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Abstract

Vibration energy harvesters (VEHs) allow the extraction of ambient mechanical energy. The proposed analysis focuses on

bistable harvesters with Duffing nonlinearity. Bistable harvesters exhibit larger frequency bandwidth than linear monostable

harvesters, but they exhibit complex behaviors (i.e., multiple periodic orbits and chaos), making their evaluation challenging.

To assess the quality of a VEH, it is necessary to evaluate its energy performance generically. In this paper, we offer a new

quantitative metric that can be used to evaluate bistable harvesters while taking into account the richness and diversity of their

dynamics. This metric – called power expectation – is based on the average harvested power of each existing orbit weighted

by its occurrence probability. The value of this power expectation depends on the harvester characteristics and potential orbit

jump strategy implemented. Finally, we define a new figure of merit (FoM) based on the integral of the power expectation over

all vibration frequencies. This FoM can be used for a generic evaluation of nonlinear vibration energy harvesters (NVEHs),

by taking into account the various orbits and their respective probability of occurrence depending on the orbit jump strategy

used. The proposed FoM also makes it possible to ensure a fair comparison with linear VEHs and quantitatively assess the

effectiveness of orbit jump strategies for a given VEH.

Keywords: vibration energy harvesting, bistable oscillator, piezoelectric energy harvester, nonlinear dynamics, figure of merit

1. Introduction

Vibration energy can be scavenged with piezoelectric en-

ergy harvesters (PEHs) to replace or complement batteries

in low-power electronic systems [1]. A PEH is tradition-

ally composed of a linear mechanical oscillator that ampli-

fies the vibrations when excited around its natural frequency.

Fig. 1(a) shows the power-frequency response of a linear-

type harvester excited by a sinusoidal vibration. As shown

in Fig. 1(a), such a linear PEH exhibits a narrow frequency

bandwidth. Therefore, a slight mismatch between the vibra-

tion frequency and the linear PEH resonant frequency dras-

tically decreases the harvested power. This constitutes a ma-

jor problem in environments where the vibrations are time-

varying or random [2, 3]. During the last decade, NVEHs
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have been attracting research interest because of their en-

hanced frequency bandwidth compared to their linear coun-

terparts [4, 5]. However, NVEHs exhibit complex dynamical

behaviors making their evaluation and comparison challeng-

ing [6, 7, 8]. Here, we offer a new metric that assesses the

performances of NVEHs while taking into account the full

complexity of their nonlinear behaviors.

There has been a long-standing interest on NVEHs for their

broadband behavior [9] (for review, see e.g. [10]). The

nonlinear behavior of such harvesters may come from their

structure or from the nature of the involved forces (e.g. elec-

tromagnetic or elastic) [11]. Among nonlinear harvesters,

Duffing-type harvesters with bistable nonlinearity have been

attracting research interest for many years because they

exhibit broadband power-frequency responses (for review,

see e.g. [12]). There has been tremendous research ef-
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forts in order to understand [13], exploit [14], and improve

[15, 16, 17] the behavior of multistable NVEH. Compared to

linear PEH, the complexity of NVEH behaviors makes their

evaluation more challenging. Indeed, such harvesters can

exhibit multiple stable operating limit cycles – called orbits

– depending on their initial conditions (ICs) [18, 19]. Some

of these orbits – namely the high orbits for which the inertial

mass moves from one well to the other – exhibit advanta-

geous power-frequency behaviors and are interesting for en-

ergy harvesting [9, 6, 7]. However, some other orbits, namely

the low orbits for which the inertial mass oscillates around a

single well, exhibit low harvested power performances. In

order to force high orbit operation of NVEH and take advan-

tage of the full NVEH potential, it is necessary to implement

orbit jump strategies [20, 21]. For instance, such orbit jumps

can be performed with impact-induced method [22], wind-

induced method [23], buckling level modification [24, 25],

voltage impulse perturbation [5], load perturbation [26], or

by using stochastic resonance phenomena [27]. While many

NVEHs and orbit jump strategies have already been imple-

mented in the literature, there is still a need for a quantitative

metric and an FoM to compare and assess the quality of non-

linear harvesters associated with a given orbit jump strategy.

As illustrated in Table 1, various FoMs have already been pro-

posed in the literature. For instance, some FoMs are used to

compare linear PEHs and consist in the product of the maxi-

mum power times the frequency bandwidth of the harvester

[28, 29] or the integral of the power over all the vibration

frequencies [30, 31]. Such FoMs can easily be estimated for

linear PEH because they present a single periodic regime – of

probability of occurrence equal to 1 – as shown in Fig. 1(a).

Because of the variety of dynamical phenomena that can be

found in NVEH (e.g., co-existing orbits, subharmonic behav-

iors [32], and chaos [33, 34]), the linear PEH FoM cannot

be directly transposed to compare NVEH. As shown in Table

1, an FoM has been proposed to evaluate and compare the

performances of NVEH in [35] but rely on sweep excitations.

Figure 1(b) shows the power curve of an NVEH excited by

sweep excitation [35]. With this method, one can observe

two different orbits. The probabilities of occurrence of these

orbits are assumed to be equal in [35] (meaning that there is

50% chance of being on the highest orbit, and 50% chance

of being on the lowest orbit). However, in practice, there are

many more orbits than the two orbits considered, and the

respective probabilities of these orbits are not equal to 50%,

and depend on the level of excitation and on the vibration

frequency. Figure 1(c) illustrates the multiple orbits toward

which an NVEH can stabilize and their associated probabil-

ity of occurrence (for a given excitation amplitude). Figure

1(c) proves that an FoM based on sweep excitation is insuf-

ficient to establish a global assessment of an NVEH, does not

correspond to most real applicative cases, and hinders some

of the aforementioned dynamical phenomena. Furthermore,

such FoMs do not enable any comparison of orbit jump strate-

gies which are still vital for NVEH.

As shown in Table 1, this paper introduces the power expec-

tation, noted P, and defines an FoM, noted FoMP , based on

it. This power expectation is obtained from the average har-

vested power of each orbit pondered by its probability of oc-

currence obtained with a given orbit jump strategy. As de-

scribed in Table 1, FoMP makes it possible to perform a quan-

titative evaluation of an NVEH and its associated orbit jump

strategy, while taking into account its complex dynamic be-

haviors, and enables the fair comparison of linear and non-

linear energy harvesting solutions. Furthermore, FoMP can

be applied to any harvesters regardless of their transduction

mechanism (e.g., piezoelectric or electromagnetic).

