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Principal Geodesic Analysis of Merge Trees
(and Persistence Diagrams)

Mathieu Pont, Jules Vidal and Julien Tierny

Abstract—This paper presents a computational framework for the Principal Geodesic Analysis of merge trees (MT-PGA), a novel
adaptation of the celebrated Principal Component Analysis (PCA) framework [87] to the Wasserstein metric space of merge trees [92].
We formulate MT-PGA computation as a constrained optimization problem, aiming at adjusting a basis of orthogonal geodesic axes,
while minimizing a fitting energy. We introduce an efficient, iterative algorithm which exploits shared-memory parallelism, as well as an
analytic expression of the fitting energy gradient, to ensure fast iterations. Our approach also trivially extends to extremum persistence
diagrams. Extensive experiments on public ensembles demonstrate the efficiency of our approach – with MT-PGA computations in the
orders of minutes for the largest examples. We show the utility of our contributions by extending to merge trees two typical PCA
applications. First, we apply MT-PGA to data reduction and reliably compress merge trees by concisely representing them by their first
coordinates in the MT-PGA basis. Second, we present a dimensionality reduction framework exploiting the first two directions of the
MT-PGA basis to generate two-dimensional layouts of the ensemble. We augment these layouts with persistence correlation views,
enabling global and local visual inspections of the feature variability in the ensemble. In both applications, quantitative experiments
assess the relevance of our framework. Finally, we provide a lightweight C++ implementation that can be used to reproduce our results.

Index Terms—Topological data analysis, ensemble data, merge trees, persistence diagrams.
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1 INTRODUCTION

W ETHER they are acquired or simulated, modern datasets
are constantly gaining in detail and complexity, given

the continuous improvement of acquisition devices or computing
resources. This geometrical complexity is a difficulty for interac-
tive data analysis and interpretation. This observation motivates
the development of concise yet informative data representations,
capable of encoding the main features of interest and visually
representing them to the users. In that regard, Topological Data
Analysis (TDA) [37] has demonstrated its ability to generically,
robustly and efficiently reveal implicit structural patterns hidden
in complex datasets, in particular in support of analysis and visu-
alization tasks [59]. Examples of successful applications include
turbulent combustion [24], [55], [68], material sciences [43], [57],
[58], nuclear energy [74], fluid dynamics [64], bioimaging [4],
[20], [29], quantum chemistry [16], [51], [79] or astrophysics
[108], [110]. Among the feature representations studied in TDA
(see Sec. 1.1), the merge tree [27] (Fig. 2), is a popular instance
in the visualization community [20], [24], [29].

In many applications, on top of the increasing geometrical data
complexity, an additional challenge emerges, related to ensemble
datasets. These describe a phenomenon not only with a single
dataset, but with a collection of datasets, called ensemble mem-
bers, in order to characterize the variability of the phenomenon
under study. In principle, a topological representation (like the
merge tree) can be computed for each ensemble member. While
this strategy has several practical advantages (direct representa-
tions of the features of interest, reduced memory footprint), it
shifts the analysis problem from an ensemble of datasets to an
ensemble of merge trees. Then, a major challenge consists in
designing statistical tools for such an ensemble of topological
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descriptors, to support its interactive analysis and interpretation.
In this direction, a series of recent works focused on the notion of
average topological descriptor [67], [92], [116], [118], [122], with
applications to ensemble summarization and clustering. However,
while such averages synthesize a topological descriptor which
is well representative of the ensemble, they do not describe the
topological variability of the ensemble.

This paper addresses this issue and goes beyond simple av-
erages by adapting the celebrated framework of Principal Com-
ponent Analysis (PCA) [87] to ensembles of merge trees. For
that, we introduce the novel notion of “Merge-Tree Principal
Geodesic Analysis” (MT-PGA), which captures the most infor-
mative geodesics (i.e. analogs of straight lines on the abstract
space of merge trees) given the input ensemble, hence facilitating
variability analysis and visualization. In particular, we formalize
the computation of an orthogonal basis of principal geodesics in
the Wasserstein metric space of merge trees [92] as a constrained
optimization problem (Sec. 3), inspired by previous work on the
optimal transport of histograms [30], [106], which we extend
and specialize to merge trees. We introduce an efficient iterative
algorithm (Sec. 4), which exploits an analytic expression of the
energy gradient to ensure fast iterations. Moreover, we docu-
ment accelerations with shared-memory parallelism. Extensive
experiments (Sec. 6) indicate that our algorithm produces bases
of acceptable reconstruction quality within minutes, for real-life
ensembles extracted from public benchmarks. We illustrate the
utility of our contribution in two applications. First, we show that
the principal geodesic bases computed by our algorithm can result
in an important compression of ensembles of merge trees, while
still enabling a successful post-processing for typical visualization
tasks such as feature tracking or ensemble clustering. Second, we
present an extended application of our work to dimensionality
reduction, for the visual inspection of the ensemble variability
via two-dimensional embeddings, where we show that the views
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Fig. 1. Visual analysis of the Earthquake ensemble with Merge Tree Principal Geodesic Analysis (MT-PGA, (a): one member per ground-truth class).
Our framework computes a coordinate system (c) for the Wasserstein metric space of merge trees B by adjusting geodesic axes (blue and black
curves, (c)) to optimize a fitting energy. This enables the adaptation to merge trees of typical applications of Principal Component Analysis, such as
(i) data reduction, where the input trees are accurately reconstructed ((b), right), by simply storing their MT-PGA coordinates, or (ii) dimensionality
reduction. MT-PGA enables the computation of Principal Geodesic Surfaces (c), which complement its planar layout (f) by better conveying visually
the curved nature of B. MT-PGA supports the efficient reconstruction of user-defined locations, for the interactive exploration of B: the reconstruction
of the purple curve (g) enables the navigation from the trees of the first cluster (dark red, (c)) to the second (orange, (c)) and third (pink, (c)) clusters.
MT-PGA also introduces Persistence Correlation Views (d) which enable the visual identification of the features which are the most responsible for
the variability in the ensemble (high correlation, near the disk boundary, (d)) as well as their direct inspection in the data (matching colors (a)).

generated by our approach preserve well the intrinsic metric
between merge trees, as well as the global structure of the input
ensembles. Since our framework is based on the Wasserstein dis-
tance between merge trees [92], which generalizes the Wasserstein
distance between persistence diagrams [116], it trivially extends to
persistence diagrams by simply adjusting a parameter.

1.1 Related work

The literature related to our work can be classified in three groups,
reviewed in the following: (i) uncertainty visualization, (ii) ensem-
ble visualization, and (iii) topological methods for ensembles.
(i) Uncertainty visualization: Variability in data can be repre-
sented in several ways. Uncertain datasets [1], [22], [62], [73],
[83], [100] capture variability by modeling each point of the
domain as a random variable, whose variability is explicitly
modeled by a given probability density function (PDF). Early tech-
niques focused on estimating the entropy of the random variables
[98], their correlations [91] or their gradient variations [89]. The
positional uncertainty of level sets has been studied for several
interpolations and PDF models [6], [7], [8], [90], [94], [95], [96],
[97], [105]. The positional uncertainty of critical points has been
studied for Gaussian [70], [81], [82], [88] or uniform distributions
[17], [54], [112]. A general limitation of existing methods for
uncertain data is their dependence on the PDF model for which
they have been specifically designed. This reduces their usability
for ensemble data, where the PDF estimated from the ensemble
members can follow an arbitrary, unknown model. Also, most
techniques do not consider multimodal PDFs, which is however
necessary when multiple trends are present in the ensemble.
(ii) Ensemble visualization: Ensemble datasets encode data
variability by directly modeling empirical observations (i.e. the
members of the ensemble). Current approaches to ensemble visu-
alization typically compute some geometrical objects describing

the features of interest (level sets, streamlines, etc), for each
member of the ensemble. Then, an aggregation phase estimates
a representative object for the resulting ensemble of geometrical
objects. For instance, spaghetti plots [35] are a typical example
for studying level-set variability, especially for weather data [99],
[104]. More specifically, box-plots [119] describe the variability
of contours and curves [75]. For flow ensembles, Hummel et al.
[61] introduce a Lagrangian framework for classification purposes.
Clustering techniques have been introduced, to identify the main
trends, and their variability, in ensembles of streamlines [44] and
isocontours [45]. Regarding topological features, Favelier et al.
[42] and Athawale et al. [9] introduced approaches for visualizing
the variability of critical points and gradient separatrices. Lohfink
et al. [71] introduced an approach for the consistent planar layout
of multiple contour trees, to support effective visual comparisons
between the contour trees of distinct members. Although the above
techniques addressed the visualization of ensembles of topological
objects, they did not focus explicitly on their statistical analysis.
Principal Component Analysis (PCA) [87] is a classical approach
for the analysis of variability in vectorized data (i.e. point clouds
in Euclidean spaces). Extensions have been investigated for metric
spaces [46], [49], [50], including transport based distances [32]
between histograms [30], [106]. However, these methods are not
directly applicable to merge trees. They focus on fundamentally
different objects (histograms). Thus, their distances, geodesics and
barycenters are defined differently (in particular in an entropic
form [32], [33]) and the algorithms for their computations are
drastically different (based on Sinkhorn matrix scaling [109]). Our
global strategy (also based, at a high level, on an alternation of
fitting and constraint enforcement, Sec. 3) can be interpreted as
an extension of this line of work, but we revisit it completely, to
specialize it to merge trees.

(iii) Topological methods: Concepts and algorithms from com-



3

putational topology [37] have been investigated, adapted and
extended by the visualization community [59], [121]. Popular
topological representations in data visualization include the per-
sistence diagram [13], [37], [40] (Sec. 2.2), the Reeb graph [18],
[36], [53], [84], [86], [115] and its variants the merge (Fig. 2) and
contour trees [2], [27], [28], [52], [72], [113], or the Morse-Smale
complex [23], [34], [38], [39], [47], [56], [102], [107].

As detailed in Sec. 3, the development of a computational
framework for Principal Geodesic Analysis (PGA) over an en-
semble of topological objects requires several key, low-level,
geometrical ingredients, namely (i) a distance metric (to measure
distances between objects), (ii) a geodesic estimation routine (to
model the axes of the PGA basis) and (iii) a barycenter estimation
routine (to compute the origin of the PGA basis). We review now
the previous work related to these aspects.

Distance metrics have been studied for most of the above topo-
logical objects. Inspired by the literature in optimal transport [63],
[76], the Wasserstein distance between persistence diagrams [37]
(Sec. 2.2) has been extensively studied. It is based on a bipartite
assignment problem, for which exact [78] and approximate [15],
[65] implementations are publicly available [114]. However, the
persistence diagram can lack specificity in its data characterization
and more advanced topological descriptors, such as merge trees
(Sec. 2.3), are often reported to differentiate datasets better [14],
[77], [92], [111]. Several similarity measures have been introduced
for Reeb graphs [60] and their variants [103]. However, since
these measures are not metrics (the preservation of the triangle
inequality is not specifically enforced), they are not conducive
to the computation of geodesics. Stable distance metrics between
Reeb graphs [12] and merge trees [77] have been studied from a
theoretical point of view [21] but their computation, following
an exponential time complexity, is not tractable for practical
datasets in general. Distances with polynomial time computation
algorithms have also been investigated. Beketayev et al. [14]
focus on the branch decomposition tree (BDT, Sec. 2.3), and
estimate their distances by iteratively reducing a target mismatch
term over a significantly large search space. Sridharamurthy et
al. [111] specialize efficient algorithms for computing constrained
edit distances between trees [123] to the special case of merge
trees, resulting in a distance which is computable for real-life
datasets and with acceptable practical stability. Based on this edit
distance, a generalization of the L2-Wasserstein distance between
persistence diagrams [116] has been introduced for merge trees
[92], thereby enabling the efficient computation of distances,
geodesics and barycenters of merge trees.

