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sup u≥0 sup d≥2 P{Sn + u ∈ F d } - 1 d - 1 d 0<| |<d e (iπ d -π 2 2 2d 2 ) ϑ E e 2iπ d X + s d n ≤ C θ 3/2 (log n) 5/2 n 3/2 + 2ρ n .
(ii) Let D be a test set of divisors ≥ 2, Dϕ be the section of D at height ϕ and |Dϕ| denote its cardinality. Then, (n) 3/2 .

Introduction.

1.1. Problem studied. Let X be a square integrable random variable taking values in a lattice L(v 0 , D) = v 0 + D Z, and let µ = E X, σ = Var(X). Let X i , i ≥ 1 be independent, identically distributed random variables having same law than X, and let S n = n j=1 X j , n ≥ 1.

The probability P{S n = N } can be efficiently estimated by using Gnedenko's local limit theorem [START_REF] Gnedenko | On a local limit theorem in the theory of probability[END_REF], which asserts that (1.1) sup

N ∈L(v 0 n,D) σ √ n P{S n = N } - D √ 2π e -(N -nµ) 2 2nσ 2 = o(1),
if and only if the span D is maximal, (there are no other real numbers v 0 and D > D for which P{X ∈ L(v 0 , D )} = 1).

Now consider the problem of estimating the probability

P{S n ∈ F } where F is a possibly infinite subset of L(v 0 n, D). This is obviously a quite important problem, which attracted a lot of attention. When F moreover runs into a parametrized class F of subsets of L(v 0 n, D), that problem can be viewed as the search of a semi-local limit theorem with respect to F, thereby extending the classical local limit theorem to parametrized classes of possibly infinite sets.

One can naturally think of using the local limit theorem for estimating P{S n ∈ F } or refinements of it. However, even on simple cases such as sets of multiples of an integer, the application of the local limit theorem becomes rapidly unefficient.

Let (1.2) F = {F d , d ≥ 2}
where

F d = d N.
On the example below, we show that for Bernoulli sums already, the application of a sharp form of the local limit theorem fails from far to provide a satisfactory bound. The question whether a semi-local limit theorem for the class F defined above may be valid for sequences of i.i.d. square integrable L(v 0 , 1)-valued random variables, has motivated us in this work and we will prove that under moderate conditions it is indeed so, which is main result of this paper.

1.2. An example. Let B n = β 1 + . . . + β n , where β i are i.i.d. Bernoulli random variables. On the one hand, Theorem II in [START_REF] Weber | Small divisors of Bernoulli sums[END_REF] provides a uniform estimate on the whole range of d, with sharp rate of approximation. Theorem 1.1. We have the following uniform estimate:

(1.3) sup 2≤d≤n P d|B n - Θ(d, n) d = O (log n) 5/2 n -3/2 ,
where Θ(d, m) is the elliptic Theta function

(1.4) Θ(d, m) = ∈Z e imπ d -mπ 2 2 2d 2 .
The constant hidden in the symbol O is absolute. Special cases are also considered in [15, Th. II]. It is notably proved that (1.5)

P d|B n - 1 d ≤    C (log n) 5/2 n -3/2 + 1 d e -nπ 2 2d 2 if d ≤ √ n, C √ n if √ n ≤ d ≤ n.
For any α > 0

(1.6) sup d<π n 2α log n P d|B n - 1 d = O ε n -α+ε , (∀ε > 0)
and for any 0 < ρ < 1,

(1.7) sup d<(π/ √ 2)n (1-ρ)/2 P d|B n - 1 d = O ε e -(1-ε)n ρ , (∀0 < ε < 1).
On the other hand, the sharpest version of the local limit theorem for Bernoulli sums is derived from a fine local limit theorem with asymptotic expansion, see [START_REF] Petrov | Sums of Independent Random Variables[END_REF], Ch. 7, Th. 13., and states as follows,

sup z P B n = z} - 2 πn e -(2z-n) 2 2n = o 1 n 3/2 . (1.8)
Although the error term is sharp, (1.8) will yield a less precise result than Theorem 1.1. Indeed, at first there is a numerical constant a such that

P{ 2B n -n √ n > a log n} ≤ n -1 , n ≥ 1.
Thus using (1.8),

P{d|B n } = |z-n/2|≤a √ n log n z≡0 (d) P B n = z} + O(n -1 ) = 2 πn |z-n/2|≤a √ n log n z≡0 (d) e -(2z-n) 2 2n + o( √ log n n ).
Besides, noticing that 2z -n is integer, we have for n ≥ 2

|z-n/2|>a √ n log n e -(2z-n) 2 2n ≤ Z>2a √ n log n Z∈N e -Z 2 2n ≤ ∞ a √ n log n e -t 2 2n dt = √ n ∞ a √ log n e -u 2 2n du = o(n -1 ). Consequently (1.8) implies, sup 2≤d≤n P{d|B n } - 2 πn z≡0 (d) e -(2z-n) 2 2n = o( √ log n n ). (1.9)
We now compare (1.3) with (1.9) by using Poisson summation formula which we recall: for

x ∈ R, 0 ≤ δ ≤ 1, (1.10) ∈Z e -( +δ) 2 πx -1 = x 1/2 ∈Z e 2iπ δ-2 πx . Applying it with x = πn/(2d 2 ), δ = {n/(2d)}, gives (1.11) Θ(d, n) d = 2 πn z≡0 (d) e -(2z-n) 2 2n . Estimate (1.3) thus implies (1.12) sup 2≤d≤n P d|B n - 2 πn z≡0 (d) e -(2z-n) 2 2n = O log 5/2 n n 3/2 ,
which is clearly much better than (1.9).

