y

where we set y;y’y/ = (y"’iy )iefi,n] fory' = (y’i)z‘e[[l,N]].

Proof. It is a well known result (see [19]) that, given (y,y’) € (VV)?, there exists a permutation
0¥ € Sy realizing an optimal coupling between puy[y], py[y'] € P(Y), ie., s.t. @&I) holds.
Let us check that this optimal permutation can be represented as a measurable function of
(y,y') € (YN)2. Let ne [1,N!] — o™ € &x be some bijection. Notice that the function

v,y € YV = (dv (¥, Yon)) e g € R
is continuous, hence measurable. Furthermore, it is clear that the function

zeRM — min [argmin 2")]

neN!
is measurable. Denoting by
Nmin(y,y') = min [argmindy (y,y,.)],
neN!

it follows that the function y,y’ € XN — o¥¥ = gnmin(¥¥) i 4 measurable representation of
the optimal permutation. O

We now study the “proximity” between the Bellman operator of the CMKV-MDP given in
(Z4), and the Bellman operator of the N-agent problem, viewed as a MDP with state space X7,
action space AV, noise sequence € = (&;)en+ with &¢ := ((e})seq1,n7,€7) valued in EY x EY| state
transition function

F(x,ae) := (F(wi,ai,,uN [w,a],ei,eo)>ie[[l e e= ((ei)ie[[LN]],eO) e EN x E,



and reward function

N
f(z, Z ' a s [ a]) T = (xz)ie{[l,N]}a a= (al)ie[[l.,N]]'

=l

Denoting by LZ(X™) the subset of measurable functions in L®(X") (the set of bounded real-
valued functions on X%), the Bellman “operator” Ty : LL(XN) — L®(XN) of the N-agent
MDP is defined for any W € L% (XN) by:

TaW(x) := sup TaW(x), xex?,

acAN

where
AW (x):= f(x,a)+ ﬁE[W(F(w,a,el))], xe XN, aeAN.

The characterization of the value function Vi and optimal controls for the N-agent MDP via
the Bellman operator Ty is stated in Appendix [Bl

We aim to quantify how “close” T%;, and T* are when a and a are close in a sense to be
precised. Notice that the N-agent operator T% is defined on L2 (X™) while the McKean-Vlasov
operator T? is defined on L (P(X)). There is however a natural way to compare them by means
of an “unlifting” procedure. To any function W e L (P (X)), we associate the unlifted function
W e L®2(XN) defined by

W(w) = W(ny[x]), VYxealh.

We recall from [16] that the value function V' of the CMKV-MDP is v-Hélder:
V() = V)| < KWala), Vil € P(2), (32)
for some constant K, depending on K, 5 and Ay.

Lemma 3.1 There erists some positive constant C such that for all a € L°(X x [0,1]; A),
ac AN, we XN and (Ea,U) ~ iy [#] @U(O, 1]),

TV (@) - Ty V(@) < C|(WalLiéa, aléa U)), iy [w,a])” + M |-
Proof. For any ae L°(X x [0,1]; A), and a = (ai)ie[[LN]] e AN we have
TV (x) — T3V (x)

N
= E[f(& (&, U), £(Eaalta, U) Z ENGNTMERY)]

z:l
1
0
+ ﬂE[V(]P)F(fm,a(Em,U),E(fm,a(EE,U)),sl,s?)) - V(N Z]l 5F(mi,ai,uN [:c,a],a"i,a‘f))]' (33)

We write

1

N f(xiv aiv Ky [:I}, a]) = f(£(§w7 a(&ﬂv U))) - f(/’LN [:Eva])v

™M=

E| £ (€. (6o, U), £(Ga: (6, U))) | -

i=1

10



where f(u) = § f(«/,a’, p)p(da’,da’) for all u e P(X x A). Notice that for u, ' € P(X x A), we
have

Flw) = )

f F(&d 1) (u— ) (e, da’) + j (' d' o) — F(a o)) (e da)
KiWa(p, i) + KWalp, p') = 2K Wa(u, 1),

N

from the Kantorovich-Rubinstein dual representation (2.1 and (Hfy;p). It follows that

1
N -

K2

fla',a', py [z, a)) (3-4)

=

’E[f(fm,a(fm,U),E(&ma(fa:aU)))] -

Il
—

< 2K Wa(L(€sal8e, U)),s oy [, a]).

Let us next focus on the second term in [B3]). As V is y-Holder with constant factor K., we
have

1
0
‘E[V(PF@E,a<£m,U>,.c<5w,a<£m,v>>7sl759>) Vg

M=

Or(ot at ey et ) |
=1

-
Il

1

0
< K*]E[Wd(]}”mmya@m,U>7.c<5m,a<£m,v>>ys§ye%7 N

M=

ol
6F(zi,ai,,uN [z,a],s’i,s?))] ) (35)
1=1

by Jensen’s inequality. Let (£%, Ué)ie[ﬂ,N]] be N i.i.d. random variables, independent of €1, such
that (§°,U§) ~ py [2]®U([0,1]), i € [1, N]. For any i.i.d. random variables (€});c1,n] such that

iorri i d iorri i
((5 5U0751)i6[[1,N]]55?) = ((5 aUOvsl)iE[[l,N]]a‘e?)a (36)

we have

N
1
0
E[Wd (PF(E;,,,a(ém,U)ﬁﬂ(fmﬁa(gmyU))qsiﬁ?)’ N § . 5F(mi,ai,,uN [m,a],si,s(f))]

