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Abstract

The present paper is aimed to propose a multi-parameter feedback control method combined with

couple stress elasticity to model piezoelectric micro plate coupled systems. The proposed methodology

can be used to design controllers for tuning vibration and wave propagation properties of micro scale

plates based on coupled piezoelectric sensors and actuators. Specifically, we use a three-parameter

relationship that describes the voltage gain within the sensor-to-actuator circuit involving multiple

dependence based on mass, damping and stiffness. Consequently, effect of these parameters can be

simulated either independently or collectively so as to obtain the optimal control strategy with respect

to the required vibroacoustic properties. Meanwhile, since micro plates are involved, the inherent

microstructure effects must be accounted for. Hence, the modified couple stress elasto-dynamics is

applied and the micro plate model is discretised with a four-node quadrilateral non-conforming element

that offers nodal compatibility with high-order theories of elasticity. Based on the proposed numerical

methodology, we investigated the feedback control parametrisation for a reference micro plate coupled

system which presents significant microstructure effects. Our analysis allowed characterisation of the

three control parameters based on their individual effects, and revealed that their combined effect cannot

be predicted by considering direct superposition of their individual behaviours. Therefore, the proposed

computational methodology provides a convenient solution for the choice and parametrisation of the

feedback controller leading to tunable band gap properties of micro scale plate structures.

Keywords: Active tuning; Vibration control; Piezoelectric; Couple stress theory; Band gap analysis

1 Introduction

Active tuning of vibrations in micro scale electromechanical systems can be achieved by employing

piezoelectric micro components as sensors and actuators coupled via an external control algorithm that

regulates the real-time state of the system, leading to controlled vibration. Recently, with the rapid

development of fabrication technologies in miniaturised systems, integration of piezoelectric micro com-

ponents into micro-to-nano scale devices has led to remarkable applications such as nano oscillators

[1] and resonators [2], micro bio-mimetic robots [3], ultrasonic sensing systems [4], etc. Consequently,

tuning of vibration properties for micro scale piezoelectric coupled systems has become an important
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topic. Meanwhile, due to the emergence of microstructure effects, vibroacoustic behaviours of these

miniaturised systems are frequently subject to size dependence which makes their design and optimi-

sation a challenging task, both on the aspect of mechanical modelling and on the associated control

strategies.

Vibration of piezoelectric coupled systems can be tuned for wavelengths on the length scale of

the system’s microstructure. Therefore, systems fabricated on the macro scale mainly focus on low-

frequency vibrations either for vibration attenuation or for energy harvesting. Meanwhile, since macro

scale systems do not present size effect, classical theories of elasto-dynamics can be readily applied to

offer accurate predictions. This is confirmed with recent investigations [5, 6, 7, 8, 9, 10], which led to

numerical and experimental prototypes based on macro scale beam and plate coupled models. Micro

scale piezoelectric systems, on the contrary, are intended for tuning high-frequency acoustic waves, even

ultrasonic waves [11, 12, 13]. Furthermore, since the microstructure is designed on length scales usually

below millimetre level, size dependence becomes non negligible in assessing the vibroacoustic properties.

To incorporate size dependence into the material behaviour, a series of high-order elastic models have

been proposed, among which the first investigations can be traced back to the work of Mindlin [14], who

initiated the research on strain gradient theory using 16 material scale parameters. Subsequently, Lam

et al.[15] reduced the number of material scale parameters and proposed a modified three-parameter

strain gradient theory. To further simplify the material scale description, Yang et al.[16] proposed a

modified couple stress theory which requires only one material scale parameter. Thanks to its simplicity,

many investigations have been performed on the basis of Yang’s work. In static analysis, we can cite the

development of Mindlin plate finite element based on the modified couple stress theory [17]. Then, in

dynamic analysis of band structures, micro scale composite plates have been studied using the modified

couple stress theory, first analytically [18], then numerically [19].

Beside the microstructure effects, another important aspect in the design of micro plate vibration

coupled system is the choice and optimisation of the control strategy. From a general point of view,

vibration control strategies can be divided into two categories: passive control and active control.

Passive control refers to techniques that prepare band structures based on microstructure design and

material assembly. It has been widely applied [20, 21, 22] in areas requiring vibration attenuations

within fixed frequency band. For general applications that require tunable acoustic properties on a

broader frequency range, we prefer active feedback control which employs closed circuits of sensing and

actuating components. We cite, among recent applications, the development of active control on a

T-shaped metamaterial with switchable waveguide [23] and the design of a soft acoustic metamaterial

membrane with tunable band behaviours [24], etc. The cited applications require implementing coupled

systems of sensors and actuators. During their operation, vibration induced voltage is enhanced by the

external circuit before it is fed back to the actuator. The coupled system adjusts in real-time the state

of vibroacoustic properties. It is therefore important to carefully design the control method which

commonly takes the following forms: The first one, by direct proportional feedback control with Va =

−gcVs , for which the actuating voltage is a linear function of the sensing voltage, itself is proportional

to the displacement measure. The second, by velocity based control [25], with Va = −gb ∂Vs∂t , for which

the actuating voltage is proportional to the velocity. Then, the third, via acceleration based control

[5], with Va = −ga ∂
2Vs
∂t2 , for which the actuating voltage is function of the acceleration. Within the

scope of this work, a general form of feedback control method involving simultaneously the effects of

displacement, velocity and acceleration will be studied. The sensor-to-actuator voltage gain can be

described based on these three parameters independently or collectively.

In this work, we adopt the modified couple stress elasticity combined with Mindlin plate kinematics

to address the microstructure effects of micro plates. Since couple stress elasticity involves second-order

derivatives in the weak form of the equilibrium equation, at least C1 continuous interpolation of nodal
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variables is required. In practice, finite element implementation of strick C1 continuity is not a trivial

task. We use in this work an alternative solution which consists in applying a four-node quadrilateral

plate element with non-conforming formulation [26]. Although this element is C1 discontinuous on the

inter-element boundary, it preserves nodal C1 continuity and offers tolerable compatibility with couple

stress elasticity. To confirm our choice, we conducted the benchmark patch test [17] which did not re-

veal geometrical distortion. Concerning the aspect of control strategy, we implement a three-parameter

feedback control method with multiple dependence with respect to displacement, velocity and accelera-

tion. Both contributions of single-parameter control and multi-parameter control are investigated. The

computational methodology presented here can be used to assist parametrisation of feedback controllers

for general purpose. Regarding the vibration modal analysis for band calculation, we applied the state

space method combined with Floquet Bloch boundary conditions. Furthermore, we performed dynamic

response analysis in frequency domain using transfer functions and the state space method and the

result is compared with the band gap predictions.

The content of this article is organised as follows: we present in Section 2 the dynamic equilibrium

in weak formulation for the piezoelectric coupled system based on the modified couple stress theory.

We address in particular the application of the modified couple stress elasticity into the electromechan-

ical coupling problem. In Section 3, we describe the implementation of the non-conforming four-node

quadrilateral plate finite element. Then, in Section 4, the proposed feedback control strategy with

multiple dependence is described as well as its implementation details. We present in Section 5, tech-

niques that implement the periodic boundary conditions according to Bloch-Floquet theory, which lead

to the unit cell band gap problem. In Section 6, we present three numerical examples that validate

the presented work on the following aspects: first, the account for size dependence by the implemented

piezoelectric micro plate coupled system, then, the effect of multi-parameter control strategy for which

we discuss in detail both the strategies of single parameter control, and multi-parameter control. In the

end, we draw conclusion and remarks in Section 7.

