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The present paper is aimed to propose a multi-parameter feedback control method combined with couple stress elasticity to model piezoelectric micro plate coupled systems. The proposed methodology can be used to design controllers for tuning vibration and wave propagation properties of micro scale plates based on coupled piezoelectric sensors and actuators. Specifically, we use a three-parameter relationship that describes the voltage gain within the sensor-to-actuator circuit involving multiple dependence based on mass, damping and stiffness. Consequently, effect of these parameters can be simulated either independently or collectively so as to obtain the optimal control strategy with respect to the required vibroacoustic properties. Meanwhile, since micro plates are involved, the inherent microstructure effects must be accounted for. Hence, the modified couple stress elasto-dynamics is applied and the micro plate model is discretised with a four-node quadrilateral non-conforming element that offers nodal compatibility with high-order theories of elasticity. Based on the proposed numerical methodology, we investigated the feedback control parametrisation for a reference micro plate coupled system which presents significant microstructure effects. Our analysis allowed characterisation of the three control parameters based on their individual effects, and revealed that their combined effect cannot be predicted by considering direct superposition of their individual behaviours. Therefore, the proposed computational methodology provides a convenient solution for the choice and parametrisation of the feedback controller leading to tunable band gap properties of micro scale plate structures.

Introduction

Active tuning of vibrations in micro scale electromechanical systems can be achieved by employing piezoelectric micro components as sensors and actuators coupled via an external control algorithm that regulates the real-time state of the system, leading to controlled vibration. Recently, with the rapid development of fabrication technologies in miniaturised systems, integration of piezoelectric micro components into micro-to-nano scale devices has led to remarkable applications such as nano oscillators [START_REF] Naono | A large-scan-angle piezoelectric MEMS optical scanner actuated by a Nb-doped PZT thin film[END_REF] and resonators [START_REF] Brueckner | Micro-and nano-electromechanical resonators based on SiC and group III-nitrides for sensor applications[END_REF], micro bio-mimetic robots [START_REF] Qu | Dynamics of millimeter-scale hexapod microrobotics with PZT-polymer micro-actuators[END_REF], ultrasonic sensing systems [START_REF] Lu | Waveguide piezoelectric micromachined ultrasonic transducer array for short-range pulse-echo imaging[END_REF], etc. Consequently, tuning of vibration properties for micro scale piezoelectric coupled systems has become an important topic. Meanwhile, due to the emergence of microstructure effects, vibroacoustic behaviours of these miniaturised systems are frequently subject to size dependence which makes their design and optimisation a challenging task, both on the aspect of mechanical modelling and on the associated control strategies.

Vibration of piezoelectric coupled systems can be tuned for wavelengths on the length scale of the system's microstructure. Therefore, systems fabricated on the macro scale mainly focus on lowfrequency vibrations either for vibration attenuation or for energy harvesting. Meanwhile, since macro scale systems do not present size effect, classical theories of elasto-dynamics can be readily applied to offer accurate predictions. This is confirmed with recent investigations [START_REF] Ren | Active tunability of band gaps for a novel elastic metamaterial plate[END_REF][START_REF] Lossouarn | Multimodal vibration damping of a plate by piezoelectric coupling to its analogous electrical network[END_REF][START_REF] Li | Active tuning of vibration and wave propagation in elastic beams with periodically placed piezoelectric actuator/sensor pairs[END_REF][START_REF] Morel | Frequency tuning of piezoelectric energy harvesters thanks to a short-circuit synchronous electric charge extraction[END_REF][START_REF] Chen | Experimental study of auto-tuning piezoelectric energy harvester attaching balls in boxes[END_REF][START_REF] Yu | Piezoelectric passive self-tuning energy harvester based on a beamslider structure[END_REF], which led to numerical and experimental prototypes based on macro scale beam and plate coupled models. Micro scale piezoelectric systems, on the contrary, are intended for tuning high-frequency acoustic waves, even ultrasonic waves [START_REF] Yang | Ultrasound tunneling through 3D phononic crystals[END_REF][START_REF] Page | Focusing of ultrasonic waves by negative refraction in phononic crystals[END_REF][START_REF] Walker | Tunable ultrasonic phononic crystal controlled by infrared radiation[END_REF]. Furthermore, since the microstructure is designed on length scales usually below millimetre level, size dependence becomes non negligible in assessing the vibroacoustic properties. To incorporate size dependence into the material behaviour, a series of high-order elastic models have been proposed, among which the first investigations can be traced back to the work of Mindlin [START_REF] Mindlin | Microstructure in linear elasticity[END_REF], who initiated the research on strain gradient theory using 16 material scale parameters. Subsequently, Lam et al. [START_REF] Lam | Experiments and theory in strain gradient elasticity[END_REF] reduced the number of material scale parameters and proposed a modified three-parameter strain gradient theory. To further simplify the material scale description, Yang et al. [START_REF] Yang | Couple stress based strain gradient theory for elasticity[END_REF] proposed a modified couple stress theory which requires only one material scale parameter. Thanks to its simplicity, many investigations have been performed on the basis of Yang's work. In static analysis, we can cite the development of Mindlin plate finite element based on the modified couple stress theory [START_REF] Zhang | A non-classical mindlin plate finite element based on a modified couple stress theory[END_REF]. Then, in dynamic analysis of band structures, micro scale composite plates have been studied using the modified couple stress theory, first analytically [START_REF] Zhang | Band gaps for wave propagation in 2-D periodic composite structures incorporating microstructure effects[END_REF], then numerically [START_REF] Xia | A non-classical couple stress based Mindlin plate finite element framework for tuning band gaps of periodic composite micro plates[END_REF].

Beside the microstructure effects, another important aspect in the design of micro plate vibration coupled system is the choice and optimisation of the control strategy. From a general point of view, vibration control strategies can be divided into two categories: passive control and active control. Passive control refers to techniques that prepare band structures based on microstructure design and material assembly. It has been widely applied [START_REF] Yang | Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications[END_REF][START_REF] Krödel | Wide band-gap seismic metastructures[END_REF][START_REF] Wang | Effects of inclusion shapes on the band gaps in two-dimensional piezoelectric phononic crystals[END_REF] in areas requiring vibration attenuations within fixed frequency band. For general applications that require tunable acoustic properties on a broader frequency range, we prefer active feedback control which employs closed circuits of sensing and actuating components. We cite, among recent applications, the development of active control on a T-shaped metamaterial with switchable waveguide [START_REF] Li | Active control on switchable waveguide of elastic wave metamaterials with the 3d printing technology[END_REF] and the design of a soft acoustic metamaterial membrane with tunable band behaviours [START_REF] Zhou | Actively tunable transverse waves in soft membrane-type acoustic metamaterials[END_REF], etc. The cited applications require implementing coupled systems of sensors and actuators. During their operation, vibration induced voltage is enhanced by the external circuit before it is fed back to the actuator. The coupled system adjusts in real-time the state of vibroacoustic properties. It is therefore important to carefully design the control method which commonly takes the following forms: The first one, by direct proportional feedback control with V a = -g c V s , for which the actuating voltage is a linear function of the sensing voltage, itself is proportional to the displacement measure. The second, by velocity based control [START_REF] Balamurugan | Shell finite element for smart piezoelectric composite plate/shell structures and its application to the study of active vibration control[END_REF], with V a = -g b ∂Vs ∂t , for which the actuating voltage is proportional to the velocity. Then, the third, via acceleration based control [START_REF] Ren | Active tunability of band gaps for a novel elastic metamaterial plate[END_REF], with V a = -g a ∂ 2 Vs ∂t 2 , for which the actuating voltage is function of the acceleration. Within the scope of this work, a general form of feedback control method involving simultaneously the effects of displacement, velocity and acceleration will be studied. The sensor-to-actuator voltage gain can be described based on these three parameters independently or collectively.

