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Abstract. In this article, we study the boundary local exact controllability to
any steady state of a one-dimensional parabolic system with coupled nonlinear

boundary conditions by means of only one control. The significant point is

that the state components are interacting only at the boundary points with the
assistance of some nonlinear terms. We consider two cases : either the control

function is acting through a mixed nonlinear boundary condition on the first
component or through a Neumann condition on the second component. The

results are slightly different in the two cases.

To study this problem, we first consider the associated linearized systems
around the given steady state. The method of moments let us to prove its

controllability and to obtain a suitable estimate of the control cost of the form

MeM(T+ 1
T

). To this end, we need to develop a precise spectral analysis of a
non self-adjoint operator.

Thanks to those preliminary results, we can use the source term method

developed in [29], followed by the Banach fixed point argument, to obtain
the small-time boundary local exact controllability to the steady state for the

original system.

1. Introduction.

1.1. The system under study. This paper is concerned with the local exact
controllability to the equilibrium states of some 2 × 2 parabolic system by means
of only one boundary control where the state components are only coupled through
nonlinear boundary conditions. More precisely, we consider the following parabolic
system (without any control for the moment), given by

∂tz1 − ∂2xz1 + α1z1 = 0 in (0, T )× (0, 1),

∂tz2 − ∂2xz2 + α2z2 = 0 in (0, T )× (0, 1),

z1(0, ·) = z0,1 in (0, 1),

z2(0, ·) = z0,2 in (0, 1),

(1)
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with the boundary conditions given by{
∂xz1(·, 1) = 0 in (0, T ),

∂xz2(·, 1)− fr(z1(·, 1)) = 0 in (0, T ),
(2)

at the right boundary point and{
∂xz1(·, 0) + fℓ(z2(·, 0)) = 0 in (0, T ),

∂xz2(·, 0) = 0 in (0, T ),
(3)

at the left boundary point, where fℓ, fr are some nonlinear functions, α1, α2 ∈ R
are some parameters and z0 := (z0,1, z0,2) ∈ (L2(0, 1))2 is the given initial data.

Our main assumption concerning fℓ and fr is

fℓ, fr ∈W 2,∞(R). (4)

Such systems with boundary interactions appear in several biological or chemical
models. A prototype of system (1)–(2)–(3) has been considered for instance in [33]
where the authors studied the equilibrium states and oscillations of localized two-
enzyme kinetics. In their work, the states z1 and z2 represent the concentrations
of the effectors of two enzymes localized at x = 0 and x = 1 affecting each other
only through the end points, and in that work, the authors consider some particular
type of nonlinear functions fℓ, fr according to the role of the enzymes (activation/
inhibition) such as

s 7→ s2

γ2 + s2
, (activation) or s 7→ γ2

γ2 + s2
(inhibition), (5)

where γ > 0 is a fixed parameter. For more details, we refer to [33, Sections 1 & 2].
We consider now a steady-state z∗ := (z∗1 , z

∗
2) ∈ (L2(0, 1))2 for the system (1)–

(2)–(3) that will be fixed all along this work. We will assume that

βℓ := f ′ℓ(z
∗
2(0)) ̸= 0, and βr := f ′r(z

∗
1(1)) ̸= 0. (6)

Remark 1.1. A simple computation helps us to find the steady state of the system
(1)–(2)–(3); namely

z∗1(x) = a1 cosh(
√
α1(1− x)), ∀x ∈ [0, 1],

z∗2(x) = a2 cosh(
√
α2 x), ∀x ∈ [0, 1],

where a1 and a2 satisfy

a2
√
α2 sinh(

√
α2) = fr(a1),

a1
√
α1 sinh(

√
α1) = fℓ(a2).

Depending on the particular forms of fℓ and fr and the values of α1, α2, there may
exist one or many solutions (a1, a2) to this nonlinear system, each of them leading
to a steady-state of our parabolic problem, as discussed for instance in [33].

In system (1)–(2)–(3), we observe that the coupling between the two components
only occurs at the boundary points since there is no internal coupling in the sys-
tem. The main mathematical challenge that we will deal with, is to analyze the
controllability of such system by only one boundary control.

Main goal. In this paper, we are going to study the controllability properties
of the system (1)–(2) by a single boundary control v : (0, T ) → R acting at the left
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boundary point either in the case{
∂xz1(·, 0) + fℓ(z2(·, 0)) = v in (0, T ),

∂xz2(·, 0) = 0 in (0, T ),
(8)

or in the case {
∂xz1(·, 0) + fℓ(z2(·, 0)) = 0 in (0, T ),

∂xz2(·, 0) = v in (0, T ).
(9)

To be more precise, we look for a control v ∈ L2(0, T ) acting through the bound-
ary condition (8) or (9), such that both components can be driven to the steady
state z∗ := (z∗1 , z

∗
2) (at least locally, that is if the initial data is close enough from

z∗) at any given time T > 0, that is to say,

z1(T, ·) = z∗1 , z2(T, ·) = z∗2 .

1.2. Bibliographic comments and motivations. The controllability of a sys-
tem of partial differential equations with less number of control(s) than equations
is gaining genuine interests to the control community. In light of this, we first refer
some pioneer works. The authors in [5, 3] established some generalized Kalman rank
conditions which are necessary and sufficient for the distributed null-controllability
of a class of linear parabolic systems. The boundary controllability of such system
is much more intricate and most of the results are restricted to the 1-D case since
the very powerful Carleman technique is often inefficient in this context. Indeed,
the boundary controllability of a system of PDEs when there is less controls than
equations, is no more equivalent to the distributed one unlike the scalar case, see for
instance [19]. The authors in [19] also proved a necessary and sufficient condition
for the boundary null-controllability of a 2 × 2 coupled parabolic system with a
scalar Dirichlet control. A generalization of this result for the system of n parabolic
equations with m < n controls has been achieved in [4]. In the multi-dimensional
case, we quote [2, 8], where controllability results are obtained in particular cylin-
drical geometries by exploiting on the one hand a sharp estimate of the control
for the associated 1D problem and on the other hand spectral Lebeau-Robbiano
inequalities ([27]) for any space dimensions, see also the discussion in [9, Section
2.4.2]. We also mention [1] where symmetric parabolic coupled systems are analyzed
in any dimension, provided that the control region satisfies the Geometric Control
Condition (GCC).

The above cases mainly dealt with internal coupling. Concerning the controllabil-
ity with boundary coupling, we mention the book [14] and the survey paper [6] where
the authors studied the controllability of some wave, heat and Schrödinger systems
on metric graphs. We also refer to [10] where the boundary null-controllability of
some coupled parabolic systems has been addressed where the boundary coupling
is chosen by means of a Kirchhoff-type condition. In most of the known cases, the
boundary conditions are linearly posed. Thus, dealing with the systems (1)–(2)–
(8)/(9) is naturally more interesting since the concerned boundary couplings are
nonlinear.

In the context of controllability of nonlinear systems, we mention first [21, Chap-
ter I, Sec. 4] by Fursikov and Imanuvilov where a small-time local null-controllability
of semilinear heat equations has been proved using a perturbation argument. In
2000, Barbu [7], and independently Fernández-Cara and Zuazua [20], proved the
small-time global null-controllability of semilinear heat equations where the growth
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of nonlinearities is slower than |s| ln3/2(1 + |s|). In fact, the large-time global null-
controllability of semilinear heat equations has recently been obtained in [26] for
nonlinearities F such that s 7→ F (s)/

(
|s| lnα(1+ |s|)

)
tends to zero at ±∞ for some

α > 0, with either F (s) > 0 for s > 0 or F (s) < 0 for s < 0 and 1/F ∈ L1([0,+∞)).
Furthermore, in the context of controllability for evolutionary systems with nonlin-
ear (interior) couplings, we mention, for instance, the works [12, 24, 25].

In the present work, we deal with the controllability of the concerned models
(1)–(2)–(8)/(9) where the couplings arise on the boundary points in terms of the
nonlinear functions (4) verifying (6).

1.3. Auxiliary control problems. We shall first make a change of unknowns
to transform our control problem into a null-control problem, and then write its
linearization around zero.

To this end, we introduce the following functions, that depend on the considered
steady state z∗:

f̃r(s) := fr
(
s+ z∗1(1)

)
− fr(z

∗
1(1)), ∀s ∈ R,

f̃ℓ(s) := fℓ
(
s+ z∗2(0)

)
− fℓ(z

∗
2(0)), ∀s ∈ R.

Since z∗ is a steady state solution of our uncontrolled system, we see that the
study of the aforementioned local exact controllability problem is equivalent to the
following local null-controllability problem for the new unknown y = z − z∗,

∂ty1 − ∂2xy1 + α1y1 = 0 in (0, T )× (0, 1),

∂ty2 − ∂2xy2 + α2y2 = 0 in (0, T )× (0, 1),

y1(0, ·) = y0,1 in (0, 1),

y2(0, ·) = y0,2 in (0, 1),

(10)

{
∂xy1(·, 1) = 0 in (0, T ),

∂xy2(·, 1)− f̃r
(
y1(·, 1)) = 0 in (0, T ),

(11)

with a control acting either through the mixed condition{
∂xy1(·, 0) + f̃ℓ(y2(·, 0)) = v in (0, T ),

∂xy2(·, 0) = 0 in (0, T ),
(12)

or, through the Neumann condition of y2,{
∂xy1(·, 0) + f̃ℓ(y2(·, 0)) = 0 in (0, T ),

∂xy2(·, 0) = v in (0, T ),
(13)

where the initial data y0 := (y0,1, y0,2) is simply defined by y0,1 = z0,1 − z∗1 and
y0,2 = z0,2 − z∗2 .

If we linearize the nonlinear systems (10)–(11)–(12)/(13) around 0, we obtain
the same set of linear PDEs (10) along with the linearized boundary conditions{

∂xy1(·, 1) = 0 in (0, T ),

∂xy2(·, 1)− βry1(·, 1) = 0 in (0, T ),
(14)

at the right boundary and one of the following two situations on the left boundary:
either {

∂xy1(·, 0) + βℓy2(·, 0) = v in (0, T ),

∂xy2(·, 0) = 0 in (0, T ),
(15)
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or, {
∂xy1(·, 0) + βℓy2(·, 0) = 0 in (0, T ),

∂xy2(·, 0) = v in (0, T ).
(16)

We recall that the parameters βℓ and βr have been introduced in (6). They only
depends on fℓ, fr and z∗ and are assumed to be non zero as mentioned in (6).

The study of this linear system will be central in this paper.

1.4. Main results. Let us state the main result concerning our nonlinear systems.
We will set X = (L2(0, 1))2.

Theorem 1.2. Let fℓ, fr satisfying (4) and z∗ ∈ X be a steady state of the system
(1)–(2)–(3), that satisfies (6).

Then, we have the following local controllability results.

1. The system (1)–(2)–(8) is small time locally exact controllable to the equilib-
rium, that is to say, for any given time T > 0, there is a δ > 0 such that for
any initial data z0 ∈ X with ∥z0−z∗∥X ≤ δ, there exists a control v ∈ L2(0, T )
such that the associated solution z satisfies z(T ) = z∗.

2. There exists a non-empty discrete set R ⊂ R such that if βℓβr /∈ R, then the
system (1)–(2)–(9) is also small time locally exact controllable to the equilib-
rium.

The set R will be explicitly specified later, namely in Lemma 4.1.

As we discussed earlier, the proof of Theorem 1.2 is equivalent to prove a local
null-controllability result for the systems (10)–(11)–(12)/(13), and the first step in
the analysis of the nonlinear systems is the study of the linearized systems (10)–
(14)–(15)/(16). More precisely, we shall first prove the following theorem.

Theorem 1.3. Let α1, α2, βℓ, βr ∈ R with βℓβr ̸= 0.

1. For any initial data y0 ∈ X, and any time T > 0, there exists a control
v ∈ L2(0, T ) such that the solution of (10)–(14)–(15) satisfies y(T ) = 0.

2. There exists a non-empty discrete set R ⊂ R such that if βℓβr /∈ R, then for
any initial data y0 ∈ X, and any time T > 0, there is a control v ∈ L2(0, T )
such that the solution of (10)–(14)–(16) satisfies y(T ) = 0.

In both cases, the control can be chosen to satisfy the following estimate

∥v∥L2(0,T ) ≤MeM(T+ 1
T )∥y0∥X , (17)

where the constant M > 0 neither depend on T nor on y0 but may depend on α1, α2,
βℓ and βr.

Outline of the paper. The paper is organized as follows.

– Section 2 is devoted to study the well-posedness results of the linearized control
systems (10)–(14)–(15)/(16) by virtue of transposition method. Moreover, we
formulate the null-control problems for the concerned models.

– The global boundary null-controllability results of the associated linear models
are established in Section 4 using the so-called method of moments. To this
end, we develop a concrete spectral analysis of the adjoint operator (which
is non-self-adjoint) to the corresponding linear control systems, and this is
described in Section 3. This approach let us in particular obtain the estimate
(17) which is crucial to deduce the controllability results for the non-linear
models.
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– In Section 5, we prove the local null-controllability results for the systems
(10)–(11)–(12)/(13).

To do so, we apply the source term method introduced in [29]; more pre-
cisely, we prove the null-controllability of our linearized models with additional
boundary terms in L2(0, T ) (exponentially decreasing while t → T−) on the
boundary points where the non-linearities appear. Then, we use the Banach
fixed-point argument to obtain the local (boundary) null-controllability for
the concerned non-linear models.

– We conclude our paper by mentioning several remarks in Section 6 and finally
in Appendix A, we present the proofs of some technical lemmas which are
useful for our spectral study.

Notations. Throughout the paper, C > 0 denotes a generic constant that may
vary line to line and may depend on α1, α2, βℓ, βr but neither depend on T nor on
the initial data y0. By the notation

γ1(·) = O(γ2(·)),
for some functions γ1, γ2, we mean

|γ1(·)| ≤ C|γ2(·)|, for some constant C := C(α1, α2, βℓ, βr).

