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Abstract—The Internet of Things (IoT) has remarkably evolved
over the last few years to realize a wide range of newly emerging
services and applications empowered by the unprecedented
proliferation of smart devices. The quality of IoT networks
heavily relies on the involvement of devices for undertaking
functions from data sensing, computation to communication and
IoT intelligence. Stimulating IoT devices to actively participate
and contribute to the network is a practical challenge, where
incentive techniques such as blockchain, game theory, and Arti-
ficial Intelligence (AI) are highly desirable to build a sustainable
IoT ecosystem. In this article, we present a comprehensive
survey on the incentive techniques for IoT, aiming to provide
general readers with an overview of incentive-enabled IoT from
background, motivations, and enabling techniques. Particularly,
we provide an extensive review on the use of incentive techniques
in a number of key IoT services, such as IoT data sharing,
IoT data offloading and caching, IoT mobile crowdsensing,
and IoT security and privacy. Subsequently, we explore the
potential of incentives in important IoT applications, ranging
from smart healthcare, smart transportation to smart city and
smart industry. The research challenges are then highlighted, and
potential directions are also discussed for future research of this
important area.

Index Terms—Incentives, Internet of Things, Game Theory,
Blockchain, Artificial Intelligence, Smart Applications.

I. INTRODUCTION

Recent years have witnessed the rapid growth of the Internet
of Things (IoT) with the unprecedented proliferation of mobile
devices such as smartphones, personal computers, and wear-
ables. The advancement in this fundamental technology has
empowered a wide range of applications, e.g., smart health-
care, smart transportation, and smart city, and thus effectively
support our daily life [1]. In this context, IoT devices are
employed to sense data from the physical environments via
sensors for computation, storage, and training with machine
learning (ML) integrated with smart devices [2]. For example,
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mobile crowd sensing (MCS) is an attractive solution for such
IoT sensing platforms, where information can be recorded
from sensors, e.g., camera and GPS modules, to serve end-
users, such as human detection and localization. Moreover,
IoT plays significant role in providing communication-related
services such as data offloading with edge cloud servers
for computation enhancement, user interconnection for global
networking, and information exchange for collaborative IoT
services [3].

Although IoT can provide significant services and applica-
tions, how to attract IoT devices to participate and contribute
to the network is a practical challenge. Indeed, the quality of
such networks and systems largely relies on the involvement
of IoT devices to support end-users. However, IoT devices
that undertake certain roles (e.g., data computation) in the
system suffer extra resource consumption such as battery and
memory. For instance, a smart IoT device needs to allocate
part of its CPU resources to execute a data request from
a user and also uses its memory to store data sensed from
surrounding sensors. Due to such incurred operating expenses,
certain IoT devices may be reluctant to share their resources
which prevents the deployment of IoT platforms in practice.
Furthermore, IoT devices may not be willing to share their
data with others because of the lack of sufficient incentives.
This is particularly true in real-world scenarios, for example,
where patients do not want to send their health information
to hospital doctors or insurance companies in the health IoT
network if no benefits are given. Another challenge comes
from the insufficient motivation of IoT nodes to participate in
collaborative IoT services such as collaborative data training
in intelligent IoT networks or cooperative data management
in IoT storage platforms. For example, to realize federated
data learning in IoT systems [4], the collaboration of devices
is needed to address the common learning task, where each
of them holds an important role in training its local data for
building the global ML model. Without enough incentives, IoT
devices may not be motivated to join the data training [5], [6].

Therefore, developing incentive solutions with fundamental
technologies such as blockchain, Artificial Intelligence (AI),
and game theory is highly needed for enabling sustainable
IoT networks and systems. For example, blockchain can be
used as an incentive platform for decentralized data sharing
in IoT [7], where IoT users can retain control of the data
sharing while earning incentives. In this regard, user-controlled
privacy and data-sharing policies can be established using
smart contracts [8] that support building up incentives for users
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to share their profile data in terms of rewards (micro-payments
or credits). Moreover, game theory can be exploited to develop
incentive solutions for IoT data offloading [9], by encouraging
more users to upload their data to the shared server for caching
under a game-theoretic offloading formulation to ensure the
benefits for all users in terms of latency minimization and
coin earning. AI is also a powerful tool for building incentive
mechanisms based on data learning and mining [10], which
can encourage IoT users to participate in data training to obtain
revenues as well as achieve their working objectives such
as classification or regression in involved IoT applications.
For instance, AI techniques are promising to train the energy
trading policies via energy-related data training [10], aiming
to support the service providers in the prediction of energy
workloads and energy prices in a period of time, which in
turn ensures the stability of smart grid systems. Incentive
mechanisms are also necessary to promote the participation
of distributed vehicles in sharing and computing data for
vehicular services, such as traffic prediction and vehicular
routing [11]. Moreover, smart homes can be stimulated to join
the energy purchase process with electricity plants via incen-
tive mechanisms enabled by blockchain that can offer credits
(e.g., coins) for energy trading. The increasing significance of
incentive techniques in IoT makes now the right time to draw
attention to this prominent area of research.

A. Comparison and Our Key Contributions

Driven by the importance of incentive mechanisms and
IoT, several related reviews have been conducted. For ex-
ample, the study in [3] carried out a survey on incentive
mechanisms for mobile crowdsensing, in which the incentive
mechanisms are classified into two main categories: monetary
and non-monetary. While the former motivates the IoT devices
to perform sensing tasks with monetary benefits, the latter
encourages the participants to contribute to sensing tasks to
reduce their individual costs. Another survey on incentives
for mobile crowdsensing was presented in [5], where the
incentive techniques are divided into three branches, namely
entertainment, service, and money. A survey was conducted
in [6] to summarize the theoretical studies, applications,
implementations, and experiments of incentive mechanisms
in participatory sensing. Originated from economics, game
theory has played an important role in designing distributed
and incentive mechanisms for wireless and IoT networks.
In [12], the importance of network effects was highlighted
in crowdsensing services, and game theory was shown to be a
promising tool to design incentive schemes for such services.
Further, this work also developed an incentive algorithm
that leverages the Bayesian Stackelberg game to model the
interaction between services providers and users. The work
in [13] reviewed the design of rewards in contract theory
and demonstrated the use of contract theory-based incentive
mechanisms for emerging scenarios in wireless networks, such
as adverse selection, moral hazard, and spectrum trading.
In [14], the coalition game was used to design two cooperative
incentive approaches in ultra-dense heterogeneous networks.
A review on game theory and multi-access edge computing

(MEC) was presented in [15], where game theory can be used
to design various incentive schemes for MEC systems.