In this work, we adopt the modified couple stress elasticity combined with Mindlin plate kinematics to address the microstructure effects of micro plates. Since couple stress elasticity involves second-order derivatives in the weak form of the equilibrium equation, at least C 1 continuous interpolation of nodal variables is required. In practice, finite element implementation of strick C 1 continuity is not a trivial task. We use in this work an alternative solution which consists in applying a four-node quadrilateral plate element with non-conforming formulation [START_REF] Zienkiewicz | The finite element method-solid mechanics[END_REF]. Although this element is C 1 discontinuous on the inter-element boundary, it preserves nodal C 1 continuity and offers tolerable compatibility with couple stress elasticity. To confirm our choice, we conducted the benchmark patch test [START_REF] Zhang | A non-classical mindlin plate finite element based on a modified couple stress theory[END_REF] which did not reveal geometrical distortion. Concerning the aspect of control strategy, we implement a three-parameter feedback control method with multiple dependence with respect to displacement, velocity and acceleration. Both contributions of single-parameter control and multi-parameter control are investigated. The computational methodology presented here can be used to assist parametrisation of feedback controllers for general purpose. Regarding the vibration modal analysis for band calculation, we applied the state space method combined with Floquet Bloch boundary conditions. Furthermore, we performed dynamic response analysis in frequency domain using transfer functions and the state space method and the result is compared with the band gap predictions.

The content of this article is organised as follows: we present in Section 2 the dynamic equilibrium in weak formulation for the piezoelectric coupled system based on the modified couple stress theory. We address in particular the application of the modified couple stress elasticity into the electromechanical coupling problem. In Section 3, we describe the implementation of the non-conforming four-node quadrilateral plate finite element. Then, in Section 4, the proposed feedback control strategy with multiple dependence is described as well as its implementation details. We present in Section 5, techniques that implement the periodic boundary conditions according to Bloch-Floquet theory, which lead to the unit cell band gap problem. In Section 6, we present three numerical examples that validate the presented work on the following aspects: first, the account for size dependence by the implemented piezoelectric micro plate coupled system, then, the effect of multi-parameter control strategy for which we discuss in detail both the strategies of single parameter control, and multi-parameter control. In the end, we draw conclusion and remarks in Section 7.

Piezoelectric micro plate coupled systems: dynamic equations

Band gap behaviours may be subject to size dependence when the problem dimension descends below millimetre level. In the case of piezoelectric micro plate coupled systems, this means that for very small problem sizes, the vibration behaviour becomes sensible to the problem size and cannot be accurately predicted by classical elasto-dynamics. Therefore, a high-order continuum theory, here for instance, the modified couple stress theory is applied.

Modified couple stress elasto-dynamics applied to piezoelectric micro plate coupled system

The studied piezoelectric micro plate coupled system is composed of a based plate (Ω e ) and periodically distributed piezoelectric sensor and actuator patches (Ω p ). We suppose the structure on the microscopic scale for which emergence of size effects should be considered. The periodic structure can be represented by the unit cell depicted in Fig. [START_REF] Naono | A large-scan-angle piezoelectric MEMS optical scanner actuated by a Nb-doped PZT thin film[END_REF]. We describe geometrical relations of the unit cell with respect to the Cartesian coordinate system (x, y, z) as indicated in Fig. (1b). The xy-plane lies on the mid-plane of the base plate. Regarding the material definition, both Ω e and Ω p are modelled as deformable couple stress continuum using the modified couple stress theory of elasto-dynamics. First proposed by Yang et al. [START_REF] Yang | Couple stress based strain gradient theory for elasticity[END_REF], the modified couple stress theory allows predicting microstructure effects based on a single material length scale parameter. In this section, we focus on the modelling of mechanical behaviours of the micro plate system and their coupling with piezoelectric effects. Therefore, dynamic equations involving kinematic description, constitutive relations and the equilibrium equation are described. 

Basic relations

We model Ω e and Ω p as deformable couple stress continuum and consider the effect of piezoelectricity only on Ω p . Therefore, the Gibbs free energy G which involves both the strain energy of Ω e ∪ Ω p and the piezoelectric effects on Ω p , can be written as

G = U e + U p = 1 2 Ωe (σ : ε + m : χ) dΩ + 1 2 Ωp (σ : ε -D • E + m : χ) dΩ , (1) 
where dΩ is the unit volume. σ and m are Cauchy stress and deviatoric couple stress tensors. Then accordingly, ε and χ refer to Cauchy strain and symmetric curvature which can be written as

     ε = 1 2 ∇u + (∇u) T χ = 1 2 ∇θ + (∇θ) T on Ω e ∪ Ω p , (2) 
where u is the displacement vector and θ the rotation vector defined by

θ = 1 2 ∇ × u , (3) 
in which ∇ denotes Hamiltonian operator and "×" cross product symbol. Eq.( 2) applies to kinematics of both the base plate and the piezoelectric patches. To describe the electric field of the piezoelectric patches, we use D and E to denote the electric displacement and the static electric field which derives from the electric potential ϕ as E = -gradϕ .

Then, by considering piezoelectric actuator and sensor patches of the same thickness h p , the voltage V a and V s measured on the actuators and sensors in the thickness direction, we can express the actuator and sensor electric field components as

{(E a ) i } = 0 0 V a h p T and {(E s ) i } = 0 0 V s h p T . (5) 
We consider that both piezoelectric patches for sensors and actuators are identical in geometry and material.