Main result

In this paper we extend the semi-local limit Theorem 1.1 to sums of i.i.d. square integrable random variables. Clearly this cannot be derived from Gnedenko's local limit theorem. Note by the way that according to Matskyavichyus [START_REF] Matskyavichyus | On a lower bound for the convergence rate in a local limit theorem[END_REF], Gnedenko's theorem is optimal. In place we shall in a first step prove a drifted version of Theorem 1.1 for value distribution of divisors of B n + u, which turns up to be uniform in u, and next combine it with a coupling method called the "Bernoulli part extraction" of a random variable. This method is essentially due to Mc Donald [START_REF] Macdonald | A local limit theorem for large deviations of sums of independent, non-identically distributed random variables[END_REF], [START_REF] Davis | An elementary proof of the local central limit theorem[END_REF], see also [START_REF] Giuliano | Approximate local limit theorems with effective rate and application to random walks in random scenery[END_REF], and was successfully applied to the local limit theorem. However, the problem investigated here being more complicated than the usual local limit theorem, it was necessary to refine it somehow. The approach we propose is flexible and should be adaptable to other parametrized classes of sets.

Let X be a random variable such that P{X ∈ L(v 0 , 1)} = 1, and let f (k) = P{X = v k } for all k ∈ Z. We use the following structural characteristic

ϑ X := k∈Z f (k) ∧ f (k + 1), (2.1)
and note that 0 ≤ ϑ X < 1 always. We assume that the following condition is satisfied,

ϑ X > 0. (2.2)
This is possible only if the maximal span of X is 1, which we do assume. In our approach we associate to X, another random variable X close to X, which we shall now describe.

First let μ = {µ k , k ∈ Z} be a given sequence of non-negative reals satisfying the following simple condition:

For all k ∈ Z, 0 < µ k < f (k) if f (k) > 0, and µ k = 0 if f (k) = 0. (2.3)
Let µ = k∈Z µ k , and assume that 1 -µ < ϑ X .

(2.4)

Next let τ = {τ k , k ∈ Z} be a sequence of non-negative reals satisfying the equation

(2.5) τ k-1 + τ k 2 = f (k) -µ k , for all k ∈ Z.
This equation is solvable, the solutions are given in (5.6). By construction

τ k-1 +τ k ≤ 2f (k), for all k ∈ Z. Put (2.6) ϑ = k∈Z τ k = 1 -µ.
The sequence τ only depends on the random variable X and the sequence μ. We associate to X and μ a random variable X defined by the relation

(2.7) P{ X = v k } = τ k ϑ , k ∈ Z.
Note that as τ k , µ k are defined independently of n, and so X is.

Our main result states as follows.

Theorem 2.1. Let X be a square integrable random variable taking values in a lattice L(v 0 , 1), with maximal span 1 and satisfying condition (2.2). Let X i , i ≥ 1 be independent, identically distributed random variables having same law than X, and let S n = n j=1 X j , for each n. Further let s(t) = k∈Z µ k e 2iπv k t , ρ be such that 1 -ϑ < ρ < 1, ϑ being defined in (2.6), and X be defined in (2.7).

(i) There exists θ = θ(ρ, ϑ) with 0 < θ < ϑ and C and N such that we have for all n ≥ N ,

sup u≥0 sup d≥2 P{d|S n + u} - 1 d - 1 d 0<| |<d e (iπ d -π 2 2 2d 2 ) ϑ E e 2iπ d X + s d n ≤ C θ 3/2 (log n) 5/2 n 3/2 + 2ρ n . (ii)
Let D be a test set of divisors ≥ 2, D ϕ be the section of D at height ϕ and |D ϕ | denote its cardinality. Then,

∞ n=N sup u≥0 sup ϕ≥2 1 |D ϕ | d∈Dϕ P{d|S n + u} - 1 d ≤ C 1 ϑ + C 2 θ 3/2 + 2ρ 2 1 -ρ ,
where

C 1 = 2e π 2 /4 (1-e -π 2 /16 ) , C 2 = C ∞ n=N (log n) 5/2 (n) 3/2 .
The proof is very delicate, the second assertion is proved by introducing two tricks, new in this context.

Remark 2.2. The used characteristic ϑ X is tigthly related to the "smoothness"characteristic

δ X = m∈Z P{X = m} -P{X = m -1} , (2.8)
since δ X = 2(1 -ϑ X ), as quoted in Mukhin [START_REF] Mukhin | Local limit theorems for lattice random variables[END_REF], p. 700, noticing that a + b -|a -b| = 2(a ∧ b), a and b non-negative. That characteristic was introduced and much investigated by Gamkrelidze in several original works, [START_REF] Gamkrelidze | On Smoothing the Probabilities for Sums of Independent Integer-Valued Variables[END_REF], [START_REF] Gamkrelidze | A measure of "smoothness"of multidimensional distributions of integer-valued random vectors[END_REF], [START_REF] Gamkrelidze | On the application of a smoothness function in proving a local limit theorem[END_REF] notably, also in remarkable counterexamples. We thus have the equivalence

(2.9) ϑ X > 0 ⇐⇒ δ X < 2.
An important consequence is that condition δ X < 2 implies that X has a Bernoulli component. This follows from Lemma 4.1. The two characteristics seem through formula (2.9) equivalent. However the second is used in Gamkrelidze's works in relation with the method of characteristic functions, whereas the first is related to the Bernoulli part extraction, which is known to be characteristic function free.

