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LOCAL NULL-CONTROLLABILITY OF A PARABOLIC SYSTEM WITH
COUPLED NONLINEAR BOUNDARY CONDITIONS

KUNTAL BHANDARI∗ AND FRANCK BOYER†

Abstract. In this article, we study the boundary local null-controllability of a one-dimensional parabolic system with
coupled nonlinear boundary conditions and only one single control. The significant point is that the state components
are interacting only at the boundary points in terms of some nonlinear functions. The control function is acting either
through a mixed nonlinear boundary condition on the first component or through a Neumann condition on the second
component. The results are slightly different in the two cases.

To study the controllability properties, we first consider the associated linear systems where the boundary nonlin-
earities are linearized around (0, 0). The method of moments helps us to prove the controllability and obtain a suitable
control cost namely CeC/T for the linearized systems. Then applying the source term method developed in [25], followed
by the Banach fixed point argument, we obtain the small-time local boundary null-controllability of the system.

Key words. Parabolic systems, boundary local null-controllability, method of moments, source term method,
fixed-point argument.

AMS subject classifications. 35K20 - 35K58 - 93B05 - 93B60.

1. Introduction.

1.1. The system under study. This paper is concerned with the boundary null-controllability
of some parabolic system where the state components are coupled through the boundary via some
nonlinear functions. The systems with boundary interactions often represent several biological or
chemical models, see for instance [30] where this kind of models are appeared. Let us consider such a
parabolic system (without any control for the moment), given by

(1.1)


∂ty1 − ∂2

xy1 + α1y1 = 0 in (0, T )× (0, 1),

∂ty2 − ∂2
xy2 + α2y2 = 0 in (0, T )× (0, 1),

y1(0, ·) = y0,1(·) in (0, 1),

y2(0, ·) = y0,2(·) in (0, 1),

with the boundary conditions at x = 0

(1.2)

{
∂xy1(t, 0) + f(y2(t, 0)) = 0 in (0, T ),

∂xy2(t, 0) = 0 in (0, T ),

and at x = 1

(1.3)

{
∂xy1(t, 1) = 0 in (0, T ),

∂xy2(t, 1)− f(y1(t, 1)) = 0 in (0, T ),

where the nonlinear functions f are chosen as follows
f(ν) = βν + g(ν), with g ∈ C1(R), g(0) = g′(0) = 0, satisfying

|g(ν)− g(ν̃)| ≤ C|ν − ν̃|(|ν|+ |ν̃|), for any ν, ν̃ ∈ R, for some constant C > 0,

f ′(0) = β 6= 0 is some real number.

(1.4)

In the above model, α1, α2 ∈ R are some parameters and y0 := (y0,1, y0,2) ∈ (L2(0, 1))2 is given initial
data.

Remark 1.1. An immediate example of the nonlinearity f is

f(ν) = βν + ν2,
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and it is clear that g(ν) = ν2 satisfies the required conditions (1.4).
A second example can be considered as follows,

f(ν) =
βν

1 + ν2
, i.e., g(ν) = − βν3

1 + ν2
,

which often arises in several biological or chemical models, see for instance [30]. One can check that
the above g satisfies the required properties given by (1.4).

In our system, we observe that the couplings are made only on the boundary points, there is no
internal coupling in the system. Now, while dealing with the boundary controllability of the above
model, the following natural question arises.

Question: Is there a (scalar) control v ∈ L2(0, T ) acting on the boundary point x = 0, either
through the mixed condition of y1, y2 or, the Neumann condition of y2 in (1.2), such that both the
components will vanish (at least locally) at a given time T > 0, that is to say, y1(T, x) = y2(T, x) = 0
for all x ∈ (0, 1) ?

To be more precise, our goal is to study the controllability property of the system (1.1) by treating
the following two boundary control cases: either

(1.5)

{
∂xy1(t, 0) + f(y2(t, 0)) = v(t) in (0, T ),

∂xy2(t, 0) = 0 in (0, T ),

or,

(1.6)

{
∂xy1(t, 0) + f(y2(t, 0)) = 0 in (0, T ),

∂xy2(t, 0) = v(t) in (0, T ),

along with the conditions (1.3) at x = 1.
From the application point of view, the more interesting situation is the case when we exert a

control only on the component y2, namely (1.6).

1.2. Bibliographic comments and motivations. The controllability of a system of partial
differential equations with less number of control(s) than equations is gaining genuine interests to the
control community. In light of this, we first refer some pioneer works. The authors in [1,2] established
some generalized Kalman rank conditions which are necessary and sufficient for the distributed null-
controllability of a class of parabolic systems. The boundary controllability of a system is much more
intricate and most of the results are restricted to the 1-D case since the very powerful Carleman
technique is often inefficient in this context. Indeed, the boundary controllability of a system of PDEs
is no more equivalent to the distributed one unlike the scalar case, see for instance [17]. The authors
in [17] also proved a necessary and sufficient condition for the boundary null-controllability of a 2× 2
coupled parabolic system with a scalar Dirichlet control. A generalization of this result for the system
of n parabolic equations with m < n controls has been achieved in [3].

The above cases mainly dealt with internal coupling. Concerning the controllability with boundary
coupling, we mention the book [11] and the survey paper [4] where the authors studied the controllabil-
ity of some wave, heat and Schrödinger systems on metric graphs. We also refer [8] where the boundary
null-controllability of some coupled parabolic systems has been addressed where the boundary coupling
is chosen by means of a Kirchhoff-type condition. In most of the known cases, the boundary conditions
are linearly posed. Thus, dealing with the systems (1.1)–(1.3)–(1.5)/(1.6) is naturally more interesting
since the concerned boundary couplings are in terms of some nonlinear functions.

Now, in the context of controllability of nonlinear systems, first we mention [19, Chapter I, Sec. 4]
by Fursikov and Imanuvilov where a small-time local null-controllability of semilinear heat equations
has been proved using a perturbation argument. In 2000, Barbu [5], independently Fernández-Cara
and Zuazua [18] proved the small-time global null-controllability of semilinear heat equation where the

growth of nonlinearities is slower than |s| ln3/2(1+|s|). In fact, the large-time global null-controllability
of semilinear heat equations has recently been obtained in [23] for nonlinearities f that grow slower
than |s| ln2(1 + |s|) with a sign condition: f(s) > 0 for s > 0 and f(s) < 0 for s < 0.

In the present work, we deal with the local null-controllability of a parabolic system where the
couplings arise on the boundary points through some nonlinear functions. The typical form of the
nonlinearities has been given by (1.4). Let us now start with the following linearized control systems.
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1.3. The linearized control systems. It is clear that the linearized (around (0, 0)) control
systems associated to the nonlinear systems (1.1)–(1.3)–(1.5)/(1.6) are the set of PDEs (1.1) along
with the boundary conditions at x = 1

(1.7)

{
∂xy1(t, 1) = 0 in (0, T ),

∂xy2(t, 1)− f ′(0)y1(t, 1) = 0 in (0, T ),

and at x = 0, we have one of the following two situations: either

(1.8)

{
∂xy1(t, 0) + f ′(0)y2(t, 0) = v(t) in (0, T ),

∂xy2(t, 0) = 0 in (0, T ),

or,

(1.9)

{
∂xy1(t, 0) + f ′(0)y2(t, 0) = 0 in (0, T ),

∂xy2(t, 0) = v(t) in (0, T ),

with f ′(0) = β 6= 0.
Our goal is to first derive the global boundary null-controllability of the above linear models and

then deduce some local (boundary) null-controllability results by the source term method together
with a fixed-point argument, thanks to the pioneer work [25] by Liu, Takahashi and Tucsnak.

In this context, we must mention some recent works on the local null-controllability based on
the source term and fixed-point approach. For instance, in [29], the local null-controllability of a
Kuramoto-Sivashinsky equation (in 1-D and 2-D) has been studied with a single boundary control.
A local controllability result of a non-linear phase-field model has been established in [20] with a
Dirichlet boundary control; in particular, the authors used the moments method to prove the global
null-controllability of their linearized model. Finally, it is worth mentioning that the authors in [22]
proved an internal local null-controllability result of a nonlocal semilinear heat equation using the
mentioned approach where a Carleman inequality is established to prove the controllability of their
linearized system.

Let us come back to our problems; before stating the main results, we introduce the functional
framework associated to the linearized models.

Functional framework. Introduce the space

X := (L2(0, 1))2,

and write the following elliptic operator A associated to the system (1.1)–(1.7) with (1.8) or (1.9),

A =

(
−∂2

x + α1 0
0 −∂2

x + α2

)
,(1.10a)

with its domain

D(A) :=

{
φ := (φ1, φ2) ∈ (H2(0, 1))2

∣∣φ′1(0) + βφ2(0) = 0, φ′2(0) = 0,(1.10b)

φ′1(1) = 0, φ′2(1)− βφ1(1) = 0

}
.

It is clear that (A, D(A)) is a non-self-adjoint operator due to the presence of such coupled boundary
conditions. More precisely, we find that, the adjoint operator A∗ of A has the same formal expression
as (1.10a), yet with a different domain given by

D(A∗) =

{
u := (u1, u2) ∈ (H2(0, 1))2

∣∣u′1(0) = 0, u′2(0) + βu1(0) = 0,(1.11)

u′1(1)− βu2(1) = 0, u′2(1) = 0

}
.
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Notations. Throughout the paper, C > 0 denotes the generic constant that may vary line to line
and may depend on α1, α2, β but does not depend on T or y0. By the notation

γ1(·) = O(γ2(·)),

for some real valued functions γ1, γ2, we mean

|γ1(·)| ≤ C|γ2(·)|, for some constant C := C(α1, α2, β).

The set of all non-zero real numbers is denoted by R∗. For any z ∈ C, the real and complex parts are
denoted by <(z) and =(z) respectively.

1.4. Main results.

1.4.1. Controllability results for the nonlinear systems. With the boundary nonlinearities
prescribed in (1.4) we have the following local null-controllability results for our systems.

Theorem 1.2. Let be f given by (1.4) and assume that (α1, α2) ∈ R2 be given parameters. Then,
we have the following local controllability results.

1. The system (1.1)–(1.3)–(1.5) is small time locally null-controllable around the equilibrium, that
is to say, for any given time T > 0, there is a δ > 0 such that for chosen initial data y0 with
‖y0‖X ≤ δ, there exists a control v ∈ L2(0, T ) such that the associated solution y satisfies

y(T, x) = 0, ∀x ∈ (0, 1).

2. There exists a non-empty strict subset R ⊂ R such that if f ′(0) /∈ R, then the system (1.1)–
(1.3)–(1.6) is small time locally null-controllable around the equilibrium, that is to say, for any
given time T > 0, there is a δ > 0 such that for chosen initial data y0 with ‖y0‖X ≤ δ, there
exists a control v ∈ L2(0, T ) such that the associated solution y satisfies

y(T, x) = 0, ∀x ∈ (0, 1).

Our strategy to prove Theorem 1.2 is the following:
– First, we shall prove the global boundary null-controllability results of the associated linear

models (1.1)–(1.7) with (1.8) or (1.9) using the so-called method of moments (initially devel-
oped by Fattorini and Russell [15, 16]).
A proper estimate of the control cost (precisely CeC/T ) is crucial to deduce the controllability
results for the non-linear models.

– Next, we apply the source term method introduced in [25]; more precisely, we prove the
null-controllability of our linearized models with additional boundary terms in L2(0, T ) (expo-
nentially decreasing while t→ T−) on the boundary points where the non-linearities appear.

– Thereafter, we use the Banach fixed-point argument to obtain the local (boundary) null-
controllability for the non-linear models.

1.4.2. Controllability results for the associated linear systems. Let us present the main
theorem concerning the null-controllability of the linearized models.

Theorem 1.3. Let any y0 ∈ X and (α1, α2) ∈ R2 be given. Then for any time T > 0, we have
the following.

