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Introduction

Since the mid-twentieth century, real and complex zeros of special functions such as Bessel functions, Parabolic Cylinder functions, Hankel functions etc. have been intensively studied for various applications in physics, applied mathematics and engineering.

Studies on zeros for a special function of order ν and argument z have been performed by several authors. For example, Olver nds the z-zeros of Parabolic Cylinder functions [START_REF] Olver | Uniform asymptotic expansions for Weber parabolic cylinder functions of large orders[END_REF] for large values of ν. The case of Bessel functions has been frequently studied (see for example Olver [START_REF] Olver | The asymptotic expansion of Bessel functions of large order[END_REF], Watson [START_REF] Watson | A treatise on the theory of Bessel functions[END_REF], Laforgia and Natalini [START_REF] Laforgia | Zeros of Bessel functions: monotonicity, concavity, inequalities[END_REF]. In [START_REF] Elbert | Some recent results on the zeros of Bessel functions and orthogonal polynomials[END_REF], the author presents a selection of results on the zeros of Bessel functions. Other authors have been interested in the z-zeros of Hermite functions or Conuent Hypergeometric functions (see for example [START_REF] Elbert | Inequalities and monotonicity properties for zeros of Hermite functions[END_REF], [START_REF] Elbert | Approximations for zeros of hermite functions[END_REF]). In [START_REF] Elbert | Inequalities and monotonicity properties for zeros of Hermite functions[END_REF], Elbert and Muldoon study the variation of the z-zeros of the Hermite function and establish a formula for the derivative of a zero with respect to the parameter ν.

Fewer studies have been published on the ν-zeros. In [START_REF] Magnus | The zeros of the Hankel function as a function of its order[END_REF] or [START_REF] Keller | Zeros of Hankel functions and poles of scattering amplitudes[END_REF], the authors study the behavior of the ν-zeros of the Hankel function of the rst kind. Later on, these results were improved by Cochran [START_REF] Cochran | The zeros of Hankel functions as functions of their order[END_REF]. Conde and Kalla [START_REF] Conde | The ν-zeros of J ν (x)[END_REF] compute the ν-zeros of the Bessel function. Slater [START_REF] Slater | Conuent hypergeometric functions[END_REF] gives an asymptotic formula for large ν-zeros of the Parabolic Cylinder function when z is xed. Besides that, little is known, about the ν-zeros of the Parabolic Cylinder function. However, these zeros appear in the rst passage time law of an Ornstein Uhlenbeck process and other associated laws ([1], [START_REF] Blanchet-Scalliet | Joint law of an Ornstein-Uhlenbeck process and its supremum[END_REF], [START_REF] Linetsky | Computing hitting time densities for CIR and OU diusions: applications to mean-reverting models[END_REF]).

In this paper we study the ν-zeros of the Parabolic Cylinder function, the solution of the dierential equation

y (z) + ν + 1 2 -1 4 z 2 y (z) = 0, y(z) ∼ z→+∞ z ν e -z 2 /4 ,
where the Parabolic Cylinder function, denoted D ν (z), is to be considered as function of its order ν.

The aim of this paper is to complete Slater's study and to propose a formula for νzeros for large values of z. We also establish a formula for the derivative of a ν-zero and deduce some monotonicity results. Since the z-zeros of Hermite functions are linked to those of Parabolic Cylinder functions, our analysis is based on the results of [START_REF] Elbert | Inequalities and monotonicity properties for zeros of Hermite functions[END_REF]. Asymptotic expressions for the ν-zeros are derived from the expansion of Olver [START_REF] Olver | Uniform asymptotic expansions for Weber parabolic cylinder functions of large orders[END_REF]. Our analysis is similar to that of [START_REF] Cochran | The zeros of Hankel functions as functions of their order[END_REF] for Hankel functions. Only real parameters are considered in this paper.

The paper is organized as follows : in Section 2 we present some properties for the νzeros of the Parabolic Cylinder function D ν (z). Section 3 focusses on the behavior of the ν-zeros for large z. Moreover, numerical verications of the asymptotic expansion are displayed.

Variation of zeros

In this section we present some properties for the ν-zeros of the Parabolic Cylinder function D ν (z) with respect to the real variable z. Since the function is holomorphic (see [START_REF] Lebedev | Special functions and their applications[END_REF], ch. 10) in the complex plane, the set of ν-zeros has no accumulation points and there is a countably innite number of zeros. Moreover, in the real case they are strictly positive [START_REF] Blanchet-Scalliet | Joint law of an Ornstein-Uhlenbeck process and its supremum[END_REF]. In the following, we denote by (ν n (z)) n≥1 the ordered sequence of zeros of the function ν → D ν (z).