1 N

0
< E[Wd(]P)F@w,a(sw,m,uew,a<5w,U>>,a§,a-9>’ﬁ 5F<e',aw‘,U3>,L<5w,a<sm,U>>,éi,a&)))]
=1

1=

N N
1 1
+ E[Wd(ﬁ 2 OP(6h (€ U, £(Ewa(En 0210 7 D0 OF (@ [m,a]ysi,s?)]
i=1 i=1

N N
1 1
< My + E[Wd(ﬁ D (e (€, Uf), £ (Emra(Eanl)),21e]) N D 0rtai gy [m,a],ag,ag)], (3.7)
=1 =1

by definition of My in (Z3). Let us now consider the random permutation o€+ -U))iern.n: ("0 )ie v
defined in Definition B.I] that we shall, to simplify notations, simply denote by o. Notice that as

) o ) » -1y, .
(£,a(8",U§))ien,ny L (€1)ieqi,n, we clearly see that (£1)ep, Ny := (agg ) )ie[1,n] satisfies the

required condition (8. Therefore the above relation applies to (&ﬂi)ie[l,N]] = (aggil)i)ieﬂl)w.

11



For such (£} );eq1,n7, We get
1Y 1Y
E[Wd(ﬁ z:Zl 5F(§i,a(éi7U(§),£(Em,a(§m,U)),s(“71)i,5‘1’)’ N ; 5F(aci,ai,,uN [m,a]qsi,sg))]

1

1Y 1Y
- E[Wd(ﬁ 21 5F(£"i,a(&"i,Ugi),ﬁ(gw,a(ﬁw,U)),ai,8[1))7 N 21 5F(mi,ai,uN [a:,a],a"i,a‘f))]

N
< DE[AFE alE™ U, £lea, a6, U)) <4, 9, F(a', ' oy [, 0], 4, <9)|
i=1
1Y o
< Krm DJE[A((€7al™, UF). (2',0) + Wa (£(Ea: 2l U)): 1y [2,2)) |
=1
N
= KFE[Wd(% Z 5(51’7&(51’1[#;)), M [:v, a]) + Wd (E(fa;, a(fm, U)), M [ilt, a])]
i=1

< Kp(My + 2EWa(L(ge, a6 V). 1y [e.a]) ).

where the first inequality comes from (Z2)), the second one is derived by conditioning w.r.t.
((€",U8)ieq1, N+ €Y) and using the regularity in expectation of F in (HFyp), the last equality
holds true by definition of the permutation ¢ realizing the optimal coupling (B]), and the last
inequality from the definition of My. Recalling (8.7), we then have

N
1
0
B[ Wa(Phe, aeo ). (60 a0 0y T 2 Pty (o aleted) |
=1

< (L+ Kp)My + 2KpE[Wa(L (6w, a(&e, U)), iy [, a]) ]
which implies by (B3]

1 N
0
E[V(Pp(gm,a(gw,U),L(g,a(g,U)),sl,sf;)) - V(N 21 OF (w0t [m,a],ag,gg))]

< K*<(1 + Kp)My + 2KFE[Wd(£(§m; a(la, U)), by [mva])])v-

Together with (8), and plugging into ([B3]), we obtain finally

TV (@) - ThV (@)
< 2KE[WalL(€, (e, U)), iy [2,a])| + 1 (1 + Kp) My + 2K B[ Wa(£(G, a(6e, U)), 1y [2,2])] )|

< O{Wa(llge (e, U), iyl al) + (WalL(o,a(6a, U), uyle.a])) + M3}

(recall that v < 1), for some constant C' depending only on K., Ky, Kp, where we also use the
fact that Wa(L(€z, a(éz,U)), uy [2,a]) is bounded by a constant depending on the diameter of
the compact set X x A. This ends the proof. O

3.2 Proof of Theorem [2.7]

Lemma [3.1] means that given a € LY(X x [0,1]; A), a € AN, and for £ € XV, the Wasserstein
distance between the distribution law of (&4, a(€e, U)) (where (€z,U) ~ p, [2] ®U([0,1])), and

12



the empirical measure p, [®,a] is small (and N large), then TV ~ ']I“}V‘v/ It is thus natural to
look for suitable choices of a € LO(X x [0,1]; A), a€ AN so that the above Wasserstein distance
is as small as possible. This is quantified in the following result.

Lemma 3.2 Fiz x € XN. Then, for any a € L°(X x [0,1]; A), there exists a* € AN such that

Wa(L(¢z,a(éa, U)), uy[®,a%]) < 2My,

where (Ez,U) ~ uy [2]@U([0,1]). Conversely, for any ae AN, there exists a® € L°(X x [0,1]; A)
such that

Wd(ﬁ(gmaaa(ngU))huN [m,a]) = 0

Proof. Fix ae L%(X x [0,1]; A). Let us consider & = (£');e[1,n7 1.i.d. with common distribution
fiy [2], independent from Uqg = (U§)ieqi,ny 14.d. ~ U([0,1]). We have

1 N
]E[Wd (£(€m7 a(§m7 U))) N Z 511»1&(50?@7[]6))]

N 1 N 1 N
< EDVEn a6 Uy Bt et ) * P Bt b 0 et )
1S s
< MN+E[N§d(€“’ ,at)] < 2My,

where we used the definition of My and (Z.2) in the second inequality, and definition of o&® in
the last inequality. It follows that