1. There exists a control v ∈ L2(0, T ) such that the system (1.1)–(1.7)–(1.8) is null-controllable
at time T .

2. There exists a non-empty strict subset R ⊂ R such that if f ′(0) /∈ R, then there is a control
v ∈ L2(0, T ) such that the system (1.1)–(1.7)–(1.9) is null-controllable at time T .

In both cases, the controls satisfy the following estimate

‖v‖L2(0,T ) ≤ CeC/T ‖y0‖X ,

where the constants C > 0 neither depend on T nor on y0 but depends on α1, α2 and f ′(0).

The set R will be specified later, namely in Lemma 4.1.

Remark 1.4. Some remarks are in order.
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• In the case when f ′(0) = β ∈ R, the linearized system (1.1)–(1.7)–(1.9) is not even approxi-
mately controllable in X. Therefore, we cannot say anything about the local null-controllability
of our nonlinear systems at least with the technique used by us (the source term method as
per [25]), since the control cost obtained for the linearized problems will be extensively used to
study the nonlinear systems.
• If f ′(0) = β = 0, then it is clear that the linearized models (1.1)–(1.7)–(1.8)/ (1.9) are com-

pletely decoupled. Thus with a single control function, there is no hope to control the whole
2×2 system and again this will prevent us to study the local null-controllability of the associated
nonlinear models with the source term method.
• Maybe some other techniques (for instance, the Return method [10, Chapter 6]) could be ap-

plied to study the local controllability of the nonlinear systems when we do not have the null-
controllability of the linearized models, but this needs further investigations.

2. Well-posedness and formulation of control problems. In this section, we shall discuss
about the existence of the weak solutions to our linearized systems and formulate the associated null-
control problems.

2.1. Existence of semigroup. First, we show the existence of the analytic semigroup defined by
the operator (−A∗, D(A∗)) introduced in (1.10a)–(1.11). The same is true for the operator (−A, D(A))
(see (1.10a)–(1.10b)).

Proposition 2.1. The operator (−A∗, D(A∗)) defined by (1.10a)–(1.11), generates an analytic
semigroup in X, denoted by

(
e−tA

∗)
t≥0

.

Proof. We consider the following densely defined sesquilinear form h; for all u := (u1, u2), ψ :=
(ψ1, ψ2) ∈ (H1(0, 1))2,

h(u, ψ) :=

∫ 1

0

(
u′1(x)ψ′1(x) + u′2(x)ψ′2(x)

)
dx+

∫ 1

0

(
α1u1(x)ψ1(x) + α2u2(x)ψ2(x)

)
dx(2.1)

−βu1(0)ψ2(0)− βu2(1)ψ1(1).

It is clear that h is continuous in (H1(0, 1))2 and moreover, we have

|h(u, ψ)| ≤ κ‖u‖(H1(0,1))2‖ψ‖(H1(0,1))2 ,

where κ > 0 depends on the parameters α1, α2 and β.
Also, any u ∈ (H1(0, 1))2 satisfies

< (h(u, u)) ≥ κ1‖u‖2(H1(0,1))2 − κ2‖u‖2X ,

for some constants κ1, κ2 > 0.
Then, by [27, Proposition 1.51 and Theorem 1.52], the negative operator associated with h gener-

ates an analytic semigroup in X of angle π/2− arctanκ. Now, thanks to the following Lemma 2.2, we
have that the operator associated with h is indeed A∗ with its domain D(A∗), which completes the
proof.

Lemma 2.2. Let h be the sesquilinear form in (H1(0, 1))2 as defined by (2.1). Then, the operator
associated with h is (A∗, D(A∗)).

Proof. Denote by (Ã, D(Ã)) the operator associated with the form h, which is by definition given
by D(Ã) =

{
u ∈ (H1(0, 1))2 | ∃w ∈ X s.t. h(u, ψ) = (w,ψ)X , ∀ψ ∈ (H1(0, 1))2

}
,

Ãu := w = (w1, w2) ∈ X.

• First, we fix some u := (u1, u2) ∈ D(A∗). Then for all ψ := (ψ1, ψ2) ∈ (H1(0, 1))2, we have

h(u, ψ) :=

∫ 1

0

(
u′1(x)ψ′1(x) + u′2(x)ψ′2(x)

)
dx+

∫ 1

0

(
α1u1(x)ψ1(x) + α2u2(x)ψ2(x)

)
dx

− βu1(0)ψ2(0)− βu2(1)ψ1(1)

=

∫ 1

0

(
− u′′1(x) + α1u1(x)

)
ψ1(x) dx+

∫ 1

0

(
− u′′2(x) + α2u2(x)

)
ψ2(x) dx = (A∗u, ψ),
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where we performed an integration by parts on and also use the boundary conditions satisfied
by u ∈ D(A∗). Thus, for the chosen u ∈ D(A∗), there is a w = A∗u ∈ X such that

h(u, ψ) = (w,ψ)X , for all ψ ∈ (H1(0, 1))2, which concludes the inclusion D(A∗) ⊆ D(Ã).

• Conversely, let u ∈ D(Ã). By definition, there exists some w ∈ X such that h(u, ψ) = (w,ψ)X
with Ãu = w, for all ψ ∈ (H1(0, 1))2, and accordingly∫ 1

0

(
u′1(x)ψ′1(x) + u′2(x)ψ′2(x)

)
dx+

∫ 1

0

(
α1u1(x)ψ1(x) + α2u2(x)ψ2(x)

)
dx

−βu1(0)ψ2(0)− βu2(1)ψ1(1) =

∫ 1

0

(
w1(x)ψ1(x) + w2(x)ψ2(x)

)
dx.

In fact, since wi ∈ L2(0, 1) (i = 1, 2), we have u′1, u
′
2 ∈ H1(0, 1) and thus an integration by

parts yields

∫ 1

0

(
− u′′1(x) + α1u1(x)

)
ψ1(x) dx+

∫ 1

0

(
− u′′2(x) + α2u2(x)

)
ψ2(x) dx

− βu1(0)ψ2(0)− βu2(1)ψ1(1) + u′1(1)ψ1(1)− u′1(0)ψ1(0) + u′2(1)ψ2(1)− u′2(0)ψ2(0)

=

∫ 1

0

(
w1(x)ψ1(x) + w2(x)ψ2(x)

)
dx,

for all ψ ∈ (H1(0, 1))2.
In particular, by considering any ψ ∈ (H1

0 (0, 1))2, we conclude that

w1(x) = −u′′1(x) + α1u1(x), ∀x ∈ (0, 1),

w2(x) = −u′′2(x) + α2u2(x), ∀x ∈ (0, 1).

Once we have the above information, then choosing any ψ ∈ (H1(0, 1))2 eventually gives us

u′1(0) = 0, u′2(0) + βu1(0) = 0,

u′2(1) = 0, u′1(1)− βu2(1) = 0.

which are exactly the boundary conditions of an element of D(A∗) and thus D(Ã) ⊆ D(A∗).
The proof is finished.

2.2. A homogeneous adjoint system backward in time. The adjoint problem (backward in
time) of our control systems (1.1)–(1.7) with (1.8) or (1.9) is

(2.2)



−∂tq1 − ∂2
xq1 + α1q1 = w̃1 in (0, T )× (0, 1),

−∂tq2 − ∂2
xq2 + α2q2 = w̃2 in (0, T )× (0, 1),

∂xq1(t, 0) = 0 in (0, T ),

∂xq2(t, 0) + βq1(t, 0) = 0 in (0, T ),

∂xq1(t, 1)− βq2(t, 1) = 0 in (0, T ),

∂xq2(t, 1) = 0 in (0, T ),

q1(T, ·) = ζ1(·) in (0, 1),

q2(T, ·) = ζ2(·) in (0, 1),

where w̃ := (w̃1, w̃2) ∈ L2(0, T ;X) is some given right hand side.

Proposition 2.3. For any given ζ ∈ X and w̃ ∈ L2(0, T ;X), there exists a unique weak solution
q := (q1, q2) ∈ C0([0, T ];X) ∩ L2(0, T ; (H1(0, 1))2) to (2.2) that satisfies the following energy estimate

‖q‖C0([0,T ];X) + ‖q‖L2(0,T ;(H1(0,1))2) + ‖∂tq‖L2(0,T ;(H−1(0,1))2) ≤ CeCT
(
‖ζ‖X + ‖w̃‖L2(0,T ;X)

)
,

where the constant C > 0 does not depend on T > 0.
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Proof. We just give a short sketch of the proof. Start with ζ ∈ D(A∗) and w̃ ∈ C1([0, T ];X)
(which indeed gives the existence of a strong solution q ∈ C1([0, T ];X) ∩ C0([0, T ];D(A∗)) to (2.2)) to
prove the estimate and then the usual density argument gives the required result.

Let us test the first and second equation of (2.2) by q1 and q2 respectively, which provides

(2.3) − 1

2

d

dt
‖q(t)‖2X + ‖∂xq(t)‖2X + α1‖q1(t)‖2L2(0,1) + α2‖q2(t)‖2L2(0,1)

+ βq1(t, 0)q2(t, 0)− βq1(t, 1)q2(t, 1) ≤ 1

2

(
‖w̃(t)‖2X + ‖q(t)‖2X

)
.

Using the following trace inequality

|φ(τ)| ≤ ‖φ‖
1
2

L2(0,1)‖φ‖
1
2

H1(0,1), for τ ∈ {0, 1}, ∀φ ∈ H1(0, 1),(2.4)

we get from (2.3) that

−1

2

d

dt
‖q(t)‖2X + ‖q(t)‖2(H1(0,1))2 ≤ Cε‖q(t)‖

2
(H1(0,1))2 +

C

ε
‖q(t)‖2X + ‖w̃(t)‖2X ,(2.5)

for some constant C > 0 that depends on the parameters α1, α2 and β.
Choosing small enough ε > 0 fix and by using the Gronwall’s lemma we deduce that

‖q‖2C0([0,T ];X) ≤ Ce
CT
(
‖ζ‖2X + ‖w̃‖2L2(0,T ;X)

)
.(2.6)

The other estimates can be proved in a standard fashion, more details can be found in [24, Chapter 4]
(see also [13, Chapter 7]).

2.3. A non homogeneous forward system. Let us consider the following non homogeneous
system

(2.7)



∂ty1 − ∂2
xy1 + α1y1 = F1 in (0, T )× (0, 1),

∂ty2 − ∂2
xy2 + α2y2 = F2 in (0, T )× (0, 1),

∂xy1(t, 0) + βy2(t, 0) = G1(t) in (0, T ),

∂xy2(t, 0) = G2(t) in (0, T ),

∂xy1(t, 1) = G3(t) in (0, T ),

∂xy2(t, 1)− βy1(t, 1) = G4(t) in (0, T ),

y1(0, ·) = y0,1(·) in (0, 1),

y2(0, ·) = y0,2(·) in (0, 1),

where F1, F2 ∈ L2(0, T ;L2(0, 1)) and Gj ∈ L2(0, T ;R) for j = 1, 2, 3, 4.

Recall that the adjoint operator (−A∗, D(A∗)) given by (1.10a)–(1.11), defines an analytic semi-
group in X, thanks to Proposition 2.1. Therefore, the existence of a unique weak solution to (2.7) can
be shown using the method of transposition; see [10, 31]. More precisely, we test the PDEs in (2.7)
against the solution q to the adjoint system (2.2) with w̃1 = w̃2 = 0. We express this below.