Remark 2.3. For a random variable X taking values in a lattice L(v 0 , D), the linear transformation

X j = X j -v 0 D ,
allows one to reduce to the case v 0 = 0, D = 1.

The paper is organized as follows. In the next Section we prove a uniform version of Theorem 1.1 with drift. In Section 4 we collect the necessary auxiliary results. Finally in Section 5 we give the proof of Theorem 2.1.

Notation. Throughout C denotes an absolute constant whose value may change at each occurence.

An intermediate result

For the proof of the main result, an extension of Theorem 1.1 to value distribution of divisors of B n + u, u being any non-negative integer, is necessary. Interestingly enough, the estimate we prove is uniform over all u ≥ 0. We begin with a preliminary observation. The restriction d ≤ n in the estimate of Theorem 1.1 is superfluous. That estimate is in turn also uniform over all

d ≥ 2. If d > n, as the first term is 0, (1.3) provides an estimate of the central term Θ(d, n)/d, for d > n.
This point has some degree of importance as it will be used in the course of the proof of the main result. The proof of the Theorem below is similar to the one of Theorem 1.1, which corresponds to the case u = 0, see proof of Theorem II in [START_REF] Weber | Small divisors of Bernoulli sums[END_REF]. We will provide the necessary details to understand this point, notably. Theorem 3.1. There exists two absolute constants C and n 0 such that for all n ≥ n 0 ,

sup u≥0 sup d≥2 P d|B n + u - 1 d 0≤|j|<d e iπ(2u+n) j d e -n π 2 j 2 2d 2 ≤ C (log n) 5/2 n -3/2 . Put (3.1) Θ u (d, n) = ∈Z e iπ(2u+n) j d e -n π 2 j 2 2d 2 . Note that Θ 0 (d, n) = Θ(d, n).
As a corollary we get, Corollary 3.2. For some absolute constant C, we have

sup u≥0 sup d≥2 P d|B n + u - Θ u (d, n) d ≤ C (log n) 5/2 n -3/2 ,
for all n ≥ n 0 .

Proof of Theorem 3.1. Let d, n, u be arbitrary non-negative integers. As

(3.2) dδ d|Bn+u = d-1 j=0 e 2iπ j d (Bn+u) ,
we obtain after integration

P d|B n + u = 1 d d-1 j=0 e 2iπ j d u Ee 2iπ j d Bn = 1 d d-1 j=0 e 2iπ j d u e 2iπ j d + 1 2 n = 1 d d-1 j=0 e iπ(2u+n) j d cos πj d n . (3.3)
We first operate a reduction due to symmetries. The following Lemma is formula (2.3) in [START_REF] Weber | Small divisors of Bernoulli sums[END_REF], which is only stated. As we shall see, the role of these symmetry properties is important and we have included a detailed proof. Lemma 3.3. For any integers d ≥ 2, n ≥ 2 and u ≥ 0,

P d|B n + u = 1 d + 2 d 1≤j<d/2 cos π(2u + n) j d cos πj d n .
Proof. Let d = 2δ with δ ≥ 1. Then (3.4)

P 2δ|B n + u = 1 2δ δ-1 j=0 e iπ(2u+n) j 2δ cos πj 2δ n + 1 2δ 2δ-1 j=δ e iπ(2u+n) j 2δ cos πj 2δ n Letting first j = 2δ -v, v = 1, . . . , δ in the last sum, we have 2δ-1 j=δ e iπ(2u+n) j 2δ cos πj 2δ n = δ v=1 e iπ(2u+n) 2δ-v 2δ cos π(2δ -v) 2δ n = δ v=1 e i(2u+n)(π-πv 2δ ) cos(π - πv 2δ ) n . But (3.5) e im(π-x) cos n (π -x) = (-1) m e -imx (-1) n cos n x = (-1) m+n e -inx cos n x. Thus 2δ-1 j=δ e iπ(2u+n) j 2δ cos πj 2δ n = δ v=1 e i(2u+n)(π-πv 2δ ) cos(π - πv 2δ ) n = δ v=1 e -i(2u+n) πv 2δ cos πv 2δ n = δ-1 v=1 e -i(2u+n) πv 2δ cos πv 2δ n , since for v = δ, we have e -i(2u+n) πv 2δ cos πv 2δ n = e -i(2u+n) π 2 cos π 2 n = 0.
Carrying this back to (3.4) gives,

P 2δ|B n + u = 1 2δ δ-1 j=0 e iπ(2u+n) j 2δ cos πj 2δ n + 1 2δ δ-1 j=1 e -i(2u+n) πj 2δ cos πj 2δ n = 1 2δ + 1 2δ δ-1 j=1 e iπ(2u+n) j 2δ + e -i(2u+n) πj 2δ cos πj 2δ n = 1 2δ + 2 2δ δ-1 j=1 cos π(2u + n) j 2δ cos πj 2δ n . (3.6)
Now let d = 2δ + 1 with δ ≥ 1 and write that

P 2δ + 1|B n + u = 1 2δ + 1 δ j=0 e iπ(2u+n) j 2δ+1 cos πj 2δ + 1 n + 1 2δ + 1 2δ j=δ+1 e iπ(2u+n) j 2δ+1 cos πj 2δ + 1 n . (3.7)
With the variable change j = 2δ + 1 -v, v = 1, . . . δ, the second sum writes using (3.5), 