Section 2 recalls the model of a Duffing-type VEH as well as

its dynamical behaviors, trajectories, and orbits. Thereafter,

we justify in section 3 the choice of an ICs grid that ensures

the detection of all orbits for all vibration frequencies. In sec-

tion 3, the harvested power and the probability of occurrence

associated with a given orbit are provided. Then, based on a

grid of given ICs, we introduce the mathematical expression

of the power expectation based on the probability of occur-

rence of each orbit and show its relevance for the evaluation
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FoM Authors Reference Volume Probability Subharmonic Bandwidth Pmax Part of the system that is evaluated

SFoMBW Liu et al. [35] 3 7 7 3 3 Nonlinear PEH

FoMst rat Morel et al. [31] 7 7 7 3 3 Interface circuits

NPD Beeby et al. [36] 3 7 7 7 3 Linear PEH

FOM Cai et al. [29] 7 7 7 3 3 Interface circuits

FoMv Mitcheson et al. [37] 3 7 7 7 3 Linear PEH

FoMBW Mitcheson et al. [37] 3 7 7 3 3 Linear PEH

FoMP This paper 7 3 3 3 3 Nonlinear PEH + orbit jump strategy

Table 1: Table of comparison with other FoMs from literature. SFoMBW (Systematic Figure of Merit with Bandwidth information), FoMst rat (strategy Figure of
Merit), NPD (Normalized Power Density), FOM = Bandwidth of the output power over natural bandwidth of the transducer, FoMv (volume Figure of Merit),
FoMBW (bandwidth Figure of Merit).

of the performance of an NVEH. We discuss several exam-

ples of orbit jump strategies to illustrate their impact on the

power expectation values. Comparing the expectation of har-

vested power for each orbit jump strategy makes it possible

to gauge their quality. In section 4, we define FoMP – based

on the power expectation – that enables the unified evalua-

tion of NVEH by taking into account the implemented orbit

jump strategy. Based on FoMP , three fictive orbit jump strate-

gies associated with the same nonlinear energy harvester are

quantitatively compared. Then, the influence of the level of

acceleration on the power expectation and FoM is studied,

with each of the aforementioned orbit jump strategies. Fi-

nally, in section 5, the FoMP is computed in order to evaluate

the effectiveness of an orbit jump strategy inspired from the

literature.

2. Electromechanical dynamics of NVEH

In this section, a description of the electromechanical dy-

namics of NVEH is given. Then, a detailed description of the

dynamics and orbit classification are provided.

2.1. Model of bistable NVEH

First, we consider a model of a Duffing oscillator includ-

ing piezoelectric material, forced by a sinusoidal excitation,

and connected to an extraction circuit. The model of such an

NVEH is given in (1).
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Where x represents the position of the mass M , ẋ is the speed

of the mass and ẍ corresponds to mass acceleration. The os-

cillator has two stable positions for x = ±x0. The linearized

behavior for small oscillations around x ≈ x0 exhibits a nat-

ural angular frequency ω0 and a mechanical quality factor Q

as defined in [38]. The oscillator is submitted to a sinusoidal

excitation of constant amplitude A= 2.5 m.s−2 and frequency

fd . The function f : R2 C1

−→ R depends on the PEH architec-

ture used. (1a) expresses the mechanical dynamics with a

term depending on voltage v and displacement x . (1b) mod-

els the electrical dynamics with a term depending on mechan-

ical displacement x and its first derivative. In this study, the

focus is on the particular case of the buckled-beam NVEH re-

ported in [24]. Nevertheless, the approach presented in this

paper is generalizable and can be applied to any VEH. The

harvester considered is shown in Fig. 2. For this harvester,

the expression of f is given in [24]. The dynamics of this

harvester is modeled by (2).
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forward sweep

backward sweep

Fig. 1: Power versus frequency and probability of occurrence for (a) linear VEH, (b) NVEH with forward and backward sweeps, and (c) NVEH with subhar-
monic behaviors. The acronyms in (b,c) are defined in subsection 2.3.

Fig. 2: Experimental NVEH from [32] with dynamics described by (2).

Fig. 3: Schematic representation of the bistable NVEH.

A schematic representation of the NVEH is given in Fig. 3.

The oscillator consists in buckled steel beams with a length

of L on which a mass M is fixed. α and Cp are the force factor

and the clamped capacitance of the piezoelectric material, re-

spectively. The harvested power corresponds to the one dissi-

pated in the resistor R which represents the input impedance

of the interface circuit. Parameter values of the NVEH con-

sidered are summarized in Table 2. Note that the value of

R = 1/Cpω0 is the one maximizing the harvested power at

the resonant frequency of the NVEH linearized model, as ex-

plained extensively in section 4.1.

2.2. Orbits and chaos in NVEH dynamics

Equation system (2) is solved numerically from an initial

state when t = 0, XXX (0) =
�

x(0) ẋ(0) v(0)
�>

. Figures

4(a) – 5(a) show time waveforms associated with four differ-

ent initial states XXX 1(0), XXX 2(0), XXX 3(0) and XXX 4(0) for a vibra-

tion frequency fd = 25 Hz. These multiple behaviors illus-

trate the diversity and complexity of the nonlinear dynamics
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Parameters Values Units

x0 0.5 mm

M 17.3 g

ω0 121 rad.s−1

Q 87

α 0.068 N.V−1

Cp 1.05 µF

R 7.83 kΩ

Table 2: Parameter values for the buckled-beam NVEH [24].

of (2). Orbit convergence depends on the IC of the numerical

simulation. Figures 4(b, c)
�

resp. Figures 5(b, c)
�

show the

potential wells of the bistable system and trajectories for two

initial states in the (x/x0, ẋ/x0ω0) phase plane, respectively.

The analytical expressions of the elastic potential energy Ep,

the kinetic energy Ek and the mechanical energy Em are given

by (3), (4) and (5).

Ep(x) =
Mω2

0

8x2
0

(x + x0)
2 (x − x0)

2 (3)

Ek( ẋ) =
1
2

ẋ2 (4)

Em(x , ẋ) = Ep(x) + Ek( ẋ) (5)

The potential energy (3) presents two global minimum val-

ues at x = ±x0 and a local maximum at x = 0.

2.3. Orbit detection and classification with an ICs grid

For different initial states, we obtain different orbits that

coexist for a given vibration frequency. This demonstrates the

relevance of testing different ICs to observe the full richness

of NVEH dynamics. A uniformly distributed grid of ICs GGG is

defined on a compact subset BBB ⊆ R3. The volume of the 3D

grid is chosen in order to contain all existing orbits for each

vibration frequency. We note I ⊂ N0 the index set.