Regarding the estimation of a representative object from a
set of topological representations, multiple approaches emerged
recently. Several methods [67], [116], [118] have been introduced
for the estimation of barycenters of persistence diagrams (or
vectorized variants [3], [26]). A recent work [122] introduced a
framework for computing a 1-center of a set of merge trees (i.e.
minimizing its maximum distance to the set), for an interleav-
ing distance [48]. However, this approach requires pre-existing,
reliable correspondence labels between the nodes of the input
trees, which is not practical for real-life datasets (heuristics need
to be considered). Also, the resulting representative merge tree
is not a barycenter (it does not minimize a Fréchet energy, i.e.
a sum of distances to the set). Thus, it cannot be used directly
for PGA. In contrast, the barycentric framework of Pont et al.
[92] automatically minimizes a Fréchet energy explicitly. Thus,
the resulting barycenter merge tree can be directly used for

PGA. Another line of approaches aimed at directly applying the
classical PCA (or variants from the matrix sketching literature
[120]) to vectorizations of topological descriptors [5], [69], [101],
i.e. by first converting each topological descriptor into a (high-
dimensional) Euclidean vector and then leveraging traditional
tools from linear algebra (e.g. classical PCA) on these vectors.
However, vectorizations are in general subject to a number of
limitations. They are prone to approximation errors (due to quan-
tization and linearization artifacts), they can be difficult to revert
(which challenges their usage for visualization applications) and
their stability is not always established. In contrast, our approach
directly manipulates merge trees in the Wasserstein metric space,
and not linear approximations in a Euclidean space. This results
in a faithful formulation of merge tree PGA, which ensures im-
proved accuracy and interpretability (cf. experimental discussion,
Sec. 6.2).

1.2 Contributions

This paper makes the following new contributions:
1) An approach to Principal Geodesic Analysis of Merge Trees

(MT-PGA): We formulate the definition of an orthogonal ba-
sis of principal geodesics in the Wasserstein metric space of
merge trees [92] as a constrained optimization problem. Our
formulation (Sec. 3) extends previous work on histograms
[30], [106] and specializes it to merge trees.

2) An optimization algorithm for MT-PGA: We introduce an
efficient optimization algorithm (Sec. 4) for MT-PGA. Each
iteration alternates between (i) a minimization of the fitting
energy of the MT-PGA basis and (ii) a constraint enforce-
ment. Our algorithm exploits an analytic expression of the
fitting energy gradient, to ensure fast iterations. We document
accelerations based on shared-memory parallelism and report
running times in the orders of minutes for real-life ensembles.

3) An application to data reduction: We present an application
to data reduction (Sec. 5.1), where the merge trees of the in-
put ensemble are significantly compressed, by solely storing
the MT-PGA basis and the coordinates of the input merge
trees in the basis. We illustrate the utility of this reduction
with applications to feature tracking and ensemble clustering.

4) An application to dimensionality reduction: We present an
application to dimensionality reduction (Sec. 5.2), by em-
bedding each merge tree as a point in a planar view, based
on its first two coordinates in the MT-PGA basis. We also
contribute derived visualizations – the Principal Geodesic
Surface and the Persistence Correlation View – which enable
the visual inspection of the individual features which are the
most responsible for the variability in the ensemble.

5) Implementation: We provide a C++ implementation of our
algorithms that can be used for reproduction purposes:
https://github.com/MatPont/MT-PGA

2 PRELIMINARIES

This section presents the theoretical background of our work. It
contains definitions adapted from the Topology ToolKit [114]. It is
structured as follows. First, we formalize the input data (Sec. 2.1).
Second, we introduce a first topological data representation –
the persistence diagram (Sec. 2.2) – which is closely related to
the main representation studied in this paper – the merge tree
(Sec. 2.3). Finally, we describe geometrical tools (e.g. metrics,

https://github.com/MatPont/MT-PGA
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Fig. 2. Critical points (spheres, larger radius: maxima), persistence
diagram (left inset), merge tree (center inset) and branch decomposi-
tion tree (right inset) of a clean (a) and noisy (b) scalar field. In both
cases, four main hills are clearly represented with salient features in the
persistence diagram and the merge tree. Branches with low persistence
(less than 10% of the function range) are shown with small white arcs.

geodesics, barycenters) in the space of merge trees (Sec. 2.4),
which have been recently generalized from the study of persistence
diagrams [92]. These geometrical tools will act as building blocks
in our formulation of MT-PGA (Sec. 3). We refer the reader to
textbooks [37] for an introduction to computational topology.

2.1 Input data
The input data is an ensemble of N piecewise linear (PL) scalar
fields fi :M→R, with i∈ {1, . . . ,N}, defined on a PL d-manifold
M, with d ≤ 3 in our applications. The sub-level set of fi, noted
fi
−1
−∞(w) = {p ∈M | fi(p) < w}, is defined as the pre-image of

(−∞,w) by fi. The super-level set of fi is defined symmetrically:
fi
−1
+∞(w) = {p∈M | fi(p)> w}. As w continuously increases, the

topology of fi
−1
−∞(w) changes at specific vertices ofM, called the

critical points of fi [11]. Critical points are classified by their index
Ii: 0 for minima, 1 for 1-saddles, d−1 for (d−1)-saddles and d
for maxima. In practice, fi is enforced to contain only isolated,
non-degenerate critical points [39], [41].

2.2 Persistence diagrams
The persistence diagram is a visual summary of the topological
features (i.e. connected components, independent cycles, voids) of
fi
−1
−∞(w). As shown in Fig. 2, it is closely related to the merge

tree, which is the main topological data representation studied in
this paper. We first describe the persistence diagram however, as
the metric used in our work to measure distances between merge
trees (Sec. 2.4) is a generalization of an established metric between
persistence diagrams. Specifically, in the domain, each topological
feature of fi

−1
−∞(w) can be associated with a unique pair of critical

points (c,c′), corresponding to its birth and death. The Elder rule
[37] states that critical points can be arranged in pairs according to
this observation, such that each critical point appears in only one
pair (c,c′), with fi(c)< fi(c′) and Ii(c) = Ii(c′)−1. For instance,
if two connected components of fi

−1
−∞(w) meet at a critical point

c′, the younger component (created last, in c) dies, in favor of the
older one (created first). The persistence diagram D( fi) embeds
each pair to a single point in 2D at coordinates

(
fi(c), fi(c′)

)
.

The persistence of a pair is given by its height fi(c′)− fi(c). The
persistence diagram provides a visual overview of the features of a
dataset (Fig. 2), where salient features stand out from the diagonal
while pairs corresponding to noise are located near the diagonal.

2.3 Merge trees
In the following, we introduce the main topological data repre-
sentation studied in this paper: the merge tree. We also describe

a specific representation of the merge tree called the branch
decomposition tree, which can be interpreted as a generalization of
the extremum persistence diagram, and which plays a central role
in the computation of distances between merge trees (Sec. 2.4).

The join tree, noted T −( fi), is a visual summary of the
connected components of fi

−1
−∞(w) [27]. It is a 1-dimensional

simplicial complex defined as the quotient space T −( fi) =M/∼
by the equivalence relation ∼ which states that p1 and p2 are
equivalent if fi(p1) = fi(p2) and if p1 and p2 belong to the same
connected component of fi

−1
−∞

(
fi(p1)

)
.

The split tree (Fig. 2), noted T +( fi), is defined symmetrically
and describes the connected components of the super-level set
fi
−1
+∞(w). Each of these two directed trees is called a merge tree

(MT), noted generically T ( fi) in the following. Intuitively, these
trees track the creation of connected components of the sub (or
super) level sets at their leaves, and merge events at their interior
nodes. To mitigate a phenomenon called saddle swap, these trees
are often post-processed [92], [111], by merging adjacent saddles
in the tree if their relative difference in scalar value is smaller
than a threshold ε1 ∈ [0,1]. MTs are often visualized according
to a persistence-driven branch decomposition [85], to make the
persistence pairs captured by the tree stand out. In this context, a
persistent branch is a monotone path on the tree connecting the
nodes corresponding to the creation and destruction (according
to the Elder rule, Sec. 2.2) of a connected component of sub (or
super) level set. Then, the branch decomposition provides a planar
layout of the MT, where each persistent branch is represented as
a vertical segment (center insets in Fig. 2). The branch decompo-
sition tree (BDT), noted B( fi), is a directed tree whose nodes are
the persistent branches captured by the branch decomposition and
whose arcs denote adjacency relations between them in the MT. In
Fig. 2, the BDTs (right insets) can be interpreted as the dual of the
branch decompositions (center insets, with matching colors): each
vertical segment in the branch decomposition (center) corresponds
to a node in the BDT (right) and each horizontal segment (center,
denoting an adjacency relation between branches) corresponds to
an arc in the BDT. The BDT can be interpreted as a generalization
of the extremum persistence diagram: like D( fi), B( fi) describes
the population of (extremum) persistence pairs present in the data.
However, unlike the persistence diagram, it additionally captures
adjacency relations between them (Fig. 2). Note that, the birth and
death of each persistent branch bi ∈ B( fi), noted (xi,yi), span by
construction an interval included in that of its parent b′i ∈ B( fi):
[xi,yi] ⊆ [x′i,y

′
i]. This nesting property of BDTs [92] is a direct

consequence of the Elder rule (Sec. 2.2), and it plays an important
role in the computation of geodesics between MTs (Sec. 2.4).

2.4 Wasserstein metric space

In the following, we introduce an established metric between
persistence diagrams (the Wasserstein distance) which has been
recently generalized to merge trees [92]. This generalization
allows our PGA framework to support both persistence diagrams
and merge trees (as discussed next). After introducing this metric,
we detail further derived concepts, such as the notions of geodesics
and Wasserstein barycenters, which will act as building blocks in
our formulation of MT-PGA (Sec. 3).

To measure the distance between two diagrams D( fi) and
D( f j), a typical pre-processing step consists in augmenting each
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Fig. 3. The Wasserstein distance WT
2 between the BDTs B( fi) (white)

and B( f j) (blue) is computed by assignment optimization (Eq. 1) in
the 2D birth/death plane (cyan arrows, right), given a search space of
assignments Φ′ describing partial rooted isomorphisms between B( fi)
and B( f j) (cyan halo on the BDTs). For ε1 = 1, the structure of the BDTs
is fully ignored and WT

2 becomes equivalent to the classical Wasserstein
distance between persistence diagrams WD

2 (red arrows), which reports
a small distance in this example, despite a significant structural change
in the data (two hills have been swapped from fi to f j).

diagram with the diagonal projection of the off-diagonal points of
the other diagram:

D′( fi) =D( fi)∪{∆(p j) | p j ∈ D( f j)}
D′( f j) =D( f j)∪{∆(pi) | pi ∈ D( fi)},

where ∆(pi) = ( xi+yi
2 , xi+yi

2 ) stands for the diagonal projection
of the off-diagonal point pi = (xi,yi) ∈ D( fi). Intuitively, this
augmentation phase inserts dummy features in the diagram (with
zero persistence, along the diagonal), hence preserving the topo-
logical information of the diagrams. This augmentation guarantees
that the two diagrams now have the same number of points
(|D′( fi)| = |D′( f j)|), which facilitates the evaluation of their
distance, as described next.

Given two points pi = (xi,yi) ∈ D′( fi) and p j = (x j,y j) ∈
D′( f j), the ground distance dq (q > 0) in the 2D birth/death space
is given by:

dq(pi, p j) = (|x j− xi|q + |y j− yi|q)1/q = ‖pi− p j‖q.

By convention, dq(pi, p j) is set to zero between diagonal points
(xi = yi and x j = y j). Then, the Lq-Wasserstein distance WD

q is:

WD
q
(
D′( fi),D′( f j)

)
= min

φ∈Φ

(
∑

pi∈D′( fi)
dq
(

pi,φ(pi)
)q
)1/q

,(1)

where Φ is the set of all possible assignments φ mapping a point
pi ∈D′( fi) to a point p j ∈D′( f j) (possibly its diagonal projection,
indicating the destruction of the corresponding feature).