) (2δ+1-v) 2δ+1 cos π(2δ + 1 -v) 2δ + 1 n = δ v=1 e -iπ(2u+n) v 2δ+1 cos πv 2δ + 1 n . (3.8) Thus P 2δ + 1|B n + u = 1 2δ + 1 δ j=0 e iπ(2u+n) j 2δ+1 cos πj 2δ + 1 n + 1 2δ + 1 δ j=1 e -iπ(2u+n) j 2δ+1 cos πj 2δ + 1 n = 1 2δ + 1 + 1 2δ + 1 δ j=1 e iπ(2u+n) j 2δ+1 + e -iπ(2u+n) j 2δ+1 cos πj 2δ + 1 n = 1 2δ + 1 + 2 2δ + 1 δ j=1 cos π(2u + n) j 2δ + 1 cos πj 2δ + 1 n . (3.9)
From (3.6) and (3.9) follows that

P d|B n + u = 1 d + 2 d 1≤j<d/2 cos π(2u + n) j d cos πj d n . (3.10)
Thanks to the reduction operated, we can work in the first quadrant, instead of the halfcircle, which will permit us later, to get in some particular remarkable cases of divisors of n close to √ n, strong improvements of the general estimate we are now going to prove. Let α > α > 0. Let (3.11)

ϕ n = 2α log n n 1/2 , τ n = sin ϕ n /2 ϕ n /2 .
We assume n sufficiently large, n ≥ n(α, α ) say, so that (3.12)

τ n ≥ (α /α) 1/2 , (∀n ≥ n(α, α )).
Consider two sectors .

A n =]0, ϕ n [, A n = [ϕ n , π 2 [. If πj d ∈ A n , then | cos πj d | ≤ cos ϕ n . And | cos πj d | n ≤ cos ϕ n n ≤ e -2n
By using the elementary inequality:

|e u -e v | ≤ |u -v| for u, v ≤ 0 we get |D| ≤ n 1≤j<d/2 : πj d ∈An log cos πj d + π 2 j 2 2d 2 .
Since log(1 -2 sin 2 (x/2)) = -x 2 /2 + O(x 4 ) near 0 and 

A n =]0, ϕ n [, we deduce |D| ≤ n 1≤j<d/2 : πj d ∈]0,ϕn[ log cos πj d + π 2 j 2 2d 2 ≤ Cn 1≤j<d/2 : πj d ∈]0,ϕn[ ( j d ) 4 ≤ Cn d 4 j≤ d π ( 2α log n n ) 1/2 j 4 ≤ C α d(log n)
cos π(2u + n) j d cos n πj d -e -n π 2 j 2 2d 2 ≤ dn -α /2 + dn -α /2 + C α d(log n) 5/2 n -3/2 ≤ C α d(log n) 5/2 n -3/2 . (3.16)
Dividing both sides by d, and reporting next the obtained estimate into (3.3) gives in view of Lemma 3.3 (3.17)

P d|B n + u - 1 d - 1 d 1≤|j|<d/2 e iπ(2u+n) j d e -n π 2 j 2 2d 2 ≤ C α (log n) 5/2 n -3/2 .
Noticing now that no condition on d ≥ 2 is made, and that all constants involved in the above calculations are independent from u, we obtain by giving a value > 3/2 to α, α and noting n 0 = n(α, α ), C = C α , that for all n ≥ n 0 , (3.18) sup

u≥0 sup d≥2 P d|B n + u - 1 d 0≤|j|<d e iπ(2u+n) j d e -n π 2 j 2 2d 2 ≤ C (log n) 5/2 n -3/2 .
This establishes Theorem 3.1.

Remark 3.4. The proof can be summarized as follows, if

(3.19) A = 1≤j<d/2 πj d ∈An cos n πj d -e -n π 2 j 2 2d 2 , A = 1≤j<d/2 πj d ∈A n | cos πj d | n + e -n π 2 j 2 2d 2
then for all n ≥ n 0 and d ≥ 2, A + A ≤ C d (log n) 5/2 n -3/2 . The cosine parts represent P{d|B n + u}, and the exponential parts the corresponding partial sums of Θ u (d, n).

Remark 3.5. The proof given is transposable to other systems of independent random variables when such symmetries exist. This is not the case for the Hwang-Tsai model of the Dickman function, neither for the Cramér model of primes for instance, see [START_REF] Weber | Critical probabilistic characteristics of the Cramér model for primes and arithmetical properties[END_REF].

Proof of Corollary 3.2. Recall that by (3.1),

Θ u (d, n) = ∈Z e iπ(2u+n) j d e -n π 2 j 2 2d 2 .
Consider the remainder r := j≥d/2 e -n π 2 j 2 2d 2 . By Theorem 3.1 and using the triangle inequality, (3.20) P d|B n + u -