The potential of AI and blockchain in designing incentive
mechanisms have been explored, and thus there have been
some surveys on this topic. For example, the works in [16],
[17] revealed that game theory is a promising analytical tool
for incentive mechanisms in blockchain consensus. Recent
studies in [18], [19] showed that blockchain is a powerful
concept to enhance the security of aerial access networks,
and game theory has the potential to design incentive al-
gorithms for such blockchain-enabled networks. The work
in [20] explored the applicability of blockchain to design
secure and incentive content delivery in autonomous vehicle
systems. The use of blockchain to design incentive caching
schemes in device-to-device (D2D) and MEC was studied
in [21]. Recently, the use of AI techniques, such as deep
reinforcement learning (DRL) and deep learning (DL) [22],
along with game theory and blockchain for incentive design,
has been extensively studied. For example, the work in [23]
adopted blockchain and DRL to design an incentive and trust
content sharing scheme in information-centric networks. The
work in [24] identified incentive as an important design issue
in FL and reviewed various incentive schemes in FL using
blockchain and smart contract. Recent reviews in [25], [26]
summarized incentive designs in FL according to different
approaches, namely data contribution, FL client reputation,
and resource allocation [26] and according to the incentive
techniques, such as game theory, AI, and blockchain [25]. A
summary table of related reviews on incentive mechanisms
and our work is shown in Table I.

Although incentive techniques have been reviewed in the
literature, there is no comprehensive review that is dedicated
to the use of incentive techniques in the IoT network and
for key IoT applications and services. Applications of recent
advances in game theory, blockchain, and AI for incentives
in IoT have not been explored in [3], [5], [6]. Moreover, the
use of game theory, blockchain, and AI in designing incentive
mechanisms for IoT services and vertical applications has not
been reviewed in the literature [12]–[21], [23]–[26]. This big
gap motivates us to carry out this comprehensive survey on
incentive mechanisms for IoT. The key contributions of this
paper are extensive discussions on the use of incentive tech-
niques for various IoT services (e.g., IoT data sharing, IoT data
offloading and caching, mobile crowdsensing, and IoT privacy
and security) and IoT applications (e.g., smart healthcare,
smart transportation, smart city, and smart industry). From
the extensive review, we also discuss several key challenges
and highlight potential solutions and research direction in this
interesting topic. In summary, the main contributions offered
by this work can be summarized as follows.

1) Firstly, we present a comprehensive survey on incentive
IoT and start by a preliminary to IoT data network
and the fundamentals of important incentive techniques,
including blockchain, game theory, and AI.

2) Secondly, we discuss the use of incentive techniques
for key IoT services, namely IoT data sharing, IoT data
offloading and caching, mobile crowdsensing, and IoT
privacy and security. Moreover, we provide a summary
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that summarizes the key contributions, lessons, and
limitations of the reviewed literature.

3) Thirdly, we extensively review the use of incentive tech-
niques for important vertical IoT domain applications:
smart healthcare, smart transportation, smart city, and
smart industry.

4) Finally, based on the reviewed literature on the use of in-
centive techniques for IoT services and vertical domain
applications, we identify a number of key challenges and
promising directions that may stimulate further studies
on this topic.

B. Paper Organization

This paper is organized as follows. In Section II, we present
the fundamentals of IoT and three main incentive techniques:
blockchain, game theory, and AI. Next, in Section III, we
discuss the use of incentive techniques for IoT services,
including data sharing, data offloading and caching, mobile
crowdsensing, and privacy and security. Then, applications
of incentive techniques in vertical domain applications (e.g.,
smart healthcare, smart transportation, smart city, and smart
industry) are discussed in Section IV. After that, key chal-
lenges and promising solutions are highlighted in Section V
to drive further studies on IoT incentive mechanisms. Finally,
we conclude the paper in Section VI.

II. FUNDAMENTAL INCENTIVE TECHNIQUES FOR IOT

In this section, the fundamentals of IoT data network in-
frastructure are discussed, followed by a discussion on several
techniques that can be used in designing incentive mechanisms
for IoT, such as blockchain, game theory, and AI.

A. IoT Data Network Infrastructure

In IoT networks, a full-life cycle of data infrastructure
consists of sensing, collecting, and processing data from a
large number of devices (e.g., mobile phones, wearable de-
vices, smart vehicles, and others in wireless sensor networks)
equipped with a rich set of sensors [27]. In general, IoT
allows sharing data, extracting information, and perceiving
knowledge between different users based on the collaboration
of individuals within the same domain interest and across dif-
ferent domain interests, thus achieving context awareness more
thoroughly. The popularity and innovation of smartphones
and wearable devices having various built-in sensors are the
crucial factors that drive the development and success of the
IoT paradigm. For instance, the sensory data acquired from
smartphone sensors (including accelerometer, gyroscope, GPS,
barometer, compass, fingerprint, microphone, and camera) are
being used for many mobile-aid applications in a wide range
of domains, such as healthcare and wellness, geosciences, and
transportation. Despite being similar to static nodes in terms
of sensing, computing, and communicating, smartphones are
more superior with portability and much more resources of
battery supply, computing power, memory storage, connection
range, and data transmission speed. Obviously, the IoT re-
search aims to converge individual mobile technologies along

with pervasive urban growth to enhance the quality of citizen’s
daily life.

Currently, most of the existing IoT systems are developed
based on a general architecture, shown in Fig. 1, consisting
of five layers: sensing, communication, data, information, and
service/application, where several incentive techniques can be
incorporated in different layers to encourage the development
and the contribution of service providers and end users. Here
the components with their functions of the layers are explored
in brief as follows.

• Sensing layer: At the bottom of the architecture, the
sensing layer plays the role of listening to the world
via sensors. Mobile devices with various built-in sensors
(e.g., accelerometer, gyroscope, GPS, compass, micro-
phone, and camera) allow acquiring raw signals from
nature. These signals are transformed with analog-to-
digital converter (ADC) modules for storage and pro-
cessing hereafter. Some other specialized sensors, such
as magnetometer, temperature, radiation, and air quality
sensors, can be connected to mobile devices via sensor
adapter. In addition to data acquisition, this layer takes
other functionalities, including sensor configuration (e.g.,
sampling rate, frequency response, and range of value)
and sourcing multimodality (e.g., time-series signal, high-
dimensional signal, image, and video).

• Communication layer: This layer takes the responsibility
for transmitting the data acquired from mobile devices
to data center and cloud platform. Currently, mobile
devices (such as smartphones and smartwatches) are
equipped with several wireless connection and commu-
nication technologies (e.g., WiFi, Bluetooth, cellular, and
satellite). Some advanced techniques can be exploited
to enhance data transmission rate, reduce latency, and
improve communication reliability.