Theorem 2.4. For any given y0 := (y0,1, y0,2) ∈ X, F := (F1, F2) ∈ L2(0, T ;X) and G :=
(G1, G2, G3, G4) ∈ L2(0, T ;R4), there exists unique weak solution y to (2.7) belonging to the space
C0([0, T ];X)∩L2(0, T ; (H1(0, 1))2) in the following sense: for any t ∈ [0, T ] and ζ := (ζ1, ζ2) ∈ X, we
have

(
y(t), ζ

)
X

= (y0, e
−tA∗ζ)X +

∫ t

0

(
F (s), e−(t−s)A∗ζ

)
X

ds

−
∫ t

0

〈(
G1(s)
G2(s)

)
,
(
e−(t−s)A∗ζ

)∣∣∣
{x=0}

〉
R2

ds+

∫ t

0

〈(
G3(s)
G4(s)

)
,
(
e−(t−s)A∗ζ

)∣∣∣
{x=1}

〉
R2

ds.

Moreover, we have

‖y‖C0([0,T ];X) + ‖y‖L2(0,T ;(H1(0,1))2) + ‖∂ty‖L2(0,T ;(H−1(0,1))2)

≤ CeCT
(
‖y0‖X + ‖F‖L2(0,T ;X) + ‖G‖L2(0,T ;R4)

)
.
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2.4. Formulation of the control problems. First, observe that the existence of a unique weak
solutions to our control systems (1.1)–(1.7) with (1.8) or (1.9) is clear from the Theorem 2.4. Now, let
us prescribe the formulation of the control problems in both cases.

Proposition 2.5. Let any y0 ∈ X, (α1, α2) ∈ R2 and T > 0 be given, and assume that β =
f ′(0) 6= 0.

1. A function v ∈ L2(0, T ) is a null-control for the system (1.1) with the boundary conditions
(1.7)–(1.8) if and only if it satisfies: for any ζ ∈ X,(

y0, e
−TA∗ζ

)
X

=

∫ T

0

v(t)

〈(
1
0

)
,
(
e−(T−t)A∗ζ

)
(x)
∣∣
x=0

〉
R2

dt.(2.8)

2. A function v ∈ L2(0, T ) is a null-control for the system (1.1) with the boundary conditions
(1.7)–(1.9) if and only if it satisfies: for any ζ ∈ X,(

y0, e
−TA∗ζ

)
X

=

∫ T

0

v(t)

〈(
0
1

)
,
(
e−(T−t)A∗ζ

)
(x)
∣∣
x=0

〉
R2

dt.(2.9)

We hereby introduce the observation operators B∗1 and B∗2 associated with the control problems (2.8)
and (2.9) respectively as follows,

B∗1 = 1{x=0}

(
1
0

)
: (H1(0, 1))2 → R,(2.10a)

B∗2 = 1{x=0}

(
0
1

)
: (H1(0, 1))2 → R.(2.10b)

3. Spectral analysis of the associated adjoint operator. Let us write the eigenvalue problem
A∗u = λu, for λ ∈ C.

(3.1)


−u′′1 + α1u1 = λu1 in (0, 1),

−u′′2 + α2u2 = λu2 in (0, 1),

u′1(0) = 0, u′2(0) + βu1(0) = 0,

u′1(1)− βu2(1) = 0, u′2(1) = 0.

with the parameters (α1, α2) ∈ R2 and β 6= 0.

(a) A∗ has compact resolvent. Let us denote the spectrum of A∗ by σ(A∗) and consider the
operator A∗− ξ Id for any ξ ∈ C \ σ(A∗). Our claim is to show that Rξ := (A∗− ξ Id)−1 : X → D(A∗)
exists and it is compact for any ξ ∈ C \ σ(A∗).

The sesquilinear form associated with the operator A∗ − ξ Id for any ξ ∈ C \ σ(A∗) is

h(u, φ) :=

∫ 1

0

(
u′1(x)φ′1(x) + u′2(x)φ′2(x)

)
dx+ (α1 − ξ)

∫ 1

0

u1(x)φ1(x)dx(3.2)

+(α2 − ξ)
∫ 1

0

u2(x)φ2(x)dx− βu1(0)φ2(0)− βu2(1)φ1(1),

for all φ := (φ1, φ2) ∈ (H1(0, 1))2.
One can show that h is continuous and elliptic. In particular, there exists constants γ1, γ2 > 0

such that we have

< (h(u, u)) ≥ γ1‖u‖2(H1(0,1))2 + (−<(ξ)− γ2)‖u‖2X .(3.3)

From (3.3), it follows that for ξ ∈ C with <(ξ) ≤ −γ2 − 1, the operator (A∗ − ξ Id) is invertible.
In particular,

(−∞,−γ2 − 1] ⊂ ρ(A∗),(3.4)

where ρ(A∗) denotes the set of resolvents of A∗.
Finally, we have that D(A∗) ↪→ (H1(0, 1))2 ↪→ X with compact embedding and so Rξ is a compact

operator in X for any ξ ∈ C with <(ξ) ≤ −γ2 − 1 and consequently for any ξ ∈ ρ(A∗).
The above analysis confirms that the spectrum σ(A∗) is discrete and contains only the eigenvalues

of the operator A∗.
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(b) All the eigenvalues have geometric multiplicity 1. Assume that for some λ ∈ σ(A∗),
there exists two linearly independent solutions (φ1, φ2) and (ψ1, ψ2) of the eigenvalue problem (3.1).
We consider

u =

(
u1

u2

)
:=

(
C1φ1 + C2ψ1

C1φ1 + C2ψ2

)
,

for some choices of C1, C2 ∈ R∗ such that u1(0) = C1φ1(0) + C2ψ1(0) = 0 (recall that φ1(0) 6= 0 and
ψ1(0) 6= 0). But we also have u′1(0) = 0 from the boundary conditions in (3.1) which leads that u1 ≡ 0
in [0, 1].

Once we have this, the second component u2 ≡ 0 follows immediately from the set of equations
(3.1).

Hence, (φ1, φ2) and (ψ1, ψ2) cannot be linearly independent, which proves that the geometric
multiplicity of any eigenvalue is 1.

(c) The set of eigenvalues and eigenfunctions. Let us find the set of eigenvalues of the
operator A∗. Hereinafter, we assume that α1 ≤ α2 without loss of generality.

One can first observe that λ = α1 or α2 cannot be an eigenvalue for A∗. Indeed, by putting
λ = α1 or α2 in the set of equations (3.1) and then using the boundary conditions, one can show that
u1 = u2 = 0.

Let us now take µ ∈ C such that µ2 = λ−α1 and so λ−α2 = µ2− θ with θ := α2−α1 ≥ 0. Then,
the equations of u1 and u2 can be rewritten as

u′′1(x) + µ2u1(x) = 0, x ∈ (0, 1),

u′′2(x) + (µ2 − θ)u2(x) = 0, x ∈ (0, 1),

along with the boundary conditions as given in (3.1). We look for the solutions of the forms

u1(x) = K1,1e
iµx +K1,2e

−iµx, x ∈ [0, 1],(3.5)

u2(x) = K2,1e
i
√
µ2−θ x +K2,2e

−i
√
µ2−θ x, x ∈ [0, 1],(3.6)

for some constants Ki,j ∈ C, 1 ≤ i, j ≤ 2.
Using the boundary conditions at x = 0, we have

K1,1 = K1,2, K2,2 = K2,1 +
2β

i
√
µ2 − θ

K1,1.(3.7)

From the boundary condition u′1(1)− βu2(1) = 0, we get (using also (3.7))

K1,1

(
iµ
(
eiµ − e−iµ

)
− 2β2

i
√
µ2 − θ

e−i
√
µ2−θ

)
− βK2,1

(
ei
√
µ2−θ + e−i

√
µ2−θ) = 0,(3.8)

and from the condition u′2(1) = 0, we get

−2βK1,1e
−i
√
µ2−θ + iK2,1

√
µ2 − θ

(
ei
√
µ2−θ − e−i

√
µ2−θ) = 0.(3.9)

Combining the two equations (3.8)–(3.9), we have the following system of equations,iµ(eiµ − e−iµ)− 2β2

i
√
µ2−θ

e−i
√
µ2−θ −β

(
ei
√
µ2−θ + e−i

√
µ2−θ)

−2βe−i
√
µ2−θ i

√
µ2 − θ

(
ei
√
µ2−θ − e−i

√
µ2−θ)

(K1,1

K2,1

)
=

(
0

0

)
.(3.10)

We look for the non-trivial (K1,1,K2,1) which is possible only when the determinant of the coefficient
matrix is zero, which yields the following transcendental equation

1

β2
µ
√
µ2 − θ sin(µ) sin

(√
µ2 − θ

)
− 1 = 0, µ ∈ C,(3.11)

where (by definition) sin(z) = eiz−e−iz
2i for any z ∈ C.
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To obtain the eigenvalues of A∗, we need to find all µ that satisfy the equation (3.11). Let us find
the set of solutions to (3.1).

In (3.5), we set K1,1 = K1,2 = 1/2 and then from (3.9) and (3.7), we respectively get

K2,1 =
βe−i
√
µ2−θ

i
√
µ2 − θ

(
ei
√
µ2−θ − e−i

√
µ2−θ) , K2,2 =

βei
√
µ2−θ

i
√
µ2 − θ

(
ei
√
µ2−θ − e−i

√
µ2−θ) .

Using the above values of Ki,j for 1 ≤ i, j ≤ 2 in (3.5)–(3.6), we obtain the solution to (3.1), denoted
by Φλ as follows

Φλ(x) :=

 cos(µx)

− β√
µ2−θ sin

(√
µ2−θ

) cos
(√

µ2 − θ(1− x)
) , x ∈ [0, 1],(3.12)

associated with λ = µ2 + α1, where θ = α2 − α1 and µ ∈ C satisfies the equation (3.11). The second
component of the function Φλ is well-defined since µ2 − θ = λ − α2 6= 0 as λ = α2 cannot be an

eigenvalue for A∗ (mentioned earlier), also sin
(√

µ2 − θ
)

cannot vanish since µ satisfies (3.11).

Characteristics of the eigenvalues. We begin with the following lemma which ensures the
existence of countable number of real eigenvalues of A∗.

Lemma 3.1 (Existence of real eigenvalues). There is a non-negative integer k0 := k0(α1, α2, β),
such that for all k ≥ k0, there exist exactly two roots µk,1 and µk,2 of the equation (3.11) in (kπ, (k+1)π)
where

kπ < µk,1 < (k + 1/2)π, (k + 1/2)π < µk,2 < (k + 1)π.

Proof. Let us denote

h(µ) :=
1

β2
µ
√
µ2 − θ sin(µ) sin

(√
µ2 − θ

)
− 1, for µ ∈ C.(3.13)

• Existence. Observe that

h(kπ) = −1 < 0, h((k + 1)π) = −1 < 0.(3.14)

Also, we compute for large k,

h
(
(k +

1

2
)π
)

=
1

β2
(k +

1

2
)π

√
(k +

1

2
)2π2 − θ (−1)k sin

(√
(k +

1

2
)2π2 − θ

)
(3.15)

=
1

β2
(k +

1

2
)π

√
(k +

1

2
)2π2 − θ cos

(
O(1/k)

)
,

thanks to the fact that√
(k +

1

2
)2π2 − θ = (k +

1

2
)π

[
1− θ

2(k + 1
2 )2π2

+O(1/k4)

]
.

Thus, from the expression (3.15), it is easy to observe that there exists some k0 ∈ N, depending
on α1, α2, β such that

h
(
(k +

1

2
)π
)
> 0, ∀k ≥ k0.(3.16)

Therefore, the properties (3.14)–(3.16) ensures that there exists at least one root of h in
(kπ, (k + 1/2)π) and one in ((k + 1/2)π, (k + 1)π) for any k ≥ k0.

• Uniqueness. Let us choose

h1(µ) =
1

β2
µ
√
µ2 − θ sin(µ) sin

(√
µ2 − θ

)
.
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The roots of h1(µ) = 0 are kπ and
√
k2π2 + θ, for all k ≥ 0. In fact, there exists some kθ ∈ N

such that for all k ≥ kθ, one has
√
k2π2 + θ ∈ (kπ, (k + 1)π).