]P)[Wd(;c(é.m; gz; N Z i a( ”i’ 2MN] > O,

which implies that there exists a vector a € AV such that

Wd(ﬁ(gm,a(gm,U)),ﬂN [$7a]) < 2]\4N

On the other hand, given such an a € AV there clearly exists a® € LY(X x [0,1]; A) such that
L(¢x,8%(€x,U)) = puy [z, al: indeed, by considering (£, a&) ~ p, [@,a], it suffices to choose a? as
a kernel for simulating the conditional distribution of & knowing £. We then have

W(‘C(fa:u aa(§m7 U)), Ky [:B, a]) = 0.
]

By combining the general comparison of Bellman operators in Lemma [B.1] with the coupling
result in Lemma [3.2] we can now prove the propagation of chaos of value functions.

Proof of Theorem [2.1l From the fixed point equation for V' with Bellman operator T in (2.4]),
we have

Vi) = TV(z)
= sup m(m) < sup T3 V() + CM3,
acL%(X x[0,1];A) acL%(X x[0,1];A)

< TaV(x) + CM7,

13



where we used Lemma [3.J] and Lemma [3.2] in the first inequality, and the definition of Ty in the
last one. Since Vy is a fixed point of Ty (see Proposition [B:2), we then have:

V-Va)(®) < (T&V—TaVn)(@) + CMY,
and thus by definition of Ty,

(V—Vn)(x) < B sup (V—Vy)(a)+CMy,

x'eXN

which implies

sup (V —Vy)(z) < CMJ.

xeX N

Likewise, by Lemma [3.J] and Lemma [3.2] we have

Vi) = TV(z) = sup  TaV(z) > sup TV (z)
aeL0(X x[0,1];A) acAN
> sup T&V(x) — CMY = TaV(x) — CMY,
acAN

and using the fact that Vi is a fixed point of Ty, we obtain similarly

sup (Vy —V)(z) < CMY,

zeX N

which concludes the proof.

3.3 Proof of Theorem

We start with a general result estimating the efficiency of a feedback policy for the N-agent MDP
by “comparing” it to an e-optimal randomized feedback policy for the CMKV- MDP.

Lemma 3.3 Let a. be an e-optimal randomized feedback policy for the CMKV-MDP, and a €
AN . Then, there exists some positive constant C (depending only on Axxa, B, Kr, Ky) such
that for all x € XN,

?VVN(‘,B) = VN(m) — €= C[Wd (‘C(gmv aE(:uN [:B],fm, U))a M [.’1}, a])’Y + MXI]

Proof. Fix z € XV ae AV and define a. € LO(X x [0,1]; A) by a.(z,u) = a.(py[x], z,u) for
z € X, ue[0,1]. By Theorem 2.1 and the S-contracting property of T3, we have

T8 V(@) = T4 V(@) < BlVn(@) - V(@)|xx < CMY,
and so
aVn(z) = TaV(x)—CMY.
Together with Lemma B1 this yields

T Vi (z) = ToV(x) — C[Wa(L(E ac(€,U)), py[2,a])” + MY]. (3.8)
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Denote by a¢ the randomized feedback control associated via ([Z.3]) to the randomized feedback
policy a.. Then, notice that the gain functional V* (&) depends on & only through its law p =
L(€), and we set V' (p) = V(€) when &€ ~ p. Since V > V| and by the monotonicity of T2,
we have

TV (uyla]) > TV (uyla]) = V" (uylz]) > Vipylz]) - Ce

by recalling that V" is a fixed point of T, and using the fact that a. is an e-optimal randomized
feedback policy for the CMKV-MDP. From Theorem 2.1}, this implies that

T\"‘-ET/(:B) > Vn(z) — Cle + M},
which proved the required result when combined with (B.8]). O

Let us denote by L°(XY; AN) the set of measurable functions from X" into AY. Given a
feedback policy m € LO(XN; AN) for the N-agent problem, the associated feedback control is the
unique control a™ defined by af = 7(X;), t € N. By misuse of notation, we denote V¥ = V.
Let us then introduce the operator 75 on LX(X), defined by

TIW(z) = f(z,m(x)) + BE[W (F(z,n(z),€1))], zex™.

Proposition 3.1 Let a. be an e-optimal randomized feedback policy for the CMKV-MDP, and
consider any feedback policy 7 for the N-agent MDP. Then, the feedback control o™ is

O(e + sup Wa (‘C(givv ae(ﬂN [w]v 62:7 U))v Ky [ilt, 71-(w)])’y + M]’\Y])'Optima'l fOT VN(ilfo),

xeX N

where (&g, U) ~ py[2] ®U([0,1]), namely

VN(mO) - C[G + sup Wa (‘C(gmv aé(:U‘N [:B],fm, U))a 20N [:E, W(m)])’y + MXI] < V];';(.’IZO)

zeX N

Proof. Fix x € XV, and let a = mw(x) € AN. By definition, we have TFVy(x) = T4 Vy(z). By
Lemma [3.3] we thus have

T]\‘IZTVN(;E) = VN(m) 7670[ sup Wd(‘c(é.maaé(:uzv[m]agwaU))v:uzv[mva])’y+MJ’\Y[]a

zeXN

and we conclude by the verification result in Lemma O

Proposition [3.1] has an important implication: it means that a feedback policy 7 for the N-
agent MDP yields the better performance whenever it assigns for each state x the action m(x)
that achieves the minimum of

acAY — Wd(ﬁ(fm,as(,uN[CC],gz,U)),/LN[CC,a])-

Let us check that one can choose a measurable version of this argmin.