• Data layer: In IoT systems, the sensory data can be stored
in data center via centralized and decentralized storage
systems. Relying on specific scenarios, e.g., the need of
service providers and the support of mobile devices, data
can also be located on cloud and fog servers. The data
layer comprises some major components which perform
data buffering, synchronization, maintenance, persistence,
and exporting. Due to the high volume, variety, and veloc-
ity of multimodal sensory data from numerous devices,
these processes can be complicated.

• Information layer: Processing data to attain meaningful
information and knowledge is crucial in IoT systems,
which is accomplished in the information layer. Various
techniques and algorithms are exploited to process dif-
ferent types of data, which in turn acquire low-level and
high-level information regarding concerning mobile ser-
vices and applications. Notably, as the key technology to
enhance performance, AI with pattern recognition should
be applied to handle the large-scale heterogeneous data
issue. In particular, supervised learning, unsupervised
learning, semi-supervised learning, and RL with tradi-
tional machine learning (ML) algorithms and innovative
DL architectures are exploited in data-driven and model-
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TABLE I
SUMMARY OF RELATED REVIEWS ON INCENTIVE MECHANISMS.

References Contributions Limitations
[3] A review of incentive mechanisms in mobile crowdsensing was

presented.
The applicability of game theory, blockchain, and AI
for incentive design was not explored.

[5], [6] Comprehensive surveys on incentive mechanisms in mobile
crowdsensing [5] and participatory sensing [6] were conducted.

The applicability of game theory, blockchain, and AI
for incentive design was not explored.

[12] Game theory was leveraged to design incentive mechanisms for
crowdsensing services considering network effects.

The potential of incentives for IoT services and vertical
applications was not studied.

[13], [14] Game-theoretic approaches, such as Bayesian Stackelberg game
and contract theory, were used to design incentive strategies in
wireless networks.

These short papers were only limited to the applicabil-
ity of game theory, while incentives for IoT were not
studied.

[15] Applications of various game-theoretic models for related sce-
narios in MEC systems (e.g., sensor networks, unmanned net-
works, heterogeneous networks, and vehicular networks) were
reviewed.

This work did not focus on the potential of game theory
for IoT services and IoT vertical applications, and the
use of advanced blockchain and AI techniques.

[16], [17] The importance of incentive designs in blockchain consensus
protocols was emphasized.

This work focused mainly on blockchain but not in-
centives for IoT services and applications.

[18], [19] Applications of blockchain for incentive designs in aerial access
networks were studied.

These works did not focus on incentives for IoT
services and applications.

[20], [21] The applicability of blockchain to design secure and incentive
mechanisms in future networks (e.g., autonomous vehicle sys-
tems and D2D communications) was investigated.

These short papers did not focus on incentives for IoT
services and applications.

[23] Blockchain and DRL were jointly used to design an incentive
and trust content delivery scheme in information-centric net-
works.

This survey focused on a specific scenario in
information-centric networks, while the review of in-
centives for IoT services and IoT applications were
ignored.

[24] This work highlighted incentives as an important design issue
in FL and reviewed blockchain-based incentive solutions.

This work focused mainly on the use of blockchain for
FL at mobile computing networks.

[25], [26] Concise reviews on incentive mechanisms in FL. Incentives for IoT services and IoT vertical applications
were not the main focus of these papers.

This paper A comprehensive survey on the use of blockchain, game theory,
and AI for the design of incentive mechanisms for IoT services
and IoT vertical domain applications. From the intensive survey,
we also highlight a number of key challenges and potential
solutions to stimulate further research on this interesting topic.

-

driven approaches for clustering, classification, and re-
gression tasks. A pre-processing step can be examined
to eliminate noise and remove outliers in a large-noisy-
confusing dataset.

• Service/Application layer: On the top of the architecture,
the service/application layer receives the meaningful in-
formation derived from the information layer to provide
to users who can access through open and secure ap-
plication programming interfaces (APIs). Although the
components in this layer can vary along with requested
services, typically, they are responsible for the follow-
ing basic functions: service orchestration, authoring, and
analytic with visualization. Furthermore, user interface
and user experience play human-machine responsiveness
and interactivity. Many existing applications in IoT sys-
tems can be divided into the task-wise category (with
scheduling, assignment, and execution) and the user-wise
category (with use type, recruitment, and selection).

In the rest of this section, we present the most important
techniques used in current IoT networks, including game
theory, blockchain, and AI.

B. Blockchain

Blockchain has gained popularity in recent years since the
inception of bitcoin. Blockchain is a distributed ledger in
which the transactions are stored in blocks, and they are
distributed and duplicated across millions of devices in the
network [28], [29]. Whenever a new transaction is executed,
it is updated in the ledger of all the blocks in the blockchain
network. The transactions are recorded with hash functions.
The data in the blockchain can be modified only if the data
in more than 50% of the blocks is updated, which makes it
nearly impossible to cheat, hack, or change the data [30].
One of the key enabling technologies of blockchain is a
smart contract, which executes automatically when a record is
updated or whenever a new block is added to the blockchain.
Through smart contracts, the trustability of the nodes/blocks in
the blockchain can be ensured. Apart from immutability and
trustability, blockchain is also known for traceability. As all the
transactions are stored in an immutable manner, the products
can be easily traced throughout their lifecycle. These proper-
ties of blockchain, namely, security, traceability, trustability,
and immutability, are the main reasons for increased usage of
blockchains across the industry domains such as supply chain,
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Fig. 1. IoT data network infrastructure.

healthcare, insurance, smart cities, etc [31], [32].
Blockchain has immense potential in incentive mechanisms

in IoT. Blockchain can ensure transparency of incentives
calculated, secure the data generated by the volunteer nodes
in crowd-sourcing, preserve the privacy of the participants
who sense the data from the environment as requested by the
requesters [33]. In this context, edge servers compute tasks
from IoT devices that receive a reward given by the blockchain
each time they purchase more computational resources. To
ensure security, the authors in [34] proposed an incentive
mechanism based on the blockchain platform to motivate
IoT devices to purchase more computational resources when
they participate in the mining process. Clients get unfair
rewards from service providers (SP) when they participate in
collaborative tasks. Even though the reward payment seems
low, the SPs should provide accurate and secure services to
lightweight clients (LC). Therefore, [35] implemented a fair
payment system where the clients send requests to the SPs
through blockchain. The SP provides the service codes in
an off-chain method. The client validates the service codes
received and pays the price of the service to the SP. The
originality of the proposed incentive mechanism enhanced the
reputation of the SPs; consequently, clients send more requests
to the SP as they get affordable incentives from the SPs .

C. Game Theory
Game theory is an important branch in applied mathematics,

in which tools are provided to analyze the situations where the

players have to make decisions based on the actions/decisions
taken by other players in the game, i.e., the decisions made
by the players are interdependent. The players in the game
may have opposed, similar, or mixed interests. A solution to a
game depends on the outcomes from the optimal decisions of
the players. Game theory has applications in several situations
where the players’ interactions affect the outcome of the
game. For example, game theory can be used to determine
what business conglomerates or political coalitions can be
formed, the optimal selling price of a product/service in the
competition, which voter or group of voters have power,
selection of personnel for the jury, best possible location for
a manufacturing plant, etc [36], [37].