Constitutive relations involving elastic-piezoelectric coupling

We distinguish constitutive relations of the base plate and those of the piezoelectric patches that serve as actuators and sensors. For the base plate (Ω e ), linear material behaviours based on couple stress elasticity is considered. Hence, Cauchy stress σ and deviatoric couple stress m tensors are expressed as linear functions of Cauchy strain ε and symmetric curvature χ tensors

   σ = C e : ε m = A e : χ on Ω e , (6) 
where C e and A e are, respectively, linear elasticity and couple stress elasticity tensors whose matrix expressions in (x, y, z) are given in Appendix A. We note that the couple stress elasticity coefficients expressed in (x, y, z), (A e ) ijkl = (C e ) ijkl l 2 , are a function of l, which refers to the material length scale parameter. Commonly determined experimentally, the parameter l measures the couple stress effect [START_REF] Ma | A non-classical Mindlin plate model based on a modified couple stress theory[END_REF][28] and leads to the size dependence of the couple stress model. The actuators and sensors (Ω p ) are deformable continuum with properties of piezoelectricity. Therefore, the associated constitutive relations simultaneously account for the effects of piezoelectricity, couple stress elasticity and their coupling. Hence, we have

         σ = C p : ε -e • E D = e : ε + • E m = A p : χ on Ω p , (7) 
where C p and A p characterise the linear elasticity and couple stress elasticity for the piezoelectric patches. Regarding the piezoelectric properties, we use e to denote piezoelectricity tensor and the permittivity tensor. Components of e and expressed in (x, y, z) are given as follows: 

and

[ ij ] =    11 0 0 0 11 0 0 0 33    . (9) 

Equation of couple stress elasto-dynamics

By considering distinct material properties for Ω e and Ω p , we can write the kinetic energy K of the system as

K = 1 2 Ωe ρ e u2 dΩ + 1 2 Ωp ρ p u2 dΩ , (10) 
where ρ e and ρ p are densities of Ω e and Ω p , respectively. Considering both the kinetic energy [START_REF] Yu | Piezoelectric passive self-tuning energy harvester based on a beamslider structure[END_REF] and the Gibbs free energy given in [START_REF] Naono | A large-scan-angle piezoelectric MEMS optical scanner actuated by a Nb-doped PZT thin film[END_REF], we obtain the Gibbs-type variational principle

δΠ G = δG -δK . (11) 
By introducing (6,7) into (1), then the obtained Gibbs free energy (1) and kinetic energy [START_REF] Yu | Piezoelectric passive self-tuning energy harvester based on a beamslider structure[END_REF] 

δE a • (e : ε + • E a ) dΩ - Ωs δE s • (e : ε + • E s ) dΩ = - Ωe ρ e ü • δudΩ + Ωp ρ p ü • δudΩ , (12) 
where the domain occupied by sensors Ω s and actuators Ω a are integrated separately, with Ω p = Ω s ∪Ω a .

We note distinct electric fields E s and E a on the sensors and actuators. However, since they are made of the same material, we do not distinguish elastic behaviours C p , A p and piezoelectric coefficients e between sensors and actuators.

3 FEM implementation using a Q4 Mindlin micro plate finite element

Finite element implementation of the modified couple stress elasto-dynamics requires at least nodal compatibility with C 1 continuity due to the presence of second-order derivatives of displacements.

To meet this requirement, we adopt in this work a four-node quadrilateral plate element with nonconforming formulation, developed by Melosh and Zienkiewicz and Cheung (MZC) [START_REF] Zienkiewicz | The finite element method-solid mechanics[END_REF]. Although C 1 discontinuous on the inter-element boundary, this element preserves nodal C 1 continuity and therefore can be considered as a tolerable solution for high-order elasticity implementation.

Basic kinematics

Basic kinematics of the Mindlin plate is illustrated in Fig. [START_REF] Brueckner | Micro-and nano-electromechanical resonators based on SiC and group III-nitrides for sensor applications[END_REF]. We consider a plate structure of thickness h subject to uniform force load q and in-plane couple load (pure moment) m x and m y , respectively around x and y axis. Displacement of the plate continuum is described by u (x, y, z), v (x, y, z) and w (x, y, z) which are components along x, y and z axis. Kinematics of the plate mid-plane involves both the displacement components u (x, y), v (x, y) and w (x, y) and rotation components φ x (x, y) and φ y (x, y), and we focus on the anti-plane wave propagation which is predominant in the micro plate structures. Effects of membrane displacements u (x, y) and v (x, y) are ignored. Using the above parameters, we prescribe basic kinematic relations that respect the classical Mindlin plate assumptions [START_REF] Mindlin | Influence of Rotatory Inertia and Shear on Flexural Motions of Isotropic, Elastic Plates[END_REF] that we recall as follows: (1) Constant plate thickness during deformation. ( 2) Plane-stress assumption stipulating negligible normal stress through the plate thickness. (3) Linear variation of displacement across thickness. As a result, the plate cross section remains flat but not necessarily perpendicular to the mid-plane during deformation. In addition, we suppose negligible inplane stretching in the context of vibroacoustic analysis, for which the effects of deflections and rotations dominate. Therefore, displacement components of the Mindlin plate can be written as

Middle plane

u (x, y, z) = -zφ x (x, y) , v (x, y, z) = -zφ y (x, y) , w (x, y, z) = w 0 (x, y) , (13) 
where φ x and φ y refer to rotations around x and y axis, respectively; w 0 is the displacement in z direction of the plate mid-plane. We then prescribe with respect to the above description nodal kinematic parameters that involve deflections, rotations and their derivatives to satisfy the compatibility with couple stress continuum. This leads to a vector of nine nodal degrees of freedom, which writes for the node i as 

{u i } 9×1 = w φ x φ
With the kinematics described by Eqs. [START_REF] Walker | Tunable ultrasonic phononic crystal controlled by infrared radiation[END_REF][START_REF] Mindlin | Microstructure in linear elasticity[END_REF], we are ready to derive strain components in accordance with both the classical theory of elasticity and the high order couple stress continuum.

Cauchy strain ε expression

Relations of classical elasticity are established using Cauchy strains based on first derivatives of Eq.( 13).

Components of Cauchy strain can be written as the product between a transformation matrix [S ε ] and a generalised strain {ε}, which gives

{ε} = [S ε ]{ε} , (15) 
where the transformation matrix [S ε ] writes

[S ε ] =         -z -z 1 1 -z         , (16) 
and the generalised strain ε involving both in-plane and out-of-plane components writes

{ε} =         ∂φx ∂x ∂φy ∂y ∂w0 ∂y -φ y ∂w0 ∂x -φ x ∂φx ∂y + ∂φy ∂x         . ( 17 
)
Here, generalised strain {ε} derives from the displacement field using

{ε} = [B ε ]{u} , (18) 
with the strain-displacement matrix [B ε ] provided in Appendix B.

Symmetric curvature tensor χ expression

Kinematics description based on couple stress continuum requires expression of symmetric curvature {χ}, whose components are second derivatives of the plate displacement (Eq.( 13)). Similar to Cauchy strain (Eq.( 15)), {χ} can also be expressed as the product between a transformation matrix [S χ ] and a generalised strain { χ}, therefore

{χ} = [S χ ]{ χ} , (19) 
where the transformation matrix S χ writes

[S χ ] =         1 2 -1 2 -z 2 -z 2 1 2         , (20) 
and the generalised curvature { χ} involving first and second in-plane and out-of-plane derivatives of the displacement field, writes

{ χ} =          ∂ 2 w0 ∂y∂x + ∂φy ∂x ∂ 2 w0 ∂x∂y + ∂φx ∂y ∂ 2 φy ∂x 2 -∂ 2 φx ∂y∂x ∂ 2 φy ∂x∂y -∂ 2 φx ∂y 2 ∂ 2 w0 ∂y 2 + ∂φy ∂y -∂ 2 w0 ∂x 2 + ∂φx ∂x          . ( 21 
)
Generalised curvature { χ} derives from the displacement field using

{ χ} = [B χ ]{u} , (22) 
with the curvature-displacement matrix [B χ ] also provided in Appendix B.