GGG =
¦

(xxx , ẋ̇ẋx , vvv)> |
�

x i , ẋ i , v i
�>
,→U (BBB), i ∈ I

©

(6)

Fig. 4: (a) Harvester response time starting from
XXX 1(0) = (4.98.10−4,−9.37.10−3,−2.76.10−2)> and XXX 2(0) =
(−1.10.10−3, 5.69.10−1,−3.79)> and state-space representation of
(b) H1L (c) H1H with fd = 25 Hz. The acronyms H1H and H1L are defined
in subsection 2.3.

Fig. 5: (a) Harvester response time starting from
XXX 3(0) = (4.37.10−4, 1.33.102, 1.69.10−1)> and XXX 4(0) =
(3.68.10−4,−4.70.10−2,−5.27.10−1)> and state-space representation
of (b) SH3L (c) SH5H with fd = 25 Hz. The acronyms SH3L and SH5H are
defined in subsection 2.3.

We assume that this grid enables the detection and obser-

vation of all existing orbits at each vibration frequency be-

cause its volume is sufficiently large and its discretization

steps are sufficiently small in each direction. The choice of

grid size and discretization steps must be defined beforehand

performing preliminary dynamics studies. This is an impor-

tant step for the qualitative analysis of the different exist-

ing orbits for each vibration frequency. For each vibration
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frequency fd , an ICs grid GGG of 8 000 elements defined on

BBB = [−8x0, 8x0] × [−8x02π fd , 8x02π fd] × [−2, 2] is suffi-

cient to obtain all the existing orbits for fd . Note that the

size of BBB varies with the vibration frequency. The numer-

ical solution of the equation system (2) is obtained by ex-

plicit integration with a Dormand-Prince method [39]. For

each IC, the calculation is carried out until convergence to

a periodic orbit is reached, within the limit of 10 000 peri-

ods. In the absence of convergence, the solution is consid-

ered chaotic. A dedicated Python and Nvidia-CUDA code is

written for this task and executed on an NVIDIA RTX A5000

GPU with 8 192 CUDA cores. A representative grid of ICs

XXX (0) =
�

x(0) ẋ(0) v(0)
�>

with 8 000 points is defined

for all vibration frequencies. For each frequency between 10

and 80 Hz, a simulation is performed from each XXX (0) until

convergence to a periodic or chaotic regime is reached. The

whole calculation took 8 minutes with GPU. The stable orbits

are deduced and classified by type (harmonic or chaotic) and,

if necessary, by subharmonic, i.e., those for which the mass

oscillates at a frequency which is a submultiple of the vibra-

tion frequency. An orbit is called high when it crosses the

saddle point (x = 0) and goes from one stable equilibrium

to the other. It is considered low when it oscillates around

one of the two stable equilibrium points ±x0. Throughout

the present article, we will use the following notations: H1H

(resp. H1L) for first order high (resp. low) harmonic orbit

and SH3H (resp. SH3L) for third order high (resp. low) sub-

harmonic orbit. Therefore, SHkJ denotes a subharmonic of

order k ∈ N1 \ {1} and height J = H or L. We arbitrarily

choose that Chaos is of order 0. The subset corresponding

to the ICs that leads to orbits of order k ∈ N0 is noted Ok.

Moreover, these are partitioned by those that lead to high Hk

and those that lead to low Lk orbits, i.e., Ok = Hk t Lk and

GGG =
⊔

k

Ok. In the particular case of Chaos, the ICs subset is

noted as O0. Figures 6 and 7 show the harvester dynamics in

the (x/x0, ẋ/x0ω0) plane for fd = 25 Hz and fd = 50 Hz, re-

spectively. Figure 6 depicts Chaos (salmon curves) as well as

H1H (dark blue closed curve), while Fig. 7 depicts H1H (dark

Fig. 6: 3D phase plane (x/x0, ẋ/x0ω0, v) and orbit projection in the 2D
plane (x/x0, ẋ/x0ω0) for fd = 25 Hz.

blue), H1L (light blue), SH3L (light orange), SH3H (dark or-

ange), and SH5H (dark pink) in the state space. As proved

by Fig. 6 and 7, various orbits exhibiting different harvested

power can exist for a given excitation.

3. Power expectation

In this section, the harvested power and the probability

of occurrence associated with each orbit are studied. From

these quantities, a new metric named the power expectation

is introduced and is applied to quantitatively evaluate NVEH

performance.

3.1. Power associated with a given orbit

The average harvested power corresponds to the power

dissipated in the resistor R connected to the piezoelectric

6



Fig. 7: 3D phase plane (x/x0, ẋ/x0ω0, v) and orbit projection in the 2D
plane (x/x0, ẋ/x0ω0) for fd = 50 Hz.

electrodes and can be computed by the mean value of v2/R

as in (7) or (8).

Ph(SHkJ) =
1

kTd

∫ kTd

0

v2(t)
R

d t, where k ∈ N1 (7)

Ph(Chaos) =
1

nTd

∫ nTd

0

v2(t)
R

d t with n= 5 000 (8)

Where Td corresponds to the ambient vibration period. Here,

we consider the previously defined grid GGG (6) as the ICs set

so that all existing orbits are detected for each vibration fre-

quency. A numerical simulation is performed from each IC

XXX (0) ∈ GGG until we stabilize on a given orbit of order k ∈ N0.

For all order k, an average power can be associated with each

orbit. Table 3 shows the average power Ph for each existing

orbit for fd = 25 Hz and fd = 50 Hz. We can see that the

power of high orbits are logically more important than those

of low orbits. Figure 8 shows the power of all existing or-

bits for vibration frequencies between 10 Hz and 80 Hz. One

may note that both the power and the existence of each or-

bit vary with the vibration frequency. The high (resp. low)

orbits see their energy increase (resp. decrease) with the vi-

bration frequency. For example, the H1H (resp. H1L) orbit

sees its power increase (resp. decrease) by a factor 100 from

10 Hz to 67 Hz (resp. 27 Hz to 80 Hz). The H1H is the orbit

maximizing the harvested power, but no longer exists from

67 Hz, called cutoff frequency of H1H in the following. The

two H1L (around −x0 and x0) are the less interesting orbits

and persist until they are the only existing orbits above 80

Hz.

ICs Ph at 25 Hz [mW] Ph at 50 Hz [mW]

H1L O1 3.29.10−4

H1H O1 0.24 2.63

SH3L O3 7.52.10−3

SH3H O3 5.98.10−2

SH5H O5 1.77.10−2

Chaos O0 2.03.10−2

Table 3: ICs subsets leading to existing orbits and average harvested power
associated to each existing orbit for fd = 25 Hz and fd = 50 Hz, respectively.