2 Piezoelectric micro plate coupled systems: dy-

namic equations

Band gap behaviours may be subject to size dependence when the problem dimension descends below

millimetre level. In the case of piezoelectric micro plate coupled systems, this means that for very small

problem sizes, the vibration behaviour becomes sensible to the problem size and cannot be accurately

predicted by classical elasto-dynamics. Therefore, a high-order continuum theory, here for instance, the

modified couple stress theory is applied.

2.1 Modified couple stress elasto-dynamics applied to piezo-

electric micro plate coupled system

The studied piezoelectric micro plate coupled system is composed of a based plate (Ωe) and periodically

distributed piezoelectric sensor and actuator patches (Ωp). We suppose the structure on the microscopic

scale for which emergence of size effects should be considered. The periodic structure can be represented

by the unit cell depicted in Fig.(1). We describe geometrical relations of the unit cell with respect to

the Cartesian coordinate system (x, y, z) as indicated in Fig.(1b). The xy-plane lies on the mid-plane

of the base plate. Regarding the material definition, both Ωe and Ωp are modelled as deformable couple

stress continuum using the modified couple stress theory of elasto-dynamics. First proposed by Yang
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et al. [16], the modified couple stress theory allows predicting microstructure effects based on a single

material length scale parameter. In this section, we focus on the modelling of mechanical behaviours

of the micro plate system and their coupling with piezoelectric effects. Therefore, dynamic equations

involving kinematic description, constitutive relations and the equilibrium equation are described.

(a)

Elastic plate

Feedback control

Piezoelectric patch

Sensor

Actuator

Base plate
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Figure 1: (a) Piezoelectric micro plate coupled system. (b) Periodic unit cell and its
geometry described in the Cartesian coordinate system (x, y, z). We use Ωe to denote the
base plate and Ωp the piezoelectric patches. Sensors and actuators are noted by Ωs and
Ωa, respectively, thus, Ωp = Ωs ∪Ωa. Ωs and Ωa are of identical thickness hp. Thickness
of Ωe is h .

Basic relations

We model Ωe and Ωp as deformable couple stress continuum and consider the effect of piezoelectricity

only on Ωp. Therefore, the Gibbs free energy G which involves both the strain energy of Ωe ∪ Ωp and

the piezoelectric effects on Ωp, can be written as

G = Ue + Up

=
1

2

∫
Ωe

(σ : ε+m : χ) dΩ

+
1

2

∫
Ωp

(σ : ε−D ·E + m : χ) dΩ ,

(1)

where dΩ is the unit volume. σ and m are Cauchy stress and deviatoric couple stress tensors. Then

accordingly, ε and χ refer to Cauchy strain and symmetric curvature which can be written as
ε =

1

2

(
∇u+ (∇u)T

)
χ =

1

2

(
∇θ + (∇θ)T

) on Ωe ∪ Ωp , (2)

where u is the displacement vector and θ the rotation vector defined by

θ =
1

2
∇× u , (3)

in which ∇ denotes Hamiltonian operator and “×” cross product symbol. Eq.(2) applies to kinematics

of both the base plate and the piezoelectric patches. To describe the electric field of the piezoelectric

4



patches, we use D and E to denote the electric displacement and the static electric field which derives

from the electric potential ϕ as

E = −gradϕ . (4)

Then, by considering piezoelectric actuator and sensor patches of the same thickness hp, the voltage Va

and Vs measured on the actuators and sensors in the thickness direction, we can express the actuator

and sensor electric field components as

{(Ea)i} =

[
0 0

Va
hp

]T
and {(Es)i} =

[
0 0

Vs
hp

]T
. (5)

We consider that both piezoelectric patches for sensors and actuators are identical in geometry and

material.

Constitutive relations involving elastic-piezoelectric coupling

We distinguish constitutive relations of the base plate and those of the piezoelectric patches that serve

as actuators and sensors. For the base plate (Ωe), linear material behaviours based on couple stress

elasticity is considered. Hence, Cauchy stress σ and deviatoric couple stress m tensors are expressed

as linear functions of Cauchy strain ε and symmetric curvature χ tensors σ = Ce : ε

m = Ae : χ
on Ωe , (6)

where Ce and Ae are, respectively, linear elasticity and couple stress elasticity tensors whose matrix

expressions in (x, y, z) are given in Appendix A. We note that the couple stress elasticity coefficients

expressed in (x, y, z), (Ae)ijkl = (Ce)ijkll
2, are a function of l, which refers to the material length scale

parameter. Commonly determined experimentally, the parameter l measures the couple stress effect

[27][28] and leads to the size dependence of the couple stress model.

The actuators and sensors (Ωp) are deformable continuum with properties of piezoelectricity. There-

fore, the associated constitutive relations simultaneously account for the effects of piezoelectricity, couple

stress elasticity and their coupling. Hence, we have
σ = Cp : ε− e ·E

D = e : ε+ ε ·E

m = Ap : χ

on Ωp , (7)

where Cp and Ap characterise the linear elasticity and couple stress elasticity for the piezoelectric

patches. Regarding the piezoelectric properties, we use e to denote piezoelectricity tensor and ε the

permittivity tensor. Components of e and ε expressed in (x, y, z) are given as follows:

[eijk]3×5 =

 0 0 0 e15 0

0 0 e15 0 0

e31 e31 0 0 0

 , (8)

and

[εij ] =

 ε11 0 0

0 ε11 0

0 0 ε33

 . (9)
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Equation of couple stress elasto-dynamics

By considering distinct material properties for Ωe and Ωp, we can write the kinetic energy K of the

system as

K =
1

2

∫
Ωe

ρeu̇
2dΩ +

1

2

∫
Ωp

ρpu̇
2dΩ , (10)

where ρe and ρp are densities of Ωe and Ωp, respectively. Considering both the kinetic energy [10] and

the Gibbs free energy given in [1], we obtain the Gibbs-type variational principle

δΠG = δG− δK . (11)

By introducing (6,7) into (1), then the obtained Gibbs free energy (1) and kinetic energy (10) into (11),

with the Gibbs-type variational principle which writes δΠG = 0, we obtain the governing equation of

couple stress elasto-dynamics∫
Ωe

δε : Ce : εdΩ +

∫
Ωa

δε : Cp : εdΩ +

∫
Ωs

δε : Cp : εdΩ

−
∫

Ωa

δε : e ·EadΩ −
∫

Ωs

δε : e ·EsdΩ +

∫
Ωa

δχ : Ap : χdΩ

+

∫
Ωs

δχ : Ap : χdΩ +

∫
Ωe

δχ : Ae : χdΩ

−
∫

Ωa

δEa · (e : ε+ ε ·Ea) dΩ −
∫

Ωs

δEs · (e : ε+ ε ·Es) dΩ

= −

(∫
Ωe

ρe ü · δudΩ +

∫
Ωp

ρp ü · δudΩ

)
,

(12)

where the domain occupied by sensors Ωs and actuators Ωa are integrated separately, with Ωp = Ωs∪Ωa.

We note distinct electric fields Es and Ea on the sensors and actuators. However, since they are made

of the same material, we do not distinguish elastic behaviours Cp, Ap and piezoelectric coefficients e

between sensors and actuators.

3 FEM implementation using a Q4 Mindlin micro

plate finite element

Finite element implementation of the modified couple stress elasto-dynamics requires at least nodal

compatibility with C1 continuity due to the presence of second-order derivatives of displacements.