Lemma 3.4 Let a € L°(P(X) x X x [0,1]; A). Then, there exists a measurable function m* :
XN — AN such that

7 (x) € argmian(E(ﬁm,a(uN[w],fm,U)),uN[w,a]), xexN.

ac AN

15



Proof. Notice that the function

h(.’l), a) = Waq (5(5:“ a(ﬂN [.’I:], ) U))v My [:Ev a])

is such that for a € AN, h(-,a) is measurable, and for x € XV, h(zx,-) is continuous. Let us

then show that one can measurably select argminh(x,a) w.r.t. . Consider a dense sequence
acAN

(an)nen = AV (its existence is guaranteed by the fact that AV is a compact metric space), and
define by recursion the sequence of measurable functions m, : XV — AV as

770(.’13) = ap
Jma() if Wz, m () < (T, an41)
7Tn+1(w) =
a, .1 else.

The measurability of 7, is easily established by induction on n: For n = 0, it is clear. Assuming
that 7, is measurable, and denoting

gn(x) = h(z, 7 (x)) — hx,a,41), Ve e XV,

notice that for any measurable set B < AV, we have

[7n1]7H(B) = {[Wn]lgB) N (Ro) if ani ¢ B,

([ma]"1(B) 0 g, ' (R2)) U g, H(RY) if any € B,

which is clearly a measurable set, and proves the induction. Then, let us consider an embedding
¢ : AN — [0,1] such that ¢ and ¢! are uniformly continuous (see Lemma C.2 in [16]). Then,
(¢ o pn)nen denotes a sequence of measurable functions from XY to ¢(AY) < [0,1]. Tt is well
known that the function liminf,cy(¢ o 7r,,) is then measurable from XV to ¢(AYN) (we here use
the fact that ¢ is continuous and ¢(AY) is closed, which ensures that the liminf takes its values
in ¢p(AY)). Finally, let us denote 7* : XN — AN defined by

™ = ¢ 'oliminf(¢om,).
neN
7* is then measurable by composition. Furthermore, for any € € XV, pon*(x) = liminf,en(¢ 0
7o (x)) is an accumulation point of the sequence (¢ o 7, (x))nen, which implies, by conti-
nuity of ¢!, that w*(z) is an accumulation point of (m,(x))nen. Given the definition of
7o (), it is clear by induction that for any n € N, h(z, 7, (2)) < min,<, h(x, 7},), and thus
h(z, 7 (x)) < mingey h(x, 7,). By density of (a”),eny and by continuity of h(x, ), this implies

that h(z, 7 (x)) = mingeq~ h(zx,a) for all z € XV, ie. 7*(x) € argminh(z,a). We conclude
acAN
that 7v* is thus a measurable selection of argmin h(., a). ]
acAN

By Lemma [34] there exists a randomized feedback policy 7% s.t.

Wd(‘c(gmaaé(:uzv [m]vngU))huN [mvﬂaﬁN]) = inf Wd(£(§m7aé(uN [m]7§m7U))’:uN [:c,a]),

acAN

and the r.h.s. of the above equality is bounded by 2Mpy from Lemma [B.21 Together with
Proposition [B.1], this proves Theorem
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3.4 Proof of Theorem 2.3

Given a randomized feedback policy m, € LO(X x [0,1]"; AN)), the set of measurable functions
from XN x [0,1]Y) into AN, the associated feedback control is the unique control a™ given by
alf = m,.(X;,Uy), t € N, where {U; = (U;)ie[[l)N]],t € N} is a family of mutually i.i.d. uniform
random variables on [0, 1], independent of G, €. By misuse of notation, we denote VJ = Vﬁ".
For 7, € LO(xN x [0,1]V; AN), we introduce the operator 7Ty " on L% (XY), defined by

T];’]TTW(w) = ]E[f(m77r7‘($7 UO)) + ﬁW(F(w77TT(w7 UO)ael)L Ve € XNu
where Uy = (Uj)ieq,n] is a family of i.i.d. ~ ¢([0,1]), independent of G, e.

We adapt Proposition Bl to the case of randomized feedback policies.

Proposition 3.2 Let a. be an e-optimal randomized feedback policy for the CMKV-MDP, and
consider any feedback policy 7, for the N-agent MDP. Then, the feedback control o™ is

O(e + sup E[Wd (L(Eayac(py 2], &2, U)), iy [, 0, (2, Uo)])]v + My,)-optimal for Vi (zo),

zeXN

namely

V(o) = C(e+ sup E[Wa(Llge, acliny [2],60, U) iyl mo(m, U | + M) < ViE(ao).

xeX N

Here (£2,U) ~ py[x] @U([0,1]), and Uy = (U§)sep,ny is a family of ii.d. ~ U([0,1]), inde-
pendent of €.