Now, consider the rectangle

Rk :=
{
z = x+ iy ∈ C | kπ − π/2 ≤ x ≤ (k + 1)π + π/2, −π/2 ≤ y ≤ π/2

}
⊂ C.(3.17)

There exists some non-negative integer k̂ ≥ kθ (k̂ depends on the parameters α1, α2, β), such
that

|h1(z)| = 1

β2
|z| |sin(z)|

∣∣∣√z2 − θ
∣∣∣ ∣∣∣sin(

√
z2 − θ)

∣∣∣ > 1, on ∂Rk, ∀k ≥ k̂.

As a consequence, we have

|h(z)− h1(z)| = 1 < |h1(z)| , on ∂Rk, ∀k ≥ k̂.(3.18)

Thus, by Rouche’s theorem, the number of roots of h coincides with the number of roots of h1

inside the rectangle Rk, and that is exactly 2. But we have already shown that for each k ≥ k0

(k0 is defined in Lemma 3.1), that there exist at least two real solutions in (kπ, (k + 1)π) of
the equation h(µ) = 0. Hence, from the previous argument, the real roots of h are the only
roots of it inside each rectangle Rk for all k ≥ k0, where k0 can be chosen in such a way that
k0 ≥ k̂.

We denote those roots by µk,1 and µk,2 that satisfy

µk,1 ∈ (kπ, (k + 1/2)π), µk,2 ∈ ((k + 1/2)π, (k + 1)π), ∀k ≥ k0.

To complete the analysis, we consider the following vertical strips,

Vk :=
{
z ∈ C | kπ − π

2
≤ <(z) ≤ (k + 1)π +

π

2

}
, ∀k ≥ k0,

and the only roots of h are µk,1, µk,2 ∈ Vk, since any point µ ∈ Vk \Rk satisfies |h(µ)| > 0.
The proof is finished.

Let us show that µk,1 and µk,2 satisfy some asymptotic properties for large k ∈ N.

Lemma 3.2 (Asymptotic expressions). Let µk,1 and µk,2 be as given by Lemma 3.1. Then, we
have the following asymptotic formulas,

µk,1 = kπ +

√
β2 + θ2

16 + θ
4

kπ
+O

(
1

k3

)
, for large k ≥ k0,(3.19)

µk,2 = (k + 1)π −

√
β2 + θ2

16 −
θ
4

(k + 1)π
+O

(
1

k3

)
, for large k ≥ k0,(3.20)

where θ = α2 − α1 > 0.

Proof. Recall that µk,1 ∈ (kπ, (k + 1/2)π) for all k ≥ k0 and therefore µk,1 = kπ + δk for some
δk ∈ (0, π/2). Then, the equation h(µk,1) = 0 implies

1

β2
(kπ + δk)

√
(kπ + δk)2 − θ sin(kπ + δk) sin

(√
(kπ + δk)2 − θ

)
− 1 = 0, ∀k ≥ k0.(3.21)

Now, we compute that√
(kπ + δk)2 − θ = (kπ + δk)

[
1− θ

2(kπ + δk)2
+O

(
1

k4

)]
= kπ + δk −

θ

2(kπ + δk)
+O

(
1

k3

)
,
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using what, we get from (3.21),

β2 = (kπ + δk)2

[
1− θ

2(kπ + δk)2
+O

(
1

k4

)]
(sin δk) sin

(
δk −

θ

2(kπ + δk)
+O

(
1

k3

))
= (kπ + δk)2

[
1− θ

2(kπ + δk)2
+O

(
1

k4

)] (
δk +O(δ3

k)
)(

δk −
θ

2(kπ + δk)
+O

(
1

k3

)
+O(δ3

k)

)
.

Thus, we have

(kπ)2δk

(
δk −

θ

2kπ

)
∼ β2, for large k.

Let γk := kπδk to simplify the computations. Since

γ2
k −

θ

2
γk ∼ β2, for large k,

we have (γk)k≥K for K large, is a bounded sequence. The limits of every possible subsequences

γϕ(k) → γ satisfies: γ ≥ 0 and γ2 − θ

2
γ = β2. Thus we necessarily have γ =

θ

4
+

√
β2 +

θ2

16
, which

gives

δk ∼
θ
4 +

√
β2 + θ2

16

kπ
, for large k.

In the next step, by expressing δk =

θ
4 +

√
β2 + θ2

16

kπ
+ δ̃k, one can find that

δ̃k ∼
C

k3
, for large enough k,

for some C > 0 depending on α1, α2 and β. This concludes the proof for (3.19).

Similarly, by expressing µk,2 = (k+ 1)π− δ̂k for some δ̂k ∈ (0, π/2) and proceeding in a same way
as before, one can obtain

δ̂k =

√
β2 + θ2

16 −
θ
4

(k + 1)π
+O

(
1

k3

)
, for large enough k,

which gives the second asymptotic formula (3.20).

Corollary 3.3 (Properties of real eigenvalues). Let k0 be as given in Lemma 3.1. For each
k ≥ k0, there exists exactly two eigenvalues, denoted by λk,1 and λk,2 of A∗ in the interval

(
k2π2 +

α1, (k + 1)2π2 + α1

)
such that

k2π2 + α1 < λk,1 < (k + 1/2)2π2 + α1,

(k + 1/2)2π2 + α1 < λk,2 < (k + 1)2π2 + α1,

and moreover, they enjoy the following asymptotic formulas,

λk,1 = k2π2 + 2

√
β2 +

(α2 − α1)2

16
+

(α1 + α2)

2
+O

(
1

k2

)
, for large k ≥ k0,(3.22)

λk,2 = (k + 1)2π2 − 2

√
β2 +

(α2 − α1)2

16
+

(α1 + α2)

2
+O

(
1

k2

)
, for large k ≥ k0.(3.23)

Proof. By our construction, we recall that any eigenvalue of A∗ is of the form λ = µ2 +α1, where
µ satisfies the equation (3.11).
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• Therefore, we have

λk,1 = µ2
k,1 + α1 and λk,2 = µ2

k,2 + α1, ∀k ≥ k0,

where µk,i (i = 1, 2) are given by Lemma 3.1.
• The asymptotic formulas of λk,1 and λk,2 can be deduced from the asymptotics of µk,1 and
µk,2 obtained in Lemma 3.2.

The proof is complete.

We finally denote the set of all such real eigenvalues of A∗ by Λ∞ where

Λ∞ :=
{
λk,1, λk,2

}
k≥k0

.(3.24)

Conclusion on the structure of σ(A∗). Beside the set of real eigenvalues Λ∞, we also have a
finite set of eigenvalues of lower frequencies. To determine this, let us first recall that (−∞,−γ2−1] ⊂
ρ(A∗) (see (3.4)). Then, it is clear that there exists some K ∈ N∗ with K ≥ k0 (k0 is given in
Lemma 3.1) and M > 0 large enough such that

1

β2
|µ| |sin(µ)|

∣∣∣√µ2 − θ
∣∣∣ ∣∣∣sin(√µ2 − θ

)∣∣∣ > 1, for µ ∈ ∂R0,

where R0 is the rectangle given by

R0 :=
{
z = x+ iy ∈ C | −γ2 − 1 ≤ x ≤ Kπ +

π

2
, −M ≤ y ≤M

}
⊂ C.

Since A∗ has compact resolvent, the above explanation ensures that there exists at most finite number
of roots of the function h(µ) (given by (3.13)) inside R0. But remember that, we have chosen K > k0

while considering the rectangle R0 and thus some of the roots of h in R0 may coincide with some roots
inside Rk for k ≥ k0 (Rk are defined in (3.17)).

Therefore, we collect all the roots of h inside R0 which are not coinciding with any roots in Rk for
k ≥ k0. More precisely, we set

Λ0 :=
{
λ = µ2 + α1 | µ ∈ R0 \

( K⋃
k≥k0

Rk
)

satisfying h(µ) = 0
}
.(3.25)

To conclude, the spectrum of A∗ contains a finite set of eigenvalues Λ0 possibly with some complex
entries and a countable set of real eigenvalues Λ∞, that is to say,

σ(A∗) := Λ0 ∪ Λ∞.(3.26)

For each eigenvalue λ ∈ σ(A∗), the associated eigenfunction Φλ is given by (3.12). Using the

fact that
√
µ2 − θ sin

(√
µ2 − θ

)
=

β2

µ sinµ
(thanks to the equation (3.11)), the eigenfunctions can be

rewritten as

Φλ(x) :=

(
cos(µx)

−µ sinµ
β cos

(√
µ2 − θ(1− x)

)) , x ∈ [0, 1],(3.27)

associated with the eigenvalues λ = µ2 + α1.

(d) Riesz basis property of the family of eigenfunctions. Let us write the following propo-
sition.

Proposition 3.4. The set of eigenfunctions
{

Φλ
}
λ∈σ(A∗) forms a Riesz basis for the space X.

To prove the above proposition, let us first find the asymptotics of the eigenfunctions for the real
eigenvalues λ ∈ Λ∞.
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Asymptotics of the eigenfunctions. Recall the asymptotics of µk,1 and µk,2 from (3.19) and
(3.20) respectively, so that

√
µ2
k,1 − θ = kπ +

√
β2 + θ2

16 −
θ
4

kπ
+O

(
1

k3

)
, for large k ≥ k0,(3.28)

√
µ2
k,2 − θ = (k + 1)π −

√
β2 + θ2

16 + θ
4

(k + 1)π
+O

(
1

k3

)
, for large k ≥ k0,(3.29)

From the asymptotic of µk,1 given by (3.19), we obtain for large enough k ≥ k0, that

cos (µk,1x) ∼ cos(kπx)− sin(kπx)


√
β2 + θ2

16 + θ
4

kπ
+O

(
1

k3

)x,(3.30)

and using (3.28), one has

cos
(√

µ2
k,1 − θ (1− x)

)
∼ (−1)k cos(kπx)(3.31)

+ (−1)k sin(kπx)


√
β2 + θ2

16 −
θ
4

kπ
+O

(
1

k3

) (1− x).

Also, note that

µk,1 sinµk,1 ∼ (−1)k

[√
β2 +

θ2

16
+
θ

4

]
+O

( 1

k2

)
, for large k ≥ k0.(3.32)

Then, using the above three items (3.30)–(3.31)–(3.32) in (3.27) for λ = λk,1, we have

Φλk,1(x) ∼


cos(kπx)− sin(kπx)

(√
β2+ θ2

16 + θ
4

)
x

kπ +O
(

1
k3

)
− 1
β

[√
β2 + θ2

16 + θ
4

]cos(kπx) + sin(kπx)

(√
β2+ θ2

16−
θ
4

)
(1−x)

kπ +O
(

1
k3

)

 ,(3.33)

for large k ≥ k0.

Next, we find a similar asymptotic expression for Φλk,2 when k is large enough. From the asymp-
totic of µk,2 given by (3.20), we have, when k ≥ k0 is large, that

cos (µk,2x) ∼ cos((k + 1)πx) + sin((k + 1)πx)


√
β2 + θ2

16 −
θ
4

kπ
+O

(
1

k3

)x,(3.34)

and then, using (3.29), we get

(3.35) cos
(√

µ2
k,2 − θ (1− x)

)
∼ (−1)k+1 cos((k + 1)πx)

− (−1)k+1 sin((k + 1)πx)


√
β2 + θ2

16 + θ
4

kπ
+O

(
1

k3

) (1− x).

Beside that, we observe that

µk,2 sinµk,2 ∼ (−1)k

[√
β2 +

θ2

16
− θ

4

]
+O

( 1

k2

)
, for large k ≥ k0.(3.36)
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Then, using (3.34), (3.35) and (3.36) in (3.27) for λ = λk,2, we get

Φλk,2(x) ∼


cos((k + 1)πx) + sin((k + 1)πx)

(√
β2+ θ2

16−
θ
4

)
x

(k+1)π +O
(

1
k3

)
1
β

[√
β2 + θ2

16 −
θ
4

]cos((k + 1)πx)− sin((k + 1)πx)

(√
β2+ θ2

16 + θ
4

)
(1−x)

(k+1)π +O
(

1
k3

)

 ,

(3.37)

for large k ≥ k0.