A variant of this metric, noted WT
2
(
B( fi),B( f j)

)
, has been

introduced recently for BDTs [92]. Its expression is identical
to Eq. 1 (for q = 2), at the notable exception of the search
space of possible assignments, noted Φ′ ⊆ Φ, constrained to
describe (rooted) partial isomorphisms [92] between B( fi) and
B( f j) (cyan halo on the BDTs of Fig. 3). Intuitively, WT

2 can
be understood as a variant of WD

2 , which takes into account
the structures of the BDTs when evaluating candidate assign-
ments in the optimization of Eq. 1. Since Φ′ ⊆ Φ, we have:
WT

2
(
B( fi),B( f j)

)
≥ WD

2
(
D′( fi),D′( f j)

)
. In other words, WT

2
is more discriminative than WD

2 . In the special case where the
parameter ε1 (Sec. 2.3) equals 1 (all the saddles in the MTs
are merged), we have: WT

2
(
B( fi),B( f j)

)
= WD

2
(
D′( fi),D′( f j)

)
.

In other words, WT
2 generalizes WD

2 and ε1 acts as a control
parameter, which adjusts the importance of the structure of the
BDTs in the metric. Then, our PGA framework will be able to
support both persistence diagrams and merge trees, thanks to this
metric generalization. Unless specified otherwise, we assume in
the following that ε1 is set to the default recommended value:
ε1 = 0.05 [92]. In the remainder, we note B the metric space
induced by the Wasserstein metric between BDTs.

Once a metric is established, we can now introduce the derived
notions of geodesics and Wasserstein barycenters, which act as
building blocks in our formulation of MT-PGA (Sec. 3).

A geodesic (i.e. length minimizing path on B) between two
BDTs B( fi) and B( f j), noted

#»G
(
B( fi),B( f j)

)
, is simply given

by linearly interpolating the optimal assignment φ ′ ∈ Φ′ [92].
Technically, it is a vector in R2×|B( fi)|, obtained by concatenat-
ing the |B( fi)| two-dimensional vectors representing the optimal
assignment φ ′ ∈ Φ′ in the 2D birth/death space. Fig. 3 (right)
illustrates two geodesics: one with respect to WD

2 (ε1 = 1, red
arrows), the other with respect to WT

2 (ε1 = 0, cyan arrows).
Note that an arbitrary vector in R2×|B( fi)| represents an arbitrary
displacement in B, which is consequently not necessarily optimal
with regard to Eq. 1, and which therefore, does not necessarily rep-
resent a geodesic. To guarantee the invertibility of the interpolated
BDTs into valid MTs, a local normalization, turning B( fi) into
N
(
B( fi)

)
, needs to be introduced in a pre-processing step [92],

where the persistence of each branch bi ∈ B( fi) is normalized
with regard to that of its parent b′i ∈ B( fi), displacing bi in the 2D
birth/space from (xi,yi) to N (bi) =

(
Nx(bi),Ny(bi)

)
:

Nx(bi) = (xi− x′i)/(y
′
i− x′i)

Ny(bi) = (yi− x′i)/(y
′
i− x′i).

(2)

After this pre-normalization, any interpolated BDT is reverted into
a valid MT by recursively reverting Eq. 2, hence constructively
enforcing the nesting property of BDTs ([xi,yi]⊆ [x′i,y

′
i], Sec. 2.3)

thereby guaranteeing the validity of the interpolated MT. Pont et
al. [92] introduce two parameters to tune the effect of this pre-
normalization (ε2 balances the normalized persistence of small
branches, selected via the threshold ε3). We set these to their de-
fault recommended values (ε2 = 0.95, ε3 = 0.9). In the remainder,
we consider that all the input BDTs are normalized this way.

Once distances and geodesics for BDTs are available, the
notion of barycenter can be introduced. Given a set SB =
{B( f1), . . . ,B( fN)}, let EF(B) be the Fréchet energy of a can-
didate BDT B ∈ B:

EF(B) =
N

∑
i=1

WT
2
(
B,B( fi)

)2
. (3)

Then a BDT B∗ ∈ B which minimizes EF is called a Wasserstein
barycenter of the set SB (or its Fréchet mean under the metric
WT

2 ). Eq. 3 can be optimized with an iterative algorithm [92],
alternating assignment and update phases. After optimization, a
barycenter MT can be obtained by recursively reverting Eq. 2.

3 FORMULATION

This section describes our novel extension of the Principal Com-
ponent Analysis (PCA) framework to the Wasserstein metric
space of merge trees, leading to the new notion of merge tree
Principal Geodesic Analysis (MT-PGA). This section is structured
as follows. First, we describe a geometric interpretation of PCA
(Sec. 3.1), which our approach extends. Next, we describe how to
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Fig. 4. The classical Principal Component Analysis (PCA) of a point
cloud P in Rd (white spheres) can be computed by iteratively optimizing
the fitting to P of orthogonal directions (blue axis first, then black axis).

generalize each low-level geometrical tool used in PCA (Sec. 3.1)
to the Wasserstein metric space of merge trees B (Sec. 3.2).
Finally, once these tools are available, we formalize our notion
of MT-PGA as a constrained optimization problem (Sec. 3.3), for
which we provide an algorithm in Sec. 4 (an overview of the
algorithm is given in Sec. 4.1).

3.1 Geometric interpretation of PCA

Principal Component Analysis (PCA) [87] can be described
with several, different, yet equivalent, formulations. In the fol-
lowing, we focus on a geometric interpretation (Fig. 4) which
simplifies the transition to merge trees. Given a set of points
P = {p1, p2, . . . , pN} in a Euclidean space Rd , PCA defines
an orthogonal basis BRd = { #»

b1,
#»

b2, . . . ,
#»

bd} of vectors
#»

bi ∈ Rd

(i ∈ {1, . . . ,d}), with origin ob ∈ Rd , such that:
1) the origin ob coincides with the arithmetic mean of P,
2) the line li (defined by ob and

#»

bi) is orthogonal to all previous
lines li′ (i′ ∈ {1, . . . , i− 1}) and minimizes its average squared
distance to P.
Let ∆i(p j) be the orthogonal projection of the point p j on

li (i.e. ∆i(p j) is the closest point to p j on li, Fig. 4). It can be
expressed as a displacement from ob on li: ∆i(p j) = ob +α

j
i

#»

bi ,
with α

j
i ∈ [−1,1]. Then, BRd can be formulated as an orthogonal

basis which minimizes the following data fitting energy (with d′ =
d in general):

EL2(BRd ) =
N

∑
j=1
||p j−

(
ob +

d′

∑
i=1

α
j

i
#»

bi
)
||22. (4)

In practice, BRd can be optimized iteratively, one dimension
at a time (starting with d′ = 1 and finishing with d′ = d), by
finding at each iteration a vector

#  »

bd′ which is orthogonal to all
the previous vectors in BRd (

#  »

bd′ ·
#   »

bd′′ = 0,∀d′′ ∈ {1, . . . ,d′− 1})
and which minimizes EL2 (Eq. 4). After all dimensions have been
processed (d′ = d), BRd provides a new coordinate system for
P (composed of the vectors

#»

bi and the coordinates α
j

i for each
point p j), such that each direction of BRd successively provides an
optimal fit to P (Eq. 4). Note that, by construction, the variance
of the projected data (i.e. the variance of ∆d′(p j) along ld′ ) will
be maximized for the first direction (d′ = 1) and it will keep on
decreasing for increasing d′. This motivates early terminations of
the optimization (for d′ < d), as the most informative directions
are identified in the first iterations of the algorithm.

3.2 From PCA to MT-PGA
When the input data is not given as a point cloud in a Euclidean
space (Sec. 3.1) but as an abstract set equipped with a metric,
the above formulation of Principal Component Analysis (PCA)
needs to be extended. Such an extension can be done with the
more general notion of Principal Geodesic Analysis (PGA), which
needs itself to be specifically instantiated given the specific metric
space under study [30], [46], [106]. This instantiation consists in
redefining the low-level geometrical tools used in PCA , but within
the considered metric space. For instance, geodesics (length-
minimizing paths) between merge trees (Sec. 2.4) extend to B the
notion of straight lines, and the Fréchet mean (Sec. 2.4) extends
the arithmetic mean. In this section, we specifically formulate such
an extension for merge trees (MTs). In particular, we formalize the
following low-level geometrical notions for the Wasserstein metric
space of merge trees B:

i) BDT geodesic dot product;
ii) Orthogonal BDT geodesics;

iii) Collinear BDT geodesics;
iv) BDT geodesic axis;
v) BDT geodesic axis arc-length parametrization;

vi) BDT geodesic axis projection;
vii) BDT geodesic axis translation;

viii) BDT geodesic orthogonal basis.
The above notions derive sequentially from one another, to

eventually result in the concept of orthogonal bases of BDT
geodesic axes, which is precisely the main variable of the con-
strained optimization problem for MT-PGA formulation (Sec. 3.3).
(i) BDT geodesic dot product. A geodesic on the Wasserstein
metric space of merge trees B is the shortest path

#»G
(
E ,E ′

)
between its two extremity BDTs E and E ′. As detailed in Sec. 2.4,
it is an optimal assignment with regard to Eq. 1, which can be
represented as a vector in R2×|E |. Then, given two geodesics
#»G
(
E ,E ′

)
∈ R2×|E | and

#»G
(
E ,E ′′

)
∈ R2×|E | sharing an extremity

E , their dot product, noted
#»G
(
E ,E ′

)
· #»G
(
E ,E ′′

)
can be naturally

introduced by considering their Cartesian dot product (i.e. sum of
component-wise products between two vectors in R2×|E |). Note
that these two vectors must be consistently parametrized with
regard to their common extremity E : for both vectors, the ith

entry represents a 2D vector in the birth/death space modeling
the optimal assignment (with regard to Eq. 1) of the ith point of E
to points of E ′ and E ′′ (small arrows, Fig. 3, right).
(ii) Orthogonal BDT geodesics. Two geodesics

#»G
(
E ,E ′

)
and

#»G
(
E ,E ′′

)
are orthogonal if

#»G
(
E ,E ′

)
· #»G
(
E ,E ′′

)
= 0.

(iii) Collinear BDT geodesics. Two geodesics
#»G
(
E ,E ′

)
and

#»G
(
E ,E ′′

)
are collinear if

#»G
(
E ,E ′

)
= λ

#»G
(
E ,E ′′

)
, with λ ∈ R.

In particular, they are positively collinear if λ > 0, and negatively
collinear if λ < 0.
(iv) BDT geodesic axis. Now that the notion of collinear geodesics
is available, we proceed to the introduction of the concept of
geodesic axis. Given an origin BDT EO and two extremities Ei

and E ′i , a geodesic axis, noted
←→
Ai , is defined as a pair of negatively

collinear geodesics
#»Gi =

#»G
(
EO,Ei

)
, and

#»

G′i =
#»G
(
EO,E ′i

)
. It follows

that a geodesic axis
←→
Ai is itself a geodesic between E ′i and Ei,

which is guaranteed to pass through a given origin EO. An example
of geodesic axis is given in Fig. 5 with the axis

←→
A1 (represented

as a blue curve) between the BDTs E ′1 and E1, with origin B∗.
This notion will be instrumental in the definition of an orthogonal
basis in B, to constrain multiple geodesics to indeed pass through
the origin of the basis, while still allowing for an optimization of
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Fig. 5. Approach overview: Our merge tree Principal Geodesic Analysis (MT-PGA) defines a basis BB on the Wasserstein metric space of BDTs B
(grey surface). It is computed by iteratively optimizing a fitting energy (Eq. 8) to an input ensemble of BDTs (white spheres) for orthogonal geodesic
axes (blue:

←→
A1, black:

←→
A2). Each axis (e.g.