Implementation of the interpolation functions

Finite element implementation of couple stress continuum requires interpolation of nodal parameters that satisfy at least C 1 continuity at the nodes since second derivatives of displacement are involved as shown in Eq.( 21). However, strict C 1 continuous interpolation is difficult to achieve as it requires either important number of nodal parameters or complex element topology. Instead of strict C 1 element continuity, we implement here a non-conforming element based on MZC 4-node interpolation. Although discontinuous for displacement derivatives on the element boundary, this formulation preserves C 1 continuity at the nodes. Given the nodal parameters in Eq.( 14), we compose the element displacement vector for the 4-node formulation as follows

{u e } 36×1 = u T 1 u T 2 u T 3 u T 4 T . (23) 
Therefore, we obtain the approximate displacement field by interpolating nodal displacements with the non-conforming Hermite cubic shape functions [START_REF] Zhang | A non-classical mindlin plate finite element based on a modified couple stress theory[END_REF] 

w = 4 i=1 N i w i + N iξ ∂w i ∂ξ + N iη ∂w i ∂η φ x = 4 i=1 N i φ xi + N iξ ∂φ xi ∂ξ + N iη ∂φ xi ∂η φ y = 4 i=1 N i φ yi + N iξ ∂φ yi ∂ξ + N iη ∂φ yi ∂η , (24) 
in which the shape function expressions are

N i = 1 8 (1 + ξ i ξ) (1 + η i η) 2 + ξ i ξ + η i η -ξ 2 -η 2 N iξ = 1 8 aξ i (1 + ξ i ξ) 2 (1 + η i η) (ξ i ξ -1) N iη = 1 8 bη i (1 + ξ i ξ) (η i η -1) (1 + η i η) 2 , (25) 
and (ξ i , η i ) with i = 1, 2, 3, 4, refers to positions of the i-th vertex in the reference coordinates. a and b refer to the half side length of the rectangular element along x and y directions, respectively.

Feedback control and its implementation

Similar to the way generalised strains derive from nodal displacements (Eqs. [START_REF] Zhang | Band gaps for wave propagation in 2-D periodic composite structures incorporating microstructure effects[END_REF][START_REF] Wang | Effects of inclusion shapes on the band gaps in two-dimensional piezoelectric phononic crystals[END_REF])), we express element actuator/sensor electric field as function of the respective nodal voltage V a and V s which are scalar parameters. Therefore, from Eq.( 5) we have:

{E a } = [B V ]{V a } {E s } = [B V ]{V s } , (26) 
where

{B V } = 0 0 1 hp T , (27) 
with h p the thickness of the actuator/sensor patches. With the account for Eqs. [START_REF] Zhang | Band gaps for wave propagation in 2-D periodic composite structures incorporating microstructure effects[END_REF][START_REF] Wang | Effects of inclusion shapes on the band gaps in two-dimensional piezoelectric phononic crystals[END_REF][START_REF] Ma | A non-classical Mindlin plate model based on a modified couple stress theory[END_REF], we introduce Cauchy strain (Eq.( 15)), symmetric curvature (Eq.( 19)) and electric field E a/s (Eq.( 26)) into the problem governing equation (Eq.( 12)). After separation of kinematics parameters {u e } from the actuator/sensor voltages {V a/s }, we obtain the governing equation for the coupled system of piezoelectric Mindlin micro plate, that we express in the following form:

   m 11 0 0 0 0 0 0 0 0       üe V a V s    +    k 11 k 12 k 13 k 21 k 22 0 k 31 0 k 33       u e V a V s    =    0 0 0    . ( 28 
)
Complete expressions of the components [k ij ] and [m 11 ] are given in Appendix C. As shown in Eq.( 28), the coupled system involves element kinematics parameters {u e } and sensing/actuating voltages V s and V a . During the operation of the system, the sensing voltage V s is generated on piezoelectric sensors due to vibration induced elastic deformation. Meanwhile, the induced V s is fed back to the actuator after the current goes through an external controller on which a control algorithm is implemented. The control algorithm solves V a as function of V s and determines the vibroacoustic behaviour of the coupled piezoelectric micro system. In this work, the feedback control strategy is designed by considering the combination of direct proportional control [START_REF] Balamurugan | Shell finite element for smart piezoelectric composite plate/shell structures and its application to the study of active vibration control[END_REF], constant gain negative velocity control [START_REF] Balamurugan | Shell finite element for smart piezoelectric composite plate/shell structures and its application to the study of active vibration control[END_REF] and acceleration feedback control [START_REF] Ren | Active tunability of band gaps for a novel elastic metamaterial plate[END_REF] strategies. V a is solved as function of V s and its derivatives, as

V a = -g a ∂ 2 V s ∂t 2 -g b ∂V s ∂t -g c V s . (29) 
Voltage gain observed on V a with respect to V s is proportional to three parameters V s , Vs and Vs , which correspond to the effects of displacement, velocity and acceleration, respectively. By adjusting g a , g b and g c , we can prescribe dependence on these parameters based on their combinations. Adding feedback control to the coupled system, we substitute Eq.( 29) into Eq.( 28) and obtain the condensed system:

[ m * ]{ü e } + [ c * ]{ ue } + [ k * ]{u e } = {0} , (30) 
where

[m * ] = [m 11 ] + g a [k 12 ][k 33 ] -1 [k 31 ] [ c * ] = g b [k 12 ][k 33 ] -1 [k 31 ] [ k * ] = [k 11 ] + g c [k 12 ][k 33 ] -1 [k 31 ] -[k 13 ][k 33 ] -1 [k 31 ] .
The presence of first order derivatives in Eq.( 29) yields equivalent effect of damping as seen in Eq.(30) which contributes to the control of vibrations. On the base plate outside the sensor/actuator binding area, Eq.( 28) no longer applies. The model is undamped whose governing equation reads:

[m]{ü e } + [k]{u e } = {0} , (31) 
for which the component matrices are given in Appendix C. The complete model of the piezoelectric coupled system involves both Eq.(30) for the three-layer sensor-plate-actuator coupled structure, and Eq.(31) for the remaining area of the base plate which is subject of undamped vibration. Modal extraction based on Eqs.(30,31) is not a trivial task due to the asymmetric [c * ] matrix in the secondorder dynamic equation Eq.(30). To overcome this difficulty, we adopt the state-space representation of Eq.( 30) which leads to a first-order differential equation. Let {Z} = ( ue ) T (u e ) T T , we transform Eq.(30) to:

[B]{ Ż} + [G]{Z} = {0} , (32) 
where

[B] = 0 m * m * c * , [G] = -m * 0 0 k * .
By considering the displacement field in time domain under the form

{Z(r, t)} = {Z 0 (r)e iωt } , (33) 
we transform Eq.(32) to frequency domain, which leads to:

([G] + iω[B]) {Z 0 } = {0} , (34) 
in which

{Z 0 } = ( ue 0 ) T (u e 0 ) T T . ( 35 
)
Since the unknown vector {Z 0 } contains both { ue 0 } and {u e 0 }, the boundary conditions of the original modal problem requires adaptation before implementation. Details will be given in Section 5. , in addition to the periodic conditions that relate {u R } to {u L }, {u T } to {u B }, then at the corner nodes with {u BR }, {u T R } and {u T L } with respect to {u BL }. The displacement vector for the unit cell can be expressed in the following form

Implementation of the band gap unit cell boundary value problem

{u} =                  u I u L u R u B u T u BL u BR u T R u T L                  =                  I 0 0 0 0 I 0 0 0 λ 1 I 0 0 0 0 I 0 0 0 λ 2 I 0 0 0 0 I 0 0 0 λ 1 I 0 0 0 λ 1 λ 2 I 0 0 0 λ 2 I                       u I u L u B u BL      = [P]{ u} . (36) 
Similarly, the unknown vector {Z 0 } in Eq.( 35) for the state-space resolution with the account for periodic boundary conditions can be written as

{Z 0 } = P T 0 0 P T { Z0 } , (37) 
with

{ Z0 } = ( ˙ u 0 ) T ( u 0 ) T T , which means { Z0 } = ( uI 0 ) T ( uL 0 ) T ( uB 0 ) T ( uBL 0 ) T (u I 0 ) T (u L 0 ) T (u B 0 ) T (u BL 0 ) T T . (38) 
Introducing Eq.(37) into the original unit cell modal problem Eq.(34), we obtain its state-space representation with periodic boundary conditions:

P T 0 0 P T ([G] + iω[B]) P 0 0 P { Z0 } = 0 . (39) 
Eq.( 39) can be noted as:

[ Ḡ] + iω[ B] { Z0 } = {0} , (40) 
where

[ Ḡ] = [ P] T [G][ P], [ B] = [ P] T [B][ P], P = P 0 0 P . ( 41 
)
The obtained Eq.( 40) refers to the final form of the unit cell boundary value problem for modal analysis.

Numerical results

In this section, we study vibration behaviours of a piezoelectric micro plate system using the feedback control strategy proposed in in Section 4. The first example, in Section 6.1, validates the importance of size dependence in band gap properties for the micro plate coupled system. We subsequently propose a structure configuration that leads to significant size effect. Then, based on this configuration, we will perform band gap and frequency response analysis to examine the influence of multi-parameter control strategies. Both the effects of single-parameter control and multi-parameter control will be discussed in Section 6.2 and Section 6.3, respectively.

Size dependence of band gap behaviours: microstructure effects

In this section, we study the significance of size effects in band gap behaviours for the piezoelectric micro plate coupled system and demonstrate the relevance of the modified couple stress model treating size effects. We prescribe two micro plate configurations of distinct length scales and investigate their band gap properties using both the couple stress and classical theories of elasticity. The two problems are distinct in size: one very small and the other on the macroscopic scale. We demonstrate through band gap calculations, that the couple stress and classical theory solutions agree on the macroscopic problem but diverge on the micro plate problem for which size effects emerge. Concerning the mechanism of vibration attenuation, the proposed three-parameter feedback control is tested using mass, damping and stiffness based control, configured respectively constant gain coefficients g a , g b and g c , as indicated in Eq.( 29). The test scenario is based on the piezoelectric micro plate system as shown in Fig. [START_REF] Lu | Waveguide piezoelectric micromachined ultrasonic transducer array for short-range pulse-echo imaging[END_REF]. The structure incorporates periodically distributed sensor and actuator patches whose unit cell geometry is given in Fig. (4a). For the micro scale model, the base plate thickness h = 20 µm. The unit cell is square in shape with edge length a = 50 × h. The piezoelectric patches, both the sensors and actuators, are also square in shape with edge length b = 0.8 × a. As a comparison, the macro scale model is significantly larger in size with h = 120 µm, the other geometry parameters are defined with respect to h like the micro scale model with the same proportion factors. For the two cases, we prescribe piezoelectric patch thickness h p = 3h. Material composition of the unit cell can be distinguished between the base plate material (epoxy) and the piezoelectric plate material (BiTiO 3 ), whose properties are given in Tab. 1. The unit cell is discretised with the four-node quadrilateral element described in Section 3.2 using the same mesh for both the macro and micro scale cases. Size dependence in band gap behaviours are examined with the activation of vibration control: the three feedback control strategies are prescribed independently by considering the following configurations: mass control with g b = g c = 0, g a = 2 × 10 -12 , damping control with g a = g c = 0, g b = 1.5 × 10 -5 and stiffness control with g a = g b = 0, g c = 300. A particular case of free vibration without vibration control (g a = g b = g c = 0) is also investigated.

Calculation of band gap diagrams requires considering wave vectors on the boundary of the irreducible first Brillouin zone, which in the case of 2D symmetric domains, is presented in the form of a triangle as depicted in Fig. (4b). Modal analysis required for band gap calculations can be reduced to the boundary of the triangle by following the path Γ-X-M-Γ. In the present case, this leads to modal resolutions on 58 equidistant, discrete points along the path Γ -X -M -Γ. Specifically, we implement Floquet-periodic boundary conditions by considering the wave vector k i = (k x , k y ) (i = 1, 2, . . . , 58) which takes distinct forms on each section along the path Γ -X -M -Γ, in particular: from Γ to X,

k x = 2π a k, k y = 0, k ∈ [0, 1], from X to M, k x = 2π a , k y = 2π a (k -1), k ∈ [1, 2], from M to Γ, k x = 2π a (3 -k), k y = 2π a (3 -k), k ∈ [2, 3
]. The result band diagrams are presented in Fig. [START_REF] Ren | Active tunability of band gaps for a novel elastic metamaterial plate[END_REF] for the two tested geometry settings which have been studied based on four configurations of control strategy, respectively. In total, eight problems have been examined using both couple stress (red curves) and classical (blue curves) elasto-dynamics. With Fig. ( 5(a-d)), we report band diagrams obtained from the micro scale problem for which the base plate thickness h = 20 µm. As a comparison, we report with Fig. (5(e-h)) band diagrams from the macro scale problem with h = 120 µm. Both micro and macro scale problems have been tested on four configurations of vibration control, consisting of: non feedback control (a,e); mass based control (b,f); damping based control (c,g) and stiffness based control (d,h). It is not difficult to observe that the couple stress and the classical elasto-dynamic models agreed with each other on the macro scale model but led to significantly different band diagrams on the micro scale model. The disagreement is particularly important in the high frequency range and reflects significant microstructure effects that emerged due to the small enough problem size of the micro scale problem setting. This observation confirms the problem size dependence of band gap behaviours for the tested piezoelectric micro plate systems. We also confirm that size dependence can be captured by the couples stress model but not by the classical elasticity model. For the macro scale problem, on the contrary, since size effect is negligible, we observed good agreement between the couple stress and the classical models according to (e-h). Based on all the tested cases, it becomes obvious that the emergence of microstructure effect only depends on the problem size and is irrelevant to the choice of the vibration control strategy. In conclusion, size effect is important to take into account in the design of piezoelectric micro plate systems. The implemented couple stress elasto-dynamic model provides a practical way to deal with size effects of such problems. In the following numerical examples, since vibration control with size effects will be explored, the unit cell configuration based on h = 20 µm will be adopted as the significance of size effects is confirmed. 