To meet this requirement, we adopt in this work a four-node quadrilateral plate element with non-

conforming formulation, developed by Melosh and Zienkiewicz and Cheung (MZC) [26]. Although C1

discontinuous on the inter-element boundary, this element preserves nodal C1 continuity and therefore

can be considered as a tolerable solution for high-order elasticity implementation.

3.1 Basic kinematics

Basic kinematics of the Mindlin plate is illustrated in Fig.(2). We consider a plate structure of thickness

h subject to uniform force load q and in-plane couple load (pure moment) mx and my, respectively

around x and y axis. Displacement of the plate continuum is described by u (x, y, z), v (x, y, z) and
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w (x, y, z) which are components along x, y and z axis. Kinematics of the plate mid-plane involves

both the displacement components u (x, y), v (x, y) and w (x, y) and rotation components φx (x, y) and

φy (x, y), and we focus on the anti-plane wave propagation which is predominant in the micro plate

structures. Effects of membrane displacements u (x, y) and v (x, y) are ignored.

Middle plane

z y

x

n0

n

h

q
xmym

Figure 2: Mindlin plate kinematics: initial and deformed configurations.

Using the above parameters, we prescribe basic kinematic relations that respect the classical Mindlin

plate assumptions [29] that we recall as follows: (1) Constant plate thickness during deformation. (2)

Plane-stress assumption stipulating negligible normal stress through the plate thickness. (3) Linear

variation of displacement across thickness. As a result, the plate cross section remains flat but not

necessarily perpendicular to the mid-plane during deformation. In addition, we suppose negligible in-

plane stretching in the context of vibroacoustic analysis, for which the effects of deflections and rotations

dominate. Therefore, displacement components of the Mindlin plate can be written as

u (x, y, z) = −zφx (x, y) ,

v (x, y, z) = −zφy (x, y) ,

w (x, y, z) = w0 (x, y) ,

(13)

where φx and φy refer to rotations around x and y axis, respectively; w0 is the displacement in z direction

of the plate mid-plane. We then prescribe with respect to the above description nodal kinematic

parameters that involve deflections, rotations and their derivatives to satisfy the compatibility with

couple stress continuum. This leads to a vector of nine nodal degrees of freedom, which writes for the

node i as

{ui}9×1 =
[
w φx φy

∂w
∂x

∂φx
∂x

∂φy
∂x

∂w
∂y

∂φx
∂y

∂φy
∂y

]T
. (14)

With the kinematics described by Eqs.(13,14), we are ready to derive strain components in accordance

with both the classical theory of elasticity and the high order couple stress continuum.

Cauchy strain ε expression

Relations of classical elasticity are established using Cauchy strains based on first derivatives of Eq.(13).

Components of Cauchy strain can be written as the product between a transformation matrix [Sε] and

a generalised strain {ε̂}, which gives

{ε} = [Sε]{ε̂} , (15)

7



where the transformation matrix [Sε] writes

[Sε] =


−z

−z
1

1

−z

 , (16)

and the generalised strain ε̂ involving both in-plane and out-of-plane components writes

{ε̂} =



∂φx
∂x
∂φy
∂y

∂w0

∂y − φy
∂w0

∂x − φx
∂φx
∂y +

∂φy
∂x

 . (17)

Here, generalised strain {ε̂} derives from the displacement field using

{ε̂} = [Bε]{u} , (18)

with the strain-displacement matrix [Bε] provided in Appendix B.

Symmetric curvature tensor χ expression

Kinematics description based on couple stress continuum requires expression of symmetric curvature

{χ}, whose components are second derivatives of the plate displacement (Eq.(13)). Similar to Cauchy

strain (Eq.(15)), {χ} can also be expressed as the product between a transformation matrix [Sχ] and

a generalised strain {χ̂}, therefore

{χ} = [Sχ]{χ̂} , (19)

where the transformation matrix Sχ writes

[Sχ] =



1
2

− 1
2

− z2
− z2

1
2

 , (20)

and the generalised curvature {χ̂} involving first and second in-plane and out-of-plane derivatives of

the displacement field, writes

{χ̂} =



∂2w0

∂y∂x +
∂φy
∂x

∂2w0

∂x∂y + ∂φx
∂y

∂2φy
∂x2 − ∂2φx

∂y∂x
∂2φy
∂x∂y −

∂2φx
∂y2(

∂2w0

∂y2 +
∂φy
∂y

)
−
(
∂2w0

∂x2 + ∂φx
∂x

)


. (21)

Generalised curvature {χ̂} derives from the displacement field using

{χ̂} = [Bχ]{u} , (22)
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with the curvature-displacement matrix [Bχ] also provided in Appendix B.

3.2 Implementation of the interpolation functions

Finite element implementation of couple stress continuum requires interpolation of nodal parameters

that satisfy at least C1 continuity at the nodes since second derivatives of displacement are involved

as shown in Eq.(21). However, strict C1 continuous interpolation is difficult to achieve as it requires

either important number of nodal parameters or complex element topology. Instead of strict C1 element

continuity, we implement here a non-conforming element based on MZC 4-node interpolation. Although

discontinuous for displacement derivatives on the element boundary, this formulation preserves C1

continuity at the nodes. Given the nodal parameters in Eq.(14), we compose the element displacement

vector for the 4-node formulation as follows

{ue}36×1 =
[
uT1 uT2 uT3 uT4

]T
. (23)

Therefore, we obtain the approximate displacement field by interpolating nodal displacements with the

non-conforming Hermite cubic shape functions[17]

w =
4∑
i=1

Niwi +Niξ
∂wi
∂ξ

+Niη
∂wi
∂η

φx =
4∑
i=1

Niφxi +Niξ
∂φxi
∂ξ

+Niη
∂φxi
∂η

φy =
4∑
i=1

Niφyi +Niξ
∂φyi
∂ξ

+Niη
∂φyi
∂η

,

(24)

in which the shape function expressions are

Ni =
1

8
(1 + ξiξ) (1 + ηiη)

(
2 + ξiξ + ηiη − ξ2 − η2

)
Niξ =

1

8
aξi (1 + ξiξ)

2
(1 + ηiη) (ξiξ − 1)

Niη =
1

8
bηi (1 + ξiξ) (ηiη − 1) (1 + ηiη)

2
,

(25)

and (ξi, ηi) with i = 1, 2, 3, 4, refers to positions of the i-th vertex in the reference coordinates. a and b

refer to the half side length of the rectangular element along x and y directions, respectively.

