METEORIX

High performance computer vision application for Meteor detection from a CubeSat

M. Millet^{1,2}, N. Rambaux³, A. Cassagne¹, M. Bouyer¹, A. Petreto¹, L. Lacassagne¹ and Meteorix team

¹LIP6, Sorbonne University, CNRS ²LERITY - Alcen ³IMCCE, Observatory of Paris, PSL, Sorbonne University

General Context: Meteor detection

- A meteor is a luminous phenomena occurring when a meteoroid enters the Earth's atmosphere
 - Provides information on the history of the solar system
 - Allows to estimate the matter flow entering the atmosphere
- Same phenomena when an artifical satellite re-enters the atmosphere
 - Useful detection to plan safe space activities
 - Useful detection to space debris
- ▶ Meteors detection can be achieved on Earth with ground-camera networks like FRIPON [1]
- Chiba University showed the feasibility of a space observation of meteors with ISS Meteor experiment[2, 3]
 - 2 advantages : absence of weather constraint and wide coverage

Figure 1: An example of meteor from ISS Meteor[2] (Chiba Univ.)

- Universitary CubeSat 3U mission of Sorbonne University[4] for meteors detection and characterization
- ▶ The payload is composed by a camera [5] and a computer-vision processing chain [6]

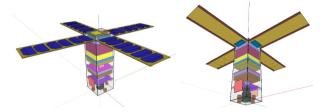


Figure 2: Views of Meteorix's CubeSat[7]

- ▶ This presentation focuses on the processing chain which has 2 main constraints :
 - Low power consumption: 7W available for processing images
 - Real-time detection: processing 25 frames per second (i.e. 40ms/frame)

Goal = to demonstrate the feasibility of a real-time processing chain embedded in a CubeSat

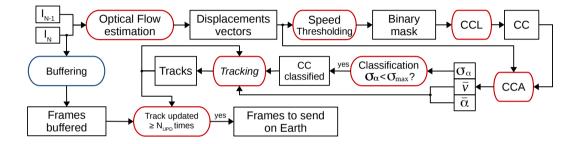


Figure 3: CC = Connected Components, CCL = Connected Components Labelling, CCA = Connected Components Analysis, \bar{v} = average speed, $\bar{\alpha}$ = mean angle, σ_{α} = angular standard deviation, σ_{max} = 30 deg, N_{UPD} = 3

- validated thanks to the video sequences of the ISS Meteor[8] experiment of Chiba University
- 47 out of 50 meteors from these sequences

Meteorix Processing Chain : execution time repartition

Reminder: We have to reach the real-time detection (40ms/frame, 25frames/s)

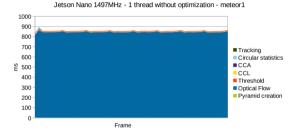


Figure 4: Execution time for each frame of the sequence meteor1 from ISS Meteor. The processing chain takes more than 800ms to process one frame on a Nvidia Jetson Nano board

- The optical flow algorithm takes the most of the time (> 95 %)
- ► Far from real time... a ×20 speedup is required !

 \Rightarrow Implementation should be optimized

Optical Flow

- Optical flow estimation is an estimation of the apparent movement
- Horn & Schunck [9] method used in the processing chain
 - Iterative algorithm more suited to algorithm optimizations
 - Pyramidal version to estimate larger movements

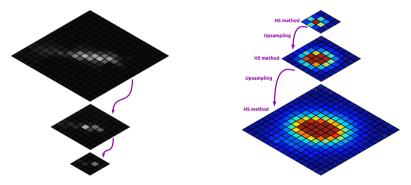


Figure 5: The first step of the pyramidal H&S method is the creation of a pyramid by downsampling the source image. The second step is the computation of the flow and then its upsampling for the next scale.