Band gap tuning based on single-parameter control

The piezoelectric micro plate system incorporates a feedback control strategy that has been presented in Section 4. The control mechanism can be configured by three parameters g a , g b and g c , which refer to the voltage gains within the sensor-to-actuator loop with respect to mass, damping and stiffness.

In this section, we focus on the individual effect of the three control parameters and examine their respective influence on the vibration response of the coupled system. In particular, we prescribe three groups of band gap analysis, each group with g a , g b and g c evolving on an interval of values. In addition, to understand how band gap results can be used to advise real structure design, we perform dynamic response analysis in frequency domain based on a representative structure composed of periodic unit cells and compare the result with band gap predictions. The computational protocol that we present in this section can be used to assist the parametrisation of the feedback controller, permitting tuning of band gap behaviours of the micro plate coupled system. We adopt the micro scale unit cell with the base plate thickness h = 20 µm. This configuration demonstrates significant size dependence of band gap behaviours according to Section 6.1. Therefore, application of the couple stress elasticity is justified.

Other geometry parameters of the unit cell is identical to the micro scale problem studied in Section 6.1, with a = 1 mm, b = 0.8 mm and h p = 3h. Similarly, material composition of the unit cell is found in Tab. 1 of Section 6.1. We consider epoxy and BiTiO 3 for the base plate and sensor/actuator materials, respectively. Band gap calculations are performed based on the periodic unit cell by considering the procedure presented in Section 6.1. To examine the effectiveness of the band gap results, we further conduct dynamic response analysis in frequency domain by prescribing a representative example of piezoelectric micro plate system composed of five unit cells periodically arranged along x direction, as shown in Fig. [START_REF] Lossouarn | Multimodal vibration damping of a plate by piezoelectric coupling to its analogous electrical network[END_REF]. Boundary conditions on the five-cell system are as follows: we fix all degrees of freedoms on the points (x, y) = (5a, a) and (x, y) = (5a, 0), and we prescribe F z = Fe iωt on the point (x, y) = (0, a/2). The input wave signal then propagates along the micro plate structure and the steady-state dynamic response is collected on the point (x, y) = (5a/2, a/2). The output dynamic response is then analysed with respect to the input excitation, allowing us to compare with the band gap results.

Dynamic response in frequency domain is obtained by using frequency response function (FRF) that calculates steady-state dynamic response with regard to a sinusoidal input excitation. Let us consider a standard multi degree of freedom system with its state-space representation which writes

B Ż + GZ = F . ( 42 
)
Using Laplace transform, the corresponding transfer function denoted by H is written as

H = n r=1 φ r φ T r g r + iωb r , (43) 
in which b r , g r are the r-th element on the diagonal of the matrices B and G, respectively. φ r is the eigenvector associated with the r-th degree of freedom. Components of the transfer matrix, H ij , can be physically interpreted as the dynamic response measured on point i with respect to an input excitation prescribed on point j.

Influence of g a : mass based control

Effect of the control parameter g a on the coupled micro plate system is studied. According to Eq.( 29), g a refers to the sensor-to-actuator voltage gain with respect to mass. Fig. (7a) focuses on the first four band gaps of the system and particularly the effect of g a on the band gap frequency ranges. Therefore, as g a is set to increase on the interval [1 × 10 -12 , 2.9 × 10 -12 ], frequency ranges of the first and second band gaps remain almost constant, however, the third band gap is observed to decrease significantly and tends to vanish while g a approaches the upper bound at 2.9 × 10 -12 . Oppositely, a fourth band gap initiates at g a = 1.0 × 10 -12 and broadens with the increase of g a . We report in Tab. 2 the frequency ranges of the third and fourth band gaps extracted from two cases based on g a with g a = 1.0 × 10 -12 and g a = 2.0 × 10 -12 , respectively. Results from Tab. 2 will be used in the following for comparison with dynamic response simulations in frequency domain.

Dynamic response analysis is performed based on a representative system of piezoelectric micro plate as depicted by Fig. [START_REF] Lossouarn | Multimodal vibration damping of a plate by piezoelectric coupling to its analogous electrical network[END_REF]. Amplitude of the dynamic response as function of the excitation frequency is reported in Fig. (7b). Here, for the dynamic response calculation, we consider the same cases as listed in Tab. 2, with g a = 1.0 × 10 -12 and g a = 2.0 × 10 -12 . The results are presented using red and blue curves, respectively. To facilitate comparison, we highlight in Fig. (7b) the third and fourth frequency ranges (Tab. 2) predicted by the unit cell model for the corresponding g a settings. Therefore, we observed good agreement between the band gap and dynamic response models: firstly, the band gap frequency ranges predicted by the unit cell model are confirmed by the dynamic response simulation. Then, the broadened fourth band gap and the reduced third band gap predicted by the unit cell model, are also observed on the dynamic response curves. In summary, the control parameter g a alone has negligible effect on the range of the first and second band gaps. It does affect band gaps of higher frequencies, that is to say, a greater g a tends to reduce the third band gap but broadens the fourth band gap. Note however that the effect of g a is presented in bounded ranges as shown in Tab. 2. With g a beyond the presented ranges, the model may become unstable showing oscillating band gap results. Therefore, the effects of the control parameters are valid only within the respective validity ranges. This notice holds for the following examples.

Influence of g b : damping based control

We now focus on the control parameter g b and investigate its effect on the band gap of the coupled micro plate system. g b governs the sensor-to-actuator voltage gain with respect to damping. We present in Fig. (8a) the first four band gaps of the system and their evolution with g b . Here, similar to g a , the effect of g b is negligible on the first two band gaps and shows significance only on band gaps of higher frequencies. Therefore, with the increase of g b on the interval [0, 1.5 × 10 -5 ], we observed broadened frequency range of the third and fourth band gaps. To compare band gap predictions with dynamic response simulations, we report in Tab. 3 the frequency range of the third and fourth band gaps for two cases using g b = 0.5×10 -5 and g b = 1.5×10 -5 , respectively.

Dynamic response analysis in frequency domain is performed by considering two cases of g b with g b = 0.5 × 10 -5 and g b = 1.5 × 10 -5 , whose response amplitude vs. excitation frequency is reported in Fig.(8b) using red and blue curves, respectively. The two dynamic response simulations are confronted to the band gap predictions that we have reported in Tab. 3. Also, to present a direct comparison between the two models, we highlight in Fig. (8b) the frequency range prediction of the third and the fourth band gaps obtained using the unit cell band gap calculation. Thus, good agreement can be observed between the band gap and dynamic response models. All the predicted band gaps can be localised on the dynamic response curves. From g b = 0.5 × 10 -5 to g b = 1.5 × 10 -5 , we observed slightly broadened frequency ranges on both the third and the fourth band gaps, which is in accordance with the band gap prediction depicted in Fig. ( 8a). Similar to g a , the effect of g b on the system does not present significance on the first two band gaps, although it slightly affects the band gap ranges of higher frequencies, for instance, the third and the fourth band gap according to our test case.