4 Feedback control and its implementation

Similar to the way generalised strains derive from nodal displacements (Eqs.(18,22)), we express element

actuator/sensor electric field as function of the respective nodal voltage Va and Vs which are scalar

parameters. Therefore, from Eq.(5) we have:

{Ea} = [BV ]{Va}

{Es} = [BV ]{Vs} ,
(26)

where

{BV } =
[

0 0 1
hp

]T
, (27)
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with hp the thickness of the actuator/sensor patches. With the account for Eqs.(18,22,27), we intro-

duce Cauchy strain (Eq.(15)), symmetric curvature (Eq.(19)) and electric field Ea/s (Eq.(26)) into the

problem governing equation (Eq.(12)). After separation of kinematics parameters {ue} from the actu-

ator/sensor voltages {Va/s}, we obtain the governing equation for the coupled system of piezoelectric

Mindlin micro plate, that we express in the following form: m11 0 0

0 0 0

0 0 0


 üe

V̈ a

V̈ s

+

 k11 k12 k13

k21 k22 0

k31 0 k33


 ue

Va

Vs

 =

 0

0

0

 . (28)

Complete expressions of the components [kij ] and [m11] are given in Appendix C. As shown in Eq.(28),

the coupled system involves element kinematics parameters {ue} and sensing/actuating voltages Vs and

Va. During the operation of the system, the sensing voltage Vs is generated on piezoelectric sensors

due to vibration induced elastic deformation. Meanwhile, the induced Vs is fed back to the actuator

after the current goes through an external controller on which a control algorithm is implemented. The

control algorithm solves Va as function of Vs and determines the vibroacoustic behaviour of the coupled

piezoelectric micro system. In this work, the feedback control strategy is designed by considering

the combination of direct proportional control [25], constant gain negative velocity control [25] and

acceleration feedback control [5] strategies. Va is solved as function of Vs and its derivatives, as

Va = −ga
∂2Vs
∂t2

− gb
∂Vs
∂t
− gcVs . (29)

Voltage gain observed on Va with respect to Vs is proportional to three parameters Vs, V̇s and V̈s,

which correspond to the effects of displacement, velocity and acceleration, respectively. By adjusting

ga, gb and gc, we can prescribe dependence on these parameters based on their combinations. Adding

feedback control to the coupled system, we substitute Eq.(29) into Eq.(28) and obtain the condensed

system:

[ m∗]{üe}+ [ c∗]{u̇e}+ [ k∗]{ue} = {0} , (30)

where
[m∗] = [m11] + ga[k12][k33]−1[k31]

[ c∗] = gb[k12][k33]−1[k31]

[ k∗] = [k11] + gc[k12][k33]−1[k31]− [k13][k33]−1[k31] .

The presence of first order derivatives in Eq.(29) yields equivalent effect of damping as seen in Eq.(30)

which contributes to the control of vibrations. On the base plate outside the sensor/actuator binding

area, Eq.(28) no longer applies. The model is undamped whose governing equation reads:

[m]{üe}+ [k]{ue} = {0} , (31)

for which the component matrices are given in Appendix C. The complete model of the piezoelectric

coupled system involves both Eq.(30) for the three-layer sensor-plate-actuator coupled structure, and

Eq.(31) for the remaining area of the base plate which is subject of undamped vibration. Modal

extraction based on Eqs.(30,31) is not a trivial task due to the asymmetric [c∗] matrix in the second-

order dynamic equation Eq.(30). To overcome this difficulty, we adopt the state-space representation

of Eq.(30) which leads to a first-order differential equation. Let {Z} =
[
(u̇e)T (ue)T

]T
, we transform

Eq.(30) to:

[B]{Ż}+ [G]{Z} = {0} , (32)
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where

[B] =

[
0 m∗

m∗ c∗

]
, [G] =

[
−m∗ 0

0 k∗

]
.

By considering the displacement field in time domain under the form

{Z(r, t)} = {Z0(r)eiωt} , (33)

we transform Eq.(32) to frequency domain, which leads to:

([G] + iω[B]) {Z0} = {0} , (34)

in which

{Z0} =
[

(u̇e0)T (ue0)T
]T

. (35)

Since the unknown vector {Z0} contains both {u̇e0} and {ue0}, the boundary conditions of the original

modal problem requires adaptation before implementation. Details will be given in Section 5.

5 Implementation of the band gap unit cell bound-

ary value problem

Band gap analysis is performed by solving a unit cell boundary value problem that we depict in Fig.(3).

The unit cell finite element model is composed of three-layer Mindlin micro plate elements for the

area of the base plate with piezoelectric patches, and single-layer Mindlin micro plate elements for

the rest of the base plate. Material properties of the piezoelectric patches and of the base plate are

integrated through their thicknesses and expressed with respect to the plate mid-surface. Hence, the

mid-surface of the heterogeneous unit cell is depicted in Fig.(3). The unit cell dimension is described

L R

T

B

TLu TR

BL BR

I 2a

1a

u u

u

u u u

u

Figure 3: Periodic piezoelectric micro plate system and its unit cell. Since material
properties of Ωp and Ωe are pre-integrated through the thickness and expressed on the
mid-surface, the figure depicts the structural and material heterogeneities projected to the
mid-surface of the unit cell.

by its edge lengths along x and y axis, denoted by a1 and a2, respectively. To clearly describe the

periodic boundary conditions on the unit cell, we use {uL}, {uR}, {uT } and {uB} to denote nodal

displacements on the left (L), right (R), top (T) and bottom (B) edges of the unit cell except at the

corner nodes. Then, we use {uTL}, {uTR}, {uBL} and {uBR} to denote displacements of the top-left
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(TL), top-right (TR), bottom-left (BL) and bottom-right (BR) corner nodes. In the end, we use {uI}
to denote displacements of internal nodes of the domain. Using the above notations, we implement

the Bloch boundary conditions by considering λ1 = eik·a1 and λ2 = eik·a2 , in addition to the periodic

conditions that relate {uR} to {uL}, {uT } to {uB}, then at the corner nodes with {uBR}, {uTR}
and {uTL} with respect to {uBL}. The displacement vector for the unit cell can be expressed in the

following form

{u} =



uI

uL

uR

uB

uT

uBL

uBR

uTR

uTL


=



I 0 0 0

0 I 0 0

0 λ1I 0 0

0 0 I 0

0 0 λ2I 0

0 0 0 I

0 0 0 λ1I

0 0 0 λ1λ2I

0 0 0 λ2I




uI

uL

uB

uBL

 = [P]{ũ} . (36)

Similarly, the unknown vector {Z0} in Eq.(35) for the state-space resolution with the account for

periodic boundary conditions can be written as

{Z0} =

[
PT 0

0 PT

]
{Z̃0} , (37)

with {Z̃0} =
[

( ˙̃u0)T (ũ0)T
]T

, which means

{Z̃0} =
[

(u̇I0)T (u̇L0 )T (u̇B0 )T (u̇BL0 )T (uI0)T (uL0 )T (uB0 )T (uBL0 )T
]T

. (38)

Introducing Eq.(37) into the original unit cell modal problem Eq.(34), we obtain its state-space repre-

sentation with periodic boundary conditions:[
PT 0

0 PT

]
([G] + iω[B])

[
P 0

0 P

]
{Z̃0} = 0 . (39)

Eq.(39) can be noted as: (
[Ḡ] + iω[B̄]

)
{Z̃0} = {0} , (40)

where

[Ḡ] = [P̄]T [G][P̄], [B̄] = [P̄]T [B][P̄], P̄ =

[
P 0

0 P

]
. (41)

The obtained Eq.(40) refers to the final form of the unit cell boundary value problem for modal analysis.

6 Numerical results

In this section, we study vibration behaviours of a piezoelectric micro plate system using the feedback

control strategy proposed in in Section 4. The first example, in Section 6.1, validates the importance of

size dependence in band gap properties for the micro plate coupled system. We subsequently propose

a structure configuration that leads to significant size effect. Then, based on this configuration, we will

perform band gap and frequency response analysis to examine the influence of multi-parameter control

strategies. Both the effects of single-parameter control and multi-parameter control will be discussed

12



in Section 6.2 and Section 6.3, respectively.