Proof. Fix ¢ € XV, and let a = 7,.(x,Ug) be the random variable valued in A. By definition,
we have Ty Vy(x) = E[T% Vn (z)]. By Lemma B3, we have

T?VVN(CII) 2 VN(:B) _6_C[Wd(ﬁ(gmaae(,U*N[w]agmvU))?:U’N[wvﬂ-T(w?UO)])v +M]w\//]

Taking the expectation, and by Jensen’s inequality, we then get

TE V() = VN(w)—e—C( sup E[Wd(ﬁ(c‘m,ae(uN[w],ﬁm,U)),uN[w,vrr(w,Uoﬂ)T+M7v)=

zeX N

and we conclude by the verification result in Lemma [B.5 0

Compared to Proposition 3.1l Proposition [3.2lmeans that with a randomized feedback policy
7, one can obtain a “good” performance whenever it produces empirical state-action distribu-
tions that are close the theoretical state-action distribution generated by a. on average, i.e., that
makes the quantity

E|Wa (£(&a: ac(py @], &0, U), iy @70 (2, Uo)]) |

as small as possible. More precisely, if we can design a randomized policy 7, such that

E[Wa (£(& 0y 2], &0. U)o, [ 7, (2. U0))) | < OMy,

then by Proposition B2 this will prove the statement of Theorem 2.3l The next result shows
how it can be achieved.
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Lemma 3.5 Let a: P(X) x X x [0,1] — A be any (if it exists) randomized feedback policy for
the CMKV-MDP such that

Elda(a(p,z,U),a(p,2’,U))] < Kd(z,2'), VpeP(X),x,2 €X, (3.9)

(here U ~ U[0,1])) for some positive constant K. Consider the randomized feedback policy for
the N-agent MDP defined by

w2V (@u) = (aluyle]a’,ul))
Then,

P (@ )iep.ng € XY, w = (u)iep,ny € [0,1]7
E[Wd (‘C(ng a(/LN [m]v s U)), My [:B, W?’N(m7 UO)])] < (2 + K)MN,
where (Ex,U) ~ py[z] @U([0,1]).

Proof. Fix z € XV, and set ag(z,u) = a(uy[z], z,u) for (z,u) € X x [0,1]. Let us consider
a family & = (£');eq1,n7 of N 1i.d. random variables such that £ ~ p,[x], and independent of

Uy. Let us consider o&®, the optimal permutation defined in Definition .1 between & and x.
We have

Wa (L(Ee, alpy ], &y U)), iy [z, 70 (22, Uo)))
= ( (gmyam &, U

2 |

N

( (gmyam Ex, U

K2
ztaq (xt Uo)

N 1 N
f 2 (§7 e UZ)) * Wd N ; 5T Jag (€7 X Ué)’ N ;5zi,am(ﬂ,U(§))

2 |

&,

< ( (ga:aaac 5&37 (61U (gE @y )) + dN((£U

i
i

) Wg)N(Sdsywv UO))? (:I}, ﬂﬂ)N(wv UO)))a

2 |

where we set Eog’ = (fgf’w)ie[[l, ~1» and use ([2.2) in the last inequality. Taking the expectation,

we then obtain under condition (B.9)
Wa (L(Ee, alpy €], &, U)), iy [z, 70N (22, Uo)))
< My +(1+ K)E[dy (€, )]
= My+ 1+ EK)EWa(uy €], ny[x])] < (24 K)My,
where we use ([B)) in the last equality. This concludes the proof. O

We now apply Lemma with an e-optimal randomized feedback policy a. for the CMKV-
MDP, and combined with Proposition [3.2] this proves the required result in Theorem

A Existence of optimal randomized control for CMKYV-
MDP

Recall from Proposition 4.1 in [I6] that the Bellman operator 7 of the CMKV-MDP is written
in the lifted form as

[TW() = sup { F(u, @) + BE[W (F(ma. )]}, peP), (A1)

acA
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for W e L2 (P(X)), where A = P(X x A), F is the measurable function on P(X) x A x E9 —
P(X) defined by

F(/Jﬂ a, 60) = F(7 Bl p(/lﬂ a)7 Bl 60) * (p(Ma a) ® E(El))a
and f is the measurable function on P(X) x A defined by

fwa) = | f(w.ap(na)plna)ds, do).

XxA
Here * is the pushforward measure notation, p is a measurable coupling projection from P(X) x A
into A: p(p,a) = p(u, p(u, a)), satisfying pr, * p(u,a) = p, and p(u,a) = a if pry xa = p
(where pry is the projection function on the first coordinate). Since f and F' depend upon a only
through p(u, @), it is clear that the supremum in [AT]), for each p € P(X), can be taken actually
over the the subset I', := {a : (u,a) e '} < A, where I" := {(pt,a) € P(X) x A :pryxa = p}
is closed in P(X) x A from the continuity of @ — pr; x a. Moreover, since V is continuous (see
B2)), it is straightforward to prove that

(ma)eT > flua)+ BE|V(P(na,)|
= |, fra oratara0) + SE[V(FC )+ (08 22)]

is continuous and thus upper continuous on I'. Therefore, by [2], Proposition 7.33, there exists
a measurable function ¢ : P(X) — A whose graph is included in T" and such that