1 d ∈Z e iπ(2u+n) d e -n π 2 2 2d 2 ≤ C (log n) 5/2 n -3/2 + 2r d .
We prove that for all integers d ≥ 2 and n ≥ 2, 

r ≤ C e -π 2 n 72 . (3.21) -If d = 2, r = ∞ j=1 e -n π 2 j 2 8 ≤ e -π 2 n 8 + ∞ j=2 πj 2 √ 2 π(j-1) 2 √ 2 e -nx 2 dx = e -π 2 n 8 + ∞ π 2 √ 2 e -nx 2 dx (x = y √ 2n ) = e -π 2 n 8 + ∞ π √ n 2 e -y 2 /2 dy √ 2n ≤ Ce -π 2 n 8 . -If d ≥ 3, then d 2 -1 d ≥ d 2 -d 3 d = 1 6 . Therefore r ≤ ∞ j≥d/2 πj √ 2d π(j-1) √ 2d e -nx 2 dx ≤ ∞ π( d 2 -1) √ 2d e -nx 2 dx (x = y √ 2n ) ≤ ∞ π 6 √ 2 e -nx
P d|B n + u - 1 d ≤ n -α .
(ii) Let 0 < ρ < 1. Let also 0 < ε < 1, and suppose n sufficiently large so that τ n ≥ √ 1 -ε, where

τ n = sin ψ n /2 ψ n /2 ψ n = 2n ρ n 1/2 .
Then,

sup u≥0 sup d<(π/ √ 2)n (1-ρ)/2 P d|B n + u - 1 d ≤ e -(1-ε)n ρ . Proof. (i) If d < π n 2α log n , then πj d > π π n 2α log n = 2α log n n = ϕ n ,
and so {1 ≤ j < d/2 : πj d ∈ A n } = ∅. In view of Lemma 3.3, (3.13), we get: For each α > α > 0 and n such that τ n ≥ (α /α) 1/2 , we have

(3.24) sup u≥0 sup d<π n 2α log n P d|B n + u - 1 d ≤ n -α .
(ii) Now, let 0 < ρ < 1. Consider the modified sectors

A n =]0, ψ n [, A n = [ψ n , π 2 [. 
where

ψ n = 2n ρ n 1/2 τ n = sin ψ n /2 ψ n /2 .
Let also 0 < ε < 1, and suppose n sufficiently large for τ n to be greater than

√ 1 -ε. Exactly as before, if πj d ∈ A n , then | cos πj d | ≤ cos ψ n , so that | cos πj d | n ≤ (cos ψ n ) n ≤ e -2n sin 2 (ψn/2) . And 2n sin 2 (ψ n /2) = 2n(ψ n /2) 2 τ 2 n = n ρ τ 2 n ≥ (1 -ε)n ρ . We deduce 1≤j<d/2 : πj d ∈ A n cos πj d n ≤ de -(1-ε)n ρ /2. Since ψ n = 2n ρ n 1/2 ≤ πj d < π 2 , we further get (3.25) 1≤j<d/2 : πj d ∈A n e -n π 2 j 2 2d 2 ≤ de -(1-ε)n ρ /2.
For the same reasons as before, if d < π

n 2n ρ , then {1 ≤ j < d/2 : πj d ∈ A n } = ∅.
We obtain in a similar fashion to (1),

sup u≥0 sup d<(π/ √ 2)n (1-ρ)/2 P d|B n + u - 1 d ≤ e -(1-ε)n ρ .

Auxiliary Results

Let L(v 0 , D) = v k = v 0 + Dk, k ∈ Z , where v 0 and D > 0 are some reals. Let X be a random variable such that P{X ∈ L(v 0 , D)} = 1. Put

f (k) = P{X = v k }, k ∈ Z. Let ϑ X = k∈Z f (k) ∧ f (k + 1).
We assumed in (2.2) that ϑ X > 0. If the span D is not maximal this may be not satisfied. Note that ϑ X < 1. Let 0 < ϑ ≤ ϑ X . One can associate to ϑ and X a sequence {τ k , k ∈ Z} of non-negative reals such that (4.1)

τ k-1 + τ k ≤ 2f (k), k∈Z τ k = ϑ. For instance τ k = ϑ ϑ X (f (k) ∧ f (k + 1)
) is suitable, but the real value of τ k does not matter, that is, the first condition in (4.1) is the only requirement to make this coupling method work. This is important to notice for the sequel. Now define a pair of random variables (V, ε) as follows:

P{(V, ε) = (v k , 1)} = τ k , P{(V, ε) = (v k , 0)} = f (k) - τ k-1 +τ k 2 . (∀k ∈ Z) (4.2)
One easily verifies that

P{V = v k } = f (k) + τ k -τ k-1 2 , P{ε = 1} = ϑ = 1 -P{ε = 0}. (4.3) Further, for any a, b ∈ C, (4.4) E (V,ε) e aV +bε = k∈Z τ k e av k +b + f (k) - τ k-1 + τ k 2 e av k .
Lemma 4.1. Let L be a Bernoulli random variable which is independent of (V, ε), and put

Z = V + εDL. We have Z D = X.
Proof. ( [START_REF] Davis | An elementary proof of the local central limit theorem[END_REF], [START_REF] Weber | A sharp correlation inequality with an application to almost sure local limit theorem[END_REF]) Plainly,

P{Z = v k } = P V + εDL = v k , ε = 1} + P V + εDL = v k , ε = 0} = P{V = v k-1 , ε = 1} + P{V = v k , ε = 1} 2 + P{V = v k , ε = 0} = τ k-1 + τ k 2 + f (k) - τ k-1 + τ k 2 = f (k).
Remark 4.2. This decomposition also applies if X is a Bernoulli random variable, we have X D = V + εL. See Remark 5.1 where (V, ε) is defined. The usefulness of this decomposition is made clear in the proof of the second part of Theorem 2.1. Let X j , j = 1, . . . , n, be independent random variables, each satisfying assumption (2.6) and let 0 < ϑ i ≤ ϑ X i , i = 1, . . . , n. Iterated applications of Lemma 4.1 allow us to associate to them a sequence of independent vectors (V j , ε j , L j ), j = 1, . . . , n such that