←→
A1) is defined as a pair of geodesics between its extremities (E1 and E ′1) and the Fréchet mean of

the ensemble (cyan: B∗). After the optimization of the MT-PGA basis, any input BDT B( f j) can be reconstructed into B̂( f j) (dark blue sphere)
by successive geodesic displacements (dark blue arrows, Eq. 9) along translations of the axes (e.g.

←→
A2
(
B̂1( f j)

)
, black dashed curve), given the

coordinates α j of B( f j) in the basis. While our framework manipulates BDTs, each of them can be directly inverted (transparent arrows) back to
MTs (insets), resulting in reconstructions (T̂ ( f j)) that are visually similar to the input (T ( f j)).

their extremities (Sec. 4). Each geodesic axis
←→
Ai is associated to

a direction vector:
#»Vi =

#»Gi−
#»

G′i =
#»G
(
E ′i ,Ei

)
.

(v) BDT geodesic axis arc-length parametrization. By construc-
tion, any BDT B located on an axis

←→
Ai can be expressed with the

following arc-length parametrization
# »Ai(B) (with αi ∈ [0,1]):

B = EO +
# »Ai(B) = EO +αi×

#»Gi +(1−αi)×
#»

G′i . (5)

This arc-length parametrization is the analog for the metric space
B of the Euclidean line parametrization used in PCA (Eq. 4).
(vi) BDT geodesic axis projection. The projection B←→Ai

of an

arbitrary BDT B on the axis
←→
Ai is its closest BDT on

←→
Ai . It

minimizes the following projection energy:

B←→Ai
= argmin

B′∈
←→
Ai

(
WT

2
(
B,B′

))
= argmin

B′∈
←→
Ai

(
WT

2
(
B,EO +

# »Ai(B′)
))

. (6)

An example of projection is given in Fig. 5, with the blue
sphere noted B̂1( f j), which is the projection on the axis

←→
A1 (blue

curve) of an input BDT B( f j). The projection B←→Ai
of B on Ai will

act as the analog, for the metric space B, of the projection ∆i(p j)
of a point p j along a line li in the Euclidean PCA (Sec. 3.1).

(vii) BDT geodesic axis translation. Let
←→
Ai and

←→
A j be two

axes sharing the same origin EO. The axis
←→
A j(B) is called the

translation of
←→
A j along

←→
Ai , with origin B ∈

←→
Ai if:

←→
A j(B) =(

(B,B+ #»G j),(B,B+
#»

G′j)
)
. Intuitively, a translated axis

←→
A j(B) is

a BDT axis, which is parallel to the axis
←→
A j , and which passes

through a specific BDT B. In Fig. 5, an example is given with the
axis
←→
A2
(
B̂1( f j)

)
(black dashed curve), which is the translation of

the axis
←→
A2 (black curve) at the BDT B̂1( f j) (blue sphere). This

notion of translated axis is needed when reconstructing a BDT
given its coordinates in the MT-PGA basis, as detailed next.

(viii) BDT geodesic orthogonal basis. We now introduce the
notion of orthogonal basis in the metric space of merge trees
B, which will be the variable at the core of the constrained
optimization problem for MT-PGA formulation (Sec. 3.3). Let
BB = {

←→
A1,
←→
A2, . . . ,

←→
Ad′} be an orthogonal basis of d′ geodesic axes

(i.e. with pairwise orthogonal direction vectors { # »V1,
# »V2, . . . ,

#  »Vd′}),
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Algorithm 1 Merge Tree Principal Geodesic Analysis (MT-PGA) Algorithm
Input: Set of BDTs SB = {B( f1), . . . ,B( fN )}.
Output1: Basis origin B∗ ;
Output2: Basis geodesic axes BB = {

←→
A1 ,
←→
A2 , . . . ,

←−−→
Admax };

Output3: Coordinates α j ∈ [0,1]dmax of the input BDTs in BB (with j ∈ {1,2, . . . ,N}).

1: B∗ ←WassersteinBarycenter(SB);

2: for d′ ∈ {1,2, . . . ,dmax} do
3:

←→
Ad′ ←InitializeGeodesicAxis(SB ,B∗ ,BB);

4: while EWT
2
(BB) decreases do

5: // Optimize the current geodesic axis
←→
Ad′ (Sec. 4.2)

6: α
j∈{1,2,...N}

d′ ←ProjectTrees(SB ,B∗ ,BB ,α
j∈{1,2,...N});

7: EWT
2
(BB)←EvaluateFittingEnergy(SB ,B∗ ,BB ,α

j∈{1,2,...N});

8:
←→
Ad′ ←OptimizeFittingEnergy(SB ,B∗ ,BB ,α

j∈{1,2,...N});

9: // Enforce the constaints (Sec. 4.3)

10: while
←→
Ad′ evolves do

11:
←→
Ad′ ←EnforceGeodesics(B∗ ,

←→
Ad′ );

12:
←→
Ad′ ←EnforceNegativeCollinearity(

←→
Ad′ );

13:
←→
Ad′ ←EnforceOrthogonality(BB ,

←→
Ad′ );

14: end while
15: end while
16: end for

with origin EO. Let B̂1 be the projection of an arbitrary BDT B on←→
A1 (B̂1 = B←→A1

= B←→A1(EO)
, e.g. blue sphere on

←→
A1, Fig. 5, noted

B̂1( f j)). Now, let B̂2 be the projection of B on the translation of←→
A2 along

←→
A1, with origin B̂1: B̂2 is the BDT of the translated axis←→

A2(B̂1) which is the closest to B (i.e. B̂2 =B←→A2(B̂1)
, e.g. dark blue

sphere on
←→
A2(B̂1) in Fig. 5, noted B̂( f j)).

By recursion, we can then define the translated projection of
B for the axis

←→
Ad′ , noted B̂d′ , as B̂d′ =B←→Ad′ (B̂d′−1)

(with B̂0 = EO).

Intuitively, the translated projection B̂d′ of B is the closest BDT
to B (dark blue sphere in Fig. 5), which can be obtained by a
sequence of d′ geodesic displacements (dark blue arrows in Fig. 5)
along the translated axes of the orthogonal basis BB.

By using Eq. 5, B̂d′ can be associated with a collection of arc-
length parameterizations { #  »A1(B̂1),

#  »A2(B̂2), . . . ,
#   »Ad′(B̂d′)}, s.t.:

B̂d′ = EO +
d′

∑
i=1

# »Ai(B̂i). (7)

B̂d′ can then be interpreted as the reconstruction of B (up to
the dimension d′), given the basis BB: it is obtained by starting
from the origin EO of the basis, and successively minimizing the
projection energy (Eq. 10) along translated axes of BB, yielding a
coordinate vector α ∈ [0,1]d

′
(Eq. 5) which can be interpreted as

the coordinates of B in BB.

3.3 MT-PGA formulation
Now that the above low-level geometrical tools have been intro-
duced for the Wasserstein metric space B, we can formulate the
MT-PGA by direct analogy to the classical PCA (Sec. 3.1).

Given a set SB = {B( f1), . . . ,B( fN)} of input BDTs, let B∗
be their Fréchet mean (Eq. 3). Then, similarly to PCA, MT-
PGA defines an orthogonal basis BB = {

←→
A1,
←→
A2, . . . ,

←−−−→
A2×|B∗|} of

geodesic axes
←→
Ai (i ∈ {1, . . . ,2×|B∗|}) s.t.:

1) the origin EO of BB coincides with the Fréchet mean B∗ of SB,
2) the axis

←→
Ai is orthogonal to all axes

←→
Ai′ (i′ ∈ {1, . . . , i−1}) and

it minimizes its average squared Wasserstein distance to SB.
Then, BB can be formulated as an orthogonal basis which mini-
mizes the following (non-convex) fitting energy (with d′= 2×|B∗|
in general):

EWT
2
(BB) =

N

∑
j=1

WT
2

(
B( f j),B∗+

d′

∑
i=1

# »Ai
(
B̂i( f j)

))2
. (8)

Fig. 6. Computing the translated projection of each input BDT B( f j)

(white sphere). For the first axis (a), N2 samples evenly spaced on
←→
A1

are considered (blue spheres). Then, for each B( f j), the sample which
minimizes its WT

2 distance to B( f j) is selected as B̂1( f j) (dashes). Next
(b), the axis

←→
A2 is translated to B̂1( f j) along

←→
A1 (arrow) yielding the

translated axis
←→
A2
(
B̂1( f j)

)
, which is also evenly sampled. The sample

of
←→
A2
(
B̂1( f j)

)
minimizing its WT

2 distance to B( f j) is selected as B̂2( f j).

The above equation is a direct analogy to the classical PCA
(Eq. 4): the L2 norm is replaced by the Wasserstein distance WT

2 ,
the arithmetic mean ob by B∗ and the term α

j
i

#»

bi by
# »Ai
(
B̂i( f j)

)
.

4 ALGORITHM

This section presents our novel algorithm, based on the con-
strained minimization of Eq. 8, for the estimation of an orthogonal
basis BB for the Principal Geodesic Analysis of merge trees.

4.1 Overview

Alg. 1 provides an overview of our approach. Our algorithm
takes an ensemble SB of BDTs as an input and provides three
outputs: (i) the basis origin B∗, (ii) its dmax geodesic axes
{
←→
A1,
←→
A2, . . . ,

←−→
Admax} (where 1 ≤ dmax ≤ 2× |B∗| is an input pa-

rameter) and (iii) the coordinates α j ∈ [0,1]dmax of the input BDTs
in BB (Eq. 5, with j ∈ {1,2, . . . ,N}).

First, the origin of the basis BB is computed as the Wasserstein
barycenter B∗ of SB (line 1). This is done with an iterative
algorithm [92], which initializes B∗ at the BDT in SB minimizing
Eq. 3, and which further minimizes Eq. 3 by iteratively alternating
assignment and update phases (see [92]). After this optimization
has completed, only the N1 most persistent branches are kept in B∗,
where N1 is an input parameter controlling the memory footprint
of the basis (see Sec. 4.5).

Next, the MT-PGA basis is computed by adapting the iterative
strategy described in the case of PCA (Sec. 3.1). In particular,
geodesic axes are computed one dimension at a time (starting with
d′ = 1 and finishing with d′ = dmax, for loop, lines 2 to 16).

In particular, at each step d′:

1) The geodesics
#  »Gd′ and

#  »

G′d′ defining the axis
←→
Ad′ are opti-

mized in order to minimize Eq. 8 (line 8). This optimization
(described in Sec. 4.2 and illustrated in Fig. 6) involves the
translated projection B̂d′( f j) of each input BDT B( f j) (line
6), providing an estimation of its coordinate α

j
d′ (Eq. 5).

2) The axis
←→
Ad′ is updated into a valid solution (as described

in Sec. 4.3 and illustrated in Fig. 7), by enforcing each
constraint one after the other (lines 11 to 13).

This alternated procedure optimization/constraint is iterated
until EWT

2
(BB) does not evolve significantly anymore (see

Sec. 4.2). Once this is achieved, the current axis
←→
Ad′ is considered

as finalized and d′ is incremented until
←−→
Admax is finalized.
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4.2 Geodesic axis optimization
This section describes the optimization of a single axis

←→
Ad′ .

First, the geodesic
#  »Gd′ of

←→
Ad′ is initialized by considering

as its extremity Ed′ the input BDT in SB which maximizes
its Wasserstein distance to all the previous geodesic axes

←→
Ad′′ ,

∀d′′ ∈ {1, . . .d′−1} (to B∗ when d′ = 1). The second geodesic
#  »

G′d′
is initialized at − #  »Gd′ .

Next, both
#  »Gd′ and

#  »

G′d′ are optimized, to minimize Eq. 8. This
is achieved with an iterative algorithm (Alg. 1, while loop, line 4)
which, similarly to the minimization of the Fréchet energy [92],
alternates an (i) Assignment and an (ii) Update phase. Intuitively,
the (i) Assignment phase will compute geodesics (dashed blue
curves, Fig. 6a) between the input BDTs (white spheres, Fig. 6a)
and the axis to optimize (plain blue curve, Fig. 6a), while the (ii)
Update phase will optimize freely the axis under these optimal
assignments. After the (ii) Update, the initial assignments may no
longer be optimal (since the axis has changed) and the Assign-
ment/Update sequence needs to be iterated again, as detailed next.