The set of all non-zero real numbers is denoted by R∗. For any z ∈ C, the real
and complex parts are denoted by Re z and Im z respectively. Moreover, in the
whole paper we denote by

√
· the principal determination of the square root in the

complex plane defined by√
ρeiϕ :=

√
ρ e

iϕ/2, ∀ρ ≥ 0, ∀ϕ ∈ (−π, π],
and which is holomorphic in C \ R−.

2. Well-posedness and formulation of the control problems. In this section,
we shall discuss about the existence of the weak solutions to our linearized systems
and formulate the associated null-control problems.

2.1. Existence of the semigroup. As mentioned before, we will work in the
Hilbert space X = (L2(0, 1))2. We introduce the following elliptic operator A
associated to the system (10)–(14) with (15) or (16),

A =

(
−∂2x + α1 0

0 −∂2x + α2

)
, (18)

with its domain

D(A) :=

{
ϕ := (ϕ1, ϕ2) ∈ (H2(0, 1))2

∣∣ϕ′1(0) + βℓϕ2(0) = 0, ϕ′2(0) = 0,

ϕ′1(1) = 0, ϕ′2(1)− βrϕ1(1) = 0

}
.

(19)

It is clear that (A, D(A)) is a non-self-adjoint operator due to the presence of such
coupled boundary conditions. More precisely, we find that, the adjoint operator A∗

of A has the same formal expression as (18), yet with a different domain given by

D(A∗) =

{
u := (u1, u2) ∈ (H2(0, 1))2

∣∣u′1(0) = 0, u′2(0) + βℓu1(0) = 0,

u′1(1)− βru2(1) = 0, u′2(1) = 0

}
.

(20)
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Proposition 2.1. The operator (−A∗, D(A∗)) defined by (18)–(20), generates an
analytic semigroup in X, denoted by

(
e−tA∗)

t≥0
.

A similar proof shows that the same property holds for the operator (−A, D(A))
defined in (18)–(19).

Proof. We consider the following densely defined sesquilinear form h; for all u :=
(u1, u2), ψ := (ψ1, ψ2) ∈ (H1(0, 1))2,

h(u, ψ) :=

∫ 1

0

(
u′1(x)ψ

′
1(x) + u′2(x)ψ

′
2(x)

)
dx

+

∫ 1

0

(
α1u1(x)ψ1(x) + α2u2(x)ψ2(x)

)
dx− βℓu1(0)ψ2(0)− βru2(1)ψ1(1).

It is clear that h is continuous in (H1(0, 1))2 and moreover, we have

|h(u, ψ)| ≤ κ∥u∥(H1(0,1))2∥ψ∥(H1(0,1))2 ,

where κ > 0 depends on the parameters α1, α2, βℓ and βr. Denote by (Ã, D(Ã))
the operator associated with the form h, which is by definition given by{
D(Ã) :=

{
u ∈ (H1(0, 1))2 | ∃w ∈ X s.t. h(u, ψ) = (w,ψ)X , ∀ψ ∈ (H1(0, 1))2

}
,

Ãu := w ∈ X.

Since any u ∈ (H1(0, 1))2 satisfies

Re (h(u, u)) ≥ κ1∥u∥2(H1(0,1))2 − κ2∥u∥2X ,

for some constants κ1, κ2 > 0, we know by [31, Proposition 1.51 and Theorem 1.52]

that −Ã generates an analytic semigroup in X of angle π/2 − arctanκ for some
κ > 0.

It remains to prove that (Ã, D(Ã)) is indeed equal to (A∗, D(A∗)).

• First, we fix some u := (u1, u2) ∈ D(A∗). Then for all ψ := (ψ1, ψ2) ∈
(H1(0, 1))2, we have

h(u, ψ) =

∫ 1

0

(
− u′′1(x) + α1u1(x)

)
ψ1(x) dx+

∫ 1

0

(
− u′′2(x) + α2u2(x)

)
ψ2(x) dx

= (A∗u, ψ),

where we performed an integration by parts using the boundary conditions
satisfied by u ∈ D(A∗). Thus, for the chosen u ∈ D(A∗), there is a w = A∗u ∈
X such that h(u, ψ) = (w,ψ)X , for all ψ ∈ (H1(0, 1))2, which concludes the

inclusion D(A∗) ⊆ D(Ã) and the fact that Ã = A∗ on D(A∗).

• Conversely, let u ∈ D(Ã). By definition, there exists some w ∈ X such that

h(u, ψ) = (w,ψ)X with Ãu = w, for all ψ ∈ (H1(0, 1))2, and accordingly∫ 1

0

(
u′1(x)ψ

′
1(x) + u′2(x)ψ

′
2(x)

)
dx+

∫ 1

0

(
α1u1(x)ψ1(x) + α2u2(x)ψ2(x)

)
dx

− βℓu1(0)ψ2(0)− βru2(1)ψ1(1) =

∫ 1

0

(
w1(x)ψ1(x) + w2(x)ψ2(x)

)
dx.

In particular, by considering any ψ = (ψ1, 0) ∈ (H1
0 (0, 1))

2, then ψ = (0, ψ2) ∈
(H1

0 (0, 1))
2 we conclude that

w1 = −u′′1 + α1u1,
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w2 = −u′′2 + α2u2.

Since wi ∈ L2(0, 1) (i = 1, 2), we have u1, u2 ∈ H2(0, 1) and thus an
integration by parts yields∫ 1

0

(
− u′′1(x) + α1u1(x)

)
ψ1(x) dx+

∫ 1

0

(
− u′′2(x) + α2u2(x)

)
ψ2(x) dx

− βℓu1(0)ψ2(0)− βru2(1)ψ1(1) + u′1(1)ψ1(1)− u′1(0)ψ1(0)

+ u′2(1)ψ2(1)− u′2(0)ψ2(0) =

∫ 1

0

(
w1(x)ψ1(x) + w2(x)ψ2(x)

)
dx,

for all ψ ∈ (H1(0, 1))2. We eventually obtain

u′1(0) = 0, u′2(0) + βℓu1(0) = 0,

u′2(1) = 0, u′1(1)− βru2(1) = 0.

which are exactly the boundary conditions of an element of D(A∗) and thus

D(Ã) ⊆ D(A∗).

The proof is complete.

2.2. The backward in time adjoint system. The adjoint problem (backward
in time) of our control systems (10)–(14) with (15) or (16) is

−∂tq1 − ∂2xq1 + α1q1 = w̃1 in (0, T )× (0, 1),

−∂tq2 − ∂2xq2 + α2q2 = w̃2 in (0, T )× (0, 1),

∂xq1(·, 0) = 0 in (0, T ),

∂xq2(·, 0) + βℓq1(·, 0) = 0 in (0, T ),

∂xq1(·, 1)− βrq2(·, 1) = 0 in (0, T ),

∂xq2(·, 1) = 0 in (0, T ),

q1(T, ·) = ζ1 in (0, 1),

q2(T, ·) = ζ2 in (0, 1),

(21)

where w̃ := (w̃1, w̃2) ∈ L2(0, T ;X) is some given right hand side and ζ = (ζ1, ζ2) is
given final data.

Proposition 2.2. For any given ζ ∈ X and w̃ ∈ L2(0, T ;X), there exists a unique
weak solution q := (q1, q2) ∈ C0([0, T ];X)∩L2(0, T ; (H1(0, 1))2) to (21) that satisfies
the following energy estimate

∥q∥C0([0,T ];X) + ∥q∥L2(0,T ;(H1(0,1))2) + ∥∂tq∥L2(0,T ;(H−1(0,1))2)

≤ CeCT
(
∥ζ∥X + ∥w̃∥L2(0,T ;X)

)
,

where the constant C > 0 does not depend on T > 0.

Proof. We just give a short sketch of the proof. For ζ ∈ D(A∗) and w̃ ∈ C1([0, T ];X)
we indeed have the existence of a strong solution q ∈ C1([0, T ];X)∩C0([0, T ];D(A∗))
to (21). It remains to prove claimed the estimate to obtain the result by the usual
density argument.

Let us test the first and second equation of (21) by q1 and q2 respectively, which
provides

− 1

2

d

dt
∥q(t)∥2X + ∥∂xq(t)∥2X + α1∥q1(t)∥2L2(0,1) + α2∥q2(t)∥2L2(0,1)
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+ βℓq1(t, 0)q2(t, 0)− βrq1(t, 1)q2(t, 1) ≤
1

2

(
∥w̃(t)∥2X + ∥q(t)∥2X

)
. (22)

Using the following trace inequality

|ϕ(0)|+ |ϕ(1)| ≤ 2∥ϕ∥
1
2

L2(0,1)∥ϕ∥
1
2

H1(0,1),∀ϕ ∈ H1(0, 1),

we get from (22) that

−1

2

d

dt
∥q(t)∥2X + ∥q(t)∥2(H1(0,1))2 ≤ Cϵ∥q(t)∥2(H1(0,1))2 + Cϵ∥q(t)∥2X + ∥w̃(t)∥2X ,

for some constant C > 0 that does not depend on ϵ.
Choosing a fixed and small enough ϵ > 0 and by using Grönwall’s lemma we

deduce that

∥q∥2C0([0,T ];X) ≤ CeCT
(
∥ζ∥2X + ∥w̃∥2L2(0,T ;X)

)
.

The other estimates can be proved in a standard fashion, more details can be found
in [28, Chapter 4] (see also [16, Chapter 7]).

2.3. A non homogeneous forward system. Let us consider the following non
homogeneous system

∂ty1 − ∂2xy1 + α1y1 = F1 in (0, T )× (0, 1),

∂ty2 − ∂2xy2 + α2y2 = F2 in (0, T )× (0, 1),

∂xy1(·, 0) + βℓy2(·, 0) = G1 in (0, T ),

∂xy2(·, 0) = G2 in (0, T ),

∂xy1(·, 1) = G3 in (0, T ),

∂xy2(·, 1)− βry1(·, 1) = G4 in (0, T ),

y1(0, ·) = y0,1 in (0, 1),

y2(0, ·) = y0,2 in (0, 1),

(23)

where F1, F2 ∈ L2(0, T ;L2(0, 1)) and Gj ∈ L2(0, T ;R) for j = 1, 2, 3, 4.
Recall that the adjoint operator (−A∗, D(A∗)) given by (18)–(20), defines an

analytic semigroup in X, thanks to Proposition 2.1. Therefore, the existence of a
unique weak solution to (23) can be shown using the method of transposition; see
[13, 34]. More precisely, we test the PDEs in (23) against the solution q to the
adjoint system (21) with w̃1 = w̃2 = 0. We express this below.

Theorem 2.3. For any given y0 := (y0,1, y0,2) ∈ X, F := (F1, F2) ∈ L2(0, T ;X)
and G := (G1, G2, G3, G4) ∈ L2(0, T ;R4), there exists a unique weak solution y
to (23) belonging to the space C0([0, T ];X) ∩ L2(0, T ; (H1(0, 1))2) in the following
sense: for any t ∈ [0, T ] and ζ := (ζ1, ζ2) ∈ X, we have(

y(t), ζ
)
X

= (y0, e
−tA∗

ζ)X +

∫ t

0

(
F (s), e−(t−s)A∗

ζ
)
X
ds

−
∫ t

0

〈(
G1(s)
G2(s)

)
,
(
e−(t−s)A∗

ζ
)∣∣∣

{x=0}

〉
R2

ds

+

∫ t

0

〈(
G3(s)
G4(s)

)
,
(
e−(t−s)A∗

ζ
)∣∣∣

{x=1}

〉
R2

ds.

Moreover, we have

∥y∥C0([0,T ];X) + ∥y∥L2(0,T ;(H1(0,1))2) + ∥∂ty∥L2(0,T ;(H−1(0,1))2)
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≤ CeCT
(
∥y0∥X + ∥F∥L2(0,T ;X) + ∥G∥L2(0,T ;R4)

)
.

2.4. The control problems. First, observe that the existence of a unique weak
solutions to our control systems (10)–(14) with (15) or (16) is clear from Theorem
2.3. Now, let us prescribe the formulation of the control problems in both cases. We
hereby introduce the observation operators B∗

1 and B∗
2 associated with the control

problems (25) and (26) respectively as follows,

B∗
1 = 1{x=0}

(
1 0

)
: (H1(0, 1))2 → R, (24a)

B∗
2 = 1{x=0}

(
0 1

)
: (H1(0, 1))2 → R. (24b)

Proposition 2.4. Let any y0 ∈ X, (α1, α2) ∈ R2 and T > 0 be given, and assume
that βℓβr ̸= 0.

1. A function v ∈ L2(0, T ) is a null-control for the system (10) with the boundary
conditions (14)–(15) if and only if it satisfies: for any ζ ∈ X,(

y0, e
−TA∗

ζ
)
X

=

∫ T

0

v(t)B∗
1e

−(T−t)A∗
ζ dt. (25)

2. A function v ∈ L2(0, T ) is a null-control for the system (10) with the boundary
conditions (14)–(16) if and only if it satisfies: for any ζ ∈ X,(

y0, e
−TA∗

ζ
)
X

=

∫ T

0

v(t)B∗
2e

−(T−t)A∗
ζ dt. (26)

3. Spectral analysis. Let us write the eigenvalue problem A∗u = λu, for λ ∈ C
as follows 

−u′′1 + α1u1 = λu1 in (0, 1),

−u′′2 + α2u2 = λu2 in (0, 1),

u′1(0) = 0, u′2(0) + βℓu1(0) = 0,

u′1(1)− βru2(1) = 0, u′2(1) = 0.

(27)

with the parameters (α1, α2) ∈ R2 and βℓβr ̸= 0.

