The Vanishing Confinement Regime in THz HgTe Nanocrystals Studied Under Extreme Conditions of Temperature and Pressure - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of Physical Chemistry Letters Année : 2022

The Vanishing Confinement Regime in THz HgTe Nanocrystals Studied Under Extreme Conditions of Temperature and Pressure

Francesco Capitani
  • Fonction : Auteur
  • PersonId : 1142136
Claire Abadie
Adrien Khalili
Tung Huu Dang
Huichen Zhang
Erwan Bossavit
Charlie Gréboval
Jose Avila
  • Fonction : Auteur
Ayaskanta Sahu
  • Fonction : Auteur

Résumé

While HgTe nanocrystals (NCs) in the mid infrared have reached a high maturity, their far infrared counterparts remain far less studied, raising the need for an in-depth investigation of the material before efficient device integration can be considered. Here, we explore the effect of temperature and pressure on the structural, spectroscopic and transport properties of HgTe NCs displaying an intraband absorption at 10 THz. The temperature leads to a very weak modulation of the spectrum as opposed to what was observed for strongly confined HgTe NCs. HgTe NC films present ambipolar conduction with a clear prevalence of electron conduction as confirmed from transistor and thermoelectric measurements. Under pressure application, the material undergoes phase transitions from the zinc blende to cinnabar and later to rock salt that we reveal using joint Xray diffraction and infrared spectroscopic measurements. We discuss how the pressure existence domain of each phase is affected by the particle size.
Fichier principal
Vignette du fichier
hgteTHZTPtransprt_v19.pdf (837.36 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03737454 , version 1 (25-07-2022)

Identifiants

Citer

Stefano Pierini, Francesco Capitani, Michael Scimeca, Sergei Kozlov, Debora Pierucci, et al.. The Vanishing Confinement Regime in THz HgTe Nanocrystals Studied Under Extreme Conditions of Temperature and Pressure. Journal of Physical Chemistry Letters, 2022, pp.6919-6926. ⟨10.1021/acs.jpclett.2c01636⟩. ⟨hal-03737454⟩
236 Consultations
46 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More