6.1 Size dependence of band gap behaviours: microstructure

effects

In this section, we study the significance of size effects in band gap behaviours for the piezoelectric micro

plate coupled system and demonstrate the relevance of the modified couple stress model treating size

effects. We prescribe two micro plate configurations of distinct length scales and investigate their band

gap properties using both the couple stress and classical theories of elasticity. The two problems are

distinct in size: one very small and the other on the macroscopic scale. We demonstrate through band

gap calculations, that the couple stress and classical theory solutions agree on the macroscopic problem

but diverge on the micro plate problem for which size effects emerge. Concerning the mechanism of

vibration attenuation, the proposed three-parameter feedback control is tested using mass, damping

and stiffness based control, configured respectively constant gain coefficients ga, gb and gc, as indicated

in Eq.(29).

Elastic plate

Feedback control

Piezoelectric patch

(a)

Γ X

M

2
a
π

2
a
π xk

yk

(b)

phh

Figure 4: (a) Unite cell configuration (b) Irreducible first Brillouin zone

The test scenario is based on the piezoelectric micro plate system as shown in Fig.(4). The structure

incorporates periodically distributed sensor and actuator patches whose unit cell geometry is given in

Fig.(4a). For the micro scale model, the base plate thickness h = 20 µm. The unit cell is square in

shape with edge length a = 50× h. The piezoelectric patches, both the sensors and actuators, are also

square in shape with edge length b = 0.8× a. As a comparison, the macro scale model is significantly

larger in size with h = 120 µm, the other geometry parameters are defined with respect to h like the

micro scale model with the same proportion factors. For the two cases, we prescribe piezoelectric patch

thickness hp = 3h. Material composition of the unit cell can be distinguished between the base plate

material (epoxy) and the piezoelectric plate material (BiTiO3), whose properties are given in Tab. 1.

The unit cell is discretised with the four-node quadrilateral element described in Section 3.2 using the

same mesh for both the macro and micro scale cases.

Table 1: Unit cell material properties

C11 (GPa) C12 (GPa) C44 (GPa) e15
(
C/m2

)
e31

(
C/m2

)
ε11

(
10−9C2/(N ·m2)

)
ε33

(
10−9C2/(N ·m2)

)
l (µm) ρ

(
g/cm3

)
Base plate 4.9 2.4 1.24 0 0 0 0 16.93 1.18

Piezoelectric plate 166 77 43 11.6 −4.4 11.2 12.6 7 5.8

Size dependence in band gap behaviours are examined with the activation of vibration control: the

three feedback control strategies are prescribed independently by considering the following configura-

tions: mass control with gb = gc = 0, ga = 2×10−12, damping control with ga = gc = 0, gb = 1.5×10−5
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and stiffness control with ga = gb = 0, gc = 300. A particular case of free vibration without vibration

control (ga = gb = gc = 0) is also investigated.

Calculation of band gap diagrams requires considering wave vectors on the boundary of the irre-

ducible first Brillouin zone, which in the case of 2D symmetric domains, is presented in the form of a

triangle as depicted in Fig.(4b). Modal analysis required for band gap calculations can be reduced to

the boundary of the triangle by following the path Γ−X−M−Γ. In the present case, this leads to modal

resolutions on 58 equidistant, discrete points along the path Γ−X−M−Γ. Specifically, we implement

Floquet-periodic boundary conditions by considering the wave vector ki = (kx, ky) (i = 1, 2, . . . , 58)

which takes distinct forms on each section along the path Γ − X − M − Γ, in particular: from Γ to

X, kx = 2π
a k, ky = 0, k ∈ [0, 1], from X to M, kx = 2π

a , ky = 2π
a (k − 1), k ∈ [1, 2], from M to Γ,

kx = 2π
a (3− k), ky = 2π

a (3− k), k ∈ [2, 3].

The result band diagrams are presented in Fig.(5) for the two tested geometry settings which have

been studied based on four configurations of control strategy, respectively. In total, eight problems

have been examined using both couple stress (red curves) and classical (blue curves) elasto-dynamics.

With Fig.( 5(a-d)), we report band diagrams obtained from the micro scale problem for which the base

plate thickness h = 20 µm. As a comparison, we report with Fig.(5(e-h)) band diagrams from the

macro scale problem with h = 120 µm. Both micro and macro scale problems have been tested on four

configurations of vibration control, consisting of: non feedback control (a,e); mass based control (b,f);

damping based control (c,g) and stiffness based control (d,h). It is not difficult to observe that the couple

stress and the classical elasto-dynamic models agreed with each other on the macro scale model but

led to significantly different band diagrams on the micro scale model. The disagreement is particularly

important in the high frequency range and reflects significant microstructure effects that emerged due

to the small enough problem size of the micro scale problem setting. This observation confirms the

problem size dependence of band gap behaviours for the tested piezoelectric micro plate systems. We

also confirm that size dependence can be captured by the couples stress model but not by the classical

elasticity model. For the macro scale problem, on the contrary, since size effect is negligible, we observed

good agreement between the couple stress and the classical models according to (e-h). Based on all

the tested cases, it becomes obvious that the emergence of microstructure effect only depends on the

problem size and is irrelevant to the choice of the vibration control strategy. In conclusion, size effect

is important to take into account in the design of piezoelectric micro plate systems. The implemented

couple stress elasto-dynamic model provides a practical way to deal with size effects of such problems.

In the following numerical examples, since vibration control with size effects will be explored, the unit

cell configuration based on h = 20 µm will be adopted as the significance of size effects is confirmed.
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Couple stress
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Couple stress

Classical
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Figure 5: Band gap diagrams based on couple stress (red curves) and classical (blue
curves) theories of elasto-dynamics: influence of problem sizes and control parameters.
Cases (a-d) are based on the micro scale unit cell with h = 20 µm. Cases (e-h) are based
on the macro scale unit cell with h = 120 µm. Four control strategies are tested using
respectively: non feedback control (a,e) with ga = gb = gc = 0; mass based control (b,f)
with ga = 2 × 10−12, gb = gc = 0; damping based control (c,g) with gb = 1.5 × 10−5,
ga = gc = 0; then, stiffness based control (d,h) with gc = 300, ga = gb = 0.
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6.2 Band gap tuning based on single-parameter control

The piezoelectric micro plate system incorporates a feedback control strategy that has been presented

in Section 4. The control mechanism can be configured by three parameters ga, gb and gc, which refer

to the voltage gains within the sensor-to-actuator loop with respect to mass, damping and stiffness.

In this section, we focus on the individual effect of the three control parameters and examine their

respective influence on the vibration response of the coupled system. In particular, we prescribe three

groups of band gap analysis, each group with ga, gb and gc evolving on an interval of values. In addition,

to understand how band gap results can be used to advise real structure design, we perform dynamic

response analysis in frequency domain based on a representative structure composed of periodic unit

cells and compare the result with band gap predictions. The computational protocol that we present

in this section can be used to assist the parametrisation of the feedback controller, permitting tuning

of band gap behaviours of the micro plate coupled system. We adopt the micro scale unit cell with

the base plate thickness h = 20 µm. This configuration demonstrates significant size dependence of

band gap behaviours according to Section 6.1. Therefore, application of the couple stress elasticity is

justified.

Other geometry parameters of the unit cell is identical to the micro scale problem studied in Section

6.1, with a = 1 mm, b = 0.8 mm and hp = 3h. Similarly, material composition of the unit cell is found in

Tab. 1 of Section 6.1. We consider epoxy and BiTiO3 for the base plate and sensor/actuator materials,

respectively.

F

Receiver

Wave propagate direction

z y

x

Figure 6: A five-cell system of coupled piezoelectric micro plate used for dynamic re-
sponse analysis in frequency domain: orange pins indicate fixed DOFs; red arrow indicates
input excitation; green arrow refers to the position of output wave measurement.