3.1. A∗ has compact resolvent. Let us denote the spectrum (resp. the resolvent
set) of A∗ by σ(A∗) (resp. by ρ(A∗)). The sesquilinear form associated with the
operator A∗ − ξ Id for any ξ ∈ ρ(A∗) is

h(u, ϕ) :=

∫ 1

0

(
u′1(x)ϕ

′
1(x) + u′2(x)ϕ

′
2(x)

)
dx+ (α1 − ξ)

∫ 1

0

u1(x)ϕ1(x)dx

+ (α2 − ξ)

∫ 1

0

u2(x)ϕ2(x)dx− βℓu1(0)ϕ2(0)− βru2(1)ϕ1(1),

for all ϕ := (ϕ1, ϕ2) ∈ (H1(0, 1))2.
One can show that h is continuous and that there exists constants γ1, γ2 > 0

such that we have

Re (h(u, u)) ≥ γ1∥u′∥2(L2(0,1))2 + (−Re (ξ)− γ2)∥u∥2X . (28)

From (28), it follows that for ξ ∈ C with Re (ξ) ≤ −γ2−1, the operator (A∗−ξ Id)
is invertible. In particular,

(−∞,−γ2 − 1] ⊂ ρ(A∗).
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Finally, we have that D(A∗) ↪→ (H1(0, 1))2 ↪→ X with compact embedding and
so Rξ := (A∗ − ξ Id)−1 : X → X is a compact operator in X for any ξ ∈ C with
Re (ξ) ≤ −γ2 − 1 and consequently for any ξ ∈ ρ(A∗).

The above analysis confirms that the spectrum σ(A∗) is discrete and contains
only eigenvalues of the operator A∗.

3.2. Computation of the eigenfunctions of A∗. We first observe that all the
eigenvalues are geometrically simple. Indeed, assume that for some λ ∈ σ(A∗),
there exists two linearly independent solutions ϕ = (ϕ1, ϕ2) and ψ = (ψ1, ψ2) of the
eigenvalue problem (27). We consider u = aϕ + bψ, where a, b ∈ C∗ are chosen so
that u1(0) = 0 (recall that ϕ1(0) ̸= 0 and ψ1(0) ̸= 0). But we also have u′1(0) = 0
from the boundary conditions in (27) which leads that u1 ≡ 0 in [0, 1]. Finally, we
immediately get from the set of equations (27) that u2 ≡ 0 which is a contradiction.
This proves that the geometric multiplicity of any eigenvalue is 1.

Then, we can see that λ = α1 or α2 cannot be an eigenvalue for A∗. Indeed, by
putting λ = α1 or α2 in the set of equations (27), we find that u1 or u2 is affine and
then using the boundary conditions, one can show that u1 = u2 = 0.

In the sequel we will use the notation θ := α2 −α1 ∈ R. Let us now consider the
variable µ ∈ C defined by

µ =
√
λ− α1,

where we recall that
√
· is the principal determination of the square root in the

complex plane. We also set ν =
√
µ2 − θ =

√
λ− α2 to simplify the presentation.

By the discussion above, we know that µ ̸= 0 and ν ̸= 0.
We will now find out an explicit formula for the eigenfunctions of A∗ as well as

the transcendental equation satisfied by the eigenvalues. To begin with, we rewrite
the equations of u1 and u2 as follows

u′′1 + µ2u1 = 0,

u′′2 + ν2u2 = 0,

along with the boundary conditions as given in (27).
Since u′1(0) = u′2(1) = 0, we look for solutions in the following form{

u1(x) = K1 cos(µx), x ∈ [0, 1],

u2(x) = K2 cos(ν(1− x)), x ∈ [0, 1],
(29)

for some constants K1,K2 ∈ C, to be determined. Using the other two boundary
conditions, we have (

βℓ ν sin ν
−µ sinµ −βr

)(
K1

K2

)
=

(
0
0

)
.

This system has non trivial solutions if and only if the determinant of the coefficient
matrix is zero. This yields the following equation for µ ∈ C

h(µ) :=
1

βℓβr
µ
√
µ2 − θ sin(µ) sin

(√
µ2 − θ

)
− 1 = 0. (30)

Note that, even though the square-root is not an entire function, the function h is
actually entire. Indeed, if we introduce the entire function

ψ(z) =
∑
n≥0

(−1)n

(2n+ 1)!
zn+1,
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we see that ψ(z2) = z sin(z), and thus h can be written

h(µ) =
1

βℓβr
ψ(µ2)ψ(µ2 − θ)− 1, ∀µ ∈ C.

Note that h is an even function, so that for any solution µ ̸= 0 of (30), −µ is also a
solution, but those two solutions lead to the same eigenvalue λ through the formula
λ = α1 + µ2.

Before analyzing the set of eigenvalues of A∗, let us determine the solution to
(27) associated with every such eigenvalue. Let µ be a solution to (30). In (29), we
set K1 = 1 and then we get

K2 = −µ sinµ
βr

.

It follows that the solution to (27), denoted by Φλ, is given by

Φλ(x) :=

(
cos(µx)

−µ sin(µ)
βr

cos
(√

µ2 − θ(1− x)
)) , x ∈ [0, 1], (31)

associated with λ = µ2 + α1, where θ = α2 − α1 and µ ∈ C satisfies the equation
(30).

3.3. Localization of the eigenvalues. We are now in position to describe pre-
cisely the structure of the spectrum of A∗.

3.3.1. Preliminaries. We begin with the following set of lemmas, whose proofs are
given in Appendix A.

Lemma 3.1. There exist µ0 > 0 depending only on θ such that, for every µ ∈ C
satisfying |µ| > µ0, we have

|
√
µ2 − θ| ≥ 1

2
|µ|,

and

| sin(
√
µ2 − θ)| ≥ 3

4
| sinµ| − 1

4
| cosµ|.

We set β∗ = βℓβr, which satisfies β∗ ̸= 0 by the assumption (6), and then we
introduce the function

h0(µ) :=
1

β∗
µ
√
µ2 − θ sin(µ) sin

(√
µ2 − θ

)
, (32)

that appears in the equation (30).

Lemma 3.2. There exists ϑ0 > 0, depending only on θ and β∗, such that for any
µ ∈ C, satisfying |Imµ| ≥ ϑ0, we have

|h0(µ)| > 1.

Lemma 3.3. There exists k0 ∈ N∗, depending only on θ and β∗, such that for any
µ ∈ C, with Reµ = (k + 1/2)π, k ≥ k0, we have

|h0(µ)| > 1.

Lemma 3.4. Let γ ∈ C, and two sequences complex numbers (δk)k and (εk)k. We
assume that (δk)k is bounded, and (εk)k tends to 0.

Then we have √
(kπ + δk)2 + γ = kπ + δk +

γ

2kπ
+O

(
1

k2

)
,
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√
k2π2 + γ + εk = kπ +

γ + εk
2kπ

− γ2

8k3π3
+ o

(
1

k3

)
,

h0(
√
k2π2 + γ) =

γ(γ − θ)

4β∗
+O

(
1

k2

)
, (33)

h0(
√
k2π2 + θ/2 + εk) = − θ2

16β∗

(
1− 4ε2k

θ2
− θ2

48k2π2
+ o

(
1

k2

))
. (34)

We are now ready to give a quite precise description of the eigenvalues of A∗.

3.3.2. Eigenvalues with large real parts. For any integer k we introduce the strip of
the complex plane defined by

Rk := {z ∈ C, (k − 1/2)π ≤ Re z ≤ (k + 1/2)π}. (35)

Assuming for the moment that h has at least one root in each Rk - this will be
proved below - we can first obtain the following result.

Proposition 3.5. Let (µk)k≥k0
be a sequence of complex numbers such that µk ∈ Rk

for every k ≥ k0 and h(µk) = 0. Then we have the following properties:

1. The sequence δk = µk − kπ tends to zero as k goes to infinity.
2. The sequence γk = kπδk = kπ(µk − kπ) is bounded and satisfies

γ2k − θ

2
γk −−−−→

k→∞
β∗. (36)

Proof. 1. By definition of Rk and Lemma 3.2, we already know that (δk)k lies
into the compact set K := {z ∈ C, |Re z| ≤ π/2, |Im z| ≤ ϑ0}.

By using Lemma 3.4 and the equation satisfied by µk = kπ+ δk we obtain

β∗ = (kπ + δk)
√

(kπ + δk)2 − θ sin(kπ + δk) sin
(√

(kπ + δk)2 − θ
)

= (kπ + δk)(kπ + δk +O(1/k))(−1)k sin(δk)(−1)k (sin(δk) +O(1/k)) .

This leads to
β∗
k2π2

= (sin δk)
2 +O(1/k),

and finally to

(sin δk)
2 = O(1/k),

which implies that δk → 0 since 0 is the unique root of the sine function in
the compact K.

2. By a similar reasoning, we find that

β∗ = (kπ)2(1 +O(1/k2))δk(1 +O(δ2k))

(
δk − θ

2kπ
+O(δ3k) +O(1/k2)

)
,

which leads to

β∗ = (1 +O(1/k2))γk(1 +O(δ2k))

(
γk − θ

2
+O(γkδ

2
k) +O(1/k)

)
.

This clearly implies that (γk)k is bounded and that (36) holds.

Our main result of this section is the following.
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Theorem 3.6. There exists an integer k1 ≥ 1, depending only on α1, α2 and β∗,
such that for all k ≥ k1, there exist exactly two distinct solutions µk,+ and µk,− of
the equation (30) in the strip Rk defined in (35).

Moreover, they satisfy |Imµk,±| ≤ ϑ0 for every k ≥ k1 (ϑ0 is introduced in
Lemma 3.2), as well as the following asymptotics:

• If 16β∗ + θ2 ̸= 0, there exist two distinct non zero complex numbers γ± such
that

µk,± = kπ +
γ±
kπ

+O

(
1

k2

)
(37)

• If 16β∗ + θ2 = 0, there exist γ ∈ R∗ and ξ ∈ R∗ such that

µk,± = kπ +
γ

kπ
± i

ξ

k2π2
+O

(
1

k3

)
.

To simplify the presentation, we will also set γ+ = γ− = γ in that case, in
such a way that (37) is still valid.

Note that the values of γ±, γ and ξ, are explicit in function of the parameters,
as we will see in the proof. Moreover, if 16β∗ + θ2 > 0 then µk,± (and γ±) are real,
whereas if 16β∗ + θ2 ≤ 0, they are complex conjugate.

By the property (36), we see that the equation

γ2 − θ

2
γ = β∗, (38)

will play a role in the analysis and since β∗ ̸= 0, the solutions of this equation are
not zero.

The reasoning will be slightly different depending on the sign of the discriminant
of this equation which is, up to a positive factor, the quantity 16β∗ + θ2.

Proof. We first observe that the set of roots of h0 in the complex plane is exactly
given by {

±kπ,±
√
k2π2 + θ, k ∈ N

}
.

Hence, for k1 large enough and k ≥ k1, we see that h0 has exactly two roots (counted
with multiplicities) in the strip Rk.

Moreover, by Lemmas 3.2 and 3.3 we know that |h0| > 1 on the boundary of Rk

and that |h0| > 1 on Rk ∩ {µ ∈ C, |Imµ| ≥ ϑ0}. Therefore, by Rouché’s theorem,
we deduce that h has exactly two roots in Rk, counted with multiplicities, and that
their imaginary part is bounded by ϑ0.

Finally, we observe that h(µ) = h(µ) for every µ. Therefore if one of the root of
h in Rk is not real, the other root is necessarily its complex conjugate.

• Case 1 : assume that

16β∗ + θ2 < 0. (39)

In that case, the solutions of (38) are two conjugate complex numbers

γ± =
θ ± i

√
|16β∗ + θ2|
4

.

In particular we deduce that the solutions of h(µ) = 0 in Rk, for k large
enough, cannot be real and therefore, they are necessarily two conjugate com-
plex numbers. Those two roots are denoted by µk,+ and µk,− = µk,+, with
Imµk,+ > 0 and they are the unique roots of h in the strip Rk.
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From Proposition 3.5, we also deduce that

µk,± = kπ +
γ±
kπ

+ o

(
1

k

)
.

• Case 2 : assume that

16β∗ + θ2 > 0.

By (33), we know that for any γ ∈ R, we have

h(
√
k2π2 + γ) =

γ(γ − θ)

4β∗
− 1 +O

(
1

k2

)
. (40)

– If β∗ > 0, we can find some γ1 and γ2 such that γ1 < 0 < γ2 and with

γi(γi − θ)

4β∗
− 1 > 0, for i = 1, 2.

It follows that for k large enough we have

h(kπ) = −1 < 0, h(
√
k2π2 + γ1) > 0, and h(

√
k2π2 + γ2) > 0.

This implies that h (which is real valued on R) has exactly two distinct
real roots satisfying√

k2π2 + γ1 < µk,− < kπ < µk,+ <
√
k2π2 + γ2.

Introducing γk,± = kπ(µk,± − kπ), we have that

γk,+ > 0, and γk,− < 0.

It follows from Proposition 3.5 that γk,− necessarily converges towards
the unique negative solution of (38) and that γk,+ converges towards the
unique positive solution of (38). In other words we have

µk,± = kπ +
θ ±

√
16β∗ + θ2

4kπ
+O

(
1

k2

)
. (41)

– If β∗ < 0, then we can take γ = θ/2 in (40) so that

γ(γ − θ)

4β∗
− 1 = − θ2

16β∗
− 1 > 0,

by (39). It follows that for k large enough we have

h(kπ) = −1 < 0, h(
√
k2π2 + θ/2) > 0, and h(

√
k2π2 + θ) = −1 < 0.

This implies that h has also two distinct real roots satisfying

µk,− <
√
k2π2 + θ/2 < µk,+.