3.2. Probability associated with a given orbit

To provide a fair evaluation of a given harvester and for all

vibration frequencies, we define a probability of occurrence

r for each existing high (resp. low) k-orbit that corresponds

to the ratio of the cardinality of ICs Hk (resp. Lk) and the car-

dinality of the grid of ICs considered GGG (number of elements

of GGG that is |GGG|= |I |). For orbits of order 1, this means:

r(H1H) =
|H1|
|GGG|

r(H1L) =
|L1|
|GGG|

(9)
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Fig. 8: Orbital average harvested power Ph obtained numerically (points)
and experimentally (stars) as a function of the vibration frequency fd for a
constant amplitude A= 2.5 m.s−2.

For orbits of order k ∈ N1 \ {1} (subharmonic):

r(SHkH) =
|Hk|
|GGG|

r(SHkL) =
|Lk|
|GGG|

(10)

In the particular case of Chaos, r(Chaos) = |O0|/|GGG|. For

example, with an ICs grid of 8 000 starting points at 50

Hz, 3 488 converged to an H1L, i.e., |L1| = 3488 and so

r(H1L) = 3 488/8 000= 43.6%. Figure 9 shows the ICs

(x/x0, ẋ/x0ω0) that converge toward H1H (in dark blue),

the ICs that converge toward H1L (in light blue), and the ICs

that converge toward SH3H (in red). In order to enhance the

visualization of each orbit’s basin of attraction, 400 000 ICs

are computed. Table 4 summarizes the probabilities of occur-

rence of each existing orbit when the vibration frequency is

50 Hz. For this vibration frequency, the system tends to con-

verge toward the lowest orbit, i.e., H1L, because it exhibits

the highest probability. Note that the probability of occur-

H1L H1H SH3L SH3H SH5H

r [%] 43.6 16.1 10.3 23.0 7.0

Table 4: Probabilities of occurrence for each orbit for fd = 50 Hz with a
starting points grid of 8 000 elements.

rence of each orbit can be modified by selecting a relevant
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Fig. 9: Basins of attraction for fd = 50 Hz with a grid of 400 000 starting
points.

subset of the ICs grid GGG. In the following sections, this will

be defined as an orbit jump strategy, as described in section

3.4 and in Fig. 10.

3.3. Definition of the power expectation

By means of the harvested power Ph and the probability of

occurrence r that are associated with each existing orbit at

each vibration frequency, we can compute the power expec-

tation – noted P – of the ICs grid. The power expectation is

defined as the sum of the average harvested power pondered

by the probability of occurrence associated with each orbit as

in (11). We note N ∈ N1\{1} the maximum order of existing

orbits.

P[rPh]( fd) = (rPh)(Chaos) + (rPh)(H1H) + (rPh)(H1L)

+
∑

2≤k≤N , J=H,L

(rPh)(SHkJ)

(11)

The power expectation can be used to quantify the statistical

power of a VEH according to its probabilities of converging to

the existing orbits. The power expectation strongly depends

on the ICs grid used in simulation. This means that some ICs

grids will lead to low power expectations, while some other

ICs grids lead to large power expectations. Therefore, an or-

bit jump strategy – such as [5] or [22] – can be interpreted as

8



a change of the ICs grid in order to increase the probability

of high-energy orbits. The next section aims at exploring the

power expectation of NVEH with three ICs grids correspond-

ing to three fictive orbit jump strategies.

3.4. Application of the power expectation to three sets of ICs

Consider three initial grids GGG, GLGLGL and GHGHGH where GLGLGL and

GHGHGH are two subsets of GGG. These grids represent three theo-

retical orbit jump strategies for a vibration frequency equal to

50 Hz. We denote “random strategy” the orbit jump strategy

associated with GGG, “minimum strategy”1 the orbit jump strat-

egy associated with GLGLGL and “maximum strategy”2 the orbit

jump strategy associated with GHGHGH . The random strategy con-

sists in starting at initial states belonging to the uniformly dis-

tributed initial grid GGG that is previously defined in (6). With

such an ICs grid, the system converges to a wide range of

orbits. Table 4 shows the probability of occurrence of each

existing orbit for this random strategy for fd = 50 Hz. The

minimum strategy always leads to the lowest existing orbit

which is the H1L at 50 Hz. The corresponding grid GLGLGL is the

subset of GGG that leads to the orbits H1L at 50 Hz. Thus, it

corresponds to the worst case for the NVEH. The maximum

strategy consists in always reaching the highest existing orbit

which corresponds to H1H for 50 Hz. The corresponding grid

GHGHGH is the subset of GGG that leads to the H1H for 50 Hz. Table 5

gives the probabilities r, the average harvested power of each

orbit Ph, and the power expectation for the three ICs grids for

a vibration frequency fd = 50 Hz. The power expectation of

the random strategy P lies between the power expectations of

the minimum P
L

and the maximum P
H

strategies which con-

stitute the lower and upper bounds of the power expectation.

Figure 10 shows the probability of occurrence r of each orbit

for every vibration frequency between 10 and 80 Hz for the

three aforementioned sets of ICs. Note that “Other” gathers

1Note that the minimum strategy is defined in order to quantify the min-
imum power that can be harvested with a bistable NVEH.

2Note that the maximum strategy is a theoretical orbit jump strategy that
makes it possible to evaluate the maximum power that can be harvested with
a bistable NVEH but remains challenging to implement.

Fig. 10: Probability of occurrence r of each existing orbit as a function of
the vibration frequency fd for (a) the random strategy, (b) the minimum
strategy, and (c) the maximum strategy. The denomination “Other” regroups
all the orbits not indicated in the legend.

the summed probabilities of all the orbits that are not indi-

cated in the legend of Fig. 10. Figure 10(a) shows that for a

9



10 20 30 40 50 60 70 80

Vibration Frequency, fd [Hz]

10−5

10−4

10−3

10−2

10−1

100

101

Po
we

rE
xp

ec
ta
tio

n,
P

[m
W
]

P P
LLL

P
HHH

Fig. 11: Power expectation curves associated to the three strategies with
fd ∈ [10Hz, 80Hz].