Band gap calculations are performed based on the periodic unit cell by considering the procedure

presented in Section 6.1. To examine the effectiveness of the band gap results, we further conduct

dynamic response analysis in frequency domain by prescribing a representative example of piezoelectric

micro plate system composed of five unit cells periodically arranged along x direction, as shown in

Fig.(6). Boundary conditions on the five-cell system are as follows: we fix all degrees of freedoms on the

points (x, y) = (5a, a) and (x, y) = (5a, 0), and we prescribe Fz = Feiωt on the point (x, y) = (0, a/2).

The input wave signal then propagates along the micro plate structure and the steady-state dynamic

response is collected on the point (x, y) = (5a/2, a/2). The output dynamic response is then analysed

with respect to the input excitation, allowing us to compare with the band gap results.

Dynamic response in frequency domain is obtained by using frequency response function (FRF) that
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calculates steady-state dynamic response with regard to a sinusoidal input excitation. Let us consider

a standard multi degree of freedom system with its state-space representation which writes

BŻ + GZ = F . (42)

Using Laplace transform, the corresponding transfer function denoted by H is written as

H =
n∑
r=1

φrφ
T
r

gr + iωbr
, (43)

in which br, gr are the r-th element on the diagonal of the matrices B and G, respectively. φr is the

eigenvector associated with the r-th degree of freedom. Components of the transfer matrix, Hij , can be

physically interpreted as the dynamic response measured on point i with respect to an input excitation

prescribed on point j.

Influence of ga: mass based control

Effect of the control parameter ga on the coupled micro plate system is studied. According to

Eq.(29), ga refers to the sensor-to-actuator voltage gain with respect to mass. Fig.(7a) focuses on the

first four band gaps of the system and particularly the effect of ga on the band gap frequency ranges.

Therefore, as ga is set to increase on the interval [1× 10−12, 2.9× 10−12], frequency ranges of the first
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Figure 7: Effect of ga on vibration control. (a) Evolution of the first four band
gap frequency ranges with respect to ga. (b) Dynamic response in frequency domain by
considering two cases with ga = 1.0× 10−12 and ga = 2.0× 10−12. Positions of the third
and the fourth band gaps calculated in (a) for the two cases, are highlighted on (b) to
provide comparison.

and second band gaps remain almost constant, however, the third band gap is observed to decrease

significantly and tends to vanish while ga approaches the upper bound at 2.9 × 10−12. Oppositely, a

fourth band gap initiates at ga = 1.0× 10−12 and broadens with the increase of ga. We report in Tab.

2 the frequency ranges of the third and fourth band gaps extracted from two cases based on ga with

ga = 1.0× 10−12 and ga = 2.0× 10−12, respectively. Results from Tab. 2 will be used in the following

for comparison with dynamic response simulations in frequency domain.

Dynamic response analysis is performed based on a representative system of piezoelectric micro

plate as depicted by Fig.(6). Amplitude of the dynamic response as function of the excitation frequency

is reported in Fig.(7b). Here, for the dynamic response calculation, we consider the same cases as listed

in Tab. 2, with ga = 1.0 × 10−12 and ga = 2.0 × 10−12. The results are presented using red and blue
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Table 2: Third and fourth band gaps frequency range: effect of ga

ga setting Third band gap (kHz) Fourth band gap (kHz)

1.0× 10−12 [905.01, 1036.60] [1112.75, 1134.87]

2.0× 10−12 [891.31, 962.75] [1011.36, 1091.49]

curves, respectively. To facilitate comparison, we highlight in Fig.(7b) the third and fourth frequency

ranges (Tab. 2) predicted by the unit cell model for the corresponding ga settings. Therefore, we

observed good agreement between the band gap and dynamic response models: firstly, the band gap

frequency ranges predicted by the unit cell model are confirmed by the dynamic response simulation.

Then, the broadened fourth band gap and the reduced third band gap predicted by the unit cell model,

are also observed on the dynamic response curves. In summary, the control parameter ga alone has

negligible effect on the range of the first and second band gaps. It does affect band gaps of higher

frequencies, that is to say, a greater ga tends to reduce the third band gap but broadens the fourth

band gap. Note however that the effect of ga is presented in bounded ranges as shown in Tab. 2. With

ga beyond the presented ranges, the model may become unstable showing oscillating band gap results.

Therefore, the effects of the control parameters are valid only within the respective validity ranges.

This notice holds for the following examples.

Influence of gb: damping based control

We now focus on the control parameter gb and investigate its effect on the band gap of the coupled

micro plate system. gb governs the sensor-to-actuator voltage gain with respect to damping. We present

in Fig.(8a) the first four band gaps of the system and their evolution with gb. Here, similar to ga, the

effect of gb is negligible on the first two band gaps and shows significance only on band gaps of higher

frequencies. Therefore, with the increase of gb on the interval [0, 1.5 × 10−5], we observed broadened

frequency range of the third and fourth band gaps.
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Figure 8: Effect of gb on vibration control. (a) Evolution of the first four band
gap frequency ranges with respect to gb. (b) Dynamic response in frequency domain by
considering two cases with gb = 0.5 × 10−5 and gb = 1.5 × 10−5. Positions of the third
and the fourth band gaps calculated in (a) for the two cases, are highlighted on (b) to
provide comparison.

To compare band gap predictions with dynamic response simulations, we report in Tab. 3 the

frequency range of the third and fourth band gaps for two cases using gb = 0.5×10−5 and gb = 1.5×10−5,

respectively.

Dynamic response analysis in frequency domain is performed by considering two cases of gb with

gb = 0.5× 10−5 and gb = 1.5× 10−5, whose response amplitude vs. excitation frequency is reported in
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Table 3: Third and fourth band gaps frequency range: effect of gb

gb setting Third band gap (kHz) Fourth band gap (kHz)

0.5× 10−5 [910.61, 1066.37] [1136.82, 1203.81]

1.5× 10−5 [915.63, 1094.14] [1137.53, 1232.69]

Fig.(8b) using red and blue curves, respectively. The two dynamic response simulations are confronted

to the band gap predictions that we have reported in Tab. 3. Also, to present a direct comparison

between the two models, we highlight in Fig.(8b) the frequency range prediction of the third and the

fourth band gaps obtained using the unit cell band gap calculation. Thus, good agreement can be

observed between the band gap and dynamic response models. All the predicted band gaps can be

localised on the dynamic response curves. From gb = 0.5×10−5 to gb = 1.5×10−5, we observed slightly

broadened frequency ranges on both the third and the fourth band gaps, which is in accordance with

the band gap prediction depicted in Fig.( 8a). Similar to ga, the effect of gb on the system does not

present significance on the first two band gaps, although it slightly affects the band gap ranges of higher

frequencies, for instance, the third and the fourth band gap according to our test case.

Influence of gc: stiffness based control

Finally, we move to investigate the influence of gc on the bad gap of the coupled micro plate system.

We remind that gc refers to the sensor-to-actuator voltage gain with respect to stiffness according to

Eq.(29). Again, similar to the two previous cases based on ga and gb, we observed negligible effect of gc

on the first two band gaps, but only on band gap ranges of higher frequencies. Hence, with increasing

gc on the interval [0, 3.0 × 102], we observed broadened frequency ranges for both the third and the

fourth band gaps.
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Figure 9: Effect of gc on vibration control. (a) Evolution of the first four band
gap frequency ranges with respect to gc. (b) Dynamic response in frequency domain by
considering two cases with gc = 0 and gc = 1.0 × 102. Positions of the third and the
fourth band gaps calculated in (a) for the two cases, are highlighted on (b) to provide
comparison.