It follows that

γk,− < kπ
(√

k2π2 + θ/2− kπ
)
< γk,+,

and since kπ
(√

k2π2 + θ/2− kπ
)

→ θ/4, we see that γk,− necessarily

converges towards the unique solution of (38) which is less than θ/4 and
γk,+ necessarily converges towards the unique solution of (38) which is
higher than θ/4.
It follows that (41) still holds.
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• Case 3 : assume that

16β∗ + θ2 = 0. (42)

In this case, the equation (38) has only one double (real) root which is γ = θ/4
and therefore we have

µk = kπ +
θ

4kπ
+O

(
1

k2

)
.

We need to go one step further in the asymptotic expansion to determine the
behavior of this sequence. To this end, we define a complex number εk by

εk = µ2
k − k2π2 − θ

2
,

which tends to 0 by the above asymptotic expansion of µk. Using (34), we
deduce that

h0(µk) = h0

(√
k2π2 +

θ

2
+ εk

)

= − θ2

16β∗

(
1− 4ε2k

θ2
− θ2

48k2π2
+ o

(
1

k2

))
.

By assumption we have h0(µk) = 1 and 16β∗ = −θ2, so that we end up with
the equality

0 =
4ε2k
θ2

+
θ2

48k2π2
+ o

(
1

k2

)
,

that is

ε2kk
2π2 −−−−→

k→∞
− θ4

192
.

We have that θ ̸= 0 (since β∗ ̸= 0 and 16β∗+θ
2 = 0), and thus the limit above

implies that, for k large enough, εk cannot be a real number and therefore µk

also is necessarily not real.
The same reasoning as before shows that we have two complex conjugate

solutions µk,+ and µk,− = µk,+, with Imµk,+ > 0 and that the corresponding
sequences εk,+ and εk,− satisfy

εk,± = ±i θ2

8
√
3kπ

+ o

(
1

k

)
.

By Lemma 3.4 and the fact that µk,± =
√
k2π2 + θ

2 + εk,±, we deduce

µk,± = kπ +
θ

4kπ
± i

θ2

16
√
3k2π2

+ o

(
1

k2

)
.

The proof of the theorem is complete.

The previous theorem gives information on the solutions of the equation h(µ) = 0
from which we can deduce the following properties concerning the eigenvalues of
our operator A∗, away from the origin.

Corollary 3.7. We can choose k1 large enough in the previous theorem in such
a way that all the eigenvalues of A∗ lying outside the disk D(α1, R), with R =
(k1 − 1/2)2π2 are exactly given by

λk,± = µ2
k,± + α1, with k ≥ k1.



BOUNDARY CONTROLLABILITY OF A COUPLED PARABOLIC SYSTEM 17

Moreover, those eigenvalues and the associated eigenfunctions given by (31) (and
denoted here by Φk,± to lighten the notation) satisfy the following asymptotics:

• If 16β∗ + θ2 ̸= 0, we have

λk,± = k2π2 + 2γ± + α1 +O

(
1

k

)
,

and

Φk,±(x) =

(
1

−γ±
βr

)
cos(kπx) +O

(
1

k

)
. (43)

• If 16β∗ + θ2 = 0, we have

λk,± = k2π2 + 2γ + α1 ± 2i
ξ

kπ
+O

(
1

k2

)
,

Φk,±(x) =

(
1

− γ
βr

)
cos(kπx) +O

(
1

k

)
. (44)

Moreover, in both cases, if we set

Ψk =
Φk,+ − Φk,−

λk,+ − λk,−
, (45)

we have

Ψk(x) =

(
0

− 1
2βr

)
cos(kπx) +O

(
1

k

)
. (46)

In the properties above, the O(·) terms are uniform with respect to x ∈ (0, 1).

Proof. • The asymptotics for the eigenvalues is just a consequence of the one
obtained for µk,± and of the relation λk,± = µ2

k,± + α1.

• Using the expression (31) and the asymptotics on µk,± we obtain immediately

cos(µk,±x) = cos(kπx) +O

(
1

k

)
,

cos(
√
µ2
k,± − θ(1− x)) = (−1)k cos(kπx) +O

(
1

k

)
,

µk,± sin(µk,±) = (−1)kγ± +O

(
1

k

)
.

Those estimates imply (43) and (44).
• In the case 16β∗+ θ

2 ̸= 0, we have that λk,+−λk,− → 2(γ+−γ−) which gives
(46).

• In the case 16β∗+θ
2 = 0, (46) is not as straightforward since λk,+−λk,− → 0.

More precisely, we have

λk,+ − λk,− = i
4ξ

kπ
+O

(
1

k2

)
.

– Using the order expansions for µk,± given in Theorem 3.6, we get

µk,± sin(µk,±) = (−1)k
(
θ

4
± i

ξ

kπ
+O

(
1

k2

))
,

and thus

µk,+ sin(µk,+)− µk,− sin(µk,−) = (−1)k2i
ξ

kπ
+O

(
1

k2

)
.
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It follows that

µk,+ sin(µk,+)− µk,− sin(µk,−)

λk,+ − λk,−
=

(−1)k

2
+O

(
1

k

)
.

– Using again the third order asymptotics of µk,± we obtain

cos(µk,+x)− cos(µk,−x)

= 2 sin

(
µk,+ − µk,+

2
x

)
sin

(
µk,+ + µk,+

2
x

)
= 2 sin

(
i
ξx

k2π2
+O

(
1

k3

))
sin

(
kπx+O

(
1

k

))
= O

(
1

k2

)
,

which proves in particular that

cos(µk,+x)− cos(µk,−x)

λk,+ − λk,−
= O

(
1

k

)
.

The very same estimate holds with νk,± and 1− x instead of x, by using
that

νk,± =
√
µ2
k,± − θ = kπ − θ

4kπ
± i

ξ

k2π2
+O

(
1

k3

)
.

Combining all the above estimates, we obtain that (46) also holds in that case.

Note that, in the case 16β∗ + θ2 = 0, the eigenvalues condensate (in the sense
that λk,+ −λk,− tends to 0 as k goes to infinity), and the associated eigenfunctions
also condensate. However, the property (46) shows that both phenomenon somehow
compensate.

3.3.3. Conclusions. By Corollary 3.7, the spectrum of A∗ can be split into two
disjoint parts

σ(A∗) := Λ0 ∪ Λ∞. (47)

with

Λ0 :=
{
λ = µ2 + α1 | µ ∈ D(0, (k1 − 1/2)π) satisfying h(µ) = 0

}
,

Λ∞ :=
⋃

k≥k1

{
λk,+, λk,−

}
.

Note that Λ0 is finite and contained in the disk D(α1, R), with R = (k1 − 1/2)2π2.
Moreover, as a consequence of the discussion in Section 3.4.2, it will appear that k1
can be chosen large enough so that the eigenvalues in Λ∞ are simple. However the
eigenvalues in Λ0 may be multiple.

3.4. Completeness of the set of root vectors of A∗.
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3.4.1. Notations. Let B be an operator with compact resolvent in X. For any
eigenvalue λ ∈ C of B, we consider a circle C(λ, r) in the complex plane, positively
oriented, centered at λ and with a radius r > 0 small enough such that the disk
D̄(λ, r) does not contain any other element of σ(A∗) than λ. Then, we know that

PB,λ =
1

2iπ

∫
C(λ,r)

(ξ Id−B)−1 dξ,

is the spectral projector corresponding to the λ. Its range is spanned by all the root
vectors of B associated with λ.

Similarly, if Λ ⊂ σ(B) is a finite set of eigenvalues, the spectral projector corre-
sponding to Λ is given by

PB,Λ =
∑
λ∈Λ

PB,λ.

3.4.2. Generalized eigenvectors of A∗. For each eigenvalue λ ∈ σ(A∗), the eigen-
function Φλ given by (31) spans the associated eigenspace, where we recall that
µ =

√
λ− α1.

Since it may happen that some eigenvalues in Λ0 are not simple, we associate to
each of them a Jordan chain of length nλ ≥ 1, denoted by Φ0

λ = Φλ,Φ
1
λ, . . . ,Φ

nλ−1
λ .

By definition, this chain spans the range of the projector PA∗,λ and satisfies

(A∗ − λ)Φi
λ = Φi−1

λ , ∀i ∈ {1, . . . , nλ − 1}.

We gather all those Jordan chains in the finite family

F0 = {Φi
λ, λ ∈ Λ0, i ∈ {0, . . . , nλ − 1}}.

By definition this family spans the range of the spectral projector PA∗,Λ0 , corre-
sponding the eigenvalues in Λ0. Finally the eigenfunctions corresponding to the
eigenvalues in Λ∞ are gathered into the family

F∞ = {Φλ, λ ∈ Λ∞} =
⋃

k≥k1

{Φk,−,Φk,+}.

The goal is to show that the family

F = F0 ∪ F∞, (48)

is complete in X, which will be done in the next sections.

3.4.3. A known Riesz basis for X. Let us consider the functions defined by

Φ0
k,±(x) :=

(
1

−γ±
βr

)
cos(kπx), ∀k ≥ 0, (49)

Ψ0
k(x) :=

(
0

− 1
2βr

)
cos(kπx), ∀k ≥ 0. (50)

Then we introduce the family

G :=
⋃
k≥0

{Φ0
k,+,Ψ

0
k

}
k≥0

. (51)

It is clear that there exists a constant matrix M such that

MΦ0
k,+(x) =

1√
2

(
1
0

)
cos(kπx), and MΨ0

k(x) =
1√
2

(
0
1

)
cos(kπx),

which proves that the family G given by (51)-(49)-(50) forms a Riesz basis of X.
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We split G into two parts as follows

G0 =
⋃

0≤k≤k1−1

{Φ0
k,+,Ψ

0
k

}
, and G∞ =

⋃
k≥k1

{Φ0
k,+,Ψ

0
k

}
.

We shall use a result from [32, Corollary 11.4, Chapter II–§11] (see also [23,
Lemma 6.2]), that we state here with slightly different notation.

Lemma 3.8. Let {ϕ0n}n≥0 be a Riesz basis of the Hilbert space X and {ϕn}n≥N

(for N ≥ 0) be another sequence in X such that∑
n≥N

∥ϕn − ϕ0n∥2H < +∞.

Then, there exists an M ≥ N such that the family {ϕ0n}Mn=1 ∪ {ϕn}n≥M+1 forms a
Riesz basis of X.

3.4.4. Main result. We are now ready to prove the main result of this section. It
follows quite standard arguments as given in [15, Lemma 5, XIX.2.5 and Lemma 5,
XIX.5.5] that we specialize to our problem.

Proposition 3.9. The family F made of the root vectors of A∗ is complete in X.

Proof. We first observe, by (45), that the family F∞ spans exactly the same space
as

F̃∞ =
⋃

k≥k1

{Φk,+,Ψk}.

Therefore we are reduced to show that the new family F̃ = F0 ∪ F̃∞ is complete in
X.

Thanks to (43), (44) and (46), we can use Lemma 3.8 to ensure that, choosing a
larger value of k1 if necessary, the family

G̃ = G0 ∪ F̃∞,

forms a Riesz basis of X. We will now fix such a value of k1.

Let us set H = Span(F) = Span(F̃) ⊂ X. Our goal is to show that H = X.

• Let us first show that H⊥ is finite dimensional, and more precisely that
dimH⊥ ≤ 2k1. Indeed if this is not the case, we can find a non trivial el-
ement Φ in H⊥ that satisfies the following additional orthogonality properties

(Φ,Ψ) = 0, ∀Ψ ∈ G0,

since the cardinal of G0 is 2k1. Since Φ is orthogonal to H, that is to the

elements of F̃ , we deduce that Φ is in fact orthogonal to each element of the

Riesz basis G̃. This implies that Φ = 0 which is a contradiction.
• Let µ ∈ ρ(A). We observe that H⊥ is stable by the resolvent (µ Id−A)−1.

Indeed, if x ∈ H⊥ and Φ is any element in F , we have

((µ Id−A)−1x,Φ) = (x, (µ Id−A∗)−1Φ) = 0,

since (µ Id−A∗)−1Φ ∈ SpanF ⊂ H.
• We prove now that H⊥ = {0}. Indeed, if it is not the case, the operator
(µ Id−A)−1 has an eigenvector x in the non trivial finite dimensional space
H⊥. It follows that x ∈ D(A) and that it is an eigenvector of A. We write
Ax = λ̄x for some λ ∈ σ(A∗) and thus

x = PA,λ̄x,
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which leads to

∥x∥2 = (PA,λ̄x, x) = (x, PA∗,λx) = 0,

since PA∗,λx ∈ H by definition of H and x ⊥ H. This is a contradiction.

We thus have proved that H = X, which was our claim.

Remark 3.10. Even though this fact will not be used in the sequel, it can be seen
from the discussion above that the cardinal of F0 is the same as the one of G0, that
is 2k1.

4. Boundary controllability of the linearized systems. This section is de-
voted to prove the boundary null-controllability of the linear systems associated to
our nonlinear models.

4.1. Approximate controllability. Let us first discuss about the approximate
controllability of the linearized systems in the space X at any time T > 0.

Lemma 4.1. 1. The system (10)–(14)–(15) is approximately controllable in X
at any given time T > 0 and the observation terms satisfy

|B∗
1Φλ| = 1, ∀λ ∈ σ(A∗). (52)

2. We introduce the set

R :=

{
(−1)k

(
k +

1

2

)
π

√(
k +

1

2

)2
π2 + θ sin

(√(
k +

1

2

)2
π2 + θ

)
; k ≥ 0

}
∩ R∗,

(53)

where we recall that θ = α2 − α1.
Then, the system (10)–(14)–(16) is approximately controllable in X at any

time T > 0 if and only if β∗ = βℓβr /∈ R. In that case, there exists a constant
c0 > 0 such that the observation terms satisfy

|B∗
2Φλ| ≥ c0, ∀λ ∈ σ(A∗). (54)

Proof. Recall the observation operators B∗
1 , B∗

2 respectively defined by (24a), (24b)
and the explicit expressions of the eigenfunctions Φλ from (31).