Game theory can play a very important role in calculating
incentives in IoT-based applications as they involve many
participants who work in a cooperative or independent manner
to provide the necessary data to the requesters. Some of the
recent works on incentive mechanisms using game theory are
discussed below.

To enhance the performance of physical layer security
(PLS), extra devices generate artificial jamming voluntarily
by enabling jammers to consume their own power. To force
jammers to voluntarily participate in the cooperation, the work
in [38] introduced an incentive mechanism into the routing
design, aiming to satisfy rewards for jammers who generate
jamming signals to guarantee PLS performance. To enhance
the performance evaluation, a two-stage Stackelberg game was
designed to work in two stages. In the first stage, the source
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aims at maximizing its utility by determining the optimal
rewards; in the second stage, each jammer independently
focuses on its jamming consumption power while competing
for the rewards based on how its contribution to the PLS is
enhanced, which is formulated as a non-cooperative game [38].

Radio frequency energy harvesting (RFEH) based IoT sys-
tem consisting of a data access point (DAP), and several
energy access points (EAPs) has been recently proposed to
collect information [39]. In an RFEH-based IoT system, EAPs
support sensors by providing wireless charging services via the
radio frequency (RF) energy transfer technique. DAP collects
data from sensors. Since the DAP and EAPs may be operated
by different operators, the way to motivate them to carry
out the task of collecting data is required to motivate self-
interested EAPs to help charge the sensors. To motivate the
third party, [40] proposed an effective incentive mechanisms to
improve the payoff of the DAP as well as those of EAPs. The
proposed scheme considered the complete information that the
EAPs will truthfully report to the DAP, e.g., their channel
gains between EAPs and sensors and their energy costs. To
evaluate the performance caused by information asymmetry,
the existing Stackelberg game-based approach with complete
information has been considered due to the lack of complete
information. As a result, the expected utility function of the
DAP is defined and optimized in the Stackelberg game. In
addition, the authors applied contract theory to determine an
optimal contract that aims at motivating the EAPs under asym-
metric information. The monopoly labor market in economics
helps in modeling the contract for the RFEH-based IoT, where
the DAP is modeled as the employer who offers an agreement
contract to each EAP. The agreement contract is composed
of contract items, which are considered as combinations of
energy-reward pairs.

D. Artificial Intelligence
AI is a branch of computer science in which machines

are trained to think and act like humans. It leverages ma-
chines and computers to mimic the decision-making and
problem-solving capabilities of the mind of humans [41].
AI is widely used in computer vision, healthcare systems,
automotive vehicles, speech recognition, and natural language
processing. Among many branches of AI, machine learning
(ML) and deep learning (DL) are two important approaches.
ML addresses the question of how to build a computer system
that improves automatically through experience [42], [43]. It
tries to automate the process of knowledge extraction from
training data to make predictions on unseen data. For example,
historical traffic data are used to improve traffic classification
and reduce congestion. In other words, the main idea of
ML is to generalize beyond the examples in the training set
and hence can be thought of as “programming by example”.
However, building models using conventional ML models is
bottlenecked by the amount of features engineering required
[44]. In the meanwhile, DL-based models are able to learn
hidden features through multiple non-linear processing units
(i.e., neurons) in deep architecture.

Although these ML/DL-based models have been success-
fully used to classify the participant users/devices based on

the value of the information provided or on their performance
so that they can be incentivized accordingly, they require a
central entity to process the data collected from all users in
the network. Data transmission to a central entity may cause a
direct breach of privacy, be time-consuming, and can introduce
network congestion [45]. To solve these issues, distributed
learning such as federated learning (FL) has been proposed
[46]. Unlike the traditional ML/DL, the learning process with
the distributed learning concept occurs locally at each device.
Some of the recent works using distributed DL models for
incentive mechanisms are discussed below.

Preserving the privacy of users participating in collecting
training data requires secure mechanisms. In the case of
distributed deep learning, an incentive mechanism based on
blockchain is discussed in [47]. The authors proposed a secure
and decentralized framework based on a blockchain incentive
mechanism. This mechanism used cryptographic primitives for
privacy-preserving distributed deep learning, which can deliver
data confidentiality, computation auditability, and incentives
for parties who participate in collaborative training. Also, an
incentive mechanism has recently been used with FL [45]
to motivate high-reputation clients (e.g., high-quality data,
high computation resource) to participate in the training pro-
cess [48], and without a reward mechanism, the data owners
(e.g., clients) will be reluctant to join the learning [26]. It may
improve the final model quality, lead to faster local training,
and hence fewer communication rounds needed between the
server and the clients [49]. Therefore, considering an FL
setting that consists of a central server and a set of clients, it is
essential for the server to develop an incentive mechanism to
encourage more clients participation. In this context, several
contributions have been proposed. For example, the work
in [50] used an incentive mechanism by combining contract
theory with reputation and blockchain [51] in order to motivate
the clients with high-quality data to join the FL process.

III. APPLICATIONS OF INCENTIVE TECHNIQUES FOR IOT
SERVICES

In this section, the applications of incentive techniques for
IoT services such as data sharing, data offloading and caching,
mobile crowdsensing, privacy and security are discussed along
with recent state of the art.

A. Incentives for IoT Data Sharing

The accelerated advancement of cloud technology has in-
creased the number of businesses and enterprises intending
to keep their secure information on cloud platforms. Cloud
services facilitate firms and organizations to use their services,
hardware, and resources effectively and efficiently. Various de-
vices being used extensively in and around us generate massive
volumes of information that are often maintained by cloud
servers [52]. Apart from storage and management, there is also
a need to distribute the required data to legitimate data owners.
In the present day and age, data sharing, information sharing,
disclosure has become extremely predominant at all levels of
society. It is evident from various studies that data sharing
and reuse are extremely helpful in the processes involved in
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Fig. 2. Reward distribution for IoT data sharing between data owners and
third parties.

sharing of data resources which also contributes to enhancing
the efficiency and quality of work guiding innovation as well.
Efficient data sharing techniques eliminate redundancies and
repetition of work. This is the era of big data and digital
technologies that have grown enormously and have become
a critical strategic resources. In spite of all its positivity, the
big data industry has been facing a major challenge pertinent
to “data islands,” resulting in an acute dilemma in decision
making [53], [54]. The best possible solution to this issue is to
develop a reasonable and efficient data-sharing model. Since
there exist limitations relevant to data volume and diversity
among individual data owners, the idea of data sharing across
several cloud platforms will assist third-party participants in
using diverse big data analytical methodologies. This would
enable the incorporation of value-added services by offering
healthcare services to customers by collecting medical data
from various hospitals. Data sharing, apart from its varied
applications, renders significant contributions to the present
human lives. There are three major obstacles related to data
sharing: refusal to share, worry of sharing, and difficulty to
share data. Although immense efforts are still being directed,
the issues relevant to mutual-trust relationships and increase
in user participation are yet to be resolved. It is also difficult
to provide incentives that allow both reliable and collaborative
data exchange across numerous cloud platforms. The present
solution to such challenges would be to use the third party as
trusted organizations enabling data sharing. However, there is
no dynamic incentive scheme to guarantee data sharing across
a large number of users. There are issues relevant to slow
response speed, data tampering, and unsecured transmissions
in the classical data-sharing model.