Based on the unit cell band gap calculation, frequency ranges of the third and fourth band gaps are

extracted for gc = 0 and gc = 1.0 × 102, whose results are presented in Tab. 4 and will be compared

with dynamic response simulations.

We consider the two cases listed in Tab. 4 for the dynamic response analysis whose result depicts

the response amplitude as function of the excitation frequencies in Fig.(9b). The two cases with gc = 0

and gc = 1.0× 102 are represented using red and blue curves, respectively. Similar to the two previous

cases of ga and gb, we highlight in Fig.(9b) the frequency ranges of the third and the fourth band
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Table 4: Third and fourth band gaps frequency range: effect of gc

gc setting Third band gap (kHz) Fourth band gap (kHz)

0 [909.92, 1060.12] [1136.70, 1200.28]

1.0× 102 [916.58, 1115.42] [1172.20, 1346.64]

gaps predicted by the unit cell band gap calculation. This offers direct comparison with the dynamic

response simulation and leads us to the following observation: firstly, all the predicted band gaps can

be localised on the frequency response curves. Then, broadened frequency ranges are obtained on both

the third and the fourth band gaps by comparing the gc = 1.0 × 102 case to the gc = 0 case. This

observation is conform to the band gap predictions in Fig.( 9a). We observe again, however, that the

effect of gc on the first two band gaps is limited, it mainly affects the band gap ranges of middle to

higher frequencies.

In summary, the control parameters ga, gb and gc allow adjusting significantly higher frequency

band gaps for the tested coupled micro plate system. In particular, mass based control (ga) can be

useful in controlling higher frequency vibrations since it allows lowering the lower bound of high-order

band baps. In addition, damping (gb) and stiffness (gc) based control can both be applied to improve

the range of medium and higher band gaps. Since the feedback control parameters affect notably the

range of higher frequency band gaps, we will focus on higher order band gaps as an example to present

the effect of multi-parameter control strategies in Section 6.3.

6.3 Tuning of higher frequency band gaps using multi-parameter

control

Based on the coupled micro plate system studied in Section 6.1 and Section 6.2, we now consider

multi-parameter control strategies involving combined effects of ga, gb and gc on the tuning of vibration

behaviours. Since these parameters demonstrate significant effect in adjusting higher order band gaps,

we focus on the fourth band gap and investigate the effects of multi-parameter control based on combined

effects of mass and damping (MD) control, mass and stiffness (MS) control, and, daming and stiffness

(DS) control. Inspired by the methodologies presented in Section 6.2, we perform both unit cell band

gap analysis and dynamic response calculations by considering a representative micro plate system

consisted of five unit cells. Geometry and material definition of the unit cell and of the representative

micro plate system is identical to the description given in Section 6.2.
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Figure 10: Effect of MD control: (a) Evolution of the fourth band gap size with respect
to the combined effect of ga and gb simultaneously. (b) The fourth band gap diagrams
considering cases N, M, P, Q. (c) Dynamic response in frequency domain based on a five
unit cell couple micro plate system considering the cases N, M, P, Q.

We are first interested in the case of MD control strategy. Let gc = 0, and ga, gb be the evolving
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parameters. We calculate the range of the fourth band gap based on the periodic unit cell by considering

ga and gb evolving on the intervals [1.1 × 10−12, 2.0 × 10−12] and [0, 2.0 × 10−5], respectively. The

result is reported in Fig.(10a), where the size of the fourth band gap is plotted as function of ga and gb

combinations. Four cases, denoted by N, M, P, Q based on the combination of ga and gb are highlighted

and the corresponding band diagrams depicting the fourth band gap ranges are provided in Fig.(

10b). We note that the band gap size increases monotonically with respect to ga and gb on the tested

intervals and the largest band gap is observed at point Q, with ga = 2.0× 10−12 and gb = 2.0× 10−5.

Dynamic response analysis is performed on the five unit cell couple micro plate system using the same

methodology as presented in Section 6.2. Response in frequency domain based on the four cases N,

M, P, Q is reported in Fig.(10c) where the frequency range covered by the lowest and highest bounds

for the four cases combined, predicted by the band gap unit cell calculation, is highlighted. From the

frequency response curves in Fig.(10c), we can identify the fourth band gap for all the cases, which is

covered by the highlighted band gap prediction.
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Figure 11: Effect of MS control: (a) Evolution of the fourth band gap size with respect
to the combined effect of ga and gc simultaneously. (b) The fourth band gap diagrams
considering cases N, M, P, Q. (c) Dynamic response in frequency domain based on a five
unit cell couple micro plate system considering the cases N, M, P, Q.

We then focus on the case of MS control strategy for which gb = 0 and ga, gc are the evolving

parameters. We consider ga and gc evolving on the intervals [1.1×10−12, 2.5×10−12] and [0, 3.0×102],

respectively, and report in Fig.(11a) the size of the fourth band gap calculated against the prescribed ga

and gc combinations. Similar to the previous case, we highlight four cases based on the combination of ga

and gc, denoted by N, M, P, Q, and we plot in Fig.(11b) the corresponding band diagrams for the fourth

band gap. If we only focus on the size of the band gap (Fig.(11a)), we note monotonically increasing

trend with respect to ga, however, the dependence on gc is not monotonic. The size of the band gap first

decreases, then increases with gc, with the lowest point observed at (ga, gc) = (1.1× 10−12, 0). Position

of the band gap is also influenced by ga and gc. By following the path N-M-Q-P, the lower bound of the

band gap globally increases. Concerning dynamic response in frequency domain, we report the cases

N, M, P, Q in Fig.(11c) on which the frequency range between the lowest and the highest bounds for

the four cases combined, predicted by band gap calculation, is highlighted. It covers the fourth band

gap that we can identify on the dynamic response curves.

The last case deals with DS control strategy for which ga = 0 and gb, gc are set to evolve on the

intervals [0, 2.0 × 10−5] and [0, 3.0 × 102], respectively. We follow the same analysis methodology as

for the two previous cases. In Fig.(12b), the size of the fourth band gap increases monotonically with

gc, yet the effect of gb appears insignificant. We note in particular the cases P and Q, which presented

comparable band gap sizes. We highlight in Fig.(12c) the frequency range covered by the highest and

the lowest bounds predicted by unit cell band gap calculations. The highlighted frequency range does

not suit perfectly but fully covers the fourth band gap that we can identify on the dynamic response

curves.
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Figure 12: Effect of DS control: (a) Evolution of the fourth band gap size with respect
to the combined effect of gb and gc simultaneously. (b) The fourth band gap diagrams
considering cases N, M, P, Q. (c) Dynamic response in frequency domain based on a five
unit cell couple micro plate system considering the cases N, M, P, Q.

In summary, the presented analysis allows evaluation of band gap effects for the implemented multi-

parameter feedback control. The investigation led to quantitative relations that measure the collective

effects of ga, gb and gc combinations. We have observed that the collective effects of ga, gb and gc

cannot be predicted by considering direct superposition of their individual behaviours. In the case of

MS control, for example, the fourth band gap is not a monotonic function with respect to gc (Fig.(11a))

whereas it is the case when it comes to single-parameter control based on gc as shown in Fig.(9a). In

addition, setting of the MD, MS or DS control parameters affects both the band gap size and its position.