Influence of g c : stiffness based control

Finally, we move to investigate the influence of g c on the bad gap of the coupled micro plate system. We remind that g c refers to the sensor-to-actuator voltage gain with respect to stiffness according to Eq.( 29). Again, similar to the two previous cases based on g a and g b , we observed negligible effect of g c on the first two band gaps, but only on band gap ranges of higher frequencies. Hence, with increasing g c on the interval [0, 3.0 × 10 2 ], we observed broadened frequency ranges for both the third and the fourth band gaps. Based on the unit cell band gap calculation, frequency ranges of the third and fourth band gaps are extracted for g c = 0 and g c = 1.0 × 10 2 , whose results are presented in Tab. 4 and will be compared with dynamic response simulations.

We consider the two cases listed in Tab. 4 for the dynamic response analysis whose result depicts the response amplitude as function of the excitation frequencies in Fig. (9b). The two cases with g c = 0 and g c = 1.0 × 10 2 are represented using red and blue curves, respectively. Similar to the two previous cases of g a and g b , we highlight in Fig. (9b) the frequency ranges of the third and the fourth band gaps predicted by the unit cell band gap calculation. This offers direct comparison with the dynamic response simulation and leads us to the following observation: firstly, all the predicted band gaps can be localised on the frequency response curves. Then, broadened frequency ranges are obtained on both the third and the fourth band gaps by comparing the g c = 1.0 × 10 2 case to the g c = 0 case. This observation is conform to the band gap predictions in Fig. ( 9a). We observe again, however, that the effect of g c on first two band gaps is limited, it mainly affects the band gap ranges of middle to higher frequencies. In summary, the control parameters g a , g b and g c allow adjusting significantly higher frequency band gaps for the tested coupled micro plate system. In particular, mass based control (g a ) can be useful in controlling higher frequency vibrations since it allows lowering the lower bound of high-order band baps. In addition, damping (g b ) and stiffness (g c ) based control can both be applied to improve the range of medium and higher band gaps. Since the feedback control parameters affect notably the range of higher frequency band gaps, we will focus on higher order band gaps as an example to present the effect of multi-parameter control strategies in Section 6.3.

Tuning of higher frequency band gaps using multi-parameter control

Based on the coupled micro plate system studied in Section 6.1 and Section 6.2, we now consider multi-parameter control strategies involving combined effects of g a , g b and g c on the tuning of vibration behaviours. Since these parameters demonstrate significant effect in adjusting higher order band gaps, we focus on the fourth band gap and investigate the effects of multi-parameter control based on combined effects of mass and damping (MD) control, mass and stiffness (MS) control, and, daming and stiffness (DS) control. Inspired by the methodologies presented in Section 6.2, we perform both unit cell band gap analysis and dynamic response calculations by considering a representative micro plate system consisted of five unit cells. Geometry and material definition of the unit cell and of the representative micro plate system is identical to the description given in Section 6.2. We then focus on the case of MS control strategy for which g b = 0 and g a , g c are the evolving parameters. We consider g a and g c evolving on the intervals 11a)), we note monotonically increasing trend with respect to g a , however, the dependence on g c is not monotonic. The size of the band gap first decreases, then increases with g c , with the lowest point observed at (g a , g c ) = (1.1 × 10 -12 , 0). Position of the band gap is also influenced by g a and g c . By following the path N-M-Q-P, the lower bound of the band gap globally increases. Concerning dynamic response in frequency domain, we report the cases N, M, P, Q in Fig. (11c) on which the frequency range between the lowest and the highest bounds for the four cases combined, predicted by band gap calculation, is highlighted. It covers the fourth band gap that we can identify on the dynamic response curves.

The last case deals with DS control strategy for which g a = 0 and g b , g c are set to evolve on the intervals [0, 2.0 × 10 -5 ] and [0, 3.0 × 10 2 ], respectively. We follow the same analysis methodology as for the two previous cases. In Fig. (12b), the size of the fourth band gap increases monotonically with g c , yet the effect of g b appears insignificant. We note in particular the cases P and Q, which presented comparable band gap sizes. We highlight in Fig. (12c) the frequency range covered by the highest and the lowest bounds predicted by unit cell band gap calculations. The highlighted frequency range does not suit perfectly but fully covers the fourth band gap that we can identify on the dynamic response curves. In summary, the presented analysis allows evaluation of band gap effects for the implemented multiparameter feedback control. The investigation led to quantitative relations that measure the collective effects of g a , g b and g c combinations. We have observed that the collective effects of g a , g b and g c cannot be predicted by considering direct superposition of their individual behaviours. In the case of MS control, for example, the fourth band gap is not a monotonic function with respect to g c (Fig. (11a)) whereas it is the case when it comes to single-parameter control based on g c as shown in Fig. (9a). In addition, setting of the MD, MS or DS control parameters affects both the band gap size and its position. The methodology involved in the current analysis can be used to obtain optimal parametrisation of the feedback controller with respect to the required band gap behaviour.

Conclusion

We investigated in this work a computational methodology that can be used to assist the design of feedback micro controllers for achieving tunable band gap properties of micro scale piezoelectric plate coupled systems. The methodology is based on a high-order elasto-dynamic model with piezoelectric coupling which accounts for size dependence of the vibroacoustic behaviours, and involves a feedback control relationship that incorporates three-parameter dependence with respect to displacement, velocity and acceleration (or stiffness, damping and mass in other terms). Effects of the three parameters on the band gap properties can be individually or collectively predicted by simulation, which allowed us to obtain an optimised parametrisation of the micro controller with respect to the design specifications. This is particularly interesting since according to our simulations, combined effects of the three control parameters cannot be predicted by considering linear superposition of their individual behaviours. For example, effects of the combined acceleration and displacement control (mass and stiffness or MS based control as described in Section 6.3) revealed significant difference compared to single-parameter strategies based on individual effects of acceleration or displacement alone, or on their superposition in any possible manner. Therefore, only through a comprehensive numerical methodology as the one developed in the present work, can we obtain an accurate prediction of the combined effects for the involved control parameters. Additionally, size dependence of band gap properties has been examined, which further confirms the value of this contribution on the topic of band gap tuning for micro scale plate coupled systems.

Appendix A

The matrix expression of linear elasticity tensor: 

• • • ∂N1 ∂x -N 1 0 ∂N 1ξ ∂x -N 1ξ 0 ∂N1η ∂x -N 1η 0 • • • ∂N1 ∂y 0 -N 1 ∂N 1ξ ∂y 0 -N 1ξ ∂N1η ∂y 0 -N 1η • • •         5×36 .
For symmetric curvature strain matrix: 

{ χ} =            
• • •          5×36 .