Algorithmic High-Level Transform, Architectural, Arithmetical & System optimizations

To master ARMv8 architecture in order to exploit all its features (already used in other CubeSat) High Level Transforms [10, 11, 12]

- Operator Fusion: to reduce memory accesses
- Operator Pipeline: to maximize persistence of data within CPU caches
- Operator Factorisation & Reduction: to reduce amount of computation
- Algorithm (parameter) Tuning: to adapt complexity to quality of detection

Architecture optimizations

- ▶ Thread Level Parallelism: OpenMP loop parallelism to distribute work on CPU cores
- ▶ Instruction Level Parallelism SIMD data parallelism [13] for regular computation within a core

Arithmetical Optimizations

- Reciprocal estimate: $a \times \frac{1}{b}$ instead of $\frac{a}{b}$ is faster (but less accurate)
 - Division : 34 cycles
 - Multiplication + Reciprocal : 5 + 5 = 10 cycles
- **Fused** Multiply-Add: compute $a \times b + c$ in one instruction
- Floating point precision: simple (32-bit) or half (16-bit) to increase SIMD parallelism (8×16 vs 4×32)

System Optimization

Frequency tuning of CPU cores and memory to reduce power consumption

Results : Execution time and algorithm tuning

- Optical flow computed with 3 scales
 - without optimization : 841 ms for optical flow a 1497 MHz
 - ▶ with optimizations : 80ms for optical flow a 1497 MHz \Rightarrow ×10, but not enough
- ▶ 3 iterations scheme has been tested to reduce execution time:
 - 6, 1 or 0 iteration at largest level

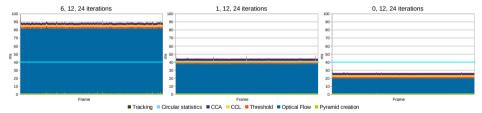


Figure 6: Jetson Nano 1497MHz, 4 threads

\Rightarrow Real-time reached by reducing iterations on the bigger scale of the pyramid !

Iteration scheme	[<mark>6</mark> , 12, 24]	[1, 12, 24]	[0, 12, 24]	
Detected meteors	47	47	47	

 \Rightarrow Reducing iterations does not change the number of detected meteor ! (optical flow is still enough accurate)

In order to respect the power limitation, we looked for the highest frequency respecting the execution time constraint

Frequency	1497MHz	1224MHz	1036MHz	921MHz	825MHz
Execution time (ms/frame)	26.8	31.4	35.5	38.8	42.3
Power consumption (W)	4.9	4.2	3.9	3.7	3.6

- 825MHz: beyond the execution time constraint
- ▶ 921MHz: under the execution time constraint but close \Rightarrow need a safety margin
- ▶ 1036 MHz: seems like a good compromise, offering safety margins for both constraints

τ -Herculids shower (end of May 2022)

- > The processing chain is adapted to airborne camera embedded to aircraft
- Same algorithms [14, 15] but the Optical Flow is replaced by an image registration algorithm

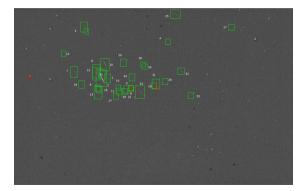


Figure 7: Composite of a 33 meteor cluster [16], 100% of detection

\Rightarrow These detections increase the Technology Readiness Level of the algorithm to 5

- A new processing chain for meteor detection from space has been designed and validated with a dataset
- Algorithmic, architectural, arithmetical and system optimizations have been applied to:
 - reach real time processing (40 ms) while enforcing
 - power consumption constraint and
 - quality of detection
- Next step: load balancing = optical flow on GPU [17] or FPGA [18] (more suited to such a kind of computing)

Thank you !

And a special thanks for :

Références I

- F. Colas et al. Fripon: a worldwide network to track incoming meteoroids. Astronomy and Astrophysics (A & A), 644:1–23, 2020.
- [2] Chiba. Meteor project http://www.perc.it-chiba.ac.jp/project/meteor.
- [3] T. Arai, M. Kobayashi, M. Yamada, T. Matsui, and Cometss Project Team. Meteor Observation HDTV Camera Onboard the International Space Station. In *Lunar and Planetary Science Conference*, page 1610, 2014.
- [4] N. Rambaux et al. Meteorix: a cubesat mission dedicated to the detection of meteors. In 42nd Assembly of Committee on Space Research (COSPAR), 2018.
- [5] N. Rambaux, J. Vaubaillon, S. Derelle, M. Jacquart, M. Millet, L. Lacassagne, A. Petreto, P. Simoneau, K. Baillie, J. Desmars, D. Galayko, and R. Chotin. Meteorix camera tests for space-based meteor observations. WGN, Journal of the International Meteor Organization (IMO), 49(5):1–3, 2021.
- [6] M. Millet, N. Rambaux, A. Petreto, F. Lemaitre, and L. Lacassagne. Meteorix a new processing chain for real-time detection and tracking of meteors from space. WGN, Journal of the International Meteor Organization (IMO), 49(6):1–5, 2022.
- [7] N. Rambaux et al. Meteorix: A cubesat mission dedicated to the detection of meteors and space debris. In ESA NEO and Debris Detection Conference- Exploiting Synergies -ESA/ESOC, Darmstadt, Germany, 2019.
- [8] T. Arai, M. Kobayashi, M. Yamada, H. Senshu, K. Wada, S. Ohno, K. Ishibashi, R. Ishimary, K. Maed, and T. Matsui. International Space Station-Based Meteor Observation Project: Initial Results. In *Lunar and Planetary Science Conference*, 2017.
- [9] B.K.P. Horn and B.G. Schunck. Determining optical flow. *Artificial Intelligence*, 17:185–203, 1981.

