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General Context: Meteor detection

▶ A meteor is a luminous phenomena occurring when a meteoroid enters the Earth’s atmosphere
▶ Provides information on the history of the solar system
▶ Allows to estimate the matter flow entering the atmosphere

▶ Same phenomena when an artifical satellite re-enters the atmosphere
▶ Useful detection to plan safe space activities
▶ Useful detection to space debris

▶ Meteors detection can be achieved on Earth with ground-camera networks like FRIPON [1]
▶ Chiba University showed the feasibility of a space observation of meteors with ISS Meteor

experiment[2, 3]
▶ 2 advantages : absence of weather constraint and wide coverage

Figure 1: An example of meteor from ISS Meteor[2] (Chiba Univ.)
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Meteorix Mission

▶ Universitary CubeSat 3U mission of Sorbonne University[4] for meteors detection and
characterization

▶ The payload is composed by a camera [5] and a computer-vision processing chain [6]

Figure 2: Views of Meteorix’s CubeSat[7]

▶ This presentation focuses on the processing chain which has 2 main constraints :
▶ Low power consumption: 7W available for processing images
▶ Real-time detection: processing 25 frames per second (i.e. 40ms/frame)

Goal = to demonstrate the feasibility of a real-time processing chain embedded in a CubeSat
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Meteorix Computer Vision Processing Chain
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Figure 3: CC = Connected Components, CCL = Connected Components Labelling, CCA = Connected
Components Analysis, v̄ = average speed, ᾱ = mean angle, σα = angular standard deviation, σmax = 30 deg,
NUPD = 3

▶ validated thanks to the video sequences of the ISS Meteor[8] experiment of Chiba University
▶ 47 out of 50 meteors from these sequences
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Meteorix Processing Chain : execution time repartition

Reminder: We have to reach the real-time detection (40ms/frame, 25frames/s)
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Figure 4: Execution time for each frame of the sequence meteor1 from ISS Meteor. The processing chain takes
more than 800ms to process one frame on a Nvidia Jetson Nano board

▶ The optical flow algorithm takes the most of the time (> 95 %)
▶ Far from real time... a ×20 speedup is required !

⇒ Implementation should be optimized
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Optical Flow

▶ Optical flow estimation is an estimation of the apparent movement
▶ Horn & Schunck [9] method used in the processing chain

▶ Iterative algorithm more suited to algorithm optimizations
▶ Pyramidal version to estimate larger movements
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Figure 5: The first step of the pyramidal H&S method is the creation of a pyramid by downsampling the source
image. The second step is the computation of the flow and then its upsampling for the next scale.
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Algorithmic High-Level Transform, Architectural, Arithmetical & System optimizations

▶ To master ARMv8 architecture in order to exploit all its features (already used in other CubeSat)
High Level Transforms [10, 11, 12]
▶ Operator Fusion: to reduce memory accesses
▶ Operator Pipeline: to maximize persistence of data within CPU caches
▶ Operator Factorisation & Reduction: to reduce amount of computation
▶ Algorithm (parameter) Tuning: to adapt complexity to quality of detection

Architecture optimizations
▶ Thread Level Parallelism: OpenMP loop parallelism to distribute work on CPU cores
▶ Instruction Level Parallelism SIMD data parallelism [13] for regular computation within a core

Arithmetical Optimizations
▶ Reciprocal estimate: a× 1

b
instead of a

b
is faster (but less accurate)

▶ Division : 34 cycles
▶ Multiplication + Reciprocal : 5 + 5 = 10 cycles

▶ Fused Multiply-Add: compute a× b + c in one instruction
▶ Floating point precision: simple (32-bit) or half (16-bit) to increase SIMD parallelism (8×16 vs

4×32)

System Optimization
▶ Frequency tuning of CPU cores and memory to reduce power consumption
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Results : Execution time and algorithm tuning

▶ Optical flow computed with 3 scales
▶ without optimization : 841 ms for optical flow a 1497 MHz
▶ with optimizations : 80ms for optical flow a 1497 MHz ⇒ ×10, but not enough

▶ 3 iterations scheme has been tested to reduce execution time:
▶ 6, 1 or 0 iteration at largest level
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Figure 6: Jetson Nano 1497MHz, 4 threads

⇒ Real-time reached by reducing iterations on the bigger scale of the pyramid !

Iteration scheme [6, 12, 24] [1, 12, 24] [0, 12, 24]
Detected meteors 47 47 47

⇒ Reducing iterations does not change the number of detected meteor !
(optical flow is still enough accurate)
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Results : Power consumption vs frequency & execution time

In order to respect the power limitation, we looked for the highest frequency respecting the execution
time constraint

Frequency 1497MHz 1224MHz 1036MHz 921MHz 825MHz
Execution time (ms/frame) 26.8 31.4 35.5 38.8 42.3
Power consumption (W) 4.9 4.2 3.9 3.7 3.6

▶ 825MHz: beyond the execution time constraint
▶ 921MHz: under the execution time constraint but close ⇒ need a safety margin
▶ 1036 MHz: seems like a good compromise, offering safety margins for both constraints
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τ -Herculids shower (end of May 2022)

▶ The processing chain is adapted to airborne camera embedded to aircraft
▶ Same algorithms [14, 15] but the Optical Flow is replaced by an image registration algorithm

Figure 7: Composite of a 33 meteor cluster [16], 100% of detection

⇒ These detections increase the Technology Readiness Level of the algorithm to 5
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Conclusion

▶ A new processing chain for meteor detection from space has been designed
and validated with a dataset

▶ Algorithmic, architectural, arithmetical and system optimizations have been applied to:
▶ reach real time processing (40 ms) while enforcing
▶ power consumption constraint and
▶ quality of detection

▶ Next step: load balancing = optical flow on GPU [17] or FPGA [18]
(more suited to such a kind of computing)
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Thank you !

And a special thanks for :
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Example of processing

Figure 8: The different steps of the processing chain
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The main goals of the mission

▶ Educational Enroll students in a space mission
▶ Astronomical Estimate the flux of meteoroids and space debris entering the atmosphere
▶ Technological Show the feasibility of a real-time processing chain embedded in a nanosatellite.
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What is SIMD ?

▶ SIMD : Single Instruction Multiple Data
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Figure 9: 128-bit SIMD registers and 32-bit floating point multiplication
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NVIDIA Jetson Nano

▶ CPU 4-core ARM Cortex 57
▶ 4GB RAM
▶ GPU 128-core Maxwell

Figure 10: NVIDIA Jetson NANO developer kit
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CubeSat components

▶ 4 solar panels
▶ Li-Ion battery (48kWh)
▶ Power board
▶ Magnetorquer board
▶ Reaction wheel
▶ S-band transmitter with two antennas (for scientific mission)
▶ UHF/VHF transceiver with one antenna
▶ Interface board
▶ On-board computer
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