Fig. 2 depicts the reward distribution mechanism used for
data sharing between data owners and third parties in IoT-
based systems. The existing cloud-based data sharing mod-
els are also vulnerable due to centralized storage problems
wherein users requesting data often get perplexed regarding
privacy, data leakage, and data tampering issues. The rev-
enue distribution, on the other side, tends to become more
reasonable encouraging participants to improve the quality of
service (QoS), data reliability in order to generate a high level
of profits. Efficient incentive mechanisms should be promoted
and exploited to attract more cloud stakeholders involved in

data sharing to participate in coalition ensuring data sharing
actively that maintains the quality and revenue of services.

In order to overcome the aforementioned challenges of
data sharing, the study in [55] proposed a secure frame-
work with three different categories of participants: data
owners, miners, and third parties, wherein data is transferred
through blockchain, which authorizes various participants us-
ing blockchain and guarantees data security. The primary
objective of this research is to provide data sharing in multiple
clouds incorporating incentive schemes. The proposed model
employs Shapley value to create a fair incentive arrangement
for data sharing, and the revenue distribution is performed
through verification and analysis. The study results would
motivate more collaborative effort in data contribution, im-
provement in data authenticity at an optimized level. The
study by [56] proposed an incentive model using blockchain-
based data sharing in IoT systems using an evolutionary
game theory approach. The main objective of the evolutionary
game theory using the incentive model was to dynamically
adjust the incentive or participation cost facilitating active
user participation in data sharing. It is mentioned in the study
that When the number of users engaging in data exchange
tends to decline, the involvement of users is likely to be
lower in the lack of an incentive adjustment system, ulti-
mately leading to the downfall of the data-sharing network.
The implementation suggests incentive adjustment mechanism
enhances the participation of distributed users by offering
incentives, maintains the scalability of the sharing system,
ensuring the balance between the user participation level of
the data sharing network and the network maintenance cost.
The study in [7] discussed another application of blockchain-
based platform for sharing user profile data, enabling users to
keep control over the sharing and receiving of rewards, was
suggested. The main contribution of this proposed model is
based on user-defined privacy and data sharing regulations that
are encapsulated in smart contracts. Additionally, it facilitates
establishing financial incentives for users to provide their
personal data (micro-payments or credits). The sharing of
user profile data in a distributed fashion is implemented using
MultiChain. This has been done by performing experiments
on various travel booking domain that allows users to receive
rewards while sharing their profile data with other travel
industries based on their privacy preferences mentioned in
smart contracts.

Data sharing propels the active development of data-driven
services and progresses society proficiency. However, data
owners may refuse to share their information with other
organizations because the data holders are apprehensive about
increasing competitors’ competitiveness. By processing the
shared data, competitors can improve the quality of their
services; hence, the data holders’ business is reduced due to
the loss of data. During data sharing, data is exposed without
maintaining the privacy of the individuals, hence leading to
enormous privacy security risks. As a result, the increased
privacy-related risks will impede data sharing. Therefore, we
are in need of privacy-preserving techniques to strengthen the
data sharing models. To motivate data sharing for data holders,
the work in [57] proposed a competitiveness-driven and secure
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incentive mechanism. The proposed research is based on a data
competitiveness model, where the data holders share data with
demanders and earn data competitiveness from data demanders
by eliminating the competitiveness worry, inducing win-win
results for data holders and the demander. The experimental
results show privacy is protected using differential privacy, a
theoretical contract procedure to formulate the incentive mech-
anism. Designing an optimal contract helps the data demanders
to make the finest decisions and data holders to enhance their
utilities. In [58], the authors proposed an incentive mechanism
using a two-level Stackelberg game for data sharing. The
experiment carried out shows the proposed techniques consist
of several leaders and one or more followers. Based on the
behaviors of the participants, the proposed Stackelberg game
was split into two levels: a data demand network-level game
and a data-sharing network level game.

The study in [59] proposed a sustainable incentive scheme
for an FL based framework. It is known that in FL, a collective
ML model is trained by a federation by implementing privacy
preservation technologies. But the participating FL members
may have to incur some costs for their contribution in the
FL model. Due to the time required in the training and
commercialization of the model, the federation experiences
delay in paying back to the participants which generates gap
between the contributions and the unaccounted rewards in the
pay-off sharing schemes. The FL incentivize (FLI) plays a
significant role in eliminating such challenges. The budget is
dynamically divided, following the context aware technique
between the owners of data in a federation. The collective
utility is maximized jointly and on the contrary the inequality
is minimized while receiving the payoff and its required
waiting time. It is further compared with five latest payoff
sharing schemes and the results conclude the ability of FLI
in attracting high-quality data owners thereby achieving the
highest revenue for the federation.

The study in [60] proposed the development of a dynamic
digital twin in association with FL along with its incentives for
air-ground networks. The air-ground network in a traditional
framework enables users to get a continuous connection and
real-time services. But it has associated challenges relevant to
resource utilization. Hence the FL-based air-ground networks
is used in this work. The FL model helps the clients to train
models without getting shared, ensuring privacy and security.
Fig. 3 depicts the importance of FL for privacy preservation for
incentive mechanisms in IoT. Digital twin provides a virtual
depiction of the air-ground networks reflecting its status at
different time variations. This combines with the FL approach
ensuring privacy protection and training of data in the air-
ground networks. In the digital twin and FL-based air-ground
network, a drone is used as the aggregator, and the clients on
the ground help in training the model using network dynamics
caught by the digital twins. As an example, in the Stackelberg
game, the digital twin in the drone sets preferences for the
clients and the clients act as followers that enable choosing of
the global training rounds. A dynamic incentive scheme is also
designed that adjusts the optimal client selection process and
the relevant participant levels. The results reveal and justify
the accuracy and efficiency of the proposed incentive scheme.