V j + ε j DL j , j = 1, . . . , n D = X j , j = 1, . . . , n . (4.5)
Further the sequences {(V j , ε j ), j = 1, . . . , n} and {L j , j = 1, . . . , n} are independent. For each j = 1, . . . , n, the law of (V j , ε j ) is defined according to (4.2) with ϑ = ϑ j . And {L j , j = 1, . . . , n} is a sequence of independent Bernoulli random variables. Let E L , P L (resp. E (V,ε) , P (V,ε) ) stand for the integration symbols and probability symbols relatively to the σ-algebra generated by the sequence {L j , j = 1, . . . , n} (resp. {(V j , ε j ), j = 1, . . . , n}).

Set (4.6) S n = n j=1 X j , W n = n j=1 V j , M n = n j=1 ε j L j , B n = n j=1 ε j .
Lemma 4.3. We have the representation

{S k , 1 ≤ k ≤ n} D = {W k + DM k , 1 ≤ k ≤ n}.
And M n D = Bn j=1 L j . We also need the following technical lemma. Lemma 4.4. Let ϑ X i = ϑ > 0, i = 1, . . . , n, and let 0 < θ ≤ ϑ < 1. For any positive integer n, we have

P{B n ≤ θn} ≤ 1 -ϑ 1 -θ n(1-θ) ϑ θ nθ .
Let 1 -ϑ < ρ < 1. There exists 0 < θ < ϑ, θ = θ(ρ, ϑ) such that for any positive integer n

P{B n ≤ θn} ≤ ρ n .
Proof. By Tchebycheff's inequality, for any λ ≥ 0,

P{B n ≤ θn} = P{e -λBn ≥ e -λθn } ≤ e -λθn E e λBn = e λθ E e λε n = e λθ 1 -ϑ(1 -e -λ ) n . Put x = e λ , (x ≥ 1) and let ϕ(x) = x θ 1 -ϑ(1 -x -1 ) . Then P{B n ≤ θn} ≤ ϕ(x) n . We have ϕ (x) = x θ-2 (xθ(1 -ϑ) -(1 -θ)ϑ).
Thus ϕ reaches its minimum at the value

x 0 = (1-θ)ϑ θ(1-ϑ) .
And we have ϕ(x 0 ) = ψ(θ), where we put

ψ(θ) = 1 -ϑ 1 -θ 1-θ ϑ θ θ , 0 < θ ≤ ϑ.
We note that ψ(ϑ) = 1, lim θ→0+ ψ(θ) = 1 -ϑ and ψ is nondecreasing

((log ψ) (θ) = log ϑ 1-ϑ θ 1-θ ≥ 0, 0 < θ ≤ ϑ). Let 1 -ϑ < ρ < 1.
We may select 0 < θ ρ,ϑ < ϑ depending on ρ, ϑ only such that ψ(θ) = ρ. This yields the bound

P{B n ≤ θn} ≤ ρ n . (4.7) 5. Proof of Theorem 2.1.
Let 0 < ϑ ≤ ϑ X . Let also {τ k , k ∈ Z} be a sequence of non-negative reals satisfying condition (4.1), and which will be specified later on together with ϑ. We apply Lemma 4.3 and denote again

X j = V j + Dε j L j , S n = W n + M n , j, n ≥ 1.
We now note that

P{d|S n + u} = E (V,ε) P L d| D n j=1 ε j L j + W n + u . (5.1) 
As n j=1 ε j L j D = Bn j=1 L j , we have

P L d D n j=1 ε j L j + W n + u = P L d D Bn j=1 L j + W n + u = P L d D Bn j=1 L j + W n + u .
By assumption D = 1. Let A n = B n ≤ θn . We have

P{d|S n + u} - 1 d 0≤| |<d E (V,ε) e iπ(2(Wn+u)+Bn) d -Bnπ 2 2 2d 2 = E (V,ε) χ(A n ) + χ(A c n ) P L d| n j=1 ε j L j + W n + u - 1 d 0≤| |<d e iπ(2(Wn+u)+Bn) d -Bnπ 2 2 2d 2
.

On the one hand by Lemma 4.4,

E (V,ε) χ(A n ) P L d| n j=1 ε j L j + W n + u - 1 d 0≤| |<d e iπ(2(Wn+u)+Bn) d Bnπ 2 2 2d 2 ≤ 2P{A n } ≤ 2ρ n .
On the other hand, Theorem 3.1 implies that for some C universal,

sup u≥0 sup d≥2 P L d | Bn j=1 L j + W n + u - 1 d 0≤| |<d e iπ(2(Wn+u)+Bn) d -Bnπ 2 2 2d 2 ≤ C (log B n ) 5/2 B 3/2 n . (5.2)
This bound being true P (V,ε) -almost surely. We observe that the function g(x) = (log x) 5/2

x 3/2 decreases on the half-line [e 5/3 , ∞). Thus for n ≥ max(n 0 , e 5/3 /θ) := N , where n 0 arises from Theorem 3.1,