The Assignment phase (i) computes a geodesic between each
input BDT B( j) and its translated projection B̂d′( f j) (Fig. 6). In
particular, these translated projections (Alg. 1, line 6) are esti-
mated in practice by sampling the translated axis

←→
Ad′
(
B̂d′−1( f j)

)
along N2 evenly spaced samples and by selecting, for each B( f j),
the sample B̂d′( f j) which minimizes Eq. 10.

Next, the Update phase (ii) consists in optimizing
#  »Gd′ and

#  »

G′d′ to minimize Eq. 8 under the assignments computed by the
Assignment phase (i). As detailed in Appendix A, for fixed
assignments, the fitting energy EWT

2
is convex with the variables

#  »Gd′ and
#  »

G′d′ . We provide in Appendix A the analytic expression of
the gradient of this energy and we derive the analytic expressions
of

#  »Gd′ and
#  »

G′d′ which minimize Eq. 8.
This overall Assignment/Update sequence is then iterated

(Alg. 1, while loop, line 4). Each iteration decreases EWT
2

con-
structively: while the Update phase (ii) minimizes it under the
current assignment, the next Assignment phase (i) further improves
(by construction) the assignments, hence decreasing EWT

2
overall.

In our implementation, the algorithm stops when the fitting energy
has decreased by less than 1% between two consecutive iterations.

4.3 Constraints
The previous section described an algorithm for optimizing the
geodesic axis

←→
Ad′ , in order to minimize the fitting energy EWT

2

Fig. 7. Constraint enforcements: (a) Geodesic enforcement guarantees
that the vector

#»G1 describes an assignment which minimizes Eq. 1; (b)
Collinearity enforcement constructively aligns

#»G1 and
#»

G′1; (c) Orthogonal-
ity enforcement updates

#»G2 and
#»

G′2 via Gram-Schmidt orthogonalization.

(Eq. 8). However, this algorithm did not consider yet key con-
straints present in the definition of MT-PGA (Sec. 3.2), such as
axis orthogonality. We describe now our strategy for extending
the above algorithm with a succession of constraint enforcements.
(i) Geodesic enforcement. After the axis

←→
Ad′ has been optimized

(Sec. 4.2) to minimize the fitting energy EWT
2

(Eq. 8), its as-

sociated vectors
#  »Gd′ ∈ R2×|B∗| and

#  »

G′d′ ∈ R2×|B∗| may represent
displacements in the 2D birth/death space which are no longer
geodesics in B (as illustrated in Fig. 7a with the dashed arrows).
Concretely, this situation occurs if the assignment described by the
(optimized) vector

#  »Gd′ between the barycenter B∗ and the vector
extremity Ed′ is no longer optimal with regard to WT

2 (Eq. 1), as
#  »Gd′ has been optimized freely when minimizing EWT

2
. This can be

easily corrected by re-computing the optimal assignment between
B∗ and Ed′ , yielding an updated vector

#  »Gd′ , now describing a valid
geodesic between B∗ and Ed′ . In Fig. 7a, this is illustrated by the
switch from the dashed arrows to the plain blue arrows. The same
correction is applied to second vector of the axis,

#  »

G′d′ .
(ii) Negative collinearity enforcement. Up to now, the two
geodesics

#  »Gd′ and
#  »

G′d′ of the axis
←→
Ad′ have been optimized

independently. Then, they may not be negatively collinear and
thus, they may not describe a valid geodesic axis, as defined in
Sec. 3.2. Let β ′ = || #  »Gd′ ||/(||

#  »Gd′ ||+ ||
#  »

G′d′ ||) be the ratio describing
the relative norm of

#  »Gd′ with regard to
←→
Ad′ . Negative collinearity

is now constructively enforced by updating
#  »Gd′ and

#  »

G′d′ (Fig. 7b)
such that

#  »Gd′ ← β ′× #  »Vd′ and
#  »

G′d′ ←−(1−β ′)× #  »Vd′ , where
#  »Vd′ is

the direction vector of
←→
Ad′ (Sec. 3.2,

#  »Vd′ =
#  »Gd′ −

#  »

G′d′ ).
(iii) Orthogonality enforcement. We now describe the enforce-
ment of the orthogonality of

←→
Ad′ to all previous axes in the

basis. In particular, given the direction vector
#  »Vd′ =

#  »Gd′ −
#  »

G′d′ , we
want to update

#  »Gd′ and
#  »

G′d′ , such that
#  »Vd′ ·

#   »Vd′′ = 0, for all d′′ ∈
{1,2, . . . ,d′−1}. Let P #   »Vd′′

(
#  »Vd′) =

(
(

#  »Vd′ ·
#   »Vd′′)/(

#   »Vd′′ ·
#   »Vd′′)

)
× #   »Vd′′

be the projection of
#  »Vd′ onto the direction spanned by

#   »Vd′′ . The
orthogonality of

#  »Vd′ to all vectors
#   »Vd′′ is enforced (Fig. 7c) via

Gram–Schmidt orthogonalization [31], by updating
#  »Vd′ as follows:

#  »Vd′ ←
#  »Vd′ −∑

d′−1
d′′=1P #   »Vd′′

(
#  »Vd′).

Note that the above constraints may go against each other: e.g.
after orthogonality enforcement (iii),

#  »Gd′ may no longer represent
a valid geodesic (i). Thus, we iterate the above succession of
constraint enforcements, until

←→
Ad′ no longer evolves significantly

(Alg. 1, line 10). In practice, using a constant number of iterations
(specifically 4) is sufficient to obtain satisfactory results (see
Sec. 6.3 for further details regarding convergence).

4.4 From BDTs to MTs
Given an MT-PGA basis, for an arbitrary coordinate vector α ∈
[0,1]dmax , the resulting BDT B̂ can be reconstructed (Sec. 3.2) by
considering a BDT isomorphic to B∗ such that:

B̂ = B̂dmax = B
∗+

dmax

∑
i=1

αi×
#»Gi +(1−αi)×

#»

G′i . (9)

Applying the above computation embeds each branch b of B̂
as a point (xb,yb) in the 2D birth/death space (Fig. 3, right).
Since we consider that the input BDTs have been pre-normalized
(Sec. 2.4), a valid MT T̂ can in principle be reverted from
B̂, by recursively reverting Eq. 2, assuming that [xb,yb] ⊆ [0,1]
(to enforce the nesting property of BDTs, Sec. 2.3). However,
the latter assumption is not explicitly enforced in our con-
strained optimization (Secs. 4.2 and 4.3). Thus, in our entire
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framework (optimization included), when re-constructing a BDT
(Eq. 9), for each branch b∗ ∈ B∗, the corresponding direction
vector #»vi =

#»gi−
#»

g′i (with #»gi and
#»

g′i being
the entries of

#»Gi and
#»

G′i corresponding
to the branch b∗) is temporarily scaled
down if needed (inset, right) by locally
renormalizing αi, to guarantee that the
extremities ei (αi = 1) and e′i (αi = 0)
describe valid normalized birth/death lo-
cations (i.e. xei < yei and [xei ,yei ]⊆ [0,1]).

4.5 Computational parameters
As described in previous work [92], the Wasserstein metric WT

2
is subject to three parameters (ε1, ε2 and ε3, Sec. 2.4), for which
we use the recommended default values [92]. Otherwise, when
switching ε1 to 1, WT

2 becomes equivalent to WD
2 (Sec. 2.4)

and our framework computes then a PGA basis of extremum
persistence diagrams (PD-PGA for short).

Our algorithm itself (Alg. 1) is subject to two parameters. (i)
N1 controls the size of B∗, and hence the memory footprint of the
MT-PGA basis. In practice, we set N1 to a conservative value: 20%
of the total number of branches in the ensemble (∑N

j=1 |B( f j)|).
(ii) N2 controls the number of samples on each geodesic axis, to
balance accuracy and speed. In practice, we set N2 to 16.

5 APPLICATIONS

This section illustrates the utility of our framework in concrete
visualization tasks: data reduction and dimensionality reduction.

5.1 Data reduction
Like any other data representation, merge trees can benefit from
lossy compression, to facilitate their storage or transfer. This can
be particularly useful in scenarios where the scalar fields of the
ensemble cannot all be stored permanently (because of their size or
the induced IO bottleneck) but are represented instead individually
by a topological signature (e.g. a persistence diagram or a merge
tree), yielding an ensemble of signatures. This can be the case
for instance during large data acquisition campaigns, or large-
scale simulations, where a topological signature can be typically
computed in-situ [10] to represent each time step [25]. In this
scenario, lossy compression is useful to facilitate the manipulation

Fig. 8. Tracking features (the five most persistent maxima, spheres) in
time-varying (from left to right) 2D data (ion density during universe
formation [80]). The computed tracking [92] is identical, when using the
input original merge trees (inset, left) or their versions compressed by
MT-PGA (inset, right), which are highly similar visually. Here, since the
input ensemble has few, small BDTs, the default reduction parameters
(dmax = 3 and N1 = 20%) resulted in a modest compression factor (5.12).
The reported relative reconstruction error (right) is given by the distance
WT

2 between a tree and its reconstruction, divided by the maximum
pairwise distance WT

2 observed in the input ensemble.

Fig. 9. Topological clustering of the 40 members of a cosmology ensem-
ble [80] (one member is represented for each cluster). The computed
clustering [92] is identical, when using the input original merge trees
(bottom left inset) or their versions compressed by MT-PGA (bottom
right inset). The optimal assignment between the left and right trees
is visualized by the matching colors and the corresponding BDTs are
reported at the top. Since this ensemble has many members, the default
reduction parameters (dmax = 3 and N1 = 20%) resulted in an important
compression factor (19.27). This compression still provided compressed
trees (bottom right inset) that are visually similar to the input trees
(bottom left inset): the number of prominent features (thick cylinders)
and their persistence (heights of the cylinders of matching color) are
well preserved. This is confirmed with the reconstructed BDTs (top right
inset) which are mostly isomorphic to the input BDTs (thick cylinders of
matching color). The reported relative reconstruction error (bottom) is
given by the distance WT

2 between a tree and its reconstruction, divided
by the maximum pairwise distance WT

2 observed in the input ensemble.

(i.e. storage and transfer) of the resulting ensemble of merge trees.
Previous work [92] has investigated the lossy compression of a
temporal sequence of merge trees. In this section, we extend this
work to arbitrary ensembles of merge trees thanks to MT-PGA.

Given its coordinates α j ∈ [0,1]dmax , each BDT B( f j) of SB
can be reliably estimated with Eq. 9. Thus, we present now an
application to data reduction where the input ensemble of BDTs
is compressed, by only storing to disk: (i) the origin B∗ of BB,
(ii) its axes {

←→
A1,
←→
A2, . . . ,

←−→
Admax} and (iii) the N BDT coordinates

α j ∈ [0,1]dmax . The compression quality can be controlled with
two input parameters (Sec. 4.1). (i) dmax controls the number of
axes (and thus the ability of the basis to capture mild variabilities).
(ii) N1 controls the size of B∗ (and thus the ability of the basis
to capture small features). The reconstruction error (Eq. 8) will
be minimized for large values of both parameters, while the
compression factor will be maximized for low values. In our
reduction experiments, we set dmax to 3 and N1 to its default
value (Sec. 4.5). Figs. 8 and 9 show two examples of visualization
applications (feature tracking and ensemble clustering, replicated
from [92]) where the BDTs compressed with the above strategy
(B̂( f j)) have been used as an input. In both cases, the output
is identical to the outcome obtained with the original BDTs.
This shows the viability of our reconstructed BDTs (and MTs)
and demonstrates the utility of our reduction scheme. A detailed
analysis of the resulting compression factors and reconstruction
errors for all our test ensembles is available in Appendix B.