The study in [50] uses a joint optimization technique for
combining reputation and contract theory wherein reputation
is used as a metric for measuring the reliability of mobile
devices. The majority of the existing works have contributed
towards designing various learning algorithms to enhance
learning performance. The issues relevant to incentive mech-
anisms in the process of training and worker selection are
yet to be confronted, which have hampered the widespread
usage of FL. Thus the reputation metric is introduced as part
of a reputation-based worker selection framework wherein a
multi-weight subjective model is implemented. Blockchain is
also included to ensure reputation management. Experimental
findings show an incentive mechanism is also implemented,
which combines the reputation metrics with contract theory.
This enables the high-reputation mobile devices and their data
to participate in the learning process of the model. The results
highlight the efficiency and accuracy of the proposed model.
In FL systems, the data owners retain their raw data and

share only the results generated by local computations for the
training of the global model and its owner. The data owners, in
such cases, experience privacy issues. To eliminate such issues,
the study in [61] proposes an incentive scheme developing a
differentially private federated learning network (DPFL). This
framework prevents privacy leakage issues and also models
the computation, communication, and privacy costs of the
data owners, which are considered as private information.
This information remains unknown to the model owner, and
the 3D contract approach helps significantly in designing the
incentive scheme. The simulation results justify the superiority
of the proposed approach in terms of its efficiency when
compared with other basic approaches. The predominant
usage of e-healthcare systems leads to the generation of the
huge amount of healthcare data by IoT devices. These health
data have great importance when aggregated with the various
distributed devices. But such aggregations have associated
security, privacy and confidentiality issues. These issues crop
up from differential attacks and patient denial to contribute
to healthcare data aggregation. The study in [62] proposes
a health data aggregation scheme that enables the secure
collection of health data from varied resources and also
ensures fair incentives for the contributing patients. Signature
techniques are employed to disseminate fair incentives for the
patients. Noises are added to the data to achieve differential
privacy. Also, the combination of Boneh–Goh–Nissim cryp-
tosystem and Shamir’s secret sharing scheme is implemented
to achieve the optimum level of fault tolerance and security.
The system successfully achieves security, privacy, fault toler-
ance and also retains fair incentives for the patients ensuring
cost efficiency in computation, communication and storage
overhead. The study in [63] proposed an incentive-based
framework for scheduling transmissions in electronic health
(e-health) network systems wherein the delay-sensitive packets
are emphasized. The primary emphasis is given on the beyond
wireless body area network (WBAN) communications wherein
the medical packets arrive at a random fashion to the gateway
and the transmission requests are sent to the network regulator
located at the base station, which have delay sensitivities
reflecting the severity of the medical signals. The base stations
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Fig. 3. Federated learning for privacy preservation for incentive mechanism in IoT.

thereby decide on the order of transmission, creating a priority
queue. The packet utilities and the profit function points of the
base stations are computed. An incentive-based system is thus
developed considering the features of the service station such
that all the gateways report the actual information pertinent to
delay sensitivities of their packets. The proposed system helps
in maximizing the profit of the base station, minimizes waiting
cost ensuring optimal service prioritization for the emerging
medical packets. The results highlight the economic benefit of
the proposed incentive-based system.

B. Incentives for IoT Data Offloading and Caching

The IoT enables connecting a wide range of intelligent
devices over the Internet to transmit and exchange data. Over
time, the everyday technology innovations we experience will
make these devices increasingly important for how we con-
sume the Internet. IoT devices generate an incredible amount
of data, which is then transmitted to the cloud for processing
[64], [65]. The most significant challenge in IoT is moving
large quantities of data over time to a remote location. As the
demand for the data increases, the users who utilize less data
should benefit. In this section, recent works on incentives for
offloading and caching are discussed.

Data offloading is a technique for sending data from primary
links to a terminal-to-terminal (T2T) network that relies on
direct communication between mobile users without the need
for additional infrastructure. However, to avoid congestion
and overload, network operators must increase the capacity
of cellular networks, which will result in a significant loss
for mobile service providers. With the help of the Vickrey-
Clarke-Groves (VCG) mechanism and Rubinstein bargaining
game model, an incentive scheme is presented in [66] to
control the traffic. According to the results of the experiment,
the incentive technique assisted in reducing congestion and
improving the QoS in mobile network systems. Additionally,

it had a beneficial effect on the revenue of mobile network
operators (MNOs), access point owners (APOs), and Internet
of Things modules (IoTMs). If the dynamics of time-varying
topology and node mobility are not taken into account, this
approach may result in data loss and delay.

Due to the rapid increase in mobile traffic, IoT necessitates a
large number of access points (APs) to provide data offloading
capabilities. As they are self-centered, most APs refuse to
participate. To address this issue, the work in [67] considered
a behavioral economics-based incentive mechanism motivated
by a life phenomenon known as the anchoring effect and
loss aversion on offloading (AELAO). The authors added the
anchoring effect and loss aversion from behavioral economics
into the incentive mechanism and established the reference
factor, price-break discounts factor, and regret value to incen-
tivize the APs to participate in repeated data offloading within
the time constraint. The findings revealed that because of the
incentive mechanism, APs participated more actively. AELAO
increases the utility of APs by incorporating the additional
reward, but it increases the cost of data offloading requester.

Edge computing has proven to be a successful method
for offloading IoT data. IoT devices send massive amounts
of data to the network’s edge, causing a single edge device
to become overburdened. The authors in [68] used multiple
edge device resources to reduce straggler effects and improve
performance. However, these devices may not have enough
bandwidth to transmit data from IoT devices. To address this
issue, a deep-learning-based auction mechanism to buy and use
bandwidth from service providers for edge devices is proposed
in this work. In another work [69], RL is used for privacy
in incentive mechanisms, where the results proved that the
proposed method maximizes the profit for service providers
while satisfying both individual rationality and incentive com-
patibility properties.
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C. Incentives for IoT Mobile Crowdsensing

The advancements in communication technologies (4G/5G)
and mobile phones in recent years have enabled the emergence
of high capacity and efficient networks that allow billions
of smartphones connecting with each other. The sensing
capabilities of mobile phones are enhanced by integrating
them with several IoT sensing devices such as a microphone,
gyroscope, camera, accelerometer, GPS, etc., along with their
storage and processing capabilities. This evolution of mobile
phones has led to the emergence of MCS. MCS is based
on the sensors of the mobile devices through which the
geospatial data and knowledge can be acquired, which can
be shared with other users in the community. Due to smart
cities and rapid urbanization, several innovative applications
and research areas are being opened up by MCS that can
offer the best environment to the citizens that may lead to the
growth in the economy. The local data acquired through the
sensors of the mobile phones enable sharing of the knowledge
regarding traffic conditions, local information, noise level,
road conditions, etc. Useful insights can be uncovered by
the application of big data analytics, ML algorithms can be
applied on the shared acquired data which can be used for
smart urban space monitoring that can have a huge impact
on the society [70], [71]. MCS helps the organizations to
acquire large quantities of data without the need for them
to spend huge capital on infrastructure and other resources.
Fig. 4 depicts the different categories of incentive mechanisms
in MCS.