E (V,ε) χ(A c n ) P L d| n j=1 ε j L j + W n - 1 d 0≤| |<d e iπ(2Wn+Bn) d Bnπ 2 2 2d 2 ≤ C E (V,ε) χ B n > θn (log B n ) 5/2 B 3/2 n ≤ C (log θn) 5/2 (θn) 3/2 ≤ C θ 3/2 (log n) 5/2 n 3/2 , uniformly over u ≥ 0, d ≥ 2. Therefore, sup u≥0 sup d≥2 P{d|S n + u} - 1 d 0≤| |<d E (V,ε) e iπ(2(Wn+u)+Bn) d -Bnπ 2 2 2d 2 ≤ C θ 3/2 (log n) 5/2 n 3/2 + 2ρ n . (5.3) Now, as W n = n j=1 V j , B n = n j=1 ε j , 1 d 0≤| |<d e iπ(2(Wn+u)+Bn) d -Bnπ 2 2 2d 2 = 1 d 0≤| |<d e iπ(2( n j=1 V j +u)+ n j=1 ε j ) d -( n j=1 ε j ) π 2 2 2d 2 = 1 d 0≤| |<d e iπ(2 n j=1 V j +u) d +( n j=1 ε j )(iπ d -π 2 2 2d 2 ) .
By integrating,

1 d 0≤| |<d E (V,ε) e iπ(2 n j=1 V j +u) d +( n j=1 ε j )(iπ d -π 2 2 2d 2 ) = 1 d 0≤| |<d E (V,ε) e iπ(2V +u) d +ε(iπ d -π 2 2 2d 2 ) n .
Recalling (4.4),

E (V,ε) e aV +bε = k∈Z τ k e av k +b + f (k) - τ k-1 + τ k 2 e av k , it follows that E (V,ε) e iπ(2V +u) d +ε(iπ d -π 2 2 2d 2 ) = k∈Z τ k e iπ d (2v k +u)+(iπ d -π 2 2 2d 2 ) + f (k) - τ k-1 + τ k 2 e iπ(2v k +u) d .
Hence we are left with the sum 1 d

0≤| |<d

E (V,ε) e iπ(2 n j=1 V j +u) d +( n j=1 ε j )(iπ d -π 2 2 2d 2 ) = 1 d 0≤| |<d E (V,ε) e iπ(2V +u) d +ε(iπ d -π 2 2 2d 2 ) n = 1 d 0≤| |<d k∈Z τ k e iπ d (2v k +u)+(iπ d -π 2 2 2d 2 ) + f (k) - τ k-1 + τ k 2 e iπ(2v k +u) d n . (5.4)
We now specify the sequence {τ k , k ∈ Z} and hence ϑ. We choose ϑ according to (2.6) so that by (2.5) the equation

(5.5) τ k-1 + τ k 2 = f (k) -µ k ,
is satisfied for all k ∈ Z, recalling that {µ k , k ∈ Z} is a sequence of non-negative reals satisfying condition (2.3), µ = k∈Z µ k satisfies condition (2.4), namely 1 -µ < ϑ X . The solutions to Equation (2.5) are

τ m = ≤j (x 2 -x 2 -1 ) if m = 2j, ≤j (x 2 +1 -x 2 ) m = 2j + 1, (5.6)
where we set x u = 2(f (u) -µ u ). So that,

τ 2j + τ 2j+1 = ≤j (x 2 -x 2 -1 ) + ≤j (x 2 +1 -x 2 ) = x 2j+1 = 2(f (2j + 1) -µ 2j+1 ). Quite similarly, τ 2j + τ 2j-1 = x 2j = 2(f (2j) -µ 2j ).
So that (5.5) holds. By construction (5.7)

τ k-1 + τ k ≤ 2f (k), ϑ := k∈Z τ k = 1 -µ.
Thus (4.1) is obviously satisfied. Note that quantities τ k , µ k do not rely on n.

Using (2.7), (5.4) may be continued as follows,

= 1 d 0≤| |<d k∈Z τ k e iπ d (2v k +u)+(iπ d -π 2 2 2d 2 ) + f (k) - τ k-1 + τ k 2 e iπ(2v k +u) d n = 1 d 0≤| |<d k∈Z τ k e iπ d (2v k +u)+(iπ d -π 2 2 2d 2 ) + µ k e iπ(2v k +u) d n = 1 d 0≤| |<d e (iπ d -π 2 2 2d 2 ) ϑ E e iπ d (2 X+u) + s π(2v k + u) d n . (5.8)
By carrying back estimate (5.8) to (5.3), we finally get in view of (5.4),

P{d|S n + u} - 1 d 0≤| |<d e (iπ d -π 2 2 2d 2 ) ϑ E e iπ d (2 X+u) + s π(2v k + u) d n ≤ C θ 3/2 (log n) 5/2 n 3/2 + 2ρ n . (5.9)
Here C is universal, and this is true for all u ≥ 0, d ≥ 2, n ≥ 2. The proof of the first assertion is achieved by taking in both sides the supremum over all u ≥ 0 and d ≥ 2, and noticing that in the inner sum of the left-term, the summand corresponding to = 0 is equal to ϑ + µ = 1.