Flu, o(w) + BE[V (F (i, (n),€9)) ] = sup {f(u, a) + BE[V (F(u,a, E?))]},

= [TVI(p) =V(u), VueP(X), (A.2)

where the last equality follows from the fixed point equation of V. By the universal disintegra-
tion theorem (see [13], Corollary 1.26), there exists k : X x P(X x A) x P(X) — P(A) such
that for all @ € P(X x A), yu € P(X) with pr; @ = u, we have a = u®k(-, a, ) (where ®
denotes the probability-kernel product). Furthermore, by Blackwell-Dubins Lemma, there exists
a measurable function p : P(A) x [0,1] — A such that for all 7 € P(A), if U denotes a uniform
random variable, then p(7,U) ~ w. We can then define the randomized feedback policy
ao(p, z,u) = p(k(z, ¢(p), w),u),
which satisfies by construction £(&,ag(p,&,U)) = ¢(u) for (§,U) ~ p®U([0,1]) so that

. 6(m) = E[F(€ a0l €,U), £(E a0, &, 1)) ]
F(u,0(1):€1) = Pl an(ue.0), L6 ot t).esed)”
Recalling notation in ([2.4), and by (A22), this shows that

TV () = V().

According to the verification result (Proposition 4.3 in [16]), this ensures that that the randomized
feedback control a € A defined by

of = ag(P%,, Xs,Uy), teN,

where (Ui)ten is an i.d.d. sequence of random variables, Uy ~ U([0,1]), independent of & ~ o,
and e, is an optimal control for V' (pg).
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B Bellman equation for the N-agent MDP

In this section, we study and rigorously state properties on the Bellman equation for the N-agent
problem, viewed as a MDP with state space X, action space AN, noise sequence € = (&)sen+
with g; := ((si)ie[[l_,N]],ag) valued in EV x E°, state transition function

F(x,ae) := (F(wi,ai,uN [w,a],ei,eo)> e= ((ei)ie[[l_,N]],eO) e EN x E°,

ie[1,N]’

and reward function
1 X o , .
fwa) = D pleal), @= e, a= @ep
i=1

With respect to standard framework of MDP, we pay a careful attention when dealing with
possibly continuous state/action spaces (X, A), and optimizing in general over open-loop controls.

Let us consider the set V of sequences v = (v¢)eny with v a measurable function from
([0,1]M)N into AV, and v; a measurable function from ([0, 1]V)N x (EN x E°)* into AN for t €

N*. For each v € V, we can associate a control process a” € A given by
(X;/ = Vt(Uv (es)se[[l,t]])a teN,

(with the convention that af = vo(U) when t = 0), where U = (U,f)ie[[l)N]LteN is a family of
mutually i.i.d. uniform random variables on [0, 1], independent of &, and conversely any control
a € A can be represented as a” for some v € V. We call V the set of randomized open-loop
policies. By misuse of notation, we write V¥ = V& .

Let us denote by L*(X™) the set of bounded real-valued functions on X%, and by L% (x)
the subset of measurable functions in L®(X"). We then introduce the Bellman “operator”
T : L2(XN) — L®(XN) defined for any W € LL(XN) by:

[TnW](x) := sup TaW(x), ze XV,

ac AN

where
AW(x):= f(x,a)+ ﬁE[W(F(w,a,el))], xe XN, ae AN,

Notice that the sup can a priori lead to a non measurable function Ty W. Because of this, Ty
is not an operator on L% (X) in the strict sense. To see Ty as an operator, we have to find a
subset in L2 (X™) that is preserved by Ty. The next result introduces such subset.

Lemma B.1 Let M be the set in LL(XYN) defined by

M = {W S LZOI(XN) : ‘W(CC) — W(m/)’ < 2Kf Z ﬂtmin [(2KF)th(w,w,),AX]7 vm’wl c XN}
t=0
(B.1)

Then M is a complete metric space under the | - | norm, and T%, for all a € AN, and Ty,

preserve M: TaM c M, TN M < M.

20



Proof. It is clear that M is closed in L% (X), and is therefore a complete metric space for || - |.
Let We M. Fix ¢, 2’ € XV, and ae AN. Let us start with two preliminary estimations: under
(Hfiip), and recalling [2:2), we clearly have

Flaa) — Fa )| < 2K pdn (o, 2). (B.2)
Similarly, under (HFy;p), for e € E°, we have
E[dN(F(mv a, (ai)iEHI,N]] ) 60)5 F(:B/, a, (Ei)iEHI,N]] ) 60))] < 2KFdN(ma .’1},). (B3)

Thus, denoting by X; = F(x,a, (szi)ieHLN]],eo) and X = F(a/,a, (aﬁ)ie[[LN]],eO), we have, by
Jensen’s inequality and then (B.3)),

18

[e¢]
E| ) 8" min [(2KF)'dy (X1, X)), Ax] | <
t=0

Bt min [(2KF)tE[dN (Xl N X/l)], Ax]

~
Il
o

<

18

B'min [(2Kp)" " dn(z, ), Ax]. (B.4)

~
Il
o

The definition of T3, combined with (B.2)), the fact that W € M, and (B.4), implies that

[00)
T W (z) - TAW(2')| < 2Kpdy(z,a) + 2K, Y. B min [(2Kp) M dy(z,2'), Ax]
t=0

[e0]
< 2Ky Z B min [2Kp)'dy(z, @), Ax],
t=0

which shows that T3, W € M, i.e. T4 preserves M. Furthermore, we have

[TwW(z) — TwW(z')| < sup [TAW(z)— TaW(z')|

acAN

0
< 2Kf Z ﬂt min [(2Kp)th(.’1}, .’IZ/), A/y],
t=0

which also shows that TyW € M. O

Lemma [BJ] implies that by restricting 7y and T3, to M, we can see Ty and T3 as operators
on M, that is, Ty : M — M and T%; : M — M. However, the property defining the functions in
M (see (B.I)) is not very natural and practical. The following result provides a more convenient
property satisfied by all functions in M.