GGG GLGLGL GHGHGH Ph [mW]

r(H1L) 43.6 100 0 3.29.10−4

r(H1H) 16.1 0 100 2.63

r(SH3L) 10.3 0 0 7.52.10−3

r(SH3H) 23.0 0 0 5.98.10−2

r(SH5H) 7.0 0 0 1.77.10−2

P [mW] 0.44 3.29.10−4 2.63

Table 5: Probabilities and average harvested power for each orbit and power
expectation for the three sets of ICs for fd = 50 Hz.

vibration frequency of 25 Hz, the non-zero probabilities are

those of H1L and Chaos which is confirmed by the transient

analysis shown in Fig. 6. Figure 10(b,c) illustrates that for

most vibration frequencies, the power expectation of the min-

imum strategy corresponds to the harvested power with the

H1L. Furthermore, for most vibration frequencies, the power

expectation of the maximum strategy corresponds to the har-

vested power with the H1H. Figure 11 shows the power ex-

pectation curves associated with each proposed orbit jump

strategy for all vibration frequencies. Interestingly, the power

expectation of the random strategy exhibits a quasi-plateau

on a large range of frequencies, between 20 Hz to 65 Hz,

which reveals the broadband nature of the NVEH. Figure 11

also shows that the minimum and maximum strategies ex-

hibit the same power expectation around 20 Hz, meaning

that there is little to no gain in implementing an orbit jump

strategy for fd = 20 Hz. On the other hand, for fd = 60 Hz,

the power expectation with the maximum strategy is 30 000

times larger than the one with the minimum strategy. There-

fore, the power brought by an effective orbit jump strategy

might be relatively important, around 60 Hz.

The power expectation enables the evaluation of the influ-

ence of VEH characteristics, excitation nature, and the orbit

jump strategy on the performances of the NVEH (for a given

vibration frequency and level of excitation).

4. Performance assessment with the power expectation

In this section, we define FoMP based on the aforemen-

tioned power expectation. Such an FoM makes it possible to

quantitatively evaluate a given bistable energy harvester as-

sociated with a given orbit jump strategy. FoMP is then stud-

ied as a function of the acceleration amplitude to quantita-

tively illustrate the dependence of bistable VEH performance

on the excitation level.

4.1. Linear equivalent model

The linear equivalent model is a candidate for comparison

with the considered NVEH. To define the linear equivalent

model of NVEH, small displacements of the mass around one

of its equilibrium stable positions when x = x0 (given in sec-

tion 2) are considered. A first order linearization of the equa-

tion system (2) is applied, with x = x0 + δx and δx << x0.

The corresponding equations are given by (12). We choose

to take the constant value resistance R= 1/Cpω0 that corre-

sponds to the optimal resistance of the linear equivalent for

a weakly coupled energy harvester [40, 41].















δ̈x = −ω2
0δx −

ω0

Q
δ̇x − 2

α

M L
x0δv + Asin(2π fd t)

δ̇v = 2
α

LC0
x0δ̇x −

1
RC0

δv

(12)

The power expectation of the linear equivalent harvester is

noted P
Linear Model

. Figure 12 shows P
Linear Model

(in orange)
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as a function of the vibration frequency. The analytical ex-
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Fig. 12: Power expectation curves associated with the three aforementioned
orbit jump strategies and the linear equivalent with an acceleration ampli-
tude A= 2.5 m.s−2. The horizontal line (in gray) illustrates the power limit
of the NVEH model given in (13).

pression of the maximum power that can be harvested with

such a system is known [42] and given in equation (13).

Pmax =
MA2Q
8ω0

(13)

With our PEH – whose characteristics are summarized in Ta-

ble 2 – the maximum power is given by Pmax ' 9.7 mW.

The maximum power with the NVEH and linear equivalent

are the same3 [45] and are reached when the vibration fre-

quency matches the cutoff frequency of H1H (for the NVEH)

or the resonant frequency (for the linear equivalent). Figure

12 shows that the power expectation with the random strat-

egy is higher than the power expectation of the linear equiv-

alent over a wide range of vibration frequencies, between 25

and 80 Hz. Over this frequency range, the power expectation

is even larger with the maximum strategy.

4.2. Definition of an expectation-based FoM

FoMP (14) consists in the integral of the power expectation

P divided by the integral of the linear equivalent power ex-

pectation P
Linear Model

over the considered frequency interval.

3The power limit of a linear and a nonlinear energy harvester are identical
[43, 44].

FoMP =

∫

fd

P( f ) d f /

∫

fd

P
Linear Model

( f ) d f (14)

FoMP makes it possible to compare the performance of the

NVEH for a given orbit jump strategy. Thus, for a given

NVEH, an FoMP value can be computed for any orbit jump

strategy. The results for the NVEH considered and the three

orbit jump strategies defined in section 3.4 are given in Table

6. FoMP of the random and maximum strategies are larger

GGG GLGLGL GHGHGH

FoMP 2.02 0.16 16.46

Table 6: FoMP value for the three sets of ICs associated with the three afore-
mentioned strategies.

than 1, but the FoMP of the minimum strategy is much lower

than 1. Therefore, with the random and maximum strate-

gies (resp. minimum strategy), the NVEH performances are

higher (resp. is lower) than the linear equivalent perfor-

mances. It is therefore crucial to implement an efficient orbit

jump strategy when using an NVEH.

4.3. Evolution of the FoMP with the acceleration amplitude

In this section, we study the evolution of the aforemen-

tioned FoMP and power expectation as a function of the ac-

celeration amplitude A. For this purpose, we study four ac-

celeration amplitudes A1 = 1.25 m.s−2, A2 = 2.5 m.s−2,

A3 = 5 m.s−2 and A4 = 10 m.s−2. Figure 13 shows the power

expectation for each of the three orbit jump strategies and

the limit power (13) that can be harvested for each acceler-

ation amplitude. The power expectation curves of the min-

imum (dotted lines) and random (solid lines) strategies ap-

pear noisy, i.e., around 20-25 Hz. Indeed, for this frequency

range, many behaviors coexist, such as SH5L, SH3H, or

Chaos. The simulations are run over a wider frequency range

because the cutoff frequency of the H1H increases with the

acceleration amplitude. For instance, this cutoff frequency is

around 137 Hz for A4 = 10 m.s−2 while it is below 50 Hz for

A1 = 1.25 m.s−2. Moreover, it is necessary to define a larger
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Fig. 13: Power expectation curves for the random strategy (solid lines), for
the minimum strategy (dotted lines) and for the maximum strategy (dashed
lines) associated with the four amplitudes. The horizontal lines illustrate the
power limits (described by (13)) of the NVEH model associated with each
acceleration amplitude.