To acquire a large quantity of data, MCS applications need
participation from humans voluntarily. However crowd sensing
consumes the resources such as computing power, battery,
cost the users their mobile tariffs, etc. Moreover, private
information like the location of the volunteers has to be shared

that can expose the volunteers to different kinds of security
threats [72]. So, unless the volunteers are incentivised, they
may not be interested to participate in the MCS as they have to
risk the privacy breaches and consumption of several resources
of their mobile phones [5]. Different kinds of strategies can
be followed to incentivise and attract volunteers to participate
in MCS. Some of these strategies are financial rewards,
social recognition, ranking and recognition, entertainment-
based incentives, etc. [73]–[75]. The work in [76] proposed
an approach in which socially connected and popular users
among peers are recruited as participants in the MCS. It is
assumed that the mobile users who are more active and con-
nected in social media can attract/motivate their connections
to participate in the applications [77], [78]. For example, when
an active social networking user shares the data of their fitness
achievements collected through wearable devices in social
media, it can motivate their followers/fiends to use the same
application, thus maximizing the profits of the organizations
who developed such applications.

Several researchers have proposed interesting approaches to
incentivize the participants in the MCS, as discussed below:

• Incentive Mechanisms for Social Reputation and
Ranking: In this mechanism, the volunteers in a commu-
nity will be awarded points every time they share the data
collected through their smart phones like images of points
of interest, pot holes, road conditions, food/catalogues
in restaurants, etc. Periodically, the volunteers with the
highest points will be declared as the winner and their
details will be shared in the community. The winners can
be rewarded with souvenirs [79].

• Incentive Mechanisms based on Services: A participant
in some MCS can act both as a consumer and contributor
i.e., a participant gets services and also provides services.
For instance, if a participant rates a hotel, he receives
a rating for another item, or if a participant sends data
related to traffic, he might receive information regarding
traffic on alternate routes [71].

• Incentive Mechanisms based on Financial Benefits: In
this strategy, the participants in MCS can be rewarded by
providing them with monetary benefits. This strategy is
one of the effective means to get quality data from the
participants [80].

• Incentive Mechanisms based on Entertainment: In this
strategy, the participants can be incentivized by providing
some entertainment as a reward for participating in MCS.
For example, the participants can be given access to play
a game, or they can be given movie tickets, etc [81].

To collect high-quality of sensing data within the specified
budget, it is essential to choose optimal users/volunteers for
MCS. The accuracy of the sensing data depends on the cover-
age of mobile users in the target area and also on the previous
reputation of the mobile users [82], [83]. The work in [84]
considered these factors for incentivizing the participants using
Stackelberg game theory. In this work, the authors proposed
to use a two-stage Stackelberg gaming approach to determine
the levels of sensing of mobile users, who are chosen based
on their previous reputation and coverage areas. Expectation-
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maximization algorithm is used in this work to determine
the reward/incentive to the mobile users participating in the
MCS. Once the sensing data is uploaded by the MUs, the
expectation-maximization algorithm evaluates the quality of
the data, the reputation of the mobile users is evaluated by the
server center based on the quality of the data updated by the
mobile users and then the historical reputation of each mobile
user is updated. Based on the tasks completed as per the
optimal strategy selected, the mobile users will be rewarded.
The results obtained proved that the mean square deviation of
bandwidth payoff and energy payoff increase with the total
reward. Also, the total utility obtained by MUs increases with
increase in rewards of the task. The average bandwidth chosen
by MUs is less than 2.5 when the total reward is lesser than
1000, whereas the total rewards is greater than 3000 when
the average bandwidth selected by the MUs is greater than 4.
Similarly, the study in [85] formulated the interactions between
MUs and SPs as a multi-stage Stackelberg game in which SP
is considered as a lead player and MUs are considered as
followers. Based on the unit prices that are announced by the
MUs, the SP will be calculating the amount of sensing time for
purchasing from every MU through convex problem-solving.
Later, every follower observes the records of trading and
adjusts the pricing strategy iteratively based on a trail and error
method that is based on a multi-agent DRL algorithm. The
results obtained show that, in the absence of prior knowledge
regarding the quality of data from the MUs, a near-optimal
performance is achieved by the proposed model. Also, a sellers
market is resulted in intensive competitive environment among
the buyers when the average time budget of MUs is less.

The work in [11] proposed an incentive-aware recruitment
scheme for vehicles based on edge-assisted MCS. In this work,
the authors have designed an incentive mechanism to enable
cooperation between the intelligent vehicles and the edge
server. The pricing process between the participating candidate
and the edge server is modeled as a 2-users cooperative game.
Later Nash bargaining theory is applied to reach decision on
the best possible incentives to be paid by the edge server to the
participant through based on cooperation between edge and the
vehicles. To find the level of contribution from the vehicles,
a scheme based on the priority of regions of vehicles, the
vehicular reputation, and the spatio-temporal availability of
the vehicles, is designed, which is NP-hard. To address the
NP-hardness of the recruitment problem, a heuristic algorithm
is proposed by the authors. The results obtained prove that
minimum cost vehicles are selected by the proposed scheme
and also many vehicles are selected within the allocated budget
for compensating the total value of the users with the increase
in candidate vehicles. The proposed scheme outperforms other
schemes, proving that it is very important to consider the
reputation and spatiotemporal availability of the vehicles along
with the budget of the edge server in selecting the participants.

Another interesting work in [86] proposed a non-cooperative
vehicular crowdsensing scheme in which the incentives are
issued to the vehicles based on the social network effect
and the tasks that are priced dynamically. The authors also
have proposed an incentive mechanism that is socially aware
through DRL that maximizes the overall utility of the drivers

of vehicles and also for deriving long term strategy of sensing
for the vehicles. The proposed scheme achieved an average
utility of vehicles as 0.91 that is 0.43, 0.69, 0.86 higher than
that of Q-learning algorithm, greedy algorithm and random
algorithm when number of vehicles is 10. Also the average
utility of all vehicles for the proposed scheme is 90% higher
than that of Q-learning algorithm. when task payoff is 23.