1. It is easy to see that

B∗
1Φλ = 1, ∀λ ∈ σ(A∗).

So, by using Fattorini-Hautus test (see [17], [30]), the linear control system
(10)–(14)–(15) is approximately controllable in X at any time T > 0.

2. Let us compute from (31) that

B∗
2Φλ = −µ sinµ

βr
cos
(√

µ2 − θ
)
, ∀λ ∈ σ(A∗),

where, by construction λ = µ2 + α1.
Assume that B∗

2Φλ = 0 for some eigenvalue λ. Since µ sinµ ̸= 0 (if so, then

the eigenvalue equation (30) is invalid), this yields cos
(√

µ2 − θ
)

= 0 and

thus µ2 =
(
k + 1

2

)2
π2 + θ, for some k ≥ 0.

But we remember that µ also satisfies the equation (30). This is possible
only when

1

β∗

(
k +

1

2

)
π

√(
k +

1

2

)2
π2 − θ sin

((
k +

1

2

)
π

)
sin

(√(
k +

1

2

)2
π2 − θ

)
= 1.
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Such a k exists if and only if β∗ ∈ R. Hence, the Fattorini-Hautus criterion
confirms the approximate controllability of the system (10)–(14)–(16), if and
only if β∗ ̸∈ R.

It remains to show (54), under that condition. Since B∗Φλ ̸= 0 for any
λ ∈ σ(A∗) and since σ(A∗) = Λ0 ∪ Λ∞ where Λ0 is finite, we only need to
show that

lim inf
k→∞

|B∗Φk,±| > 0.

This property is clear from (43), because γ+ and γ− are not zero.

4.2. Bounds on the (generalized) eigenfunctions. We have the following re-
sult.

Lemma 4.2. There exists some constant C > 0 depending on the parameters
α1, α2, βℓ, βr such that

∥Φ∥X ≤ C, ∀Φ ∈ F , (55)

where F is the set of eigenfunctions and generalized eigenfunctions of A∗ introduced
in (48).

Proof. Using (48) and the fact that F0 is finite, we see that we just need to show
that

sup
k≥k1

∥Φk,±∥X < +∞,

but this is a straightforward consequence of Corollary 3.7.

From now on we will assume that the generalized eigenfunctions satisfy the prop-
erty

B∗
1Φ

j
λ = 0, ∀λ ∈ Λ0,∀j ∈ {1, . . . , nλ − 1}, (56)

in the case where the control is given by (15), or the property

B∗
2Φ

j
λ = 0, ∀λ ∈ Λ0,∀j ∈ {1, . . . , nλ − 1}, (57)

in the case (16), when β∗ ̸∈ R. This is always possible by using Lemma 4.1 and
the fact that one can add any multiple of the eigenfunction to each generalized
eigenfunction.

We recall that the eigenvalues in Λ∞ are all algebraically simple. Thus, to
simplify the presentation in the sequel, we will conventionally set the multiplicity
nλ = 1 for every λ ∈ Λ∞. We will finally set

nmax = sup
λ∈σ(A∗)

nλ,

which is clearly finite.

4.3. The moments problem. Since the family F is complete in X (Proposition
3.9), it is enough to check the equations (25) and (26) for all ζ ∈ F .

This gives us the following characterization of the controls.

• For any y0 ∈ X and T > 0, a function v ∈ L2(0, T ) is a boundary null-control
for the system (10)–(14)–(15) if and only if, we have

e−Tλ

B∗
1Φλ

(
y0,

j∑
k=0

(−T )k

k!
Φj−k

λ

)
X

=

∫ T

0

v(t)
(−(T − t))k

k!
e−(T−t)λ dt,

∀λ ∈ σ(A∗), ∀j ∈ {0, . . . , nλ − 1}.

(58)
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• Similarly, assuming that β∗ ̸∈ R, for any y0 ∈ X and T > 0 a function
v ∈ L2(0, T ) is a boundary null-control for the system (10)–(14)–(16) if and
only if, we have

e−Tλ

B∗
2Φλ

(
y0,

j∑
k=0

(−T )k

k!
Φj−k

λ

)
X

=

∫ T

0

v(t)
(−(T − t))k

k!
e−(T−t)λ dt,

∀λ ∈ σ(A∗), ∀j ∈ {0, . . . , nλ − 1}.

(59)

Here, we have used (56), (57) and the fact that

e−tA∗
Φj

λ = e−λt

j∑
k=0

(−t)k

k!
Φj−k

λ , ∀λ ∈ σ(A∗), ∀j ∈ {0, . . . , nλ − 1}.

The above set of equations are the moment problems for our linear models and we
shall solve these in the next paragraphs.

4.4. Solving the moment problem. Let us show how to solve the moment
problems introduced before. Its resolution relies on the existence and estimates
of biorthogonal families to exponential functions in L2(0, T ). This topic has a long
story starting from the pioneering work [18] in the framework of control theory, up
to recent developments where sharper estimates were obtained under a quite general
set of hypothesis.

4.4.1. Biorthogonal families to exponentials. A general result. In this paper, we
will use the following theorem whose proof is omitted since it can be deduced from
the more general results [11, Theorem V.4.26 and Corollary V.4.27]. Note that
those results are quite similar to [8, Theorem 1.5] or [22, Theorem 1.2] but with a
simplified set of assumptions.

Theorem 4.3. Let Λ ⊂ C be a set of complex numbers and (nλ)λ∈Λ ⊂ N∗ be a
family of integers such that

nmax := sup
λ∈Λ

nλ < +∞.

We define the counting function of Λ as follows

N (r) := # {λ ∈ Λ, s.t. |λ| ≤ r} , ∀r ≥ 0,

and we assume the following assumptions on Λ.

• Sector condition : There exists ζ > 0 such that

Λ ⊂ {z ∈ C | Re z > 0, and |Im z| < ζ (Re z)} . (60)

• Asymptotics of the counting function: there exists κ > 0 such that

N (r) ≤ κ r1/2, ∀r > 0, (61a)

|N (r)−N (s)| ≤ κ
(
1 + |r − s|1/2

)
, ∀r, s > 0. (61b)

• Weak gap condition of order 2 (see [11, Definition V.4.18]): There exists
ρ > 0 such that

#
(
Λ ∩D(µ, ρ/2)

)
≤ 2, ∀µ ∈ C, (62)

where D(µ, ρ/2) is the open disk in the complex plane centered at µ and of
radius ρ/2.
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For any λ ∈ Λ, we set

ρλ := min
(
ρ/2, d(λ,Λ \ {λ})

)
,

and we assume that

nλ = 1, ∀λ ∈ Λ s.t. ρλ < ρ/2. (63)

Then, for any T > 0 there exists a family {qjλ,T } λ∈Λ
0≤j<nλ

⊂ L2(0, T ) such that∫ T

0

qjλ,T (t)
(t− T )k

k!
e−(T−t)µdt = δλ,µδj,k, ∀λ ∈ Λ, ∀j ∈ {0, . . . , nλ − 1},

∀µ ∈ Λ, ∀k ∈ {0, . . . , nµ − 1},
(64)

with the following estimate

∥qjλ,T ∥L2(0,T ) ≤ C
1

ρλ
eC

√
Reλ+C

T , ∀λ ∈ Λ, ∀j ∈ {0, . . . , nλ − 1}. (65)

4.4.2. Application to our particular problem. In order to use this theorem for our
purpose, we first observe that the real parts of the eigenvalues of A∗ are bounded
from below. Therefore, we can find some α0 ≥ 0, such that the set Λ := σ(A∗)+α0

satisfies

Reλ ≥ 1, ∀λ ∈ Λ. (66)

Moreover, for any λ ∈ Λ we set

ñλ = nλ−α0
.

We will now show that the set Λ, as well as the multiplicities (ñλ)λ∈Λ satisfy the
assumptions of Theorem 4.3.

• The sector condition (60) is clear by using (66) as well as the fact all the
eigenvalues of A∗, and thus all the elements in Λ, have a uniformly bounded
imaginary part (see Corollary 3.7).

• Let us check that the counting function of Λ satisfies (61).
First of all, we observe from Section 3.3.3, that we have

Λ = σ(A∗) + α0 = (Λ0 + α0) ∪ (Λ∞,+ + α0) ∪ (Λ∞,− + α0),

with Λ∞,± = {λk,±, k ≥ k1
}
.

The result will come if we manage to prove that the counting function of
each of the three sets Λ0 + α0, Λ∞,+ + α0 and Λ∞,− + α0 satisfies (61), as
shown for instance in the proof of [11, Lemma V.4.20].

Those estimates are straightforward for Λ0 + α0 which is a finite set that
does not contain 0 by (66). Let us show them for Λ∞,++α0 since the reason-
ing is similar for Λ∞,− + α0. We denote by N+ the corresponding counting
function.
– Let r > 0 be fixed. We set n = N+(r). By definition, we have |λk1+n−1,++
α0| ≤ r so that |λk1+n−1,+| ≤ r + α0, and finally

|µk1+n−1,+| ≤
√
r + α̃,

where we have set

α̃ := |α1|+ α0, (67)

Since µk1+n−1,+ belongs to the strip Rk1+n−1 we deduce

(n+ k1 − 3/2)π ≤
√
r + α̃,
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which gives

n ≤ C(1 +
√
r),

for some C > 0 depending only on α0, α1 and k1. This gives (61a) for
N+ since, by (66), this function vanishes for r small enough.

– Let 0 < s < r be given. We assume that s > infN+ since if it is not the
case, we have N+(s) = 0 and thus (61b) follows from (61a).
We set n = N+(r) and m = N+(s). If m = n there is nothing to prove,
so we will assume that n > m. By definition of the counting function we
have

|λk1+n−1,+| ≤ r + α0, and |λk1+m,+| > s− α0.

By using that µ2
k,+ = λk,+−α1 and the fact that the square root function

is sublinear, we get

|µk1+n−1,+| ≤
√
r +

√
α̃, and |µk1+m,+| ≥

√
s−

√
α̃.

Moreover, by Theorem 3.6, we know that |Imµk,+| ≤ ϑ0 for every k ≥ k1.
It comes

Reµk1+n−1,+ ≤
√
r +

√
α̃+ ϑ0, and

Reµk1+m,+ ≥
√
s−

√
α̃− ϑ0,

which, in turn, leads to

Reµk1+n−1,+ − Reµk1+m,+ ≤
√
r −

√
s+ 2

√
α̃+ 2ϑ0

≤
√
r − s+ 2

√
α̃+ 2ϑ0.

(68)

Moreover, by the asymptotics (37), we know that there exists c > 0 such
that for any k ≥ k1 we have Reµk+1,+ − Reµk,+ ≥ c, and thus

Reµk1+n−1,+ − Reµk1+m,+ ≥ (n−m− 1)c. (69)

Combining (68) and (69), the claim is proved.
• It remains to prove the weak gap condition (62). Using the asymptotic expres-
sions given in Corollary 3.7 for the eigenvalues in Λ∞, one has the following:
there exists some ρ1 > 0 depending only on α1, α2, βℓ and βr, such that

|λk,± − λk+1,±| ≥ ρ1k, for k ≥ k1,

– In the case θ2+16β∗ ̸= 0, we deduce still from Corollary 3.7 that, possibly
changing the value of ρ1, we have

|λk,+ − λk,−| ≥ ρ1, for k ≥ k1.

Since Λ0 is finite, and the gap property is not influenced by the translation
by α0, we can finally conclude that there is some ρ > 0 such that

|λ− λ̃| ≥ ρ, λ, λ̃ ∈ Λ with λ ̸= λ̃, (70)

which is the uniform gap property, which of course imply the weaker
property (62).

– In the case θ2 + 16β∗ = 0, the situation is quite different since, we know
from Corollary 3.7 that

|λk,+ − λk,−| ∼
C

k
∼ C2√

Reλk,+
,
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so that the uniform gap property (70) does not hold anymore. More
precisely, the only case where two eigenvalues of A∗ can be close one from
each other is the case where λk,+ is close from λk,−, indeed we can choose
ρ > 0 small enough so that, if µ ∈ C is such that #(σ(A∗)∩B(µ, ρ/2)) = 2
then there exists k ≥ k1 such that

σ(A∗) ∩B(µ, ρ/2) = {λk,+, λk,−}.

– As a conclusion, in both cases we have the weak gap condition (62) as
well as the estimate

|λ− λ̃| ≥ C√
α0 +Reλ

, ∀λ, λ̃ ∈ Λ, s.t. 0 < |λ− λ̃| ≤ ρ,

which leads to

ρλ ≥ C√
Reλ− α0

,≥ C√
Reλ

, ∀λ ∈ Λ. (71)

Moreover, if |λ − λ̃| ≤ ρ, we know that λ, λ̃ ⊂ Λ∞ + α0 and in particu-
lar, those are simple eigenvalues of the operator, see Section 3.3.3. This
implies that (ñλ)λ∈Λ satisfies (63).