ICs grid (in the case where the amplitude A is larger) to de-

tect the H1H until its cutoff frequency. The grid is defined as

BBB = [−12x0, 12x0]× [−12x02π fd , 12x02π fd]× [−2, 2]. As

shown in Fig. 13, for low vibration frequencies, the power ex-

pectation curves of the maximum strategy do not vary much

with the acceleration amplitude. Indeed, the H1H power re-

mains almost identical for any acceleration amplitude. Note

that, the acceleration amplitude does not greatly impact the

power of the other high orbits such as SH3H. Table 7 sum-

marizes the FoMs for the tested acceleration amplitudes with

the three ICs grids. The FoMP is always greater than 1 when

the NVEH operates with the random (solid lines) and max-

imum (dashed lines) strategies under the four acceleration

amplitudes. The FoMP of these two strategies increases with

acceleration amplitude and growth rate depending on the ef-

ficiency of the implemented orbit jump strategy. Table 7 illus-

trates that the higher the acceleration amplitude, the higher

the power expectation with the maximum and random strate-

gies.

Figure 14 shows the evolution of the FoMP for acceleration

amplitudes between 0.01 m.s−2 and 10 m.s−2. For very small

accelerations around A= 0.01 m.s−2, the three strategies ex-

hibit an FoMP equal to 1. Indeed, under such small accelera-

GGG GLGLGL GHGHGH

A1 1.86 0.22 12.86

A2 2.05 0.16 16.45

A3 2.37 0.14 22.63

A4 2.71 0.09 30.50

Table 7: FoMP value with each orbit jump strategy – random, minimum,
maximum – for the four acceleration amplitudes A1 = 1.25 m.s−2, A2 =
2.5 m.s−2, A3 = 5 m.s−2 and A4 = 10 m.s−2.
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Fig. 14: FoMP for the three orbit jump strategies and FoMP ’s linear equiva-
lent as a function of the acceleration amplitude A between 0.01 m.s−2 and 10
m.s−2. The vertical magenta line corresponds to the acceleration amplitude
where the FoM strategies differ in more than 10 %.

tion amplitude, the NVEH behaves like its linearized model,

meaning that the performance of the NVEH is the same as the

linear equivalent harvester. For an amplitude between 0.01

and 0.03 m.s−2, the three strategies show identical FoMP be-

cause the only existing orbit is H1L. For acceleration ampli-

tudes between 0.04 and 0.1 m.s−2, the NVEH (with any orbit

jump strategy) exhibits monostable softening nonlinearities

(intra-well motions). For this range of acceleration ampli-

tudes, the FoMP of the NVEH is greater than the FoMP of the

linear equivalent harvester with the random and maximum

strategies. For larger acceleration amplitudes, the FoMP of

the minimum strategy keeps on decreasing while the FoMP of

the random and maximum strategies always increase along

with the acceleration amplitude. Note that when the random

strategy is implemented, the NVEH performances are always
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better than the performances of the linear equivalent. This

proves that bistable energy harvesters, even with a “random”

orbit jump strategy, can still outperform linear energy har-

vesters for a large range of acceleration amplitudes. On the

other hand, if the NVEH always stays in its lowest existing

orbit (minimum strategy), NVEH performance is much lower

than the performance of the linear equivalent harvester. As

shown in Fig. 14, the FoMP gain brought by the maximum

strategy (compared to the two other strategies) increases

with the acceleration amplitude. Figure 14 proves that im-

plementing an orbit jump strategy becomes more crucial as

acceleration is increased. As a matter of example, there is

little to no gain in finding the best orbit jump strategy if the

acceleration is very small (around 0.01 m.s−2), since all the

strategies FoMP are around 1. However, for an acceleration

amplitude of 2 m.s−2, a good (blue curve) orbit jump strategy

makes it possible to multiply the FoMP by about 87 compared

to a bad (green curve) orbit jump strategy. Therefore, the

FoMP also evaluates the potential efficiency of an orbit jump

strategy and makes it possible to determine the most effi-

cient range of acceleration amplitude for such an orbit jump

strategy. The influences of other parameters (e.g., resistance

of the load, electromechanical coupling) of the bistable VEH

are investigated and detailed in Appendix A.

5. Application of the proposed metrics to evaluate an or-

bit jump strategy in the literature

This section presents the application of the FoMP to the

orbit jump strategy presented in [24]. The proposed orbit

jump strategy is experimentally validated in [24], and makes

it possible to jump from low orbits to high orbits by injecting

energy in the mass by tuning the buckling level at the right

instants. Specifically, this method is based on a transient in-

crease of the buckling level, i.e., an increase of the stable

position x0 by a factor kx0
between two instants t0 and t1.

In the proposed method, the jump duration is deliberately

short so that t1 − t0 ≤ Td . For each vibration frequency fd ,

the IC corresponding to the lowest possible orbit is used. In

the simulations, the following set of parameters is explored,

which correspond to realistic values [24]:

• t0 ∈ [0, t1]

• t1 ∈ [0.1Td , 2.1Td]

• kx0
∈ [0.5,3]

Simulations are run with each combination of t0, t1 and kx0
.

In order to evaluate the invested energy during the orbit

jump, Einvest is computed as follows:

Einvest = Ep(x
+
0 )− Ep(x

−
0 ) + Ep(x

+
1 )− Ep(x

−
1 ) (15)

=∆E1 +∆E2 (16)

where x±i = x(t±i ) = x(t i ±∆t), for i = 0, 1 with ∆t the

numerical time step. The expression of the potential energy

Ep(·) is given in (3). ∆E1 corresponds to the invested energy

when the stable position is modified from x0 to kx0
x0, and

∆E2 is the invested energy when the stable position is tuned

from kx0
x0 to x0. In order to find the optimal set of parame-

ters (t0, t1, kx0
)

opt
, the parameters leading to the highest or-

bit are determined. Among these parameters, the optimal set

that minimizes invested energy Einvest is selected for each vi-

bration frequency. Finally, in order to take into account the

experimental variability of the set parameters, we compute

the probability of reaching each orbit when the optimal pa-

rameters vary uniformly from -5 % to +5 % for t0 and t1 and

from 0 % to +10 % for kx0
. These probabilities make it pos-

sible to compute the power expectation of the proposed orbit

jump strategy as a function of the vibration frequency, fd .

Figure 15 shows that the proposed orbit jump is particu-

larly efficient for frequencies between [25 Hz, 49 Hz]. In-

deed, Fig. 15(a) shows that its power expectation (in purple)

is close to the maximum strategy on this frequency range.

However, for larger vibration frequencies, we can observe

that the power expectation of the proposed orbit jump drops.