The following proposition gives some monotonicity properties of the zeros.

Proposition 2.1. For all n ∈ N * :

1. The rst derivative of the n -th ν-zero is given by :

∂ z ν n (z) = 2 √ π ∞ 0 e -(2νn(z)+1)u+ z 2 2 tanh(u) erf c z tanh(u) 2 du √ sinh(u) cosh(u) (1) 
2. The function z → ν n (z) is strictly increasing and convex.

Proof. 1. Let z(ν, α) a zero of the function z → cos(α)H ν (z) + sin(α)G ν (z)
where

α is xed and H ν (z) and G ν (z) are linear independent solutions of y -2zy + 2νy = 0 with H ν (z) ∼ (2z) ν and G ν (z) ∼ 1 √ π Γ(1 + ν)z -ν-1 e z 2 when z → +∞.
In [START_REF] Elbert | Inequalities and monotonicity properties for zeros of Hermite functions[END_REF], the authors compute the derivative with respect to ν and obtain

∂ ν z(ν, α) = √ π 2 ∞ 0 e -(2ν+1)u+z(ν,α) 2 tanh(u) erf c z(ν, α) tanh(u) du sinh (u) cosh (u) . Since D ν (z) = 2 -ν 2 e -z 2 4 H ν z √
2 , then choosing α = 0 the result is a direct. consequence of the local inversion theorem.

Elbert and Muldoon

[6] (Corollary 7.2) prove that ν → z(ν, α) is completely monotonic : ∂ ν z(ν, α) > 0, (-1) k ∂ k+1 ν z(ν, α) ≥ 0, k = 1, 2, . . . , n.
The conclusion follows from the local inversion theorem.

If z = 0, Formula (1) can be simplied. Indeed, the zeros (ν n (0)) n≥1 of ν → D ν (0) are the positive odd integers, ν n (0) = 2n -1. In this particular case, (1) becomes:

∂ z ν n (z) | z=0 = 2 √ π ∞ 0 e -(4n-1)u du √ sinh(u) cosh(u) = 2 √ π if n = 1, 2 √ π(n-1)B(n-1, 3 2 ) if n ≥ 2.
Remark 2.2. We can prove that the function z → ν n (z) is strictly increasing without using the form (1) of the derivative ∂ z ν n (z). Indeed, on the one hand, thanks to [START_REF] Blanchet-Scalliet | Joint law of an Ornstein-Uhlenbeck process and its supremum[END_REF] (Proposition 3.14), we have :

∞ z D 2 νn(z) (x) dx = -ν n (z) D νn(z)-1 (z) ∂ ν D νn(z) (z) .
On the other hand, by dierentiating D νn(z) (z) = 0 with respect to z, we get

∂ ν D νn(z) (z) ∂ z ν n (z) + ν n (z) D νn(z)-1 (z) = 0.
Therefore

∂ ν D νn(z) (z) = - ν n (z) D νn(z)-1 (z) ∂ z ν n (z) .
So that we nally get

∂ z ν n (z) = ν n (z) 2 D 2 νn(z)-1 (z) ∞ z D 2 νn(z) (x) dx > 0.
As a consequence of (1), we obtain some bounds on the derivative of a ν-zero with respect to z.

Corollary 2.2.1. The following inequalities hold 1. If z > 0, then ν n (z) > 1 for all n ∈ N * and

4 √ π (ν n (z) -1) B νn(z)-1 2 , 3 2 ≤ ∂ z ν n (z) ≤ 4e -z 2 2 √ π (ν n (z) -1) erf c z √ 2 B νn(z)-1 2 , .
2. If z < 0, then 0 < ν 1 (z) < 1 and ν n (z) > 1 for n ≥ 2. We also have

2e -z 2 2 c ν 1 (z) √ πerf c z √ 2 ≤ ∂ z ν 1 (z) ≤ 2 √ πc ν 1 (z) , 4e -z 2 2 √ π (ν n (z) -1) erf c z √ 2 B νn(z)-1 2 , 3 2 ≤ ∂ z ν n (z) ≤ 4 √ π (ν n (z) -1) B νn(z)-1 2 , , n ≥ 2,
where c ν 1 (z) ∈ 1 π 2 is a constant depending on ν 1 (z).