A known Riesz basis for X. Let us consider the family

G :=
{

Φ̃k
}
k≥0
∪
{

Ψ̃−1

}
∪
{

Ψ̃k

}
k≥0

,(3.38)

where

Φ̃0 :=

(
1
−1

)
, Φ̃k :=

 cos(kπx)

− 1
β

[√
β2 + θ2

16 + θ
4

]
cos(kπx)

 , ∀k ≥ 1,(3.39a)

Ψ̃−1 :=

(
1
1

)
, Ψ̃k :=

 cos((k + 1)πx)

1
β

[√
β2 + θ2

16 −
θ
4

]
cos((k + 1)πx)

 , ∀k ≥ 0.(3.39b)

It can be shown that the family G given by (3.38)–(3.39) forms a Riesz basis for X.

Below, we write a result which is borrowed from [28, Corollary 11.4, Chapter II–§11] (see also [21,
Lemma 6.2]).

Lemma 3.5. Let {φn}n≥0 be a Riesz basis in a Hilbert space H and {ψn}n≥N (for N ≥ 0) be
another sequence in H such that ∑

n≥N

‖φn − ψn‖2H < +∞.

Then, there exists an M ≥ N such that the family {φn}Mn=1 ∪ {ψn}n≥M+1 forms a Riesz basis in H.

We are now ready to prove the Riesz basis property of the set of eigenfunction of A∗ in X.

Proof of Proposition 3.4. The proof is made of two steps.

Step 1. Recall the known Riesz basis G given by (3.38). Then, observe that the family of real
eigenfunctions

{
Φλk,1 ,Φλk,2

}
k≥k0

of A∗ satisfies

∑
k≥k0

(
‖Φλk,1 − Φ̃k‖2X + ‖Φλk,2 − Ψ̃k‖2X

)
≤ C

∑
k≥k0

1

k2
< +∞.

This can be deduced from the asymptotics of the eigenfunctions Φλk,1 and Φλk,2 given by (3.33) and
(3.37) respectively (this is the so-called quadratically closeness property).

Let us consider, for some M ≥ 0, the finite subset of G, given by

Ĝ =
{

Φ̃k | 0 ≤ k ≤M
}
∪
{

Ψ̃−1

}
∪
{

Ψ̃k | 0 ≤ k ≤M
}
.

Then, according to Lemma 3.5, there exists some M ≥ k0 such that the family

Ĝ ∪
{

Φλk,1 ,Φλk,2
}
k≥M+1

forms a Riesz basis for X.

Step 2. The finite set given by

E0 :=
{

Φλ
}
λ∈σ(A∗) \

{
Φλk,1 ,Φλk,2

}
k≥M+1

,
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is linearly independent since they are eigenfunctions of A∗ associated with distinct eigenvalues. There-
fore, the number of elements in E0 cannot exceed 2M + 3 since Ĝ has exactly 2M + 3 number of
linearly independent elements and E0 ⊂ Span Ĝ. Our goal is to show that E0 contains exactly 2M + 3
eigenfunctions.

Now, recall that A∗ is a densely defined discrete operator (that is to say, A∗ has compact resolvent)
and so A is. Then, we define the linear manifold S∞(A) by

S∞(A) :=
{
φ | P (λ)φ = 0, ∀λ ∈ σ(A)

}
;

P (λ) is the projection operator given by

P (λ) = − 1

2πi

∫
Cλ

(ξI −A)−1dξ, ∀λ ∈ σ(A),

where Cλ is a closed curve containing only the eigenvalue λ ∈ σ(A) and traversed once in the positive
sense, σ(A) is the spectrum of A (which is the same as σ(A∗)). Since A∗ is densely defined discrete
operator, by using [12, Lemma 5, XIX.5.5] we have

Span
{

Φλ | λ ∈ σ(A∗)
}

= S∞(A)⊥.

Therefore, one can write

X = S∞(A)⊕ Span
{

Φλ | λ ∈ σ(A∗)
}
.

On the other hand, by [12, Lemma 5, XIX.2.5], S∞(A) is either trivial or infinite dimensional. But,

according to the previous step, it is clear that Span
{

Φλ | λ ∈ σ(A∗)
}

has at most finite codimension
and thus the only possibility is S∞(A) = {0}, which yields

X = Span
{

Φλ | λ ∈ σ(A∗)
}
.

In other words,
{

Φλ
}
λ∈σ(A∗) spans the space X. So, the number of linearly independent elements in

E0 have to be exactly 2M + 3 and moreover,
{

Φλ
}
λ∈σ(A∗) forms a Riesz basis for X.

The proof is achieved.

Remark 3.6. To prove the Riesz basis property of the set of eigenfunctions of A∗, we cannot
directly apply the so-called Bari’s theorem [6] (see also [32, Chapter 1, Theorem 15]) since, initially
we did not have any precise information about the number of eigenfunctions for the lower frequencies.
So, we use a slightly different approach to prove our result. A more general result is available in [21].

Remark 3.7. The proof of Proposition 3.4 ensures that the number of eigenvalues in the finite
set Λ0 (given by (3.25)) is exactly 2k0 + 1. If needed, one can introduce the index j and write the set

Λ0 =
{
λj | 1 ≤ j ≤ 2k0 + 1

}
.(3.40)

4. Boundary controllability of the linearized systems. This section is devoted to prove the
boundary null-controllability of the linear systems associated to our non-linear models. We recall here
that f ′(0) = β 6= 0 where f is the nonlinear function appearing on the boundary conditions of our
nonlinear models and is given by (1.4).

4.1. Approximate controllability. Let us first discuss about the approximate controllability
of the linearized systems in the space X at any time T > 0. We write the following lemma.

Lemma 4.1. Let any y0 ∈ X and parameters (α1, α2) ∈ R2 be given. Then we have the following.
1. The system (1.1)–(1.7)–(1.8) is approximately controllable in X at any given time T > 0 and

the observation terms satisfy

|B∗1Φλ| = 1, ∀λ ∈ σ(A∗).(4.1)

2. Assume without loss of generality that α1 ≤ α2 with θ = α2 − α1 and we introduce the set

R :=

±
(

(−1)k
(
k +

1

2

)
π

√(
k +

1

2

)2
π2 + θ sin

(√(
k +

1

2

)2

π2 + θ

)) 1
2

; k ≥ 0

 ∩ R∗.

(4.2)
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Then, the system (1.1)–(1.7)–(1.9) is approximately controllable in X at any time T > 0 if
and only if β /∈ R. In that case, there exists a constant γ0 > 0 such that the observation terms
satisfy

|B∗2Φλ| ≥ γ0, ∀λ ∈ σ(A∗).(4.3)

Proof. Recall the observation operators B∗1 , B∗2 respectively defined by (2.10a), (2.10b) and the
explicit expressions of the eigenfunctions Φλ from (3.27).

1. It is easy to see that

B∗1Φλ = 1, ∀λ ∈ σ(A∗).

So, by using Fattorini-Hautus test (see [14], [26]), the linear control system (1.1)–(1.7)–(1.8)
is approximately controllable in X at any time T > 0.

2. For any parameters α1 ≤ α2 we write θ = α2 − α1 as earlier. Let us compute that

B∗2Φλ = −µ sinµ

β
cos
(√

µ2 − θ
)
, ∀λ ∈ σ(A∗),

where, by construction λ = µ2 + α1.
If possible, assume that B∗2Φλ = 0 for some eigenvalue λ. Since µ sinµ 6= 0 (if so, then the
eigenvalue equation (3.11) is invalid), this yields

cos
(√

µ2 − θ
)

= 0,

⇐⇒µ2 =
(
k +

1

2

)2
π2 + θ, for some k ≥ 0.

But we need to show that the above µ satisfies the eigenvalue equation (3.11) also. Indeed,
this is possible only when

1

β2

(
k +

1

2

)
π

√(
k +

1

2

)2
π2 − θ sin

((
k +

1

2

)
π

)
sin

(√(
k +

1

2

)2
π2 − θ

)
= 1.

The above equality tells that when

β2 = (−1)k
(
k +

1

2

)
π

√(
k +

1

2

)2
π2 − θ sin

(√(
k +

1

2

)2
π2 − θ

)
,(4.4)

for some k ≥ 0, then the system is not approximately controllable in X. In fact, for any
(α1, α2), it is clear that there exist countable number of k such that the quantity in the right
hand side of (4.4) is positive. This leads to introduce the set

R :=

±
(

(−1)k
(
k +

1

2

)
π

√(
k +

1

2

)2
π2 + θ sin

(√(
k +

1

2

)2

π2 + θ

)) 1
2

; k ≥ 0

 ∩ R∗.

Then, from the above analysis, it is clear that B∗2Φλ 6= 0 if and only if β /∈ R and so the
Fattorini-Hautus criterion confirms the approximate controllability of the system (1.1)–(1.7)–
(1.9).
Finally, to find the required lower bound (4.3), it is enough to consider the eigenfunctions for
large frequencies. In fact, we see

B∗2Φλk,j = −µk,j sinµk,j
β

cos
(√

µ2
k,j − θ

)
, for all k ≥ k0, j = 1, 2.

Then, using the asymptotic information (3.28) and (3.32), we get

B∗2Φλk,1 ∼ −1 +O
( 1

k2

)
, for large k.
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On the other hand, using (3.29) and (3.36), one can get

B∗2Φλk,2 ∼ 1 +O
( 1

k2

)
, for large k.

So, there exists some constant γ0 > 0, independent in k, and some K1 ∈ N∗ depending on
α1, α2, β such that

|B∗2Φλk,j | ≥ γ0, ∀k ≥ K1, j = 1, 2.

But, for the choices of β /∈ R, we have proved that B∗2Φλ 6= 0 for all λ ∈ σ(A∗) and therefore,
the lower bound (4.3) follows, possibly with some smaller γ0 > 0.

This completes the proof.

4.2. Bounds on the eigenfunctions. We have the following result.

Lemma 4.2. There exists some constant C > 0 depending on the parameters α1, α2, β but inde-
pendent in λ ∈ σ(A∗) such that the eigenfunctions of A∗ satisfy the following bounds

‖Φλ‖X ≤ C, ∀λ ∈ σ(A∗).(4.5)

Proof. Recall the formal expression of Φλ from (3.27), one has

‖Φλ‖X ≤ C
(

1 +
|µ sinµ|
|β|

)
,

for any λ ∈ σ(A∗) where λ = µ2 + α1.
Using the asymptotics of µ sinµ given by (3.32) and (3.36) for large modulus of eigenvalues, one

can obtain the required bound (4.5) of the eigenfunctions. For rest of the finite eigenmodes, the bound
follows immediately.

4.3. The moments problem. Recall that the set of eigenfunctions {Φλ}λ∈σ(A∗) forms a Riesz
basis in X. Thus, it is enough to check the control problems (2.8) and (2.9) with Φλ for each λ ∈ σ(A∗).

This gives us the following.
• For any y0 ∈ X and parameters (α1, α2) ∈ R2, a function v ∈ L2(0, T ) is a boundary null-

control for the system (1.1)–(1.7)–(1.8) if and only if, we have

e−Tλ

(
y0,Φλ

)
X

B∗1Φλ
=

∫ T

0

v(t)e−(T−t)λ dt, ∀λ ∈ σ(A∗).(4.6)

• Similarly, for any y0 ∈ X and parameters (α1, α2) ∈ R2, if β /∈ R, then a function v ∈ L2(0, T )
is a boundary null-control for the system (1.1)–(1.7)–(1.9) if and only if, we have

e−Tλ

(
y0,Φλ

)
X

B∗2Φλ
=

∫ T

0

v(t)e−(T−t)λ dt, ∀λ ∈ σ(A∗).(4.7)

Here, we have used the fact that e−tA
∗
Φλ = e−tλΦλ, for any λ ∈ σ(A∗).