Indeed, the orbit jump strategy does not make it possible to

jump to H1H when fd > 49 Hz because the energy gap be-

tween H1H and H1L becomes too large. Figure 15(b) shows
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Fig. 15: (a) Power expectation curves associated with the three aforemen-
tioned orbit jump strategies, the linear equivalent and the investigated orbit
jump strategy inspired from [24], as a function of fd , with simulated experi-
mental variation. The horizontal line (in gray) illustrates the power limit of
the NVEH model given in (13). (b) Invested energy for performing the orbit
jump as a function of the vibration frequency fd .

the invested energy for the studied orbit jump strategy. The

invested energy increases with the vibration frequency, be-

cause the energy gap between H1L and H1H gets larger with

higher frequencies. When the vibration frequency reaches

49 Hz, the invested energy drops because the H1H cannot

be reached and the SH3H becomes the targeted orbit for the

jump. Similarly, the invested energy drops around 78 Hz be-

cause the SH3H cannot be reached with the investigated orbit

jump strategy. Note that the maximum value of the invested

energy remains below 2 mJ, which remains reasonable con-

sidering the harvested power while in H1H.

The FoMP of the bistable PEH with the investigated orbit

jump strategy is equal to 2.9. This is 17 times larger than

the minimum strategy FoMP , which demonstrates the effec-

tiveness of the orbit jump strategy inspired from [24]. How-

ever, the investigated orbit jump strategy FoMP is also 6 times

lower than the maximum strategy, which proves that there is

still room for finding better orbit jump approaches. Note that

the FoMP corresponding to the investigated orbit jump strat-

egy is 2.9 times larger than 1, meaning that the bistable VEH

implementing this orbit jump strategy is 2.9 times better than

the linear equivalent VEH.

6. Conclusion and perspectives

In this paper, we defined a metric – called power expec-

tation – that takes into account existing subharmonic behav-

iors using the average harvested power and the probability

of occurrence of each existing orbit for a vibration frequency

set. We observed that the power expectation value depends

on the harvester type and the potential orbit jump strategy

implemented. Thereafter, we defined FoMP – based on the

power expectation – to analyze the performances of an NVEH

with a given orbit jump strategy. The FoMP makes it possible

to quantitatively assess the effectiveness of orbit jump strate-

gies by comparing the performance of an NVEH to its linear

equivalent harvester. The influence of the acceleration am-

plitude on the performances of the NVEH is also discussed,

based on FoMP . Finally, the proposed metrics are applied to

evaluate the performance of an orbit jump strategy from the

literature. This analysis proves that the proposed metrics are

a promising tool to assess the performance of a given orbit

jump strategy associated with a PEH. In future works, the

FoMP will be used to define the best NVEH parameters for a

given acceleration amplitude. It will also be used to assess

and compare various orbit jump strategies and to quantify

their performance uniformly.
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Appendix A. Influence of the resistive load and the elec-

tromechanical coupling on the FoMP

Appendix A.1. Evolution of the FoMP with the resistive load

We study the influence of the resistive load on the power

expectation and FoMP . Figure A.16 shows the power expec-

tation curves for R1 = 7 830Ω, R2 = 3915Ω, R3 = 1957.5Ω,

and R4 = 978.75 Ω. When the maximum (resp. ran-
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Fig. A.16: Influence of the value of the resistive load on the power expecta-
tion for the random strategy (solid lines), for the minimum strategy (dotted
lines), and for the maximum strategy (dashed lines) with a constant level
of acceleration A = 2.5 m.s−2. The horizontal line (in gray) illustrates the
power limit of the NVEH given in (13).

dom) strategy is used (dashed (resp. solid) lines), the NVEH

power expectation is larger with R2= 3915Ω (orange dashed

(resp. solid) curve) than with R1=7 830 Ω (blue dashed

(resp. solid) curve) between 10 and 58 Hz (resp. 53 Hz)

because the H1H increases faster with R2= 3 915 Ω. How-

ever, when the vibration frequency reaches 58 Hz, the H1H

stops existing if the resistive load is R2= 3915 Ω, which ex-

plains the observed drop in the power expectation associated

with R2= 3915 Ω for random and maximum strategies (solid

and dashed orange curves). Similarly, the H1H power with

R3 = 1 957.5 Ω (green dashed curve) is greater than with

R2 = 3 915 Ω, but the H1H cutoff frequency becomes sub-

stantially smaller (decreasing from 58 Hz to 53 Hz). There-

fore, Fig. A.16 shows there is a trade-off between maximizing

the H1H power and maximizing the cutoff frequency of H1H

in order to enlarge the harvesting bandwidth. Indeed, a resis-

tance R close to 1/2Cpωd maximizes the harvested power4,

but also maximizes the damping induced by the electrical in-

terface. Because of this increased damping, the H1H cut-

off frequency tends to be lower, as detailed in [45]. Note

that the harvested power curves and cutoff frequencies of

other high orbits, such as SH3H, can be explained with sim-

ilar reasoning. Such analysis shows also that the value of

the resistive load might impact both the power associated

with each orbit as well as the probability of occurrence of

each orbit. For a given vibration frequency, the optimal resis-

tive load is not only the one that maximizes the power of the

highest existing orbit, but the one that maximizes the prod-

uct of the highest existing orbit power with its probability of

occurrence. As a matter of example, for fd = 50 Hz, with

the random and maximum strategies, the highest orbit is the

H1H and therefore the optimal resistance is the one maxi-

mizing the product of the H1H power with the H1H probabil-

ity of occurrence (Fig. 10(a,b)). With the minimum strategy,

the optimal resistance is the one maximizing the H1L power

(Fig. 10(c)). Therefore, the design of maximum power point

trackers (MPPT) algorithms for NVEH seems to be challeng-

ing, as it needs to take into account the harvested power with

each resistance (similarly as MPPT algorithms for linear har-

vesters [46, 47]) as well as the probability of the existing

orbits with each resistance. Table A.8 summarizes the FoMP

with the three aforementioned orbit jump strategies for the

four resistances.

As shown in Table A.8, a good resistance choice can dras-

tically improve the FoMP of the harvester (for example,

with the maximum strategy, the FoMP grows from 11.90 to

16.49 when adjusting the resistance from R4= 978.75 Ω to

R1=7 830 Ω). Table A.8 also demonstrates that R2= 3 915 Ω

is the optimal resistance for both the random and minimum

strategies while R1=7830 Ω is the optimal resistance for the

maximum strategy. Therefore, Table A.8 proves that the op-

timal resistance for a given NVEH depends on the orbit jump

4in case of weak coupled NVEH.
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GGG GLGLGL GHGHGH

R1 2.08 0.17 16.49

R2 2.44 0.20 16.30

R3 2.41 0.15 13.23

R4 2.20 0.09 11.90

Table A.8: FoMP values with each orbit jump strategy – random, minimum,
maximum – for the four resistive loads R1 = 7 830 Ω, R2 = 3915 Ω, R3 =
1957.5 Ω, and R4 = 978.75 Ω.

strategy. This is a critical point to consider: to find the best

resistive load, one has to take into account the orbit jump

strategy that is implemented.