5.2 Dimensionality reduction
The MT-PGA basis BB can also be used to generate 2D layouts of
the ensemble, for its global visual inspection. This is achieved by
embedding each input BDT B( f j) as a point in the 2D plane, given
its first two coordinates in BB. To prevent an artificial anisotropic
distortion (α j ∈ [0,1]2), we scale the coordinates of each BDT,
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Fig. 10. Feature variability interpretation with Persistence Correlation Views (PCV) on the Ionization (3D) ensemble. Left (a): Four members of the
ensemble (one per ground-truth class). Right (d): Principal Geodesic Surface (PGS) and its planar layout, computed by MT-PGA (sphere color:
ground-truth classes). In the correlation view (b), several features (i.e. branches) are located near the disk boundary, indicating high correlations.
The dark green features are highly correlated with the direction (0,α2), given their location (near the black axis, upper half). Back in the data, this
indicates that the corresponding features (basis of the ionization front, green spheres in the data and merge tree insets) will be the most persistent
for the ensemble members with high α2 values (clusters 0 and 1, (d)). Light green features in the PCV (upper left quadrant, (b)) are highly correlated
with the direction (−α1,α2): these features (front extremities, insets) will be the most persistent in the top left corner of the PGS ((d), cluster 0). This
is confirmed visually in the data (zoom insets), where the maxima are represented by spheres of matching color (the radius denotes persistence).

to account for the variation in length of the axes, and we embed
each BDT at coordinates

(
α

j
1 ×WT

2 (E1,E ′1),α
j

2 ×WT
2 (E2,E ′2)

)
.

This results in a summarization view of the overall ensemble,
which groups together BDTs which are close (given the metric
WT

2 ) and which exhibit a similar variability with regard to B∗.
Note that, given an arbitrary point of the 2D layout, its BDT
(and MT) can be efficiently reconstructed with Eq. 9. This enables
interactive navigations within the ensemble (Fig. 1g). We augment
our planar layouts with the following two improvements, to further
characterize the global and local variability in the ensemble.

(i) Principal geodesic surface. To visually convey the curved
(i.e. non-Euclidean) nature of the Wasserstein metric space B, we
introduce a 3D embedding of our planar layouts, which we call
Principal Geodesic Surface (PGS). First, our 2D layout is sampled
along a Nx×Ny regular grid GB (in practice, Nx = Ny = N2). For
each vertex of GB, a BDT can be reconstructed (Eq. 9), enabling
the computation of a distance matrix DGB , where DGB(i, j) is the
WT

2 distance between the vertices i and j of GB. Then, GB is
embedded in 3D by multidimensional scaling [66] of DGB . The
resulting PGS provides the same visual information as the planar
layout, but in the form of a surface in 3D, parameterized by α1
and α2 (Fig. 5), which conveys visually the curved nature of B.

(ii) Persistence correlation view. As detailed in Appendix C,
we compute the correlation ρ(pi,αk) between the coordinate αk
and the persistence of the ith branch (i.e. the branch in the input
BDTs mapped to the ith branch of B∗ given the optimal assignment
induced by WT

2 , Eq. 1). Then, the ith branch of the barycenter BDT
B∗ can be embedded in a Persistence Correlation View (PCV), by
placing an arrow between the origin and the point (ρpi,α1 ,ρpi,α2).
This enables a local interpretation of the feature variability within
the ensemble. Specifically, it enables the visual identification of
the features whose persistence is strongly correlated with a given
direction in the MT-PGA basis. Such features are located on the
disk boundary of the correlation view (largest arrows in Figs. 1,
10, 11), and they are the most responsible for the variability in the
ensemble. For each of these features, their matching to the origin
B∗ of the MT-PGA basis is encoded with the color map, which
enables their direct inspection in the data.

Together, our Principal Geodesic Surface (PGS) coupled with
our Persistence Correlation View (PCV) enable both a global and

Fig. 11. Feature variability interpretation for the Isabel ensemble, with
PD-PGA. In the PCV (bottom right), the blue feature (eye of the hur-
ricane) is highly correlated with the direction (−α1,0), which indicates
that its persistence will be stronger for the leftmost points in the PGS
(clusters 0 and 1) and weaker for the rightmost points (cluster 2). In other
words, the winds in the eye of the hurricane are significantly weaker in
the cluster 2 (landfall phase of the hurricane). On the contrary, the other
highly correlated features (right half of the PCV) are correlated with the
direction (α1,0): their persistence will be stronger for the rightmost points
(cluster 2). This is confirmed visually when inspecting the corresponding
features in the data and the input diagrams (top). Similarly to MT-PGA,
PD-PGA enables a data reduction (compression factor: 5.49), while
guaranteeing visually similar reconstructed diagrams (D̂( f j)).

local inspection of the feature variability in the ensemble. In par-
ticular, in the example of Fig. 1, our visualization indicates overall
that the global maximum of the seismic wave (largest branch in the
merge trees, purple, Fig. 1b) is mostly correlated with the direction
(−α1,0) in the PCV (Fig. 1d), and therefore, mostly prominent
in the cluster 1 (located on the left of the PGS, Fig. 1f, for the
lowest α1 values). In contrast, the other features (blue, cyan and
dark blue branches) are less correlated with this direction (shorter
arrows in the PCV Fig. 1d), which indicates that they are slightly
less variable through this direction: their persistence decreases less
quickly than the global maximum when transitioning from cluster
1 to 2 and 3 (dark red, orange and pink spheres respectively
in the PGS Fig. 1f). This indicates that the initial energy of
the seismic wave (represented by the global maximum) quickly
spreads into multiple wavefronts (spheres of matching colors in
the data, Fig. 1a), whose individual energy decreases through time
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TABLE 1
Running times (in seconds) of our algorithm for PD-PGA and MT-PGA

computation (for dmax = 2, first sequential, then with 20 cores).

Dataset N |B| PD-PGA MT-PGA
1 c. 20 c. Speedup 1 c. 20 c. Speedup

Asteroid Impact (3D) 7 1,295 1,392.17 147.40 9.44 1,180.72 117.97 10.01
Cloud processes (2D) 12 1,209 817.64 61.88 13.21 517.94 38.49 13.46
Viscous fingering (3D) 15 118 86.69 9.17 9.45 42.89 4.71 9.11
Dark matter (3D) 40 2,592 18,388.86 1,366.45 13.46 24,480.42 1,758.04 13.92
Volcanic eruptions (2D) 12 811 460.17 37.99 12.11 1,004.37 81.75 12.29
Ionization front (2D) 16 135 104.74 12.00 8.73 55.73 6.26 8.90
Ionization front (3D) 16 763 3,750.00 300.96 12.46 4,029.71 294.29 13.69
Earthquake (3D) 12 1,203 3,896.52 338.64 11.51 1,973.49 158.12 12.48
Isabel (3D) 12 1,338 1,969.79 164.49 11.98 1,472.54 115.66 12.73
Starting Vortex (2D) 12 124 17.71 2.72 6.51 11.51 1.65 6.98
Sea Surface Height (2D) 48 1,787 12,420.98 670.00 18.54 27,791.00 1,669.52 16.65
Vortex Street (2D) 45 23 18.75 2.69 6.97 35.79 3.93 9.11

more slowly than the global maximum (each cluster represents a
different temporal phase in the simulation, from top to bottom in
Fig. 1a). Figs. 10 and 11 present a similar analysis and we refer
the reader to the detailed captions for specific interpretations. Note
that for Fig. 11, the features do not exhibit a clear global structure
and the persistence diagram can be used instead of the merge tree.

6 RESULTS

This section presents experimental results obtained on a computer
with two Xeon CPUs (3.2 GHz, 2x10 cores, 96GB of RAM).
The input merge trees were computed with FTM [52] and pre-
processed to discard noisy features (persistence simplification
threshold: 0.25% of the data range). We implemented our ap-
proach in C++ (with the OpenMP task runtime), as modules for
TTK [19], [114]. Experiments were performed on the benchmark
of public ensembles [93] described in [92], which includes a
variety of simulated and acquired 2D and 3D ensembles extracted
from previous work and past SciVis contests [80].

6.1 Time performance
Barycenters and geodesics are computed with the approach of
Pont et al. [92], which implements fine-grain task-based shared-
memory parallelism. Specifically, during axis projection, N×N2
geodesics need to be computed (Sec. 4.2), each geodesic requiring
typically O(|B|2) steps in practice, where |B| is the size of
the input BDTs. In practice, this is the most expensive part of
our algorithm. These geodesics are computed concurrently (by
submitting each geodesic to the task pool). In comparison, the
evaluations of the numerical expressions (Alg. 1, lines 7, 8, 12
and 13) have a nearly negligible cost. Tab. 1 evaluates the time
performance of our framework for persistence diagrams (PD-
PGA) and merge trees (MT-PGA), for dmax = 2. In sequential
mode, the running time is indeed a function of the size of the
ensemble (N) and the size of trees (|B|). It is slightly slower
for MT-PGA than for PD-PGA, but timings remain comparable
overall. In parallel, speedups are the most important for the largest
ensembles. However, the iterative nature of our algorithm has
an impact on parallel efficiency (the end of each loop implies
a synchronization). Still, our parallelization significantly reduces
computation times, with less than 6 minutes on average and at
most 30 minutes for the largest ensembles, which we believe is an
acceptable pre-processing time, prior to interactive exploration.

6.2 Framework quality
Figs. 8 and 9 report compression factors for our application to
data reduction (Sec. 5.1). These are ratios between the storage
size of the input BDTs and that of the MT-PGA basis (barycenter,

Fig. 12. Comparison of planar layouts for typical dimensionality reduc-
tion techniques, on two input ensembles (bold: best value for each
quality score). The color encodes the classification ground-truth [93].

TABLE 2
Comparison of layout quality scores, averaged over all ensembles

(bold: best values). The layouts induced by MT-PGA better preserve
the global structure of the ensemble and still preserve well WT

2 .

Indicator PCA MDS (WT
2 ) [66] t-SNE (WT

2 ) [117] MT-VEC MT-PGA
NMI 0.79 0.82 0.88 0.78 0.94
ARI 0.71 0.73 0.84 0.64 0.90
SIM 0.60 0.85 0.75 0.76 0.80

axes and coordinates). This factor is modest for a small example
(Fig. 8), with few branches (135) and few members (16). Then,
the overhead of the MT-PGA basis is non-negligible. In contrast,
for a larger ensemble (Fig. 9), this overhead is negligible and
high compression factors (30) can be achieved, while providing
reconstructed merge trees which are highly similar visually and
which are still viable for the applications.

Fig. 12 provides a visual comparison of the planar layouts
generated by a selection of typical dimensionality reduction
techniques. This includes the classical Euclidean PCA (in RNv ,
where Nv is the number of vertices in M), MDS [66] and t-
SNE [117] (both with WT

2 ). Certain approaches [5], [69], [101]
applied PCA on top of vectorizations of topological descriptors
(Sec. 1.1). A similar strategy can be considered in our case, by
embedding each input BDT B( f j) in R2×|B∗|, such that the ith

entry of this vector corresponds to the birth/death location of the
ith branch of B( f j) (i.e. the branch of B( f j) mapping to the ith

branch of B∗ by the optimal assignment of WT
2 , Eq. 1). PCA

is then computed for this vectorization (column MT-VEC). As
shown in Fig. 12, the layouts generated with MT-PGA nicely
separates the ground-truth classes, while other techniques tend to
artificially group them or even merge them. To further quantify
this structure preservation, we run k-means in the 2D layouts
and evaluate the quality of the resulting clustering (given the
ground-truth [93]) with the normalized mutual information (NMI)
and adjusted rand index (ARI). The MT-PGA layout is the only
one in Fig. 12 which generates an exact clustering in both cases
(NMI = ARI = 1). Appendix D extends this analysis to all our test
ensembles. Tab. 2 also extends this quantitative comparison to all
our input ensembles and confirms the superiority, on average, of
MT-PGA for the preservation of the clusters. Tab. 2 also includes a
metric similarity indicator, SIM, which evaluates the preservation
by a layout of the Wasserstein metric WT

2 , and whose expression is
given in Appendix E. As expected, MDS maximizes this score by
design, while MT-PGA produces the second best score. Overall,
MT-PGA preserves well WT

2 as well as the global ensemble
structure. In comparison to standard techniques (e.g. MDS or
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Fig. 13. Evolution of the normalized fitting energy, for PD (left) and MT
(right) PGA. The scatter plots show the projected variance (

←→
A1 VS

←→
A2).

t-SNE), it also supports additional features, such as correlation
views and interactive reconstructions (Figs. 1, 10 and 11).