The above set of equations are the moments problems for our linear models and we shall solve these
in the next paragraphs.

4.4. Existence of a bi-orthogonal family. The study of existence and estimates of biorthogo-
nal families to exponential functions in L2(0, T ) is a long story starting from the pioneering work [16]
in the framework of control theory, up to very recent developments. In this paper, we will make use
of [9, Theorem IV.1.10] which is similar to [7, Theorem 1.5] but with a simplified set of assumptions.

In order to use this theorem, we need to show that the set of eigenvalues σ(A∗), defined by (3.26),
belongs to some sector of the complex half-plane and satisfies the uniform spectral gap property and
some conditions on the counting function.

Remark 4.3. Without loss of generality, we assume that all the eigenvalues of A∗ have positive
real parts. If not, one could choose some α0 > 0 such that λ+α0 > 0 for any λ ∈ σ(A∗). In that case,
the factor eTα0 would appear in the estimation of control.
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The sector condition. For any η > 0, we define the sector

Sη := {z ∈ C | <(z) > 0, and |=(z)| < (sinh η)<(z)} .

Recall that, our set of eigenvalues σ(A∗) has at most finite number of complex eigenvalues lying inside
Λ0. This, along with Remark 4.3, it is clear that there exists some η > 0 such that

σ(A∗) ⊂ Sη.

The gap condition. We have that Using the asymptotic expressions (3.22) and (3.23) of the real
set of eigenvalues Λ∞, one has the following: there exists some ρ1 > 0 and some k0 ≥ 1, depending
only on α1, α2 and β, such that

|λk+1,1 − λk,1| ≥ ρ1k, for k ≥ k0,

|λk+1,2 − λk,2| ≥ ρ1k, for k ≥ k0,

|λk,2 − λk,1| ≥ ρ1k for k ≥ k0,

|λk,2 − λk+1,1| ≥ ρ1 for k ≥ k0.

Note that the gap between λk,2 and λk+1,1 tends to a finite positive number as k goes to infinity but
does not tend to infinity like for the other cases. This is the reason why we needed to compute the
precise asymptotic expansions of the eigenvalues.

Using above and the fact that the spectrum is discrete, we can say that there is some ρ > 0 such
that

|λ− λ̃| ≥ ρ, λ, λ̃ ∈ σ(A∗) with λ 6= λ̃,

which is the uniform spectral gap property.

The condition on counting function. Let us re-denote the real set of eigenvalues Λ∞ given
by (3.24) as {λ̂2k+i}k≥k0,i=2,3, where

λ̂2k+2 = λk,1, λ̂2k+3 = λk,2, ∀k ≥ k0.

Here we start with the index 2k0 + 2 since the set Λ0 of lower frequencies contains exactly 2k0 + 1
number of elements, see (3.40).

Let N be the counting function associated with the set of eigenvalues σ(A∗), defined by

N (r) = # {λ ∈ σ(A∗) | |λ| ≤ r} , ∀r > 0.

We have that the function N is piecewise constant and non-decreasing in the interval [0,+∞). Also
for every r ∈ (0,+∞), we have N (r) < +∞ and lim

r→+∞
N (r) = +∞.

Our goal is to show that there exists some κ0 > 0 independent in the set of eigenvalues such that

N (r) ≤ κ0r
1/2, ∀r > 0,(4.8a)

|N (r)−N (s)| ≤ κ0

(
1 + |r − s|1/2

)
, ∀r, s > 0.(4.8b)

It is enough to start with large r so that N (r) > 2k0 + 1. In such situation, we can play with the

real set of eigenvalues {λ̂2k+i}k≥k0,i=2,3.
Assuming that N (r) is even, we see

N (r) = 2k + 2⇐⇒ λ̂2k+2 = λk,1 ≤ r, for all r > 0 large enough.

But we have (since α1 > 0)
k2π2 < k2π2 + α1 < λk,1,

which gives

N (r) ≤ 2

π

√
r + 2, for large r > 0.

This is the first required condition (4.8a). Similar property can be achieved with odd N (r).
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Let us consider r > s > 0 large enough and N (r) = 2k + 2, N (s) = 2m + 2. Obviously, one has
k > m since r > s. Now, using the characteristics of real eigenvalues given by Corollary 3.3, we have

k2π2 + α1 < λ̂2k+2 = λk,1 ≤ r, s < λ̂2m+3 = λm,2 < (m+ 1)2π2 + α1,

which gives

r − s ≥ k2π2 − (m+ 1)2π2,

i.e., k2π2 ≤ (r − s) + (m+ 1)2π2,

i.e., kπ ≤ (r − s)1/2 + (m+ 1)π.

Replacing k = N (r)−2
2 and m = N (s)−2

2 , we get

N (r)− 2

2
≤ 1

π
(r − s)1/2 +

N (s)

2
,

or, N (r)−N (s) ≤ 2

(
1 +

1

π
(r − s)1/2

)
,

which is the second required condition (4.8b). By a similar approach we can obtain this condition for
other possibilities of N (r) and N (s).

Therefore, according to [9, Theorem IV.1.10], there exists a family {qλ}λ∈σ(A∗) ⊂ L2(0, T ) such
that ∫ T

0

qλ(t)e−(T−t)λ̃dt = δλδλ̃, ∀λ, λ̃ ∈ σ(A∗),

with the following estimate

‖qλ‖L2(0,T ) ≤ CeCT
<(λ)

2 +C
√
<(λ)+C

T , ∀λ ∈ σ(A∗),(4.9)

where the constant C > 0 depends on η, ρ, κ0 but independent in λ or T .

4.5. Existence of control. In this section, we shall solve the set of moments equations (4.6)
and (4.7) to construct boundary controls for our linear systems.

Proof of Theorem 1.3.
1. Construction of a control for the system (1.1)–(1.7)–(1.8). Let us start with any given param-

eters (α1, α2) ∈ R2, β 6= 0, initial data y0 ∈ X and consider

v(t) =
∑

λ∈σ(A∗)

vλ(t), ∀t ∈ [0, T ], with(4.10a)

vλ(t) =
e−Tλ

B∗1Φλ

(
y0,Φλ

)
X
qλ(t), ∀t ∈ [0, T ], and λ ∈ σ(A∗).(4.10b)

Observe that, this choice of v is well-defined (as B∗1Φλ 6= 0 for all λ ∈ σ(A∗)) and formally satisfies the
moments equation (4.6).

Using the bi-orthogonal estimate (4.9), lower bounds of the observation terms (4.1) and the upper
bounds of the eigenfunctions (4.5), we get

‖vλ‖L2(0,T ) ≤ CeC/T e−T
<(λ)

2 +C
√
<(λ)‖y0‖X , ∀λ ∈ σ(A∗).(4.11)

Applying Cauchy-Schwarz inequality, we get

C
√
<(λ) ≤ T

4
<(λ) +

C2

T
, ∀λ ∈ σ(A∗),

using what in (4.11) and taking sum over λ ∈ σ(A∗), we obtain the required estimate for v,

‖v‖L2(0,T ) =
∑

λ∈σ(A∗)

‖vλ‖L2(0,T ) ≤ CeC/T ‖y0‖X ,(4.12)

here we have used the properties of the eigenvalues for large modulus, given by Corollary 3.3.
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2. Construction of a control for the system (1.1)–(1.7)–(1.9). Let any y0 ∈ X be given. Also, for
any given parameters (α1, α2) ∈ R2, choose β /∈ R. Then, we consider

v(t) =
∑
λ∈Λ

vλ(t), ∀t ∈ [0, T ], with(4.13a)

vλ(t) =
e−Tλ

B∗2Φλ

(
y0,Φλ

)
X
qλ(t), ∀t ∈ [0, T ], and λ ∈ σ(A∗).(4.13b)

This v is well-defined since B∗2Φλ 6= 0 for all λ ∈ σ(A∗) as we have chosen β /∈ R (see Lemma 4.1).
Moreover, the above v formally solves (4.7).

Then, following the same strategy as previous, one can obtain the required estimate for the control
v in (4.13a)–(4.13b).

The proof is complete.

5. The nonlinear system: a source term and fixed point argument. In the previous
section, we obtained that the control cost for the linear systems is CeC/T ‖y0‖X . Using this we shall
deal with some nonlinear systems in the current section. As indicated in Section 1.1, the boundary
nonlinearities are given by

f(ν) = βν + g(ν), with g ∈ C1(R), g(0) = g′(0) = 0, satisfying

|g(ν)− g(ν̃)| ≤ C|ν − ν̃|(|ν|+ |ν̃|), for any ν, ν̃ ∈ R, for some constant C > 0,

f ′(0) = β 6= 0 is some real number.

(5.1)

5.1. Source term method. Let us discuss the source term method (see [25]) for our case. We
assume the constants p > 0, q > 1 in such a way that

1 < q <
√

2, and p >
q2

2− q2
.(5.2)

We also redenote the constant appearing in the control estimate (4.12) of the linearized models
by M , more precisely we write the control cost by MeM/T (just to make a difference with the generic
constant C). We now define the functionsρ0(t) = e−

pM
(q−1)(T−t) ,

ρS(t) = e−
(1+p)q2M
(q−1)(T−t) ,

∀t ∈
[
T

(
1− 1

q2

)
, T

]
,(5.3)

extended in
[
0, T (1− 1/q2)

]
in a constant way such that the functions ρ0 and ρS are continuous and

non-increasing in [0, T ] with ρ0(T ) = ρS(T ) = 0.

Remark 5.1. We compute that

ρ2
0(t)

ρS(t)
= e

q2M+pM(q2−2)
(q−1)(T−t) , ∀t ∈

[
T

(
1− 1

q2

)
, T

]
,

Due to the choices of p, q in (5.2), we have M
(
q2 + p(q2 − 2)

)
< 0, (q − 1) > 0 and therefore we can

conclude that

ρ2
0(t)

ρS(t)
≤ 1, ∀t ∈ [0, T ].

With these functions, we define the following weighted spaces (recall that X = (L2(0, 1))2),

S :=

{
S ∈ L2(0, T ) | S

ρS
∈ L2(0, T )

}
,(5.4a)

Y :=

{
y = (y1, y2) ∈ L2(0, T ;X) | y

ρ0
∈ L2(0, T ;X)

}
,(5.4b)

V :=

{
v ∈ L2(0, T ) | v

ρ0
∈ L2(0, T )

}
.(5.4c)
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We introduce the inner products in the spaces S and V respectively by

〈
S, S̃

〉
S :=

∫ T

0

ρ−2
S S(t)S̃(t) dt and

〈
v, ṽ
〉
V :=

∫ T

0

ρ−2
0 v(t)ṽ(t) dt,

for any S, S̃ ∈ S and v, ṽ ∈ V. The corresponding norms in those spaces are

‖S‖S :=

(∫ T

0

∣∣∣∣ S(t)

ρS(t)

∣∣∣∣2 dt

)1/2

, and ‖v‖V :=

(∫ T

0

∣∣∣∣ v(t)

ρ0(t)

∣∣∣∣2 dt

)1/2

.(5.5)

Now, let us consider the following system

(5.6)


∂ty1 − ∂2

xy1 + α1y1 = 0 in (0, T )× (0, 1),

∂ty2 − ∂2
xy2 + α2y2 = 0 in (0, T )× (0, 1),

y1(0, ·) = y0,1(·) in (0, 1),

y2(0, ·) = y0,2(·) in (0, 1),

along with the boundary conditions at x = 1 as

(5.7)

{
∂xy1(t, 1) = 0 in (0, T ),

∂xy2(t, 1)− βy1(t, 1) = S2(t) in (0, T ),

and at x = 0, we consider either

(5.8)

{
∂xy1(t, 0) + βy2(t, 0) = v(t) + S1(t) in (0, T ),

∂xy2(t, 0) = 0 in (0, T ),

or,

(5.9)

{
∂xy1(t, 0) + βy2(t, 0) = S1(t) in (0, T ),

∂xy2(t, 0) = v(t) in (0, T ),

for any given y0 ∈ X, S1, S2 ∈ L2(0, T ) and v ∈ L2(0, T ) .