Lemma B.2 There exists K, € R such that any function W € M is ~v-Hdélder with constant
factor K., i.e.

W(z)—W(@)| < Kdy(x,z), Voo ex™.

Proof. We have

[W(x)—-W(')| < 2Kj Zﬁt min [(2Kp)'dy(z, @), Ax] =: 2K;S(dn(z, x')).
t=0
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where S(m) = Y..° , 8 min[(2KF)'m, Ax]. If 28Kp < 1, we clearly have

m

Stm) < e

(B2Kp)" =

MS

t=0

and so W is 1-Holder. Let us now study the case 28K > 1. In this case, in particular, 2Kr > 1
since 3 € (0,1), thus t — (2Kr)' is nondecreasing, and so

© el
m) < Z J B min [(2KFp)*m, Ax]ds
t+1

0
Z J [‘35 min 2KF)sm, AX]dS — l J e’ In g min[ sIn(2KF) AX]
ﬁ t=0 ﬁ 0

Let t, = t.(m) be such that me** "CKr) = Ay ie. t, = %. Then,

N

) t* o0
J eslnﬁmin[ sIn(2KF) AX] mJ esln(QKFﬁ)dS + AXJ esln(ﬁ)dS
0 0

t*
_ m [et* In(2KrB) _ 1] Ax (Bt
In(2KFrp) lnB
In(2K pB)

_ngg)
- m[(%> (2K 1) _1] ﬁ/g (AX)HKF)

A ln2KF
- lmmg w5 (5™ - nar

. 1, |1n 8]
< Cmm‘“[ Tn<2f<p)] =Cm",

for some positive constant C' depending on Kp, 5 and Ay. This implies that W is y-Holder
with a constant factor K, that is clearly independent of W € S. This concludes the proof. []

The consequence of Lemmas[B.Iland [B:2is that the set M < L2 (X) is a closed set, preserved
by 7n and contains only functions that are v-Hélder with factor K. We are now able to get the
existence of a unique fixed point to the Bellman operator 7Ty .

Proposition B.1 (i) The operator Ty is monotone increasing: for Wi, Wa € L (XN), if Wq <
Wa, then TnWi < TnWa. (i) Furthermore, it is contracting on L2 (X™N) with Lipschitz factor
B, and admits a unique fized point in L= (X)), denoted by V¥, hence solution to:

Vi = TanVx.
Moreover, Vi € M, and thus V3 is y-Hélder with constant factor K,.

Proof. (i) The monotonicity of Tx is clear. (ii) The S-contraction property of Tx is obtained
by standard arguments, which implies the uniqueness of a fixed point (but not the existence).
Let us prove the existence of a fixed point. As M is preserved by Tx, and is closed for || - |,
and therefore complete (as a closed subset of the complete space L% (X)), by the Banach fixed
point theorem, Ty admits a unique fixed point V3 in M. By Lemma [B.2] this implies that V3
is y-Holder with constant factor K., and concludes the proof. O
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Remark B.1 Notice that the above arguments would not work if we considered, instead of
M, directly the set of y-Holder continuous functions. Indeed, while it is true that such set is
stabilized by Tn (it essentially follows from (B.2) and (B.3), the set of y-Holder continuous
functions is not closed in L2 (X%) (and thus not a complete metric space): there might indeed
exist a converging sequence of y-Holder continuous functions with multiplicative factors (in the
Holder property) tending toward infinity, such that the limit function is not y-Hélder anymore.

O

As a consequence of Proposition [B.I] we can show the following relation between the value
function Vi of the N-agent MDP, and the fixed point V3 of the Bellman operator 7.

Lemma B.3 For all x € XN, we have Vy(z) < V().

Proof. For any « € XV, v e V, we have

E| f(z,v0(U) + BV (F(r,vo(U),e0) | = E|{f(@,vo(w) + BE[VE (F(@.vo(w).e)]} |

E[T"W)ng(m)] < TVi(z) = Vi(@). (B.5)

For any (u,e) € ([0, 1]")N x (EN x EY), and for any v € V, we define *'° € V by

_u,e

Vy (ul7 (e/s)SEﬂlyt]]) = Vt+1(u7e7 (e./s)SEHLt]])u (ulu (e./s)SEHLt]]) € ([07 1]N)N X (EN X Eo)tu teN.

Standard Markov arguments imply the following flow property for randomized open-loop policies:

—U ,eq

V¥(@) = E|f@ o) +8VE " (Fl@vo(U).e)].

Together with (BA]), we then get

Vi(@) - Vi(@) > BE|Vi(F(z,v0(U),e1) ~ V&~ (F(z,10(0),1))]
> B inf  {Vix) - V¥(@)}.

xe XN vey
Taking the infimum over & € XV, v € V on the left hand side of the above inequality, and since
B < 1, this shows that V¥ (z) < V¥ (x) for all v € V. We conclude that Vi < V5. O

We aim now to prove rigorously the equality Vy = V3, i.e., the value function Vi of the
N-agent MDP satisfies the Bellman fixed point equation: Vy = TyVy, and also to show the
existence of e-optimal (randomized) feedback control for V.