Proof. 1. If z = 0, the zeros (ν n (0)) n≥1 are the positive odd integers. Since the z → ν n (z) is strictly increasing (see Proposition 2.1), then for z > 0, we get

ν n (z) > ν n (0) ≥ ν 1 (0) = 1, n ∈ N * .
Since u is positive, then tanh (u) ∈ [0, 1] and

e z 2 2 erf c z √ 2 ≤ e z 2 2 tanh(u) erf c z tanh(u) 2 ≤ 1. Moreover, ν n (z) > 1 for all n ∈ N * , then ∞ 0 e -(2νn(z)+1)u sinh(u) cosh(u) = ν n (z) -1 2 B ν n (z) -1 2 , 3 2 .
2. On the one hand, in the case of negative z, the strictly monotonicity property of z → ν n (z) gives ν n (z) < ν n (0) = 2n -1 for all n ∈ N * .

On the other hand, the behavior of D ν (z) for large negative z is ( [START_REF] Lebedev | Special functions and their applications[END_REF]) :

D ν (z) = z ν e -z 2 4 1 + O |z| -2 - √ 2πe -νπi Γ(-ν) z -ν-1 e z 2 4 1 + O |z| -2 . (2) 
If ν ∈ N, the dominant part (second term) in (2) vanishes and

D ν (z) -→ z→-∞ 0. Therefore ν n (z) -→ z→-∞
n -1 for all n ∈ N * . We deduce that for n ∈ N * , we have

n -1 < ν n (z) < 2n -1. If z < 0, then 1 ≤ e z 2 2 tanh(u) erf c z tanh(u) 2 ≤ e z 2 2 erf c z √ 2 . Moreover ∞ 0 e -(2ν+1)u sinh(u) cosh(u) = c ν ∈ 1 π 2 if 0 < ν ≤ 1, ν-1 2 B ν-1 2 , 3 2 if ν > 1,
where c ν is a constant depending on ν.

Remark 2.3. In the case z < 0, by using the inequality n -1 < ν n (z) < 2n -1, we obtain less accurate bounds depending only on n.

More details on these coecients γ s and their computation can be found in [START_REF] Olver | Uniform asymptotic expansions for Weber parabolic cylinder functions of large orders[END_REF], pages 134-135. For example, Olver nds for s ≤ 4 :

γ 0 = 1, γ 1 = - 1 24 , γ 2 = 1 1152 , γ 3 = 1003 414720 , γ 4 = 4027 39813120
.

The functions A µ and B µ satisfy A µ (ξ) ∼ µ→+∞ s≥0

As(ξ(t))

µ 4s , B µ (ξ) ∼ µ→+∞ s≥0
Bs(ξ(t)) µ 4s , where the coecients A s (ξ(t)) and B s (ξ(t)) are given by

A s (ξ(t)) = ξ(t) -3s 2s m=0 β m ξ (t) t 2 -1 3 2 (2s -m)u 2s-m (t), B s (ξ(t)) = -ξ(t) -3s 2s+1 m=0 α m ξ (t) t 2 -1 3 2 
(2s -m + 1)u 2s-m+1 (t),

α 0 = 1 and α m = (2m + 1)(2m + 3) . . . (6m -1) m!(144) m , β m = - 6m + 1 6m -1 α m
and u s (t) are polynomials in t of degrees 3s (s odd), 3s -2 (s even, s ≥ 2) and they satisfy the recurrence relation

(t 2 -1)u (t) -3stu s (t) = r s-1 (t),
where 8r s (t) = (3t 2 + 2)u s (t) -12(s + 1)tr s-1 (t) + 4(t 2 -1)r s-1 (t).

Formula (5) gives the asymptotic behavior of D ν (z) if z runs through an interval containing the turning point √ 4ν + 2. Near the other turning point -√ 4ν + 2 (so when z < 0), the asymptotic behavior of D ν (z) is given by another formula (see [START_REF] Olver | Uniform asymptotic expansions for Weber parabolic cylinder functions of large orders[END_REF], (9.7.)). As in this section we study the ν-zeros only in the case of large positive z, this second formula will not be useful here. the study of the asymptotic behavior of the zeros is easier. The zeros tend to positive integers. Indeed, in this case the asymptotic behavior of the Parabolic cylinder function is given by ( [START_REF] Olver | Uniform asymptotic expansions for Weber parabolic cylinder functions of large orders[END_REF], [START_REF] Temme | Numerical and asymptotic aspects of parabolic cylinder functions[END_REF]) :

between +∞ and -∞, so numerical verications will be performed for moderate values of z. To check the quality of our results, we compare graphically the ν-zeros given by the asymptotic expansion [START_REF] Elbert | Approximations for zeros of hermite functions[END_REF] with those of the function. The computations are done in Python. We observe that, although the asymptotic formula ( 7) is for large z, for z = 23 we already obtain acceptable estimates. We clearly see the loss of accuracy, but numerical right shift of the ν-zeros estimated with (7) can be explained as follows. Since simulations cannot be performed for very large z, as n increase, the zeros of Airy function become dominant on [START_REF] Elbert | Approximations for zeros of hermite functions[END_REF]. The quantity -z 2 3 2 -2 3 a n > 0 becomes too small, which involves a right shift on the simulation. This example shows that our formula allows to evaluate the rst ve ν-zeros even for moderates values of z.