The methodology involved in the current analysis can be used to obtain optimal parametrisation of the

feedback controller with respect to the required band gap behaviour.

7 Conclusion

We investigated in this work a computational methodology that can be used to assist the design of

feedback micro controllers for achieving tunable band gap properties of micro scale piezoelectric plate

coupled systems. The methodology is based on a high-order elasto-dynamic model with piezoelectric

coupling which accounts for size dependence of the vibroacoustic behaviours, and involves a feedback

control relationship that incorporates three-parameter dependence with respect to displacement, veloc-

ity and acceleration (or stiffness, damping and mass in other terms). Effects of the three parameters on

the band gap properties can be individually or collectively predicted by simulation, which allowed us to

obtain an optimised parametrisation of the micro controller with respect to the design specifications.

This is particularly interesting since according to our simulations, combined effects of the three con-

trol parameters cannot be predicted by considering linear superposition of their individual behaviours.

For example, effects of the combined acceleration and displacement control (mass and stiffness or MS

based control as described in Section 6.3) revealed significant difference compared to single-parameter

strategies based on individual effects of acceleration or displacement alone, or on their superposition

in any possible manner. Therefore, only through a comprehensive numerical methodology as the one

developed in the present work, can we obtain an accurate prediction of the combined effects for the

involved control parameters. Additionally, size dependence of band gap properties has been examined,

which further confirms the value of this contribution on the topic of band gap tuning for micro scale

plate coupled systems.
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Appendix A

The matrix expression of linear elasticity tensor:

[C] =


C11 C12 0 0 0

C12 C22 0 0 0

0 0 C44 0 0

0 0 0 C44 0

0 0 0 0 C11−C12

2

 .

The matrix expression of couple stress elasticity tensor:

[A] =


A11 A12 0 0 0

A12 A22 0 0 0

0 0 A44 0 0

0 0 0 A44 0

0 0 0 0 A11−A12

2

 ,

where Aij = Cij l
2.

Appendix B

For Cauchy strain matrix:

{ε̂} =



∂φx
∂x
∂φy
∂y(

∂φx
∂y +

∂φy
∂x

)
∂w
∂x − φx
∂w
∂y − φy


=


0 ∂

∂x 0

0 0 ∂
∂y

0 ∂
∂y

∂
∂x

∂
∂x −1 0
∂
∂y 0 −1

Nu(e) = Bεu
(e),

where

[Bε] =

[
Bεb

Bεs

]
=


0 ∂N1

∂x 0 0
∂N1ξ

∂x 0 0
∂N1η

∂x 0 · · ·
0 0 ∂N1

∂y 0 0
∂N1ξ

∂y 0 0
∂N1η

∂y · · ·
0 ∂N1

∂y
∂N1

∂x 0
∂N1ξ

∂y
∂N1ξ

∂x 0
∂N1η

∂y
∂N1η

∂x · · ·
∂N1

∂x −N1 0
∂N1ξ

∂x −N1ξ 0
∂N1η

∂x −N1η 0 · · ·
∂N1

∂y 0 −N1
∂N1ξ

∂y 0 −N1ξ
∂N1η

∂y 0 −N1η · · ·


5×36

.

For symmetric curvature strain matrix:

{χ̂} =



∂2w
∂y∂x +

∂φy
∂x

∂2w
∂x∂y + ∂φx

∂y
∂φy
∂x −

∂φx
∂y(

∂2w
∂y2 +

∂φy
∂y

)
−
(
∂2w
∂x2 + ∂φx

∂x

)
∂2φy
∂x∂y −

∂2φx
∂y2

∂2φy
∂x2 − ∂2φx

∂y∂x


=



∂2

∂y∂x 0 ∂
∂x

∂2

∂x∂y
∂
∂y 0

0 − ∂
∂y

∂
∂x

∂2

∂y2 −
∂2

∂x2 − ∂
∂x

∂
∂y

0 − ∂2

∂y2
∂2

∂x∂y

0 − ∂2

∂y∂x
∂2

∂x2


Nu(e) = Bχu(e),
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where

[Bχ] =



∂2N1

∂x∂y 0 ∂N1

∂x
∂2N1ξ

∂x∂y 0
∂N1ξ

∂x
∂2N1η

∂x∂y 0
∂N1η

∂x · · ·
∂2N1

∂y∂x
∂N1

∂y 0
∂2N1ξ

∂y∂x
∂N1ξ

∂y 0
∂2N1η

∂y∂x
∂N1η

∂y 0 · · ·
0 −∂

2N1

∂y2
∂2N1

∂x∂y 0 −∂
2N1ξ

∂y2
∂2N1ξ

∂x∂y 0 −∂
2N1η

∂y2
∂2N1η

∂x∂y · · ·
0 −∂

2N1

∂y2
∂2N1

∂x2 0 −∂
2N1ξ

∂y∂x
∂2N1ξ

∂x2 0 −∂
2N1η

∂y∂x
∂2N1η

∂x2 · · ·
∂2N1

∂y2 −
∂2N1

∂x2 −∂N1

∂x
∂N1

∂y
∂2N1ξ

∂y2 −
∂2N1ξ

∂x2 −∂N1ξ

∂x
∂N1ξ

∂y
∂2N1η

∂y2 −
∂2N1η

∂x2 −∂N1η

∂x
∂N1η

∂y · · ·


5×36

.

Appendix C

For multi-layer piezoelectric plate:

[k11] =
∫
A

[Bε]
T [Ĉ][Bε]dA+

∫
A

[Bε]
T [Ĉpa][Bε]dA+

∫
A

[Bε]
T [Ĉps][Bε]dA

+
∫
A

[Bχ]T [Âpa][Bχ]dA+
∫
A

[Bχ]T [Âps][Bχ]dA+
∫
A

[Bχ]T [Â][Bχ]dA,

[k12] = [k21]T = −
∫
A

[Bε]
T [êa]T [BVa

]dA,

[k13] = [k31]T = −
∫
A

[Bε]
T [ês]

T [BVs
]dA,

[k22] = −
∫
A

[BVa
]T [ε̂a][BVa ]dA,

[k33] = −
∫
A

[BVs
]T [ε̂s][BVs ]dA,

[m11] =
∫
A

[N]T [ρ][N]dA,

with

[Ĉ] =
∫ h

2

−h
2

[Sε]
T [C][Sε]dz,

[Ĉpa] =
∫ −h

2

−h
2 −hp

[Sε]
T [Cp][Sε]dz,

[Ĉps] =
∫ h

2 +hp
h
2

[Sε]
T [Cp][Sε]dz,

[êa]T =
∫ −h

2

−h
2 −hp

[Sε]
T [e]Tdz,

[ês]
T =

∫ h
2 +hp
h
2

[Sε]
T [e]Tdz,

[ε̂a] =
∫ −h

2

−h
2 −hp

[ε]dz,

[ε̂s] =
∫ h

2 +hp
h
2

[ε]dz,

[ρ] =
∫ h

2 +hp
h
2

 ρ 0 0

0 ρz2 0

0 0 ρz2

dz.

For elastic plate:

[k] =
∫
A

[Bε]
T [Ĉ][Bε]dA+

∫
A

[Bχ]T [Â][Bχ]dA,

[m] =
∫
A

[N]T [ρ][N]dA,

where

[ρ] =

∫ h
2

−h
2

 ρ 0 0

0 ρz2 0

0 0 ρz2

dz.
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