Fig. 13 reports the evolution of the normalized fitting energy
for PD and MT-PGA computations (dmax = 2). Sudden energy
drops can be observed with clear kinks in the curves, indicating
the finalization of the first dimension (Sec. 4.1), and the switch
to the second, which immediately improves the overall fit. The
algorithm stops when the energy decreases by less than 1%. The
curve flat tails indicate that this criterion is reasonable. Fig. 13 also
reports scatter plots of the projected variances. For a given axis, it
is the percentage of the variance of the projected trees (along the
axis) over the global variance of the input BDTs (i.e. average of
the squared WT

2 distances to the barycenter B∗). For all examples,
the corresponding point is located below the diagonal (blue line):
the projected variance is indeed larger for the first axis than for
the second. This confirms the ability of our algorithm, similarly
to the classical PCA, to identify in practice the most informative
directions first. This is confirmed visually in our 2D layouts, where
the first axis (blue) is always longer than the second (black). This is
also confirmed in Appendix F, which provides a detailed variance
analysis, for all test ensembles, in up to 10 dimensions.

6.3 Limitations
Our overall strategy (alternation of fitting and constraint enforce-
ment) is similar at a high-level to previous work on the optimal
transport of histograms [106]. Thus, it shares the same high-level
limitations. The constraint enforcement (Sec. 4.3) induces, by
construction, an energy increase. Then, it is possible that, at the
next iteration, the fitting optimization (which is itself guaranteed to
decrease the energy, Sec. 4.2) does not manage to compensate the
above increase. This situation occurs during the first iteration for
the Viscous Fingering ensemble (dark green line, Fig. 13, right),
where the energy increased between two iterations. This temporary
energy increase is the only one we observed in all our experiments.
Moreover, it did not impact the rest of the algorithm, as it was
immediately compensated at the next iteration (Fig. 13). Then, we
believe that this theoretical limitation has a very limited impact
in practice and that robust implementations can be obtained by
stopping the algorithm in case of multiple, consecutive energy in-
creases (which we have not observed). Another limitation involves
the sampling of the geodesic axes (N2, Sec. 4.2). When N2 is too
low, BDTs which are close in B may project to the same points on
the geodesic axes, possibly resulting overall in collocated points
in the MT-PGA basis. This can be easily resolved by increasing
N2, at the cost of increased computation times. Finally, similarly
to barycenter optimization [92], [116], [118], the overall fitting
energy (Eq. 8) is non-convex and can in principle admit multiple

local minimizers. However, our experiments indicate that the axes
returned by our approach are relevant, as the projected variance
does decrease for increasing dimensions (Sec. 6.2).

7 CONCLUSION

In this paper, we presented a computational framework for the
Principal Geodesic Analysis of merge trees (MT-PGA), with
applications to data reduction and dimensionality reduction. In
particular, the visualizations derived from our core contribution
(Figs. 1, 10, 11) enable the interactive, visual inspection of the
variability in the ensemble, both at a global level (with our two-
dimensional layouts) and at a feature level (with our persistence
correlation views). Our framework trivially extends to extremum
persistence diagrams and our algorithm enables in both cases PGA
basis computations within minutes for real-life ensembles.

A natural direction for future work is the extension of our
framework to other topological data representations, such as
Reeb graphs or Morse-Smale complexes. However, as detailed in
Sec. 3, this requires the definition of several low-level geometrical
tools, such as routines for geodesic or barycenter computation,
which is still an open research problem for the above topological
descriptors. By adapting Principal Component Analysis to merge
trees, we believe our work is an important practical step towards
the definition of a larger statistical framework on the space of
merge trees. In the future, we will continue our investigation of the
adaptation of classical statistical tools to ensembles of topological
objects, as we believe it can become a key solution in the long
term for the advanced analysis of large-scale ensembles.
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APPENDIX

APPENDIX A
GRADIENT OF THE FITTING ENERGY

Given the Wasserstein barycenter B∗ of the input set of BDTs
SB = {B( f1), . . . ,B( fN)} as well as an initialization of the d′-
th geodesic axis of BB, noted

←→
Ad′ , we want to update

←→
Ad′ in

order to decrease the fitting energy associated to BB (Sec. 3, main
manuscript):

EWT
2
(BB) =

N

∑
j=1

WT
2

(
B( f j),B∗+

d′

∑
i=1

# »Ai
(
B̂i( f j)

))2
. (10)

Similarly to previous optimization strategies for the Fréchet
energy [92], [116], [118], our approach consists in alternating
phases of (i) Assignments (between the input BDTs and their
projections along translations of

←→
Ad′ , cf. Eq. 10) and (ii) Updates

(of the axis
←→
Ad′ ).

Thus, at the Update phase (ii), the assignment φ ′d′
j between

each input BDT B( f j) and its projection B̂d′( f j) on the the trans-
lated axis

←→
Ad′
(
B̂d′−1( f j)

)
is constant. It follows that each branch

b∗ ∈ B∗ can be considered independently for the minimization
of Eq. 10. In particular, let

(
b∗+∑

d′
i=1(1−α

j
i )

#»gi +α
j

i
#»

g′i
)

be the
branch assigned to b∗ in B̂d′( f j), with #»gi and

#»

g′i being two 2D
vectors in the birth/death space (i.e. the entries of

#»Gi and
#»

G′i
corresponding to the branch b∗ of B∗). Then, the individual fitting
energy associated to b∗, i.e. its contribution to Eq. 10, can be
expressed as:

Eb∗(
#  »gd′ ,

#  »

g′d′) =
N

∑
j=1

d2
(
b j,b∗+

d′

∑
i=1

(1−α
j

i )
#»gi +α

j
i

#»

g′i
)2
, (11)

where b j stands for the branch in B( f j) assigned to b∗ and d2
stands for the L2 norm in the 2D birth/death space (i.e. the ground
distance involved in WT

2 , see Sec. 2.4, main manuscript). Note
that the usage of the L2 norm implies that Eb∗ is convex. Our goal
at this stage is to find the two vectors #  »gd′ and

#  »

g′d′ which minimize
Eq. 11.

Eq. 11 can be further detailed as follows, where gix and giy
stand for the X-Y coordinates of the vector #»gi in the birth/death
plane:

Eb∗(
#  »gd′ ,

#  »

g′d′) =
N

∑
j=1

(
b jx−

(
b∗x +

d′

∑
i=1

(1−α
j

i )×gix +α
j

i ×g′ix
))2

+
(

b jy−
(
b∗y +

d′

∑
i=1

(1−α
j

i )×giy +α
j

i ×g′iy
))2

.

(12)
In the following, we derive the gradient of the above convex

energy. In particular, we detail the derivation for the X coordinate
only (the derivation along the Y coordinate being identical):

∂Eb∗(
#  »gd′ ,

#  »

g′d′)
∂gd′x

= 2
N

∑
j=1

(1−α
j

d′)
(

b jx−
(
b∗x

+
d′

∑
i=1

(1−α
j

i )×gix +α
j

i ×g′ix
))

∂Eb∗(
#  »gd′ ,

#  »

g′d′)
∂g′d′x

= 2
N

∑
j=1

α
j

d′

(
b jx−

(
b∗x +

d′

∑
i=1

(1−α
j

i )×gix +α
j

i ×g′ix
))

.

To minimize Eq. 12, we aim to find the values of gd′x and
g′d′x for which the above partial derivatives equal zero. This yields
the following linear system of two equations (with two unknowns,
gd′x and g′d′x):

N

∑
j=1

(1−α
j

d′)
(

b jx−
(
b∗x +

d′

∑
i=1

(1−α
j

i )×gix +α
j

i ×g′ix
))

= 0

N

∑
j=1

α
j

d′

(
b jx−

(
b∗x +

d′

∑
i=1

(1−α
j

i )×gix +α
j

i ×g′ix
))

= 0.

(13)
Given the above system, we aim next at expressing gd′x as a

function of g′d′x. To simplify notations, we introduce the term b∗d′x
as follows:

b∗d′x := b∗x +
d′−1

∑
i=1

(1−α
j

i )×gix +α
j

i ×g′ix.

Then, the first line of Eq. 13 can be re-written as:

N

∑
j=1

(1−α
j

d′)
(

b jx−
(
b∗d′x +(1−α

j
d′)×gd′x +α

j
d′ ×g′d′x

))
= 0.

Then, it follows that:

gd′x =
∑

N
j=1(1−α

j
d′)
(

b jx−
(
b∗d′x +α

j
d′ ×g′d′x

))
∑

N
j=1(1−α

j
d′)

2
. (14)

Now, we apply the same reasoning with the second line of
Eq. 13, yielding the following expression of g′d′x:

g′d′x =
∑

N
j=1 α

j
d′

(
b jx−

(
b∗d′x +(1−α

j
d′)×gd′x

))
∑

N
j=1 (α

j
d′)

2
. (15)

At this stage, one can notice that the expression of g′d′x is itself
a function of gd′x. Thus, we insert the expression of g′d′x (Eq. 15)
into that of gd′x (Eq. 14), which results eventually in the following
expression (we omit the detailed, intermediate steps):

gd′x =

∑
N
j=1(1−α

j
d′)

(
b jx−b∗d′x−α

j
d′

∑
N
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∑
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k
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2

)
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j
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k
d′)

2

.

(16)
Finally, we can insert the expression of gd′x (Eq. 14) into the

original expression of g′d′x (Eq. 15), resulting in the following
expression (again, we omit the detailed, intermediate steps):

g′d′x =

∑
N
j=1 α

j
d′

(
b jx−b∗d′x− (1−α

j
d′)
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N
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2
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2

.

(17)
Overall, Eq. 16 and Eq. 17 provide the expression of the X-

coordinate of the vectors #  »gd′ and
#  »

g′d′ which minimize the individual
fitting energy (Eq. 12). The same reasoning (not detailed here) can
be applied identically to retrieve the Y -coordinate of #  »gd′ and

#  »

g′d′ .
Then, the entire vectors

#  »Gd′ and
#  »

G′d′ (defining
#   »Ad′
(
B̂d′( f j)

)
)

which minimize Eq. 10 under the current assignments can be
updated similarly, by iterating the above computation for all the
branches b∗ of B∗.
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Fig. 14. Comparison of planar layouts for typical dimensionality reduction techniques on all our test ensembles. The color encodes the classification
ground-truth [92]. For each quality score, the best value appears bold and the rank of the score among all methods is in parenthesis.

Fig. 15. Evolution of the projected variance (and cumulative variance, inset) with the number of geodesic axes for PD-PGA (left) and MT-PGA (right).
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TABLE 3
Compression factor and average relative reconstruction error of our

algorithm for PD-PGA and MT-PGA (for dmax = 3 and N1 = 20).