Then, our goal is to prove the following result using the technique developed in [25].

Proposition 5.2. Let any S1, S2 ∈ L2(0, T ), y0 ∈ X and parameters (α1, α2) ∈ R2 be given.
1. Then, there exists a linear map

(y0, S1, S2) ∈ X × L2(0, T )× L2(0, T ) 7→ (y, v) ∈ Y × V,

such that (y, v) solves the set of equations (5.6)–(5.7)–(5.8).
2. On the other hand, if β /∈ R, then there exists a linear map

(y0, S1, S2) ∈ X × L2(0, T )× L2(0, T ) 7→ (y, v) ∈ Y × V,

such that (y, v) solves the set of equations (5.6)–(5.7)–(5.9), where the set R is given by (4.2).
In both cases, we have the following estimate∥∥∥∥ yρ0

∥∥∥∥
C0(0,T ;X)

+

∥∥∥∥ yρ0

∥∥∥∥
L2(0,T ;(H1(0,1))2)

+

∥∥∥∥ vρ0

∥∥∥∥
L2(0,T )

≤ CeC(T+ 1
T ) (‖y0‖X + ‖S1‖S + ‖S2‖S) ,(5.10)

where the constant C > 0 neither depends on y0 nor on T .

Proof. Let us define the sequence {Tk}k≥0 with

Tk := T − T

qk
, ∀k ≥ 0,

for given T > 0. With this Tk, we have the following relation between ρ0 and ρS

ρ0(Tk+2) = ρS(Tk)e
M

Tk+2−Tk+1 , ∀k ≥ 0.(5.11)
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We also define a sequence {ak}k≥0 with

a0 = y0 ∈ X, ak+1 = ỹ(T−k+1), ∀k ≥ 0,(5.12)

where ỹ := (ỹ1, ỹ2) ∈ C0([Tk, Tk+1];X) ∩ L2(Tk, Tk+1; (H1(0, 1))2) is the unique weak solution to the
following system for every k ≥ 0,

(5.13)



∂tỹ1 − ∂2
xỹ1 + α1ỹ1 = 0 in (Tk, Tk+1)× (0, 1),

∂tỹ2 − ∂2
xỹ2 + α2ỹ2 = 0 in (Tk, Tk+1)× (0, 1),

∂xỹ1(t, 0) + βỹ2(t, 0) = S1(t) in (Tk, Tk+1),

∂xỹ2(t, 0) = 0 in (Tk, Tk+1),

∂xỹ1(t, 1) = 0 in (Tk, Tk+1),

∂xỹ2(t, 1)− βỹ1(t, 1) = S2(t) in (Tk, Tk+1),

ỹ1(T+
k , ·) = 0 in (0, 1),

ỹ2(T+
k , ·) = 0 in (0, 1).

Moreover, using Theorem 2.4, we have

‖ỹ‖C0([Tk,Tk+1];X) + ‖ỹ‖L2(Tk,Tk+1;(H1(0,1))2) ≤ CeCT
(
‖S1‖L2(Tk,Tk+1) + ‖S2‖L2(Tk,Tk+1)

)
.

In particular,

‖ak+1‖X ≤ CeCT
(
‖S1‖L2(Tk,Tk+1) + ‖S2‖L2(Tk,Tk+1)

)
, ∀k ≥ 0,(5.14)

recall the definition (5.12).

Weighted estimate of the control. For every k ≥ 0, we consider the following system (introduce
ŷ := (ŷ1, ŷ2))

(5.15)



∂tŷ1 − ∂2
xŷ1 + α1ŷ1 = 0 in (Tk, Tk+1)× (0, 1),

∂tŷ2 − ∂2
xŷ2 + α2ŷ2 = 0 in (Tk, Tk+1)× (0, 1),

∂xŷ1(t, 1) = 0 in (Tk, Tk+1),

∂xŷ2(t, 1)− βŷ1(t, 1) = 0 in (Tk, Tk+1),(
ŷ1(T+

k , ·), ŷ2(T+
k , ·)

)
= ak in (0, 1),

with a control vk acting through either

(5.16)

{
∂xŷ1(t, 0) + βŷ2(t, 0) = vk(t) in (Tk, Tk+1),

∂xŷ2(t, 0) = 0 in (Tk, Tk+1),

or, we consider

(5.17)

{
∂xŷ1(t, 0) + βŷ2(t, 0) = 0 in (Tk, Tk+1),

∂xŷ2(t, 0) = vk(t) in (Tk, Tk+1).

– In the first case (5.15)–(5.16), we have the existence of a null-control vk ∈ L2(Tk, Tk+1) for
any given set of parameters (α1, α2) ∈ R2 and β 6= 0 by Theorem 1.3–Item 1.

– In the second case (5.15)–(5.17), for any given set of parameters (α1, α2) ∈ R2, if β /∈ R, then
there exists a null-control vk ∈ L2(Tk, Tk+1) for the concerned system as per Theorem 1.3–
Item 2.

In both cases, we have the following estimate

‖vk‖L2(Tk,Tk+1) ≤Me
M

Tk+1−Tk ‖ak‖X , ∀k ≥ 0,(5.18)

and the associated solutions satisfy

ŷ(T−k+1, x) = 0, ∀x ∈ (0, 1), ∀k ≥ 0.(5.19)
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Now, combining (5.14) and (5.18), we have for every k ≥ 0

‖vk+1‖L2(Tk+1,Tk+2) ≤Me
M

Tk+2−Tk+1 ‖ak+1‖X

≤ CeCTMe
M

Tk+2−Tk+1 ρS(Tk)

(∥∥∥∥S1

ρS

∥∥∥∥
L2(Tk,Tk+1)

+

∥∥∥∥S2

ρS

∥∥∥∥
L2(Tk,Tk+1)

)
,

since ρS is an non-increasing function in (Tk, Tk+1).
Using the relation (5.11), we obtain for every k ≥ 0

‖vk+1‖L2(Tk+1,Tk+2) ≤ CeCT ρ0(Tk+2)

(∥∥∥∥S1

ρS

∥∥∥∥
L2(Tk,Tk+1)

+

∥∥∥∥S2

ρS

∥∥∥∥
L2(Tk,Tk+1)

)
,

for some C > 0. But the function ρ0 being non-increasing, we deduce that∥∥∥∥vk+1

ρ0

∥∥∥∥
L2(Tk+1,Tk+2)

≤ CeCT
(∥∥∥∥S1

ρS

∥∥∥∥
L2(Tk,Tk+1)

+

∥∥∥∥S2

ρS

∥∥∥∥
L2(Tk,Tk+1)

)
, ∀k ≥ 0.(5.20)

Let us define

v :=
∑
k≥0

vk1(Tk,Tk+1).(5.21)

From the estimate (5.18), we have (since ρ0(T1) = e−
pM
T

q
(q−1) )

‖v0‖L2(0,T1) ≤Me
M
T1 ‖a0‖X(5.22)

= Me
1
T
q(1+p)M

(q−1) ρ0(T1)‖y0‖X
≤ CeCT ρ0(T1)‖y0‖X ,

where C = M(1+p)q
(q−1) > M . But we know that ρ0 is non-increasing function in (0, T1) which yields∥∥∥∥v0

ρ0

∥∥∥∥
L2(0,T1)

≤ CeC/T ‖y0‖X .(5.23)

Now, using the estimates (5.23) and (5.20), we have∥∥∥∥ vρ0

∥∥∥∥
L2(0,T )

≤ CeC(T+ 1
T )

(
‖y0‖X +

∥∥∥∥S1

ρS

∥∥∥∥
L2(0,T )

+

∥∥∥∥S2

ρS

∥∥∥∥
L2(0,T )

)
.(5.24)

Weighted estimate of the solution. Let us set y = ỹ + ŷ. Then, for every k ≥ 0, y satisfies

(5.25)



∂ty1 − ∂2
xy1 + α1y1 = 0 in (Tk, Tk+1)× (0, 1),

∂ty2 − ∂2
xy2 + α2y2 = 0 in (Tk, Tk+1)× (0, 1),

∂xy1(t, 0) + βy2(t, 0) = S1(t) + vk(t) in (Tk, Tk+1),

∂xy2(t, 0) = 0 in (Tk, Tk+1),

∂xy1(t, 1) = 0 in (Tk, Tk+1),

∂xy2(t, 1)− βy1(t, 1) = S2(t) in (Tk, Tk+1),(
y1(Tk, ·), y2(Tk, ·)

)
= ak in (0, 1),

instead, the control vk acts through the condition,{
∂xy1(t, 0) + βy2(t, 0) = S1(t) in (Tk, Tk+1),

∂xy2(t, 0) = vk(t) in (Tk, Tk+1).
(5.26)
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Here, y(T0) = a0 = y0, and we have

y(T−k ) = ỹ(T−k ) + ŷ(T−k ) = ak + 0 = ŷ(T+
k ) + ỹ(T+

k ) = y(T+
k ), ∀k ≥ 1,

thanks to the facts (5.12), (5.19) and the chosen initial data in the systems (5.13) and (5.15). Thus, y
is continuous at Tk for all k ≥ 0.

Using Theorem 2.4, we have the following estimate for y (for every k ≥ 0):

‖y‖C0([Tk,Tk+1];X) + ‖y‖L2(Tk,Tk+1;(H1(0,1))2)

≤ CeCT
(
‖ak‖X + ‖vk‖L2(Tk,Tk+1) + ‖S1‖L2(Tk,Tk+1) + ‖S2‖L2(Tk,Tk+1)

)
.

Start with k ≥ 1; using the estimates of ak and vk, respectively from (5.14) and (5.18), we deduce that

‖y‖C0([Tk,Tk+1];X) + ‖y‖L2(Tk,Tk+1;(H1(0,1))2) ≤ CeCT e
M

Tk+1−Tk
(
‖S1‖L2(Tk−1,Tk) + ‖S2‖L2(Tk−1,Tk)

)
+CeCT

(
‖S1‖L2(Tk,Tk+1) + ‖S2‖L2(Tk,Tk+1)

)
≤ CeCT e

M
Tk+1−Tk ρS(Tk−1)

(∥∥∥∥S1

ρS

∥∥∥∥
L2(Tk−1,Tk+1)

+

∥∥∥∥S2

ρS

∥∥∥∥
L2(Tk−1,Tk+1)

)
∀k ≥ 1,

since ρS is a non-increasing function. Now, thanks to the relation (5.11), one has

‖y‖C0([Tk,Tk+1];X) + ‖y‖L2(Tk,Tk+1;(H1(0,1))2)

≤ CeCT ρ0(Tk+1)

(∥∥∥∥S1

ρS

∥∥∥∥
L2(Tk−1,Tk+1)

+

∥∥∥∥S2

ρS

∥∥∥∥
L2(Tk−1,Tk+1)

)
, ∀k ≥ 1.

Now, using the fact that ρ0 is a non-increasing function, we deduce

(5.27)

∥∥∥∥ yρ0

∥∥∥∥
C0([Tk,Tk+1];X)

+

∥∥∥∥ yρ0

∥∥∥∥
L2(Tk,Tk+1;(H1(0,1))2)

≤ CeCT
(∥∥∥∥S1

ρS

∥∥∥∥
L2(Tk−1,Tk+1)

+

∥∥∥∥S2

ρS

∥∥∥∥
L2(Tk−1,Tk+1)

)
, ∀k ≥ 1.