The assumptions of Theorem 4.3 being satisfied, and using (71), we deduce that

there exists a family that we call {q̃jλ,T } λ∈Λ
0≤j<ñλ

⊂ L2(0, T ) satisfying the biorthog-

onality property∫ T

0

q̃jλ,T (t)
(t− T )k

k!
e−(T−t)µdt = δλ,µδj,k, ∀λ ∈ Λ, ∀j ∈ {0, . . . , ñλ − 1},

∀µ̃ ∈ Λ, ∀k ∈ {0, . . . , ñµ − 1},
(72)

with the following estimate

∥q̃jλ,T ∥L2(0,T ) ≤ C
√
Reλ eC

√
Reλ+C

T , ∀λ ∈ Λ, ∀j ∈ {0, . . . , ñλ − 1},

where the constant C > 0 depends on ζ, ρ, κ, nmax but not on λ and T . Note that
the prefactor

√
Reλ comes from (71) but it can immediately be integrated in the

exponential term since
√
Reλ ≤ e

√
Reλ. Hence, changing the value of the constant

C, we end up with the estimate

∥q̃jλ,T ∥L2(0,T ) ≤ C eC
√
Reλ+C

T , ∀λ ∈ Λ, ∀j ∈ {0, . . . , ñλ − 1}. (73)

Recalling that Λ is obtained by translation from the spectrum σ(A∗), the biorthog-
onality property (72) can be written as∫ T

0

q̃jλ+α0,T
(t)

(t− T )k

k!
e−(T−t)(µ+α0)dt = δλ,µδj,k,

∀λ ∈ σ(A∗), ∀j ∈ {0, . . . , nλ − 1},
∀µ ∈ σ(A∗), ∀k ∈ {0, . . . , nµ − 1},

so that, if we set

qjλ,T (t) := q̃jλ+α0,T
(t)e−(T−t)α0 , ∀λ ∈ σ(A∗), ∀j ∈ {0, . . . , nλ − 1},
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we end up with the biorthogonality property∫ T

0

qjλ,T (t)
(t− T )k

k!
e−(T−t)µdt = δλ,µδj,k, ∀λ ∈ σ(A∗), ∀j ∈ {0, . . . , nλ − 1},

∀µ ∈ σ(A∗), ∀k ∈ {0, . . . , nµ − 1},
(74)

and the estimate (73) becomes

∥qjλ,T ∥L2(0,T ) ≤ C eα0T eC
√
α0+Reλ+C

T , ∀λ ∈ σ(A∗), ∀j ∈ {0, . . . , nλ − 1}. (75)

4.4.3. Conclusion. We can now solve the set of moments equations (58) and (59)
to construct boundary controls for our linear systems.

Proof of Theorem 1.3. We will first consider the control problem (10)–(14)–(15).
We suppose given any (α1, α2) ∈ R2, β∗ = βℓβr ̸= 0. For any initial data y0 ∈ X

we consider

v(t) =
∑

λ∈σ(A∗)

nλ−1∑
j=0

vλ,j(t), ∀t ∈ [0, T ],

with

vλ,j(t) =
e−Tλ

B∗
1Φλ

(
y0,

j∑
k=0

(−T )k

k!
Φj−k

λ

)
X

qjλ,T (t), ∀t ∈ [0, T ], and λ ∈ σ(A∗).

Observe that, thanks to (74), this choice of v formally satisfies the moments equation
(58). Using the estimate (75), the lower bounds of the observation terms (52) and
the upper bounds (55), we get

∥vλ,j∥L2(0,T ) ≤ Ce
C/T+α0T e−T (Reλ)+C

√
Reλ+α0∥y0∥X ,
∀λ ∈ σ(A∗), ∀j ∈ {0, . . . , nλ − 1}. (77)

Applying Young’s inequality, we get

C
√

Re (λ) + α0 ≤ T

2
(Re (λ) + α0) +

C2

T
, ∀λ ∈ σ(A∗),

that we use in (77) to obtain

∥vλ,j∥L2(0,T ) ≤ Ce
C/T+2α0T e−

TReλ/2∥y0∥X , ∀λ ∈ σ(A∗), ∀j ∈ {0, . . . , nλ − 1}.

Taking sum over λ and j and using the asymptotics given in Corollary 3.7 (see also
[11, Proposition A.5.39]), we obtain that the series defining v is convergent as well
as the required estimate

∥v∥L2(0,T ) =
∑

λ∈σ(A∗)

nλ−1∑
j=0

∥vλ,j∥L2(0,T ) ≤MeMT e
M/T∥y0∥X ,

with M that does not depend on T neither on y0.
The reasoning is exactly the same for the control problem (10)–(14)–(16) as soon

as we have the additional assumption β∗ ̸∈ R.
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5. Boundary controllability of the the nonlinear system. In the previous
section, we obtained that the control cost for the linear systems (10)–(14)–(15)/(16)
is MeM/T for small-time T . Using this we shall deal with the null-controllability of
the nonlinear systems (10)–(11)–(12)/(13) in the current section.

We introduce the new nonlinear functions

gℓ(s) := f̃ℓ(s)− βℓs = fℓ(z
∗
2(0) + s)− fr(z

∗
2(0))− βℓs, (78)

gr(s) := f̃r(s)− βrs = fr(z
∗
1(1) + s)− fr(z

∗
1(1))− βrs, (79)

in such a way that, by definition and by (4), we have
gℓ(0) = g′ℓ(0) = 0, and |gℓ(s1)− gℓ(s2)| ≤ ∥fℓ∥W 2,∞ |s1 − s2|(|s1|+ |s2|),

∀s1, s2 ∈ R,
gr(0) = g′r(0) = 0, and |gr(s1)− gr(s2)| ≤ ∥fr∥W 2,∞ |s1 − s2|(|s1|+ |s2|),

∀s1, s2 ∈ R.

(80)

Therefore, we see that the nonlinear boundary conditions in (11), (12) and (13)
can be written, respectively, as follows

∂xy2(·, 1)− βry1(·, 1) = gr(y1(·, 1)),
∂xy1(·, 0) + βℓy2(·, 0) = v − gℓ(y2(·, 0)),
∂xy1(·, 0) + βℓy2(·, 0) = −gℓ(y2(·, 0)),

where the terms in gℓ and gr are quadratic and can then be seen as source terms in
the control problem that can be dealt with using the method developed in [29].

5.1. Source term method. Let us apply the source term method (see [29]) to
our case. We suppose given two constants p > 0, q > 1 in such a way that

1 < q <
√
2, and p >

q2

2− q2
. (81)

We recall that M > 0 denotes the constant appearing in the control estimate
(17) for the linearized problem. We now define the functionsρ0(t) = e−

pM
(q−1)(T−t) ,

ρS(t) = e−
(1+p)q2M
(q−1)(T−t) ,

∀t ∈
[
T

(
1− 1

q2

)
, T

]
,

extended in
[
0, T (1− 1/q2)

]
in a constant way such that the functions ρ0 and ρS

are continuous and non-increasing in [0, T ] with ρ0(T ) = ρS(T ) = 0.

Remark 5.1. We compute that

ρ20(t)

ρS(t)
= e

q2M+pM(q2−2)
(q−1)(T−t) , ∀t ∈

[
T

(
1− 1

q2

)
, T

]
.

Due to the choices of p, q in (81), we have q2 + p(q2 − 2) < 0, (q − 1) > 0 and
therefore we can conclude that

ρ20(t)

ρS(t)
≤ 1, ∀t ∈ [0, T ].

With these functions, we define the following weighted spaces (recall that X =
(L2(0, 1))2),

S :=

{
S ∈ L2(0, T ) | S

ρS
∈ L2(0, T )

}
, (82a)
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Y :=

{
y = (y1, y2) ∈ L2(0, T ;X) | y

ρ0
∈ L2(0, T ;X)

}
, (82b)

V :=

{
v ∈ L2(0, T ) | v

ρ0
∈ L2(0, T )

}
. (82c)

We introduce the inner products in the spaces S and V respectively by〈
S, S̃

〉
S :=

∫ T

0

ρ−2
S S(t)S̃(t) dt and

〈
v, ṽ
〉
V :=

∫ T

0

ρ−2
0 v(t)ṽ(t) dt,

for any S, S̃ ∈ S and v, ṽ ∈ V. The corresponding norms in those spaces are

∥S∥S :=

(∫ T

0

∣∣∣∣ S(t)ρS(t)

∣∣∣∣2 dt
)1/2

, and ∥v∥V :=

(∫ T

0

∣∣∣∣ v(t)ρ0(t)

∣∣∣∣2 dt
)1/2

. (83)

We consider the following system
∂ty1 − ∂2xy1 + α1y1 = 0 in (0, T )× (0, 1),

∂ty2 − ∂2xy2 + α2y2 = 0 in (0, T )× (0, 1),

y1(0, ·) = y0,1 in (0, 1),

y2(0, ·) = y0,2 in (0, 1),

(84)

along with the boundary conditions at x = 1 given by{
∂xy1(·, 1) = 0 in (0, T ),

∂xy2(·, 1)− βry1(·, 1) = Sr in (0, T ),
(85)

and at x = 0, we consider either{
∂xy1(·, 0) + βℓy2(·, 0) = v + Sℓ in (0, T ),

∂xy2(·, 0) = 0 in (0, T ),
(86)

or, {
∂xy1(·, 0) + βℓy2(·, 0) = Sℓ in (0, T ),

∂xy2(·, 0) = v in (0, T ),
(87)

for any given y0 ∈ X, Sℓ, Sr ∈ L2(0, T ) and v ∈ L2(0, T ) .
Our goal is to prove the following result using the technique developed in [29].

Proposition 5.2. We suppose given the parameters α1, α2, βℓ and βr as well as
the time T > 0.

1. There exists a linear map

(y0, Sℓ, Sr) ∈ X × L2(0, T )× L2(0, T ) 7−→ (y, v) ∈ Y × V,
such that (y, v) solves the set of equations (84)–(85)–(86).

2. If βℓβr /∈ R, as defined in (53), then there exists a linear map

(y0, Sℓ, Sr) ∈ X × L2(0, T )× L2(0, T ) 7−→ (y, v) ∈ Y × V,
such that (y, v) solves the set of equations (84)–(85)–(87)

In both cases, we have the following estimate∥∥∥∥ yρ0
∥∥∥∥
C0(0,T ;X)

+

∥∥∥∥ yρ0
∥∥∥∥
L2(0,T ;(H1(0,1))2)

+

∥∥∥∥ vρ0
∥∥∥∥
L2(0,T )

≤ CeC(T+ 1
T ) (∥y0∥X + ∥Sℓ∥S + ∥Sr∥S) , (88)
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where the constant C > 0 neither depends on y0 nor on T .

Proof. Let us define the sequence {Tk}k≥0 with

Tk := T − T

qk
, ∀k ≥ 0,

for given T > 0. With this Tk, we have the following relation between ρ0 and ρS

ρ0(Tk+2) = ρS(Tk)e
M

Tk+2−Tk+1 , ∀k ≥ 0. (89)

We also define a sequence {ak}k≥0 with

a0 = y0 ∈ X, ak+1 = ỹ(T−
k+1), ∀k ≥ 0, (90)

where ỹ := (ỹ1, ỹ2) ∈ C0([Tk, Tk+1];X) ∩ L2(Tk, Tk+1; (H
1(0, 1))2) is the unique

weak solution to the following system for every k ≥ 0,

∂tỹ1 − ∂2xỹ1 + α1ỹ1 = 0 in (Tk, Tk+1)× (0, 1),

∂tỹ2 − ∂2xỹ2 + α2ỹ2 = 0 in (Tk, Tk+1)× (0, 1),

∂xỹ1(·, 0) + βℓỹ2(·, 0) = Sℓ in (Tk, Tk+1),

∂xỹ2(·, 0) = 0 in (Tk, Tk+1),

∂xỹ1(·, 1) = 0 in (Tk, Tk+1),

∂xỹ2(·, 1)− βrỹ1(·, 1) = Sr in (Tk, Tk+1),

ỹ1(T
+
k , ·) = 0 in (0, 1),

ỹ2(T
+
k , ·) = 0 in (0, 1).

(91)

Moreover, using Theorem 2.3, we have

∥ỹ∥C0([Tk,Tk+1];X) + ∥ỹ∥L2(Tk,Tk+1;(H1(0,1))2)

≤ CeCT
(
∥Sℓ∥L2(Tk,Tk+1) + ∥Sr∥L2(Tk,Tk+1)

)
.

In particular,

∥ak+1∥X ≤ CeCT
(
∥Sℓ∥L2(Tk,Tk+1) + ∥Sr∥L2(Tk,Tk+1)

)
, ∀k ≥ 0, (92)

recall the definition (90).

Weighted estimate of the control. For every k ≥ 0, we consider the following system
(introduce ŷ := (ŷ1, ŷ2))

∂tŷ1 − ∂2xŷ1 + α1ŷ1 = 0 in (Tk, Tk+1)× (0, 1),

∂tŷ2 − ∂2xŷ2 + α2ŷ2 = 0 in (Tk, Tk+1)× (0, 1),

∂xŷ1(·, 1) = 0 in (Tk, Tk+1),

∂xŷ2(·, 1)− βrŷ1(·, 1) = 0 in (Tk, Tk+1),(
ŷ1(T

+
k , ·), ŷ2(T

+
k , ·)

)
= ak in (0, 1),

(93)

with a control vk acting through either{
∂xŷ1(·, 0) + βℓŷ2(·, 0) = vk in (Tk, Tk+1),

∂xŷ2(·, 0) = 0 in (Tk, Tk+1),
(94)

or, we consider {
∂xŷ1(·, 0) + βℓŷ2(·, 0) = 0 in (Tk, Tk+1),

∂xŷ2(·, 0) = vk in (Tk, Tk+1).
(95)
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– In the first case (93)–(94), we have the existence of a null-control vk ∈
L2(Tk, Tk+1) for any given set of parameters (α1, α2) ∈ R2 and βℓ, βr ̸= 0
by Theorem 1.3–Item 1.

– In the second case (93)–(95), for any given set of parameters (α1, α2) ∈ R2, if
βℓβr /∈ R, then there exists a null-control vk ∈ L2(Tk, Tk+1) for the concerned
system as per Theorem 1.3–Item 2.