Remark 3 . 1 .

 31 If z belongs to an interval containing the other turning point-√ 4ν + 2,

Figure 1 :

 1 Figure 1: Comparison of ν-zeros of D ν (z) for z = 23 with the asymptotic development[START_REF] Elbert | Approximations for zeros of hermite functions[END_REF] .

Figure 1

 1 Figure 1 provides the graph of the Parabolic Cylinder functions D ν (23) in blue. The small red crosses mark the ν-zeros calculated with the formula (7).

Asymptotic expansions of ν-zeros for large z

We are now interested in the behavior of ν-zeros for large positive values of z. Since the ν-zeros are positive, we restrict ourselves to the case of real positive ν.

Asymptotic expansion of Parabolic cylinder function

Recall that the Parabolic cylinder function D ν (z) is solution of the dierential equation :

The behavior of D ν (z) for large positive z and z >> |ν| is ( [START_REF] Lebedev | Special functions and their applications[END_REF]) :

Equation ( 3) has two turning points at √ 4ν + 2 and -√ 4ν + 2 The asymptotic behavior of D ν (z) changes signicantly depending on the relative position of z with respect to the turning points. The asymptotic behavior (4) is still not valid if z runs through an interval containing one of the turning points. In this case, an Airy type expansion is needed to obtain those of the Parabolic cylinder function. Its expression is ( [START_REF] Olver | Uniform asymptotic expansions for Weber parabolic cylinder functions of large orders[END_REF], [START_REF] Temme | Numerical and asymptotic aspects of parabolic cylinder functions[END_REF]) :

where Ai is the Airy function of the rst kind,

and the coecients γ s are dened by

where Bi is the Airy function of the second kind. Recall that ( [START_REF] Olver | The asymptotic expansion of Bessel functions of large order[END_REF])

As the factor Bi µ

B µ (ξ) goes to innity when µ → +∞, to obtain the zeros of D1 6), the cosine vanishes and, hence, the dominant part vanishes.

Asymptotic expansion of ν-zeros

For large positive values of z, the ν-zeros of D ν (z) are linked to a n , n = 1, 2, . . . , the zeros of the Airy function (Ai (a n ) = 0). The zeros of Ai have been studied ( [START_REF] Olver | The asymptotic expansion of Bessel functions of large order[END_REF]). Olver shows that they are all real and negative. They may be expressed asymptotically as

.

The following proposition gives the behavior of ν n (z) when z → ∞.

Proposition 3.2. For large positive z, we have :

where a n , n = 1, 2, . . . are the zeros of the Airy function.

Proof. We apply the method given in [START_REF] Cochran | The zeros of Hankel functions as functions of their order[END_REF] to compute the zeros of the Hankel function.

Taking µ = √ 2ν + 1 in ( 5), the original argument z of D ν (z) has temporarily been replaced by t (ξ)

2ν + 1 are given asymptotically by the ν-zeros of the right hand side of (5). These zeros in turn appear to be given by the ν-solutions of Ai (2ν + 1) 2 3 ξ (t) = 0, from which we deduce that

as ν → +∞. Since a n is negative, then ξ (t) < 0. Hence we obtain the asymptotic relation between zeros of the Airy function and ν-zeros of the Parabolic cylinder function (we restore the original argument z = t (ξ) √ 2 √ 2ν + 1):

,

where ξ and t are related by the relation 2 3 (-ξ (t))

We deduce that the limiting case that gives rise to large values of z (so large values of ν n ) is ξ (t) → 0. As ξ is negative, so the case ξ (t) ↑ 0 is associated with the behavior of the ν-zeros of D ν (z) for large positive z. We easily deduce that if ξ (t) ↑ 0, then t ↑ 1 and t Remark 3.3. The expansions [START_REF] Elbert | Approximations for zeros of hermite functions[END_REF] are still valid for complex values of the parameters.

Numerical verication

The values of the function ν → D ν (z) exceed the computer capabilities, the zeros are no longer observable and computable. For large values of z, the function oscillates