For k = 0, we use the estimate of v0 from (5.22) to deduce

‖y‖C0([0,T1];X) + ‖y‖L2(0,T1;(H1(0,1))2 ≤ CeCT
(
‖a0‖X + ‖v0‖L2(0,T1) + ‖S1‖L2(0,T1) + ‖S2‖L2(0,T1)

)
≤ CeC(T+ 1

T )ρ0(T1)
(
‖y0‖X + ‖S1‖L2(0,T1) + ‖S2‖L2(0,T1)

)
.

Using an easy observation: ‖S‖L2(0,T ) ≤
∥∥∥ S
ρS

∥∥∥
L2(0,T )

, it gives us

(5.28)

∥∥∥∥ yρ0

∥∥∥∥
C0([0,T1];X)

+

∥∥∥∥ yρ0

∥∥∥∥
L2(0,T1;(H1(0,1))2)

≤ CeC(T+ 1
T )

(
‖y0‖X +

∥∥∥∥S1

ρS

∥∥∥∥
L2(0,T1)

+

∥∥∥∥S2

ρS

∥∥∥∥
L2(0,T1)

)
.

So, the estimates (5.27) and (5.28) conclude that

(5.29)

∥∥∥∥ yρ0

∥∥∥∥
C0([0,T ];X)

+

∥∥∥∥ yρ0

∥∥∥∥
L2(0,T ;(H1(0,1))2)

≤ CeC(T+ 1
T )

(
‖y0‖X +

∥∥∥∥S1

ρS

∥∥∥∥
L2(0,T )

+

∥∥∥∥S2

ρS

∥∥∥∥
L2(0,T )

)
.

Finally, using the definitions of norms (5.5) (of the weighted spaces) in the estimates (5.24) and
(5.29), we have the required estimate (5.10) of our proposition.
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5.2. Application of the fixed point argument. In this section, we prove the main theorem
regarding the local null-controllability of our systems.

We assume the initial data y0 ∈ X such that ‖y0‖X ≤ δ for some δ > 0 which will be determined
later. We also introduce the set

Sδ := {S ∈ S × S | ‖S‖S×S ≤ δ} ,

where the space S is defined in (5.4a).
Now, recall from Proposition 5.2 that for any given source term S := (S1, S2) ∈ S ×S, there exists

a control v such that the trajectory y = (y1, y2) of (5.6)–(5.7) with (5.8) or (5.9) (depending on the
choices of the parameters as per Proposition 5.2) satisfies the estimate (5.10). In what follows, we
define an operator N acting on Sδ by

N(S)(t) =

(
−g(y2(t, 0))

g(y1(t, 1))

)
.(5.30)

Proof of Theorem 1.2. We start by showing that N is a contraction map from Sδ onto itself
for some suitable choice of δ > 0.

Step 1. Let us show that Sδ is invariant under the map N provided δ > 0 is small enough.
Thanks to the choices of g given by (5.1) we have |g(ν)| ≤ C|ν|2, which yields, by the trace

theorem, ∣∣∣∣N(S)(t)

ρS(t)

∣∣∣∣ ≤ C

|ρS(t)|
(
|y2(t, 0)|2 + |y1(t, 1)|2

)
≤ C

|ρS(t)|
(
‖y2(t)‖L2(0,1)‖y2(t)‖H1(0,1) + ‖y1(t)‖L2(0,1)‖y1(t)‖H1(0,1)

)
,

and it follows that ∣∣∣∣N(S)(t)

ρS(t)

∣∣∣∣2 ≤ C

|ρS(t)|2
‖y(t)‖2X‖y(t)‖2(H1(0,1))2(5.31)

≤ C |ρ0(t)|4

|ρS(t)|2

∥∥∥∥ y(t)

ρ0(t)

∥∥∥∥2

X

∥∥∥∥ y(t)

ρ0(t)

∥∥∥∥2

(H1(0,1))2
.

– Now, using Remark 5.1 we have that the quantity
ρ2

0(t)

ρS(t)
is bounded by 1 irrespective on t.

– On the other hand, since we have ‖y0‖X ≤ δ and S = (S1, S2) ∈ Sδ, using the result (5.10),
we deduce that ∥∥∥∥ yρ0

∥∥∥∥
C0([0,T ];X)

+

∥∥∥∥ yρ0

∥∥∥∥
L2(0,T ;(H1(0,1))2)

≤ CeC(T+ 1
T )δ.(5.32)

Using the bound (5.32) in (5.31), we get∥∥∥∥N(S)

ρS

∥∥∥∥
L2(0,T )

≤ C
∥∥∥∥ yρ0

∥∥∥∥
C0([0,T ];X)

∥∥∥∥ yρ0

∥∥∥∥
L2(0,T ;(H1(0,1))2)

≤ CeC(T+ 1
T )δ2.(5.33)

Thus, for δ > 0 small enough, the map N stabilizes Sδ.

Step 2. In this step, we prove that N is a contraction map for δ > 0 small enough.
For any S, S̃ ∈ Sδ, we denote the trajectories respectively by y = (y1, y2) and ỹ = (ỹ1, ỹ2) associ-

ated with the controls v and ṽ of the system (5.6)–(5.7)–(5.8) (or (5.9)), by means of Proposition 5.2.
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Then, using the properties of g from (5.1), it follows that

(5.34)

∣∣∣∣∣N(S)(t)−N(S̃)(t)

ρS(t)

∣∣∣∣∣ ≤ C

|ρS(t)|

(
|y2(t, 0)− ỹ2(t, 0)|

(
|y2(t, 0)|+ |ỹ2(t, 0)|

)
+ |y1(t, 1)− ỹ1(t, 1)|

(
|y1(t, 1)|+ |ỹ1(t, 1)|

))
≤ C

|ρS(t)|
‖y(t)− ỹ(t)‖

1
2

X‖y(t)− ỹ(t)‖
1
2

(H1(0,1))2

×
(
‖y(t)‖

1
2

X‖y(t)‖
1
2

(H1(0,1))2 + ‖ỹ(t)‖
1
2

X‖ỹ(t)‖
1
2

(H1(0,1))2

)
≤ Cρ2

0(t)

ρS(t)

∥∥∥∥y − ỹρ0

∥∥∥∥ 1
2

C0([0,T ];X)

∥∥∥∥y(t)− ỹ(t)

ρ0(t)

∥∥∥∥ 1
2

(H1(0,1))2
×
(∥∥∥∥ yρ0

∥∥∥∥ 1
2

C0([0,T ];X)

∥∥∥∥ y(t)

ρ0(t)

∥∥∥∥ 1
2

(H1(0,1))2

+

∥∥∥∥ ỹρ0

∥∥∥∥ 1
2

C0([0,T ];X)

∥∥∥∥ ỹ(t)

ρ0(t)

∥∥∥∥ 1
2

(H1(0,1))2

)
.

Now, as per Proposition 5.2 the solution map is linear and thus, one has y − ỹ is the trajectory of
the set of equations (5.6)–(5.7)–(5.8) (instead, (5.6)–(5.7)–(5.9)) with the source terms S − S̃ (where

S := (S1, S2) and S̃ := (S̃1, S̃2)), control v − ṽ and initial data y(0, ·) − ỹ(0, ·) = 0. Then, thanks to
the estimate (5.10), y − ỹ satisfies the following:∥∥∥∥y − ỹρ0

∥∥∥∥
C0([0,T ];X)

+

∥∥∥∥y − ỹρ0

∥∥∥∥
L2(0,T ;(H1(0,1))2)

≤ CeC(T+ 1
T )
(
‖S1 − S̃1‖S + ‖S2 − S̃2‖S

)
(5.35)

≤ CeC(T+ 1
T )‖S − S̃‖S×S .

Also, we recall the estimate (5.32) for y (similarly for ỹ) since we started with initial data ‖y0‖ ≤ δ and

S (or, S̃) in Sδ. Beside this, we have by Remark 5.1 that
ρ2

0(t)

ρS(t)
≤ 1, ∀t ∈ [0, T ]. As a consequence,

the inequality (5.34) yields to∣∣∣∣∣N(S)(t)−N(S̃)(t)

ρS(t)

∣∣∣∣∣ ≤ CT δ 1
2 ‖S − S̃‖

1
2

S×S

∥∥∥∥y(t)− ỹ(t)

ρ0(t)

∥∥∥∥ 1
2

(H1(0,1))2

×

(∥∥∥∥ y(t)

ρ0(t)

∥∥∥∥ 1
2

(H1(0,1))2
+

∥∥∥∥ ỹ(t)

ρ0(t)

∥∥∥∥ 1
2

(H1(0,1))2

)
,

with CT := CeC(T+ 1
T ). This implies∥∥∥∥∥N(S)−N(S̃)

ρS

∥∥∥∥∥
2

(L2(0,T ))2

≤ CT δ ‖S − S̃‖S×S

×
∫ T

0

∥∥∥∥y(t)− ỹ(t)

ρ0(t)

∥∥∥∥
(H1(0,1))2

(∥∥∥∥ y(t)

ρ0(t)

∥∥∥∥
(H1(0,1))2

+

∥∥∥∥ ỹ(t)

ρ0(t)

∥∥∥∥
(H1(0,1))2

)

≤ CT δ ‖S − S̃‖S×S
∥∥∥∥y − ỹρ0

∥∥∥∥
L2(0,T ;(H1(0,1))2)

(∥∥∥∥ yρ0

∥∥∥∥
L2(0,T ;(H1(0,1))2)

+

∥∥∥∥ ỹρ0

∥∥∥∥
L2(0,T ;(H1(0,1))2)

)
≤ CT δ2‖S − S̃‖2S×S ,

where we have used the estimates (5.32) and (5.35).
So, eventually we proved that

‖N(S)−N(S̃)‖S×S ≤ CT δ ‖S − S̃‖S×S ,(5.36)

for δ > 0 chosen small enough and this ensures that the map N is a contraction in the closed ball Sδ.
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Hence, by applying Banach fixed-point argument, there exists unique fixed point of the map N

denoted by S0 := (S0,1, S0,2) in the ball Sδ.

Thanks to Proposition 5.2, for the above S0 ∈ Sδ and initial data y0 ∈ X with ‖y0‖X ≤ δ, there
exists a control v ∈ V such that the trajectory y := (y1, y2) and the control v to (5.6)–(5.7)–(5.8) or
(5.6)–(5.7)–(5.9) (depending on the choices of f ′(0), i.e. β, as given by Proposition 5.2) satisfy the
estimates (5.10). Then, the property lim

t→T−
ρ0(t) = 0 forces that y(T, x) = 0 for all x ∈ (0, 1) and that

the local null-controllability holds for the concerned nonlinear systems (1.1)–(1.3) with (1.5) or (1.6).

This completes the proof of Theorem 1.2.
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[3] F. Ammar-Khodja, A. Benabdallah, M. González-Burgos, and L. de Teresa. The Kalman condition for the boundary
controllability of coupled parabolic systems. Bounds on biorthogonal families to complex matrix exponentials.
J. Math. Pures Appl. (9), 96(6):555–590, 2011.

[4] S. Avdonin. Control problems on quantum graphs. In Analysis on graphs and its applications, volume 77 of Proc.
Sympos. Pure Math., pages 507–521. Amer. Math. Soc., Providence, RI, 2008.

[5] V. Barbu. Exact controllability of the superlinear heat equation. Appl. Math. Optim., 42(1):73–89, 2000.
[6] N. K. Bari. Biorthogonal systems and bases in Hilbert space. Moskov. Gos. Univ. Učenye Zapiski Matematika,
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[20] M. González-Burgos and G. R. Sousa-Neto. Boundary controllability of a one-dimensional phase-field system with

one control force. J. Differential Equations, 269(5):4286–4331, 2020.
[21] B.-Z. Guo. Riesz basis approach to the stabilization of a flexible beam with a tip mass. SIAM J. Control Optim.,

39(6):1736–1747, 2001.
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