We now prove the second assertion. An obvious consequence of the first assertion is that for

d ≥ 2, n ≥ 2, sup u≥0 P{d|S n + u} - 1 d ≤ 1 d 0<| |<d e -π 2 2 2d 2 ϑ + µ n + C θ 3/2 (log n) 5/2 n 3/2 + 2ρ n . (5.10)
On expanding the summand and recalling that µ = 1 -ϑ, we get sup u≥0 P{d|S n + u} -

1 d ≤ 1 d 0<| |<d n m=0 n m ϑ m e -m π 2 2 2d 2 (1 -ϑ) n-m + C θ 3/2 (log n) 5/2 n 3/2 + 2ρ n . (5.11)
Let D be a test set of divisors ≥ 2, and note D ϕ the section of D at height ϕ, and |D ϕ | its cardinality. Let 0 < ε < 1. Then for all reals u ≥ 0, all integers ϕ ≥ 2,

1 |D ϕ | d∈Dϕ P{d|S n + u} - 1 d ≤ 1 |D ϕ | d∈Dϕ 1 d 0<| |<d n m=0 n m ϑ m (1 -ϑ) n-m e -m π 2 2 2d 2 + C θ 3/2 (log n) 5/2 n 3/2 + 2ρ n ≤ 1 |D ϕ | d∈Dϕ 1 d 0<| |<d n m=0 n m ϑ m 1 -(e -ε π 2 2 2d 2 ϑ) n-m e -m π 2 2 2d 2 + C θ 3/2 (log n) 5/2 n 3/2 + 2ρ n , (5.12)
where we have bounded in the last line of calculations (1 -ϑ) by 1 -(e -ε π 2 2 2d 2 ϑ) . This device will permit us to well estimate the above sums.

Then,

∞ n=2 sup u≥0 sup ϕ≥2 1 |D ϕ | d∈Dϕ P{d|S n + u} - 1 d ≤ sup u≥0 sup ϕ≥2 1 |D ϕ | d∈Dϕ 0<| |<d 1 d ∞ n=2 n m=0 n m e -m π 2 2 2d 2 ϑ m 1 -(e -επ 2 2 /2d 2 ϑ) n-m + H, (5.13) 
where we set

H = C θ 3/2 ∞ n=2 (log n) 5/2 (n) 3/2 + 2 ∞ n=2 ρ n .
Now we utilize a second device. By permuting sums,

≤ sup u≥0 sup ϕ≥2 1 |D ϕ | d∈Dϕ 0<| |<d 1 d ∞ m=0 e -m π 2 2 2d 2 ϑ m n≥m n m 1 -(e -ε π 2 2 2d 2 ϑ) n-m + H. (5.14) Let ϑ 1 = e -επ 2 2 /2d 2 ϑ. The sum in brackets n≥m n m (1 -ϑ 1 ) n-m is ϑ -m-1 1 
. This follows from the formula ∞ v=0 v+z z From there by taking ε = 1/2 assertion (ii) easily follows.

x v = 1 (1-x) z+1 valid for |x| < 1, z ≥ 0. We can thus continue as follows = sup u≥0 sup ϕ≥2 1 |D ϕ | d∈Dϕ 0<| |<d 1 d ∞ m=0 e -m π 2 2 2d 2 ϑ m (e -ε π 2 2 2d 2 ϑ) -m-1 + H = sup u≥0 sup ϕ≥2 1 |D ϕ | d∈Dϕ 0<| |<d e ε π 2 2 2d 2 ϑ d ∞ m=0 e -(1-ε)m π 2 2 2d 2 + H = sup u≥0 sup ϕ≥2 1 ϑ |D ϕ | d∈Dϕ 0<| |<d e επ 2 2 /2d 2 d(1 -e -(1-ε)π 2 2 /2d 2 ) + H ≤ sup u≥0 sup ϕ≥2 1 ϑ |D ϕ | d∈Dϕ 0<| |<d e επ 2 /2 d(1 -e -(1-ε)π 2 /2d 2 ) + H ≤ 2e επ 2 /2 ϑ (1 -e -(1-ε)π 2 /8
Remark 5.1. If X is a Bernoulli random variable, we have a similar decomposition. First D = 1, v k = k, k ∈ Z, f (k) = 1/2 if k ∈ {0, 1} and is 0 otherwise. Whence f (k)∧f (k+1) = 1/2 if k = 0, and 0 otherwise, so that ϑ X = 1/2. The first condition in (4.1) further implies that τ k = 0 if k = 0, and τ 0 ≤ 1. We have ϑ = τ 0 , where ϑ can be chosen in [0, 1/2]. This is a case where the terms of the sequence {τ k , k ∈ Z} are all 0 except τ 0 . The pair (V, ε) is defined as follows      P{(V, ε) = (0, 1)} = τ 0 , P{(V, ε) = (0, 0)} = 1/2 -τ 0 2 P{(V, ε) = (1, 0)} = 1/2 -τ 0 2 .

(5.17 So that if p is an integer, the summand corresponding to S np expresses as the summand corresponding to S n , altered by a factor p in the exponent term.

  e -π 2 /16 ) , C2 = C ∞ n=N (log n) 5/2

  By replacing H by its value we obtain the following bound,

  )Thus P{V = 0} = 1/2 + τ 0 /2, P{V = 1} = 1/2 -τ 0 /2, P{V = k} = 0 otherwise, P{ε = 1} = ϑ = 1 -P{ε = 0}. By Lemma 4.1 X = V + εL. Furthermore E (V,ε) e aV +bε = τ 0 e b + 1/2 -Let A and U be positive reals. Then for d ≥ 1,

Remark 5 . 3 .( 1 - 2 2d 2 = e -π 2 p 2 2d 2

 531222 It concerns the role of the summand e -π 2 2 2d 2 ϑ + µ n . Let p > 1. By Hölder's inequality, recalling that µ = 1 -ϑ, e -ϑ) n-m e -mp π 2 ϑ + µ n .
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