A feedback policy (resp. randomized feedback policy) is an element € LO(X™V; AN) (resp.
LO(XN x [0,1]V; AN)), the set of measurable functions from XV (resp. XN x [0,1]V) into
AN, The associated feedback control is the unique control a™ given by af = m(X;), (resp.
(X, Uy)), t € N, where {U; = (Uti)l-e[[LN]],t € N} is a family of mutually i.i.d. uniform
random variables on [0, 1], independent of G, e. By misuse of notation, we denote V7 = Vﬁw.
Given € LO(XN; AN) (vesp. LO(XN x[0,1]V; AN)), we introduce the operator 77 on L% (X)),
defined by

TRW(x) := f(x,w(x))+ PE[W (F(z,n(x),e1))], xe XN,
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resp.
TEW (x) := E[f(x,7(x,Up)) + fW(F(x,7(xz,Ug),e1)], VYae &,
where Uy = (Uj)ie,n] is a family of i.i.d. ~ ¢([0,1]), independent of G, e.
We have the basic and standard properties on the operator 77 :
Lemma B.4 Fiz e LO(XN; AN) (resp. LO(XN x [0,1]V; AN)).
(i) The operator T;F is B-contracting on LL(XN), and VT is its unique fized point.

(ii) Furthermore, it is monotone increasing: for Wi, Wo € L (XN), if Wy < Wa, then TFWi
< TFWa.

We state the standard verification type result for the N-individual MDP, by means of the

Bellman operator.

Lemma B.5 (Verification result)
Fiz e 2 0, and suppose that there exists an e-optimal (randomized) feedback policy w¢ for V35 in
the sense that

Vi< TE Vi + e

€

18-

Then, o™ € A is T -optimal for Vi, i.e., VE > Vy — ﬁ, and we have Vy = V5 —

Proof. Since VT = 77 V7", and recalling from Lemma[B.3]that V3 > Vy = VZ', we have for
all z € XY,

(Vi = VE)@)| < [T V@) = TEVE @) + ¢ < BIVG = Vi +e

where we used the S-contraction property of Ty in Lemma B4l We deduce that |V — VZ'| <

- 7> and then, Viy = VI ‘> Vi — ﬁ, which combined with V3, > Vi, concludes the proof. [

We finally conclude this section by showing the existence of an e-optimal (randomized) feed-
back policy for N-agent MDP on X%, and obtain as a by-product the corresponding Bellman
fixed point equation for its value function.

Proposition B.2 For all € > 0, there exists a (randomized) feedback policy 7€ that is e-optimal
for V5. Consequently, the control a™ € Ais ﬁ-optimal for Viy, and we have Vy = V3, which
thus satisfies the Bellman fixed point equation.

Proof. We prove the result for e-optimal feedback policy (the case of e-optimal randomized
feedback policy is dealt with similarly). Fix e > 0, and given 7 > 0, consider a quantizing grid
M = {x1,...,zNn0} < XN, and an associated partition C}/, k = 1,..., N, of X", satisfying

C}' ¢ B"(zxy) := {:13 e XN idy(x,z) < 77}, k=1,...,N,.
For any xy, k = 1,..., N", there exists aj, € AV such that

Vi (@) < TV (21) + § (B.6)
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From the partition C}, k = 1,..., N, of XN associated to M", we construct the function 7€ :
XN — AN ag follows: we define, for all € XV,

n(x) = aj, whenaxeC]! k=1,... N

Such function 7€ is clearly measurable. Let us now check that such 7€ yields an e-optimal
feedback policy for n small enough. For € XV, we define " = x,, when « € Cl.k=1,...,N,.
Observe that dy(x,z") < 7. We then write for any & € AV,

(T3 Vil(@) = Vi) = (1T Vi) - [T Vil @) + (T3 Vi) - Vi (a")
+ (V@) = Vi)
> (73 Vil(@) - [T Vi) = 5 - (B.7)

where we used (B.6) and the fact that |V (x7) — Vi (z)| < €/3 for n small enough by uniform
continuity of V¥ in Proposition[B.Il Moreover, by observing that w¢(x) = 7¢(z") =: a, we have

T3 Vil(@) = E[f(@.a) + 8V (F(@,a,e1))):
T3 Vil@") = E|f(2",a) + BV (F(@",a.e1) |.

Under (HFj;p)-(Hfiip ), and by using the y-Holder property of V¥ with constant K, in Proposi-
tion [B] we then get

[T Vil(@) = [Ty VAl (a")]

< 2K;dy(z,z") + K. E[]E[dN( a, () iep vy, €) Fl@n,a, (€))iep vy, ) ?]
< 2Kpdy(z, ") + BK, E[E[dN( El)ze[[l Ny e), F(x", a, (Ei)iE[[l,N]]a 6_80]

< Cdy(z,2")Y < Cn.

for some constant C. Therefore, |[TF Vi](z) — [TF Vi](z")| < €/3, and, plugging into (B,
we obtain T Vi (z) — V() = —e, for all z € XN, which means that 7€ is e-optimal for V.
The rest of the assertions in the Theorem follows from the verification result in Lemma [B.5l []
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