Références II

- [10] H. Ye, L. Lacassagne, D. Etiemble, L. Cabaret, J. Falcou, and O. Florent. Impact of High Level Transforms on High Level Synthesis for motion detection algorithm. In *IEEE International Conference on Design and Architectures for Signal and Image Processing (DASIP)*, pages 1–8, 2012.
- [11] H. Ye, L. Lacassagne, J. Falcou, D. Etiemble, L. Cabaret, and O. Florent. High level transforms to reduce energy consumption of signal and image processing operators. In *IEEE International Workshop on Power* and Timing Modeling, Optimization and Simulation (PATMOS), pages 247–254, 2013.
- [12] L. Lacassagne, D. Etiemble, A Hassan-Zahraee, A. Dominguez, and P. Vezolle. High level transforms for SIMD and low-level computer vision algorithms. In ACM Workshop on Programming Models for SIMD/Vector Processing (PPoPP), pages 49–56, 2014.
- [13] A. Hennequin, I. Masliah, and L. Lacassagne. Designing efficient SIMD algorithms for direct connected component labeling. In ACM Workshop on Programming Models for SIMD/Vector Processing (PPoPP), pages 1–8, 2019.
- [14] L. Lacassagne and B. Zavidovique. Light Speed Labeling for RISC architectures. In IEEE International Conference on Image Analysis and Processing (ICIP), pages 3245–3248, 2009.
- [15] F. Lemaitre, A. Hennequin, and L. Lacassagne. How to speed Connected Component Labeling up with SIMD RLE algorithms. In ACM Workshop on Programming Models for SIMD/Vector Processing (PPoPP), pages 1–8, 2020.
- [16] J. Vaubaillon et al. Detection of a 2022 τ -herculid meteor cluster. 2022.
- [17] T. Romera, A. Petreto, F. Lemaitre, M. Bouyer, Q. Meunier, and L. Lacassagne. Implementations Impact on Iterative Image Processing for Embedded GPU. In *European Signal Processing Conference (EUSIPCO)*, Dublin, Ireland, 2021.
- [18] R. Chotin I. Bournias and L. Lacassagne. FPGA Acceleration of the Horn and Schunck Hierarchical algorithm. In International Symposium on Circuits and Systems (ISCAS), 2021.

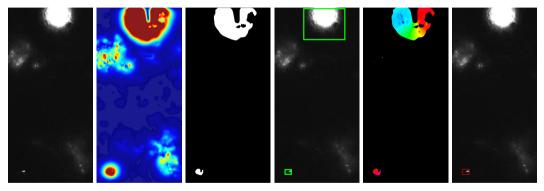


Figure 8: The different steps of the processing chain

- **Educational** Enroll students in a space mission
- > Astronomical Estimate the flux of meteoroids and space debris entering the atmosphere
- ▶ Technological Show the feasibility of a *real-time* processing chain embedded in a nanosatellite.

SIMD : Single Instruction Multiple Data

				128bits
				64bits x 2
				32bits x 4
				16bits x 8
				8bits x 16

Figure 9: 128-bit SIMD registers and

32-bit floating point multiplication

1.1

2.0

2.2

А

В

С

2.2

4.0

8.8

3.3

3.0

9.9

х

=

4.4

0.0

0.0

- CPU 4-core ARM Cortex 57
- 4GB RAM
- ► GPU 128-core Maxwell

Figure 10: NVIDIA Jetson NANO developer kit

- 4 solar panels
- Li-Ion battery (48kWh)
- Power board
- Magnetorquer board
- Reaction wheel
- S-band transmitter with two antennas (for scientific mission)
- UHF/VHF transceiver with one antenna
- Interface board
- On-board computer