Appendix C

For multi-layer piezoelectric plate: 

[k 11 ] = A [B ε ] T [ Ĉ][B ε ]dA + A [B ε ] T [ Ĉpa ][B ε ]dA + A [B ε ] T [ Ĉps ][B ε ]dA + A [B χ ] T [ Âpa ][B χ ]dA + A [B χ ] T [ Âps ][B χ ]dA + A [B χ ] T [ Â][B χ ]

Figure 1 :

 1 Figure 1: (a) Piezoelectric micro plate coupled system. (b) Periodic unit cell and its geometry described in the Cartesian coordinate system (x, y, z). We use Ωe to denote the base plate and Ωp the piezoelectric patches. Sensors and actuators are noted by Ωs and Ωa, respectively, thus, Ωp = Ωs ∪ Ωa. Ωs and Ωa are of identical thickness hp. Thickness of Ωe is h .
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Figure 2 :

 2 Figure 2: Mindlin plate kinematics: initial and deformed configurations.

Figure 3 :

 3 Figure 3: Periodic piezoelectric micro plate system and its unit cell. Since material properties of Ωp and Ωe are pre-integrated through the thickness and expressed on the mid-surface, the figure depicts the structural and material heterogeneities projected to the mid-surface of the unit cell.

Figure 4 :

 4 Figure 4: (a) Unite cell configuration (b) Irreducible first Brillouin zone

Figure 5 :

 5 Figure 5: Band gap diagrams based on couple stress (red curves) and classical (blue curves) theories of elasto-dynamics: influence of problem sizes and control parameters. Cases (a-d) are based on the micro scale unit cell with h = 20 µm. Cases (e-h) are based on the macro scale unit cell with h = 120 µm. Four control strategies are tested using respectively: non feedback control (a,e) with ga = g b = gc = 0; mass based control (b,f) with ga = 2 × 10 -12 , g b = gc = 0; damping based control (c,g) with g b = 1.5 × 10 -5 , ga = gc = 0; then, stiffness based control (d,h) with gc = 300, ga = g b = 0.

Figure 6 :

 6 Figure 6: A five-cell system of coupled piezoelectric micro plate used for dynamic response analysis in frequency domain: orange pins indicate fixed DOFs; red arrow indicates input excitation; green arrow refers to the position of output wave measurement.

Figure 7 :

 7 Figure 7: Effect of ga on vibration control. (a) Evolution of the first four band gap frequency ranges with respect to ga. (b) Dynamic response in frequency domain by considering two cases with ga = 1.0 × 10 -12 and ga = 2.0 × 10 -12 . Positions of the third and the fourth band gaps calculated in (a) for the two cases, are highlighted on (b) to provide comparison.

Figure 8 :

 8 Figure 8: Effect of g b on vibration control. (a) Evolution of the first four band gap frequency ranges with respect to g b . (b) Dynamic response in frequency domain by considering two cases with g b = 0.5 × 10 -5 and g b = 1.5 × 10 -5 . Positions of the and the fourth band gaps calculated in (a) for the two cases, are highlighted on (b) to provide comparison.

Figure 9 :

 9 Figure 9: Effect of gc on vibration control. (a) Evolution of the first four band gap frequency ranges with respect to gc. (b) Dynamic response in frequency domain by considering two cases with gc = 0 and gc = 1.0 × 10 2 . Positions of the third and the fourth band gaps calculated in (a) for the two cases, are highlighted on (b) to provide comparison.

Figure 10 :

 10 Figure 10: Effect of MD control: (a) Evolution of the fourth band gap size with respect to the combined effect of ga and g b simultaneously. (b) The fourth band gap diagrams considering cases N, M, P, Q. (c) Dynamic response in frequency domain based on a five unit cell couple micro plate system considering the cases N, M, P, Q.

Figure 11 :

 11 Figure 11: Effect of MS control: (a) Evolution of the fourth band gap size with respect to the combined effect of ga and gc simultaneously. (b) The fourth band gap diagrams considering cases N, M, P, Q. (c) Dynamic response in frequency domain based on a five unit cell couple micro plate system considering the cases N, M, P, Q.

  [1.1 × 10 -12 , 2.5 × 10 -12 ] and [0, 3.0 × 10 2 ], respectively, and report in Fig.(11a) the size of the fourth band gap calculated against the prescribed g a and g c combinations. Similar to the previous case, we highlight four cases based on the combination of g a and g c , denoted by N, M, P, Q, and we plot in Fig.(11b) the corresponding band diagrams for the fourth band gap. If we only focus on the size of the band gap (Fig.(

Figure 12 :

 12 Figure 12: Effect of DS control: (a) Evolution of the fourth band gap size with respect to the combined effect of g b and gc simultaneously. (b) The fourth band gap diagrams considering cases N, M, P, Q. (c) Dynamic response in frequency domain based on a five unit cell couple micro plate system considering the cases N, M, P, Q.

[,

  whereA ij = C ij l 2 .

[ Ĉ] = h 2 -h 2 [[ Ĉpa ] = -h 2 -h 2 - 2 +hp h 2 [ 2 -h 2 - 2 +hp h 2 [

 2222222222 dA, [k 12 ] = [k 21 ] T = -A [B ε ] T [ê a ] T [B Va ] dA, [k 13 ] = [k 31 ] T = -A [B ε ] T [ê s ] T [B Vs ] dA, [k 22 ] = -A [B Va ] T [ˆ a ][B Va ]dA, [k 33 ] = -A [B Vs ] T [ˆ s ][B Vs ]dA, [m 11 ] = A [N] T [ρ][N]dA, with S ε ] T [C][S ε ]dz, hp [S ε ] T [C p ][S ε ]dz, [ Ĉps ] = h S ε ] T [C p ][S ε ]dz, [ê a ] T = -h hp [S ε ] T [e] T dz, [ê s ] T = h S ε ] T [e] T dz, [ˆ a ] = = A [B ε ] T [ Ĉ][B ε ]dA + A [B χ ] T [ Â][B χ ]dA, [m] = A [N] T [ρ][N]dA,

Table 1 :

 1 Unit cell material properties

		C11 (GPa)	C12 (GPa)	C44 (GPa)	e15 C/m 2	e31 C/m 2	11 10 -9 C 2 /(N • m 2 )	33 10 -9 C 2 /(N • m 2 )	l (µm)	ρ g/cm 3
	Base plate	4.9	2.4	1.24	0	0	0	0	16.93	1.18
	Piezoelectric plate	166	77	43	11.6	-4.4	11.2	12.6	7	5.8

Table 2 :

 2 Third and fourth band gaps frequency range: effect of ga

	ga setting	Third band gap (kHz)	Fourth band gap (kHz)
	1.0 × 10 -12	[905.01, 1036.60]	[1112.75, 1134.87]
	2.0 × 10 -12	[891.31, 962.75]	[1011.36, 1091.49]

Table 3 :

 3 Third and fourth band gaps frequency range: effect of g b

	g b setting	Third band gap (kHz)	Fourth band gap (kHz)
	0.5 × 10 -5	[910.61, 1066.37]	[1136.82, 1203.81]
	1.5 × 10 -5	[915.63, 1094.14]	[1137.53, 1232.69]

Table 4 :

 4 Third and fourth band gaps frequency range: effect of gc

	gc setting Third band gap (kHz)	Fourth band gap (kHz)
	0	[909.92, 1060.12]	[1136.70, 1200.28]
	1.0 × 10 2	[916.58, 1115.42]	[1172.20, 1346.64]