Dataset N |B| PD-PGA MT-PGA
Factor Error Factor Error

Asteroid Impact (3D) 7 1,295 2.97 0.07 4.84 0.22
Cloud processes (2D) 12 1,209 5.94 0.19 7.39 0.01
Viscous fingering (3D) 15 118 2.23 0.13 4.71 0.02
Dark matter (3D) 40 2,592 10.00 0.04 19.27 0.04
Volcanic eruptions (2D) 12 811 9.99 0.12 4.83 0.04
Ionization front (2D) 16 135 2.56 0.14 5.12 0.40
Ionization front (3D) 16 763 3.27 0.17 4.85 0.46
Earthquake (3D) 12 1,203 1.42 0.18 2.19 0.33
Isabel (3D) 12 1,338 5.49 0.27 9.25 0.05
Starting Vortex (2D) 12 124 1.76 0.07 4.42 0.01
Sea Surface Height (2D) 48 1,787 19.59 0.18 9.48 0.48
Vortex Street (2D) 45 23 1.86 0.04 11.84 0.02

APPENDIX B
DATA REDUCTION

Tab. 3 reports the compression factors and average relative re-
construction error for all our test ensembles. In particular, for
each input BDT B( fi), we compute its reconstruction error via
the WT

2 distance to its reconstruction B̂( fi). In order to become
comparable across ensembles, this distance is then divided by the
maximum WT

2 distance observed among two input BDTs in the
ensemble. Finally, this relative reconstruction error is averaged
over all the BDTs of the input ensemble.

This table shows that our framework results in significant
compression factors (9 or above) for the largest ensembles, i.e. the
ensembles counting the most members and for which the BDTs are
the largest (i.e. Dark matter, Sea Surface Height). On the contrary,
modest compression factors tend to be obtained for the smallest
ensembles, counting few members and few features. The average
relative reconstruction error seems acceptable overall: 0.13 and
0.17 on average for PD-PGA and MT-PGA respectively.

Finally, note that for each ensemble, the merge tree based
clustering [92] computed from the input BDTs is strictly iden-
tical to the clustering computed from the reconstructed BDTs.
This confirms the viability of our reconstructed BDTs, and their
usability for typical visualization and analysis tasks.

APPENDIX C
PERSISTENCE CORRELATION

This section details the computation of the correlation between the
persistence of the ith feature of an input BDT B( f j) and its coordi-
nate α

j
k along the geodesic axis

←→
Ak . Let P be an (N1×N)-matrix,

such that the entry P(i, j) denotes the topological persistence, in
the jth input BDT, of the branch b j ∈B( f j) mapped to the ith most
persistent branch of B∗ given the optimal assignment induced by
WT

2 (Eq. 1 of the main manuscript). Next, let A be a (dmax×N)-
matrix, such that then entry A(k, j) denotes the coordinate α

j
k of

the BDT B( f j) along the axis
←→
Ak .

In the following, we aim at assessing how much the persistence
of the branches in B( f j) is correlated with the coordinate α

j
k . Let

ρpi,αk be the correlation between the persistence pi (ith line of P)
and the coordinate αk (kth line of A). It is given by the following
expression, where pi and αk are the average values for the the ith

line of P and the kth line of A, and where σpi and σαk stand for
their standard deviation:

ρpi,αk =
∑

N
j=1
(
P(i, j)− pi

)
×
(
A(k, j)−αk

)
N×σpi ×σαk

.

APPENDIX D
DIMENSIONALITY REDUCTION

Fig. 14 extends Figure 12 (main manuscript) to all our test
ensembles and it confirms visually the conclusions of the table
of aggregated scores (Table 2 of the main manuscript).

In particular, it confirms that MT-PGA provides a trade-off
between the respective advantages of standard techniques such
as MDS [66] and t-SNE [117]. Specifically, MDS is known
to preserve the input metric well, while t-SNE tends to better
preserve the global structure of the data (i.e. the ground-truth
classification), at the expense of metric violation.

MT-PGA provides a balance between these two behaviors:
(i) it improves structure preservation over MDS (it provides
equivalent or better NMI/ARI scores for 11 out of 12 ensembles)
and (ii) it improves metric preservation over t-SNE (it provides an
equivalent or better SIM score for 9 out of 12 ensembles). Visually,
this means that MT-PGA groups together the members belonging
to the same ground-truth class, while providing a layout which
is more faithful than t-SNE’s regarding the distances between the
corresponding merge trees.

As can be expected, the straightforward PCA preserves the
WT

2 metric poorly (as it is based on the L2 norm). Since it relies on
a rough approximation of B, a PCA derived from a vectorization
of the BDTs (MT-VEC) preserves poorly the global structure of
the ensemble (MT-PGA provides equivalent or better NMI/ARI
scores for 11 out of 12 ensembles).

APPENDIX E
METRIC DISTORTION

The section details the computation of the metric distortion in-
dicator SIM, which evaluates the preservation of the Wasserstein
metric in dimensionality reduction tasks.

Specifically, given two points x and y in a planar layout (with
BDTs B( fx) and B( fy)), we first measure their pairwise distortion:

δ (x,y) =
(
||x− y||2−WT

2
(
B( fx),B( fy)

))2
.

This measure is then normalized into:

δ
′(x,y) =

δ (x,y)
max∀x 6=y

(
δ (x,y)

) .
Finally, we evaluate the global indicator SIM := 1−δ ′, where δ ′

stands for the average of δ ′(x,y) for all pairs (x,y) in the ensemble.
SIM values lie within the interval [0,1] and are optimal near 1.

APPENDIX F
PROJECTED VARIANCE

Fig. 15 extends to 10 dimensions the scatter plots of projected
variance reported in Figure 13 (main manuscript), which were
computed for only 2 dimensions. This figure confirms the con-
clusions of Figure 13 (main manuscript). Except for a very mild
oscillation for a specific dataset (“Cloud processes”, PD-PGA,
with a local maximum of low amplitude at 4 dimensions), overall,
the projected variance is indeed monotonically decreasing in
practice for an increasing number of dimensions (i.e. the algorithm
does tend to identify the most informative directions first).
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APPENDIX G
METRIC PARAMETER ANALYSIS

The Wasserstein metric between merge trees (introduced in pre-
vious work [92]) is subject to three parameters (ε1, ε2, and ε3),
in order to adjust the stability/discriminativeness balance of the
metric. Pont et al. [92] provided a detailed, experimental parameter
analysis of their metric, in particular for the specific task of
geodesic computation (Appendix 10.3 of [92]).

In this section, we replicate the same experimental protocol,
but this time for the specific task of MT-PGA computation.
Specifically, Figures 16, 17 and 18 respectively illustrate the effect
of the parameters ε1, ε2, and ε3 on the MT-PGA basis.

As described by Pont et al. [92], in the data, moving a branch
up the BDT corresponds to only slight modifications, which
consists in reconnecting maxima to distinct saddles. For each
parameter (ε1, ε2, and ε3), the resulting pre-processing addresses
cases where nearby saddles have close function values, which
impacts the stability of the metric. As discussed in the main
manuscript (section 2.3), similarly to Sridaharamurthy et al. [111],
Pont et al. mitigate this effect with ε1, but they also introduce ε2
and ε3 to specifically limit the importance in the metric of branches
with a persistence close to that of their parents [92].

For each figure, we study an ensemble consisting of two main
clusters: A (pink spheres, left of Figures 16, 17 and 18) and B (dark
red spheres, right of Figures 16, 17 and 18). These clusters have
been synthesized by considering Gaussian mixtures (such that B
has one more prominent feature than A) and by generating the
other members of the ensemble with variants of these two patterns,
by inserting a random additive noise. Specifically, the cluster B is
synthesized out of 2 slightly distinct Gaussian mixtures, yielding
two artificial sub-clusters B′ and B′′, such that, in each case, the
red branch directly connects to a different branch in the sub-
clusters B′ and B′′. Then each figure visualizes the impact of each
parameter ε1, ε2, and ε3 on the displacement of the red branch,
and hence on the resulting MT-PGA basis.

Overall, as discussed in the detailed captions, these three
parameters have the effect of moving branches up the input BDTs,
hence reducing the structural impact of these branches on the
metric, but also improving its stability. In Figures 16, 17 and 18,
by moving the red branch up, a larger section of the BDTs of the
sub-clusters B′ and B′′ become isomorphic, and thus, the two sub-
patterns of the cluster B become closer to each other in B and the
clusters A and B become better differentiated in the MT-PGA basis
(cluster A on the left of the planar layout, pink spheres, cluster B
on the right of the planar layout, dark red spheres).
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Fig. 16. Impact of the parameter ε1 on MT-PGA computation (in this example, left: ε1 = 0, right: ε1 = 0.3). Initially (left), the red branch in the cluster
B′ is not matched to the red branch in the cluster B′′ as they have distinct depths in the corresponding BDTs (2 versus 1). However, these features
are visually similar in the data (Gaussians with the red maximum in B′ and B′′, bottom left corner of the domain). After the ε1 pre-processing
(right), the saddle of the red branch in B′′ gets merged with its ancestor saddle (whose scalar value was less than ε1 away). Consequently, the
red branch gets moved up the BDT (i.e. the red branch is attached to the main light blue branch in B′′, right). Since they now have identical
depths in the corresponding BDTs, the red branches of the sub-clusters B′ and B′′ can now be matched together (right), which results in an overall
matching between these two trees which better conveys the resemblance between the two sub-clusters B′ and B′′. Equivalently, one can interpret
this procedure of saddle merge in the input trees as a modification of the input scalar field, turning the Gaussian mixture B′ into B′′. In particular,
this field modification disconnects the Gaussian with the red maximum from the Gaussian with the black maximum (B′) and reconnects it to the
Gaussian with the light blue maximum (B′′). Overall, after the ε1 pre-processing (right), the MT-PGA better distinguishes the cluster A (pink spheres,
left of the planar layout) from the cluster B (dark red spheres, right of the planar layout).

Fig. 17. Impact of the parameter ε2 on MT-PGA computation (in this example, left: ε2 = 1, right: ε2 = 0.8). Initially (left), the red branch in B′ is not
matched to the red branch in B′′ as they have distinct depths in the corresponding BDTs (1 versus 2). The red branch in B′′ has a persistence
nearly identical to its parent (cyan). Thus, after local normalization (necessary to guarantee the topological consistency of the interpolated trees), its
normalized persistence would become artificially high, which can have an undesirable effect on the metric. The BDT pre-processing addresses this
issue and moves up the BDT branches with a relative persistence to their parent larger than ε2. After the ε2 pre-processing (right), the red branch
in B′′ moves up the BDT and becomes adjacent to the main light blue branch. Since they now have identical depths in the corresponding BDTs,
the red branches of B′ and B′′ can now be matched together (right), which better conveys the resemblance between the two sub-clusters B′ and
B′′. Equivalently, one can interpret this procedure of BDT pre-processing as a modification of the input scalar field, turning the Gaussian mixture B′
into B′′. In particular, this field modification disconnects the Gaussian with the red maximum from the Gaussian with the cyan maximum (B′′) and
reconnects it to the Gaussian with the light blue maximum (B′). Overall, after the ε2 pre-processing (right), the MT-PGA better distinguishes the
cluster A (pink spheres, left of the planar layout) from the cluster B (dark red spheres, right of the planar layout).

Fig. 18. Impact of the parameter ε3 on MT-PGA computation (in this example, left: ε3 = 0, right: ε3 = 0.7). Initially (left), the red branch in B′′ is not
matched to the red branch in B′ as they have distinct depths in the corresponding BDTs (1 versus 3). The parameter ε3 restricts the application of
the above BDT pre-processing (ε2) and prevents the movement of the most persistent branches (relative persistence larger than ε3). After the ε3
pre-processing (right), the red branch in B′′ moves up the BDT and becomes adjacent to the main light blue branch. Since they now have identical
depths in the corresponding BDTs, the red branches of B′ and B′′ can now be matched together (right), which results in an overall matching between
these two trees which better conveys the resemblance between the two sub-clusters B′ and B′′. Equivalently, one can interpret this procedure on
the BDTs as a modification of the input scalar field, turning the Gaussian mixture B′ into B′′. In particular, this field modification disconnects the
Gaussian with the red maximum from the Gaussian with the cyan maximum (B′′) and reconnects it to the Gaussian with the light blue maximum (B′).
Overall, after the ε3 pre-processing (right), the MT-PGA better distinguishes the cluster A (pink spheres, left of the planar layout) from the cluster B
(dark red spheres, right of the planar layout).
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