In both cases, we have the following estimate

∥vk∥L2(Tk,Tk+1) ≤MeM(Tk+1−Tk)e
M

Tk+1−Tk ∥ak∥X

≤MeMT e
M

Tk+1−Tk ∥ak∥X , ∀k ≥ 0,
(96)

and the associated solutions satisfy

ŷ(T−
k+1, ·) = 0, ∀k ≥ 0. (97)

Now, combining (92) and (96), we have for every k ≥ 0

∥vk+1∥L2(Tk+1,Tk+2)

≤ CMe(C+M)T e
M

Tk+2−Tk+1 ρS(Tk)

(∥∥∥∥Sℓ

ρS

∥∥∥∥
L2(Tk,Tk+1)

+

∥∥∥∥Sr

ρS

∥∥∥∥
L2(Tk,Tk+1)

)
,

since ρS is an non-increasing function in (Tk, Tk+1).
Using the relation (89), we obtain for every k ≥ 0

∥vk+1∥L2(Tk+1,Tk+2) ≤ CeCT ρ0(Tk+2)

(∥∥∥∥Sℓ

ρS

∥∥∥∥
L2(Tk,Tk+1)

+

∥∥∥∥Sr

ρS

∥∥∥∥
L2(Tk,Tk+1)

)
,

for some new value of C > 0. Since the function ρ0 being non-increasing, we deduce
that∥∥∥∥vk+1

ρ0

∥∥∥∥
L2(Tk+1,Tk+2)

≤ CeCT

(∥∥∥∥Sℓ

ρS

∥∥∥∥
L2(Tk,Tk+1)

+

∥∥∥∥Sr

ρS

∥∥∥∥
L2(Tk,Tk+1)

)
, ∀k ≥ 0.

(98)

Let us define
v :=

∑
k≥0

vk1(Tk,Tk+1).

From the estimate (96), we have (since ρ0(T1) = e−
pM
T

q
(q−1) )

∥v0∥L2(0,T1) ≤MeMT e
M
T1 ∥a0∥X

=MeMT e
1
T

q(1+p)M
(q−1) ρ0(T1)∥y0∥X

≤ CeCT e
C
T ρ0(T1)∥y0∥X ,

(99)

for some C depending only on M , p and q. Since ρ0 is non-increasing function in
(0, T1) we get ∥∥∥∥v0ρ0

∥∥∥∥
L2(0,T1)

≤ CeCT+C/T ∥y0∥X . (100)

Now, using the estimates (100) and (98), we have∥∥∥∥ vρ0
∥∥∥∥
L2(0,T )

≤ CeC(T+ 1
T )

(
∥y0∥X +

∥∥∥∥Sℓ

ρS

∥∥∥∥
L2(0,T )

+

∥∥∥∥Sr

ρS

∥∥∥∥
L2(0,T )

)
. (101)
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Weighted estimate of the solution. Let us set y = ỹ + ŷ. Then, for every k ≥ 0, y
satisfies 

∂ty1 − ∂2xy1 + α1y1 = 0 in (Tk, Tk+1)× (0, 1),

∂ty2 − ∂2xy2 + α2y2 = 0 in (Tk, Tk+1)× (0, 1),

∂xy1(·, 1) = 0 in (Tk, Tk+1),

∂xy2(·, 1)− βry1(·, 1) = Sr in (Tk, Tk+1),(
y1(Tk, ·), y2(Tk, ·)

)
= ak in (0, 1),

where the control vk acts either through the condition{
∂xy1(·, 0) + βℓy2(·, 0) = Sℓ + vk in (Tk, Tk+1),

∂xy2(·, 0) = 0 in (Tk, Tk+1),

or through the condition{
∂xy1(·, 0) + βy2(·, 0) = Sℓ in (Tk, Tk+1),

∂xy2(·, 0) = vk in (Tk, Tk+1).

Here, y(T0) = a0 = y0, and we have

y(T−
k ) = ỹ(T−

k ) + ŷ(T−
k ) = ak + 0 = ŷ(T+

k ) + ỹ(T+
k ) = y(T+

k ), ∀k ≥ 1,

thanks to the facts (90), (97) and the chosen initial data in the systems (91) and
(93). Thus, y is continuous at Tk for all k ≥ 0.

Using Theorem 2.3, we have the following estimate for y (for every k ≥ 0):

∥y∥C0([Tk,Tk+1];X) + ∥y∥L2(Tk,Tk+1;(H1(0,1))2)

≤ CeCT
(
∥ak∥X + ∥vk∥L2(Tk,Tk+1) + ∥Sℓ∥L2(Tk,Tk+1) + ∥Sr∥L2(Tk,Tk+1)

)
.

Start with k ≥ 1; using the estimates of ak and vk, respectively from (92) and (96),
we deduce that

∥y∥C0([Tk,Tk+1];X) + ∥y∥L2(Tk,Tk+1;(H1(0,1))2)

≤ CeCT e
M

Tk+1−Tk
(
∥Sℓ∥L2(Tk−1,Tk) + ∥Sr∥L2(Tk−1,Tk)

)
+ CeCT

(
∥Sℓ∥L2(Tk,Tk+1) + ∥Sr∥L2(Tk,Tk+1)

)
≤ CeCT e

M
Tk+1−Tk ρS(Tk−1)

(∥∥∥∥Sℓ

ρS

∥∥∥∥
L2(Tk−1,Tk+1)

+

∥∥∥∥Sr

ρS

∥∥∥∥
L2(Tk−1,Tk+1)

)
, ∀k ≥ 1,

since ρS is a non-increasing function. Now, thanks to the relation (89), one has

∥y∥C0([Tk,Tk+1];X) + ∥y∥L2(Tk,Tk+1;(H1(0,1))2)

≤ CeCT ρ0(Tk+1)

(∥∥∥∥Sℓ

ρS

∥∥∥∥
L2(Tk−1,Tk+1)

+

∥∥∥∥Sr

ρS

∥∥∥∥
L2(Tk−1,Tk+1)

)
, ∀k ≥ 1,

and using the fact that ρ0 is a non-increasing function, we deduce∥∥∥∥ yρ0
∥∥∥∥
C0([Tk,Tk+1];X)

+

∥∥∥∥ yρ0
∥∥∥∥
L2(Tk,Tk+1;(H1(0,1))2)

≤ CeCT

(∥∥∥∥Sℓ

ρS

∥∥∥∥
L2(Tk−1,Tk+1)

+

∥∥∥∥Sr

ρS

∥∥∥∥
L2(Tk−1,Tk+1)

)
, ∀k ≥ 1. (102)



BOUNDARY CONTROLLABILITY OF A COUPLED PARABOLIC SYSTEM 33

For k = 0, we use the estimate of v0 from (99) to deduce

∥y∥C0([0,T1];X) + ∥y∥L2(0,T1;(H1(0,1))2

≤ CeCT
(
∥a0∥X + ∥v0∥L2(0,T1) + ∥Sℓ∥L2(0,T1) + ∥Sr∥L2(0,T1)

)
≤ CeC(T+ 1

T )ρ0(T1)
(
∥y0∥X + ∥Sℓ∥L2(0,T1) + ∥Sr∥L2(0,T1)

)
.

Using the easy observation that ∥S∥L2(0,T ) ≤
∥∥∥ S
ρS

∥∥∥
L2(0,T )

, we get∥∥∥∥ yρ0
∥∥∥∥
C0([0,T1];X)

+

∥∥∥∥ yρ0
∥∥∥∥
L2(0,T1;(H1(0,1))2)

≤ CeC(T+ 1
T )

(
∥y0∥X +

∥∥∥∥Sℓ

ρS

∥∥∥∥
L2(0,T1)

+

∥∥∥∥Sr

ρS

∥∥∥∥
L2(0,T1)

)
. (103)

So, the estimates (102) and (103) conclude that∥∥∥∥ yρ0
∥∥∥∥
C0([0,T ];X)

+

∥∥∥∥ yρ0
∥∥∥∥
L2(0,T ;(H1(0,1))2)

≤ CeC(T+ 1
T )

(
∥y0∥X +

∥∥∥∥Sℓ

ρS

∥∥∥∥
L2(0,T )

+

∥∥∥∥Sr

ρS

∥∥∥∥
L2(0,T )

)
. (104)

Finally, using the definitions of norms (83) (of the weighted spaces) in the esti-
mates (101) and (104), we have the required estimate (88) of our proposition.

5.2. Application of the fixed point argument. In this section, we prove the
main theorem regarding the local null-controllability of our systems.

We assume the initial data y0 ∈ X such that ∥y0∥X ≤ δ for some δ > 0 which
will be determined later. We also introduce the set

Sδ := {S ∈ S × S | ∥S∥S×S ≤ δ} ,
where the space S is defined in (82a).

Now, recall from Proposition 5.2 that for any given source term S := (Sℓ, Sr) ∈
S × S, there exists a control v such that the trajectory y = (y1, y2) of (84)–(85)
with (86) or (87) (depending on the position of the control as per Proposition 5.2)
satisfies the estimate (88). In what follows, we define an operator N acting on Sδ

by

N(S) =

(
−gℓ(y2(·, 0))
gr(y1(·, 1))

)
,

where gℓ and gr have been introduced in (78) and (79).

Proof of Theorem 1.2. We start by showing that N is a contraction map from
Sδ onto itself for some suitable choice of δ > 0.

Step 1. Let us show that Sδ is invariant under the map N provided δ > 0 is small
enough.

Thanks to the properties of gℓ and gr (recalled in (80)) and the trace theorem,
we have∣∣∣∣N(S)(t)

ρS(t)

∣∣∣∣ ≤ C

|ρS(t)|
(
|y2(t, 0)|2 + |y1(t, 1)|2

)
≤ C

|ρS(t)|
(
∥y2(t)∥L2(0,1)∥y2(t)∥H1(0,1) + ∥y1(t)∥L2(0,1)∥y1(t)∥H1(0,1)

)
,
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and it follows that∣∣∣∣N(S)(t)

ρS(t)

∣∣∣∣2 ≤ C

|ρS(t)|2
∥y(t)∥2X∥y(t)∥2(H1(0,1))2

≤ C
|ρ0(t)|4

|ρS(t)|2

∥∥∥∥ y(t)ρ0(t)

∥∥∥∥2
X

∥∥∥∥ y(t)ρ0(t)

∥∥∥∥2
(H1(0,1))2

.

(105)

• Now, using Remark 5.1 we have that the quantity
ρ20(t)

ρS(t)
is bounded by 1

irrespective on t.
• On the other hand, since we have ∥y0∥X ≤ δ and S = (Sℓ, Sr) ∈ Sδ, using

the result (88), we deduce that∥∥∥∥ yρ0
∥∥∥∥
C0([0,T ];X)

+

∥∥∥∥ yρ0
∥∥∥∥
L2(0,T ;(H1(0,1))2)

≤ CeC(T+ 1
T )δ. (106)

Using the bound (106) in (105), we get∥∥∥∥N(S)

ρS

∥∥∥∥
L2(0,T )

≤ C

∥∥∥∥ yρ0
∥∥∥∥
C0([0,T ];X)

∥∥∥∥ yρ0
∥∥∥∥
L2(0,T ;(H1(0,1))2)

≤ CeC(T+ 1
T )δ2.

Thus, for δ > 0 small enough, the map N stabilizes Sδ.

Step 2. In this step, we prove that N is a contraction map for δ > 0 small enough.

For any S, S̃ ∈ Sδ, we denote the trajectories respectively by y = (y1, y2) and
ỹ = (ỹ1, ỹ2) associated with the controls v and ṽ of the system (84)–(85)–(86) (or
(87)), by means of Proposition 5.2. Then, still using (80), it follows that∣∣∣∣∣N(S)(t)−N(S̃)(t)

ρS(t)

∣∣∣∣∣
≤ C

|ρS(t)|

(
|y2(t, 0)− ỹ2(t, 0)|

(
|y2(t, 0)|+ |ỹ2(t, 0)|

)
+ |y1(t, 1)− ỹ1(t, 1)|

(
|y1(t, 1)|+ |ỹ1(t, 1)|

))
≤ C

|ρS(t)|
∥y(t)− ỹ(t)∥

1
2

X∥y(t)− ỹ(t)∥
1
2

(H1(0,1))2

×
(
∥y(t)∥

1
2

X∥y(t)∥
1
2

(H1(0,1))2 + ∥ỹ(t)∥
1
2

X∥ỹ(t)∥
1
2

(H1(0,1))2

)
≤ Cρ20(t)

ρS(t)

∥∥∥∥y − ỹ

ρ0

∥∥∥∥ 1
2

C0([0,T ];X)

∥∥∥∥y(t)− ỹ(t)

ρ0(t)

∥∥∥∥ 1
2

(H1(0,1))2

×
(∥∥∥∥ yρ0

∥∥∥∥ 1
2

C0([0,T ];X)

∥∥∥∥ y(t)ρ0(t)

∥∥∥∥ 1
2

(H1(0,1))2
+

∥∥∥∥ ỹρ0
∥∥∥∥ 1

2

C0([0,T ];X)

∥∥∥∥ ỹ(t)ρ0(t)

∥∥∥∥ 1
2

(H1(0,1))2

)
.

(107)

Now, as per Proposition 5.2 the solution map is linear and thus y − ỹ is the
trajectory of the set of equations (84)–(85)–(86) (instead, (84)–(85)–(87)) with the

source terms S− S̃, the control v− ṽ and the initial data y(0, ·)− ỹ(0, ·) = 0. Then,
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thanks to the estimate (88), y − ỹ satisfies the following:∥∥∥∥y − ỹ

ρ0

∥∥∥∥
C0([0,T ];X)

+

∥∥∥∥y − ỹ

ρ0

∥∥∥∥
L2(0,T ;(H1(0,1))2)

≤ CeC(T+ 1
T )
(
∥Sℓ − S̃ℓ∥S + ∥Sr − S̃r∥S

)
≤ CeC(T+ 1

T )∥S − S̃∥S×S .