In the following section, we study the effect of the resistive

load on the FoMP . For this study, a range of 28 resistances

between 500 Ω and 75 kΩ are considered. The evolution

of the FoMP is shown in Fig. A.17. When using the NVEH

Fig. A.17: FoMP for the three orbit jump strategies and FoMP ’s linear equiv-
alent as a function of the resistive load R between 500 Ω and 75 kΩ with a
constant acceleration A= 2.5 m.s−2. The vertical magenta line corresponds
to the resistance where the random strategy becomes lower than the linear
model.

with the minimum strategy, its performance is lower to that

of its linear equivalent regardless of the value of the resis-

tive load. Moreover, the value of the FoMP when using the

random strategy is higher than 1 until a threshold resistance

at R = 30 kΩ (vertical magenta line in the Fig. A.17) where

NVEH performance becomes weaker than its linear equiva-

lent. As shown in Fig. A.17, the resistance that maximizes the

FoMP and offers the best trade off between power and band-

width is around 5 kΩ. Optimizing the resistance brings little

to no gain if the orbit jump strategy is inefficient (as shown

in Fig. A.17 with the minimum strategy). On the other hand,

optimizing the resistance makes it possible to greatly enhance

the power expectation and the FoMP if the orbit jump strategy

is efficient (as shown in Fig. A.17 with the maximum strat-

egy).

Figure A.18 shows the maximum power expectation for the

three orbit jump strategies. For each vibration frequency, the

resistance that maximizes the value of the power expectation

is selected. Figure A.18 demonstrates that the bandwidth can

be drastically increased with an appropriate tuning of the

resistive load value. Table A.9 gives the obtained FoMP by

tuning the resistance for the three orbit jump strategies. The

FoMP obtained in Table A.9 are larger than the ones obtained

without any resistance adjustment (Table A.8). Note that the

improvement of the maximum strategy FoMP is particularly

significant, which proves the interest in implementing adap-

tative electrical interfaces with MPPT algorithms along with

efficient orbit jump strategies.
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Fig. A.18: Maximum power expectation curves (obtained by selecting the
optimal resistance for each vibration frequency) for each ICs grid with A=
2.5 m.s−2. The horizontal line (in gray) illustrates the power limit of the
NVEH given in (13).
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GGG GLGLGL GHGHGH

Ropt 3.37 0.24 36.93

Table A.9: Maximum FoMP with each orbit jump strategy – random, mini-
mum, maximum – using the optimal resistance.

Appendix A.2. Evolution of the FoMP with the electromechan-

ical coupling

We study the influence of the electromechanical coupling

on the power expectation and FoMP . The expression of the

electromechanical coupling is given in (A.1) (as detailed in

[32]).

k2
m = 4

� x0

L

�2 α2

MCpω
2
0

(A.1)

Figure A.19 shows the power expectation curves for k2 (1)
m =

0.7%, k2 (2)
m = 2.8%, k2 (3)

m = 6.3% and k2 (4)
m = 11.1%.

When the maximum (resp. random) strategy is used (dashed

(resp. solid) lines), the power expectation of the NVEH

is greater between 10 and 47 Hz (resp. 41 Hz) with the

strongest electromechanical coupling, k2 (4)
m = 11.1% (red

curves) because electrical damping is more important with

k2 (4)
m = 11.1%. However, this strong electromechanical cou-

pling leads to significant electrical damping which explains

why the H1H stops existing at a relatively low frequency (47

Hz). The power expectations associated with the maximum

strategy (dashed lines) illustrate that the cutoff frequency

of H1H increases with a lower electromechanical coupling.

Such analysis shows that the value of the electromechani-

cal coupling can influence both the power associated and the

probability of occurrence of each orbit. Table A.10 summa-

rizes the FoMP with the three strategies for the four tested

electromechanical couplings. As shown in Table A.10, the

electromechanical coupling has a great impact on the value

of the FoMP . As a matter of example, with the random strat-

egy, the FoMP can increase from 0.80 to 2.83 with a larger

value of the electromechanical coupling from k2 (1)
m = 0.7% to

k2 (4)
m = 11.1%. With the maximum strategy, the FoMP grows

from 8.05 to 17.15 with a larger electromechanical coupling

from k2 (1)
m = 0.7% to k2 (3)

m = 6.3%. That means that the op-
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Fig. A.19: Influence of the electromechanical coupling on the power ex-
pectation for the random strategy (solid lines), for the minimum strategy
(dotted lines), and for the maximum strategy (dashed lines) with A = 2.5
m.s−2. The horizontal line (in gray) illustrates the power limit of the NVEH
given in (13).

GGG GLGLGL GHGHGH

k2 (1)
m 0.80 0.04 8.05

k2 (2)
m 2.08 0.16 16.46

k2 (3)
m 2.71 0.31 17.15

k2 (4)
m 2.83 0.52 13.24

Table A.10: FoMP value with each orbit jump strategy – random, minimum,
maximum – for the four electromechanical couplings k2 (1)

m = 0.7%, k2 (2)
m =

2.8%, k2 (3)
m = 6.3% and k2 (4)

m = 11.1%.

timal electromechanical coupling depends on the orbit jump

strategy that is implemented.

The evolution of the FoMP as a function of the electrome-

chanical coupling is shown in Fig. A.20. When the minimum

strategy is considered the FoMP is always smaller than 1,

regardless of the electromechanical coupling. Figure A.20

shows that with the random strategy, for a weak electrome-

chanical coupling between 0.5 % and 1 %, the NVEH FoMP

is lower than 1 and is therefore lower than its linear equiv-

alent. From k2
m = 1% (indicated by the magenta line in

Fig. A.20), the random strategy FoMP becomes larger than

the linear model FoMP . Figure A.20 shows that the maximum

strategy FoMP always remains greater than the linear FoMP ,
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Fig. A.20: Evolution of the FoMP for the three strategies and FoMP ’s linear
equivalent as a function of the electromechanical coupling k2

m between 0.5
% and 10 %. The vertical magenta line corresponds to the electromechan-
ical coupling where NVEH performance with random strategy increases in
comparison to the linear model.

and is maximized when the electromechanical is around 5 %.

Note that if the resistive load is tuned and optimized (as in

Fig. A.18), the FoMP would always be larger with a stronger

electromechanical coupling.
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