(108)

Also, we recall the estimate (106) for y (similarly for ỹ) since we started with initial

data ∥y0∥ ≤ δ and S (or, S̃) in Sδ. Beside this, we have by Remark 5.1 that
ρ20(t)

ρS(t)
≤ 1, ∀t ∈ [0, T ]. As a consequence, the inequality (107) yields to

∣∣∣∣∣N(S)(t)−N(S̃)(t)

ρS(t)

∣∣∣∣∣ ≤ CT δ
1
2 ∥S − S̃∥

1
2

S×S

∥∥∥∥y(t)− ỹ(t)

ρ0(t)

∥∥∥∥ 1
2

(H1(0,1))2

×

(∥∥∥∥ y(t)ρ0(t)

∥∥∥∥ 1
2

(H1(0,1))2
+

∥∥∥∥ ỹ(t)ρ0(t)

∥∥∥∥ 1
2

(H1(0,1))2

)
,

with CT := CeC(T+ 1
T ). This implies∥∥∥∥∥N(S)−N(S̃)

ρS

∥∥∥∥∥
2

(L2(0,T ))2

≤ CT δ ∥S − S̃∥S×S

×
∫ T

0

∥∥∥∥y(t)− ỹ(t)

ρ0(t)

∥∥∥∥
(H1(0,1))2

(∥∥∥∥ y(t)ρ0(t)

∥∥∥∥
(H1(0,1))2

+

∥∥∥∥ ỹ(t)ρ0(t)

∥∥∥∥
(H1(0,1))2

)

≤ CT δ ∥S − S̃∥S×S

∥∥∥∥y − ỹ

ρ0

∥∥∥∥
L2(0,T ;(H1(0,1))2)

×
(∥∥∥∥ yρ0

∥∥∥∥
L2(0,T ;(H1(0,1))2)

+

∥∥∥∥ ỹρ0
∥∥∥∥
L2(0,T ;(H1(0,1))2)

)
≤ CT δ

2∥S − S̃∥2S×S ,

where we have used the estimates (106) and (108).
So, we eventually proved that

∥N(S)−N(S̃)∥S×S ≤ CT δ ∥S − S̃∥S×S ,

for δ > 0 chosen small enough and this ensures that the map N is a contraction in
the closed ball Sδ.

Hence, by applying Banach fixed-point argument, there exists unique fixed point
of the map N denoted by S∗ := (S∗

ℓ , S
∗
r ) in the ball Sδ.

Thanks to Proposition 5.2, the above S∗ ∈ Sδ is such that there exists a control
v ∈ V such that the solution y := (y1, y2) to (84)–(85)–(86) or (84)–(85)–(87), along
with the initial condition y0, satisfies the estimates (88).

The property lim
t→T−

ρ0(t) = 0 forces that y(T, ·) = 0 and thus the local null-

controllability holds for the concerned nonlinear systems (10)–(11) with (12) or
(13).
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This indeed proves the local exact controllability result Theorem 1.2 of the main
control systems (1)–(2)–(8)/(9).

6. Further remarks and conclusions. In this article, we studied the local exact
controllability to a given steady state for a 2 × 2 parabolic system with coupled
nonlinear boundary conditions by means of only one control function acting at the
left end of the boundary (through a mixed condition or Neumann condition). Let
us now address some other problems related to this study.

• Possible generalizations.
The proof we developed in this paper is strongly based on a quite precise

spectral analysis for the linearized system. For this reason it does not seem
straightforward for instance to obtain similar results, at least with the same
approach, if one replaces the Laplace operator −∂2x in the system by a more
general elliptic operator, possibly different for the two components of the
system.

• Local exact controllability to arbitrary trajectories. Global control-
lability.

One can be also interested in the controllability to any trajectory z∗ :=
(z∗1 , z

∗
2) for the system (1)–(2)–(3) other than steady state, but the situation

is much more delicate to handle. Indeed, the linearized models are associated
with the following boundary conditions (in comparison with (14)–(15)){

∂xy1(·, 1) = 0 in (0, T ),

∂xy2(·, 1)− f ′r(z
∗
1(·, 1))y1(·, 1) = 0 in (0, T ),{

∂xy1(·, 0) + f ′ℓ(z
∗
2(·, 0))y2(·, 0) = v in (0, T ),

∂xy2(·, 0) = 0 in (0, T ),

thus, it is not possible to rely on spectral methods for the associated adjoint
operator since the parameters βℓ = f ′ℓ(z

∗
2(·, 0)) and βr = f ′r(z

∗
1(·, 1)) are now

time dependent. In particular, it is not clear how to obtain the controllability
of the linearized systems in that case.

Note that the same issue arises even if we assume that fℓ and fr are globally
Lipschitz, in which case we could expect for global controllability results.

• Relaxing the conditions βℓβr ̸= 0 or βℓβr ̸∈ R.
In this paper we assumed (6) and it can be interesting to see whether

or not this is a necessary condition for controllability. In the case where
βℓ = βr = 0, it is clear that the linearized systems are not controllable anymore
with one single control since the two equations are not coupled at all. On the
other hand, in the cases when βℓ = 0, βr ̸= 0, or βℓ ̸= 0, βr = 0, then
the linearized models (10)–(14)–(15)/(16) may not be controllable. Indeed,
in the case: βℓ = 0, βr ̸= 0, we can compute from the eigenvalue problem

(27) that

{(
cos(kπx)

0

)}
k≥0

is one set of eigenfunctions for the associated

adjoint operator, and thus it appears that when a control acts through the
Neumann condition (16), then the concerned system is not even approximately
controllable in X.

Furthermore, according to Theorem 1.3, when βℓβr ∈ R, the linearized
system (10)–(14)–(16) also fails to be approximately controllable in X.
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Therefore, in those cases, at least with the method we are using, we cannot
conclude anything about the local exact-controllability to the steady state for
our nonlinear system.

Studying the controllability of the nonlinear system in such cases should
thus be attacked with another approach(es) which we do not consider in this
paper. Other techniques (such as, for instance, Coron’s return method [13,
Chapter 6]) could be applied to study the local controllability of the nonlin-
ear systems in the cases where we do not have the null-controllability of the
linearized models, but this would need further investigations.

Appendix A. Proofs of technical lemmas.

Proof of Lemma 3.1. Let µ ∈ C such that |µ|2 > |θ|. We can write

√
µ2 − θ = ±µ

√
1− θ

µ2
,

where the sign indetermination comes from the fact that we use the principal de-
termination of the square root. This indetermination will have no impact on the
following computations due to parity arguments.

Setting µ1 =
√

4|θ|
3 , we immediately get that

|
√
µ2 − θ| ≥ 1

2
|µ|, ∀|µ| ≥ µ1.

For z ∈ C, |z| < 1, we write
√
1− z = 1 + zζ(z),

where ζ is holomorphic in the unit disk.
We can now obtain

± sin(
√
µ2 − θ) = sin

(
µ+

θ

µ
ζ

(
θ

µ2

))
= sin(µ) cos

(
θ

µ
ζ

(
θ

µ2

))
+ cos(µ) sin

(
θ

µ
ζ

(
θ

µ2

))
.

One can find some µ2 >
√
|θ| depending only on θ such that∣∣∣∣cos( θµζ

(
θ

µ2

))∣∣∣∣ ≥ 3/4, and

∣∣∣∣sin( θµζ
(
θ

µ2

))∣∣∣∣ ≤ 1/4,

for every µ s.t. |µ| > µ2.

It follows that for every µ such that |µ| > µ2 we have

| sin(
√
µ2 − θ)| ≥ 3

4
| sinµ| − 1

4
| cosµ|.

Taking µ0 = max(µ1, µ2) gives the claim.

Proof of Lemma 3.2. Let us assume that |Imµ| ≥ µ0. By the previous lemma
we know that

| sin(
√
µ2 − θ)| ≥ 3

4
| sinµ| − 1

4
| cosµ|.
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Moreover we have

| sinµ| = |eiµ − e−iµ|
2

≥ e|Imµ| − e−|Imµ|

2
= sinh |Imµ|,

| cosµ| = |eiµ + e−iµ|
2

≤ e|Imµ| + e−|Imµ|

2
= cosh |Imµ|.

It follows that, for some ϑ0 large enough that we choose satisfying ϑ0 ≥ µ0, we have

| cosµ| ≤ 2| sinµ|, ∀µ, s.t. |Imµ| ≥ ϑ0.

Finally we obtain for all such values of µ

| sin(
√
µ2 − θ)| ≥ 1

4
| sinµ| = sinh |Imµ|.

Going back to the definition of h0 (see (32)) we obtain

|h0(µ)| ≥
1

β∗
|µ||
√
µ2 − θ| sinh2 |Imµ| ≥ 1

2β∗
|Imµ|2 sinh2 |Imµ|

≥ 1

2β2
ϑ20 sinh

2 ϑ0.

Choosing ϑ0 large enough gives the claim.

Proof of Lemma 3.3. We first choose k1 any integer such that k1 ≥ µ0

π . Let µ
such that Reµ = (k + 1/2)π with k ≥ k1.

By standard trigonometric properties, we have for such values of µ, the equalities

| sinµ| = cosh Imµ, and | cosµ| = | sinh Imµ|,
and in particular we get

| sinµ| ≥ 1, | cosµ| ≤ | sinµ|.
By the choice of k1, we have in particular |µ| ≥ µ0 and therefore by Lemma 3.1

| sin(
√
µ2 − θ)| ≥ 3

4
| sinµ| − 1

4
| cosµ|,

and the inequalities above give

| sin(
√
µ2 − θ)| ≥ 1

2
| sinµ| ≥ 1

2
.

All in all, we have for such values of µ,

|h0(µ)| ≥
1

4β∗
|µ|2 ≥ π2

4β∗
k2,

and this quantity is greater than 1 for any k large enough.

Proof of Lemma 3.4. The proof is straightforward by using usual asymptotic
expansions. We first get√

(kπ + δk)2 + γ = kπ

√
1 +

2δk
kπ

+
δ2k + γ

k2π2

= kπ

(
1 +

δk
kπ

+
1

2

δ2k + γ

k2π2
− 1

8

4δ2k
k2π2

+O

(
1

k3

))
= kπ + δk +

γ

2kπ
+O

(
1

k2

)
.
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Then, in a similar way, it follows

√
k2π2 + γ + εk =kπ

√
1 +

γ + εk
k2π2

=kπ

(
1 +

γ + εk
2k2π2

− (γ + εk)
2

8k4π4
+O

(
1

k6

))
=kπ +

γ + εk
2kπ

− (γ + εk)
2

8k3π3
+O

(
1

k5

)
=kπ +

γ + εk
2kπ

− γ2

8k3π3
+ o

(
1

k3

)
.

From this last equality, we deduce that

sin
√
k2π2 + γ + εk = (−1)k sin

(
γ + εk
2kπ

− γ2

8k3π3
+ o

(
1

k3

))
= (−1)k

(
γ + εk
2kπ

− γ2

8k3π3
− γ3

48k3π3
+ o

(
1

k3

))
,

and therefore we have√
k2π2 + γ + εk sin

√
k2π2 + γ + εk

= (−1)k
(
kπ +

γ

2kπ
+ o

(
1

k

))
×
(
γ + εk
2kπ

− γ2

8k3π3
− γ3

48k3π3
+ o

(
1

k3

))
= (−1)k

(
1 +

γ

2k2π2
+ o

(
1

k2

))
×
(
γ + εk

2
− γ2

8k2π2
− γ3

48k2π2
+ o

(
1

k2

))
= (−1)k

(
γ + εk

2
+

γ2

8k2π2
− γ3

48k2π2
+ o

(
1

k2

))
= (−1)k

γ

2

(
1 +

εk
γ

+
γ

4k2π2
− γ2

24k2π2
+ o

(
1

k2

))
.

Applying the previous result twice (once with γ and once with γ replaced by γ−θ),
we obtain

h0(
√
k2π2 + γ + εk)

=
γ(γ − θ)

4β∗

(
1 +

εk
γ

+
γ

4k2π2
− γ2

24k2π2
+ o

(
1

k2

))
×
(
1 +

εk
γ − θ

+
γ − θ

4k2π2
− (γ − θ)2

24k2π2
+ o

(
1

k2

))
=
γ(γ − θ)

4β∗

(
1 +

εk(εk + 2γ − θ)

γ(γ − θ)
+

2γ − θ

4k2π2
− γ2 + (γ − θ)2

24k2π2
+ o

(
1

k2

))
.

Taking εk = 0 in this formula, leads to (33), whereas taking γ = θ/2 leads to
(34).
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[8] A. Benabdallah, F. Boyer, M. González-Burgos and G. Olive, Sharp estimates of the one-

dimensional boundary control cost for parabolic systems and application to the N -dimensional

boundary null controllability in cylindrical domains, SIAM J. Control Optim., 52 (2014),
2970–3001, URL https://doi.org/10.1137/130929680.

[9] K. Bhandari and F. Boyer, Boundary null-controllability of coupled parabolic systems with
Robin conditions, Evol. Equ. Control Theory, 10 (2021), 61–102, URL https://doi.org/10.

3934/eect.2020052.
[10] K. Bhandari, F. Boyer and V. Hernández-Santamaŕıa, Boundary null-controllability of 1-D

coupled parabolic systems with Kirchhoff-type conditions, Math. Control Signals Systems, 33

(2021), 413–471, URL https://doi.org/10.1007/s00498-021-00285-z.

[11] F. Boyer, Controllability of linear parabolic equations and systems, 2023, URL https://hal.

archives-ouvertes.fr/hal-02470625v4, Lecture Notes.

[12] F. W. Chaves-Silva and S. Guerrero, A controllability result for a chemotaxis-fluid model, J.
Differential Equations, 262 (2017), 4863–4905, URL https://doi.org/10.1016/j.jde.2017.

01.004.

[13] J.-M. Coron, Control and nonlinearity, vol. 136 of Mathematical Surveys and Monographs,

American Mathematical Society, Providence, RI, 2007, URL https://doi.org/10.1090/

surv/136.
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