An incentive approach is proposed in [87] for MCS by con-
sidering the resource demand of the MUs as the economical
model. Based on the idea that different MUs will be partic-
ipating in the MCS at different levels as they have different
behaviors, the authors have formulated an incentive approach
by using a popular game theory, Stackelberg. They have also
investigated an incentive mechanism which is dynamic by
using DRL that preserves the privacy of the MUs. Through
this approach, the SP can learn about the strategy for optimal
pricing from the game experience directly. In this work, the
Stackelberg game is formulated into two stages based on the
interaction between the MUs and SP. In the first stage, the
pricing policy of the SP, which is the leader of the game,
is determined and broadcasted. In the next stage, the sensing
efforts of MUs, which are followers, are computed based on
the SP’s price offer on the MUs’ constraints on resources
and uncertainties of the demands. To compute the Stackelberg
Equilibrium of the MCS game, the private data of the MUs has
to be known by the SP, that is impractical in several situations.
To preserve the privacy of the MUs, a DRL algorithm is
employed in this work, through which the optimal pricing
strategy is learnt by the sensing platform through the past
records from the game. The proposed scheme has achieved a
maximal standard deviation of 0.005, which proves that the
proposed scheme is very stable and offers fair price to the
MUs.

Most of the researchers focus only on one optimization
goal when recruiting and incentivizing the participants in the
MCS. However, there are some tasks for which there might
be multiple optimization goals. For instance, consider the
scenario where photographs have to be taken for a landmark.
In this case, the requester of the task might have two opti-
mization goals; one goal is the correctness of the collected
photographs of the landmark and the other one is diverse
views of the landmark. To address the aforementioned issue
of two optimization goals,the study in [88] proposed a novel
incentive framework, namely, BiCrowd. The proposed model
is proved to possess the properties that are desired such as indi-
vidual rationality, constant competitiveness, budget feasibility,
truthfulness, and computational efficiency. Bicrowd considers
selecting workers for the MCS by optimizing spatial diversity
and also the reliability of the sensing tasks. In the proposed
system, if a worker is selected for a task, the payment for
the worker has to be determined by the platform. The service
requester will rate the task performed by the worker based on
the quality of the data provided by the worker. The worker’s
reliability is then updated by the platform based on the rating
given by the requester. In this work, the authors assume
that the workers are game-theoretic. Hence, to maximize the
payments received, the bidding prices may be manipulated.
The performance evaluation revealed that the proposed method
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has outperformed other considered schemes with respect to the
average completion reliability budget

D. Incentives for IoT Privacy and Security

With the recent development of communication, the data
collected from distributed IoT devices is growing in an ex-
plosive way. Guaranteeing fair rewards for IoT users is a
critical task. For instance, the IoT users may share/contribute
their data for benefits, however, the dishonest one can “re-
contribute” the same data for more rewards. At the same time,
the IoT users’ may expose themselves to privacy threats as
their data contain personal information (e.g., identity, loca-
tion) [89], and hence it should be well protected [90]. In
such context, data aggregation and incentive mechanisms have
attracted numerous researchers’ attention from both industry
and academia [91]. However, IoT users’ data aggregation can
leak user information like location, activity, etc. due to system
malfunctioning. For example, if users’ locations are leaked,
it will make them vulnerable especially if their locations are
frequent. Although data aggregation and incentive mechanisms
are accompanied by security threats and privacy concerns, the
majority of incentive mechanisms consider the truthfulness
of the mechanisms. Hence privacy and security issues are
mostly ignored in incentive mechanisms that can reduce the
enthusiasm of IoT users [92], [93]. That is why privacy and
security have become hot issues in data aggregation. It has
been used in several fields such as healthcare [62], [94],
smart grid [95], crowdsourcing [96]. Data security and privacy
approaches aim to securely transfer and store the IoT users’
data and make them unlearn from unauthorized entities. In this
section, we present the different proposed mechanisms based
on security and privacy protection using blockchain, AI, and
game theory in IoT systems.

Blockchain technology has been integrated these days to
eliminate security threats and ensure user’s privacy in IoT
applications [35], [97]. With blockchain, there is no central
authority nor storage server, hence trust of each node is built
by reputation. Also, its anonymous features allow the workers
to do tasks without disclosing their real identity [98]. Even
though blockchain-based IoT systems have myriad features
such as attack resistance and avoiding third-party risks, they
are face certain challenges in maintaining data privacy and se-
curity without risking its leakage. To address these challenges,
several researchers are focusing on integrating several privacy-
preservation approaches with blockchain. These approaches
are anonymization, encryption, differential privacy, and smart
contract as shown in Fig. 5.

1) Anonymity-based Privacy Preservation: Given the sev-
eral security and privacy concerns, an absence of anonymity
technique makes the IoT users hesitate to participate [99] in
incentive mechanisms. Anonymity-based privacy preservation
avoids information leaking by removing the personal identifi-
able information and the k-anonymity technique is one of the
most widely used anonymity mechanisms.

According to [100], k-anonymity is defined as a privacy-
preserving participatory sensing scheme that satisfies k-
anonymity against the service provider if, for any sensing

Blockchain

Technology

Anonymization

Encryption

Differential Privacy

Smart Contract

Fig. 5. Privacy-preservation in blockchain-based IoT systems.

record reported to the service provider, the service provider
cannot distinguish the generator of the record from a group
of at least k participants. In this context, The work in [92]
proposed a privacy-preserving incentive mechanism based on
the blockchain to ensure privacy provisioning in crowdsensing.
Specifically, the sensing data qualities are evaluated via the
expectation-maximization algorithm. Then, the k-anonymity
approach is used to protect user privacy where the users’
sensing data are integrated into a group data, then the server
pays the group, and the group distributes the payment for every
group member. The study presents a theoretical analysis and
simulation results demonstrating the efficacy of the system to
deal with the impersonation attacks in the open and transparent
blockchain.

A novel privacy-preserving incentive announcement net-
work based on blockchain and anonymity is proposed in [101]
for communications for the Internet of vehicles, called Cred-
itCoin. It achieves anonymity and reliability simultaneously
without leaking private information by using ring signa-
tures anonymized announcements. Also, CreditCoin motivates
users/vehicles with incentives to share traffic information by
gaining reputation points. The obtained results show that the
total time of announcements for a user only is 174ms in as-
sumptions, which is much more efficient than other protocols.
However, the anonymization process usually happens on the
servers of the companies that collect the IoT users’ data,
thereby the IoT users have to trust them, which means that
it is not enough to protect the privacy.

2) Encryption-based Privacy Preservation: To improve
data security, encryption-based privacy preservation has been
used in blockchain-based systems. It is one of the widely used
mechanisms for secure data transmission. Each blockchain
user receives two types of keys, which are public and private.

To ensure secure service provisioning in IoT,the work
in [35] proposed a consortium blockchain-based secure provi-
sioning scheme for LCs. In the proposed scheme, the LCs
send requests to the SPs through blockchain. To do so,
consortium blockchain with the Proof of Authority (PoA)
consensus mechanism is used. Also, the Advanced Encryption
Standard (AES) 128 encryption technique is used to encrypt
the service codes before sending them to LCs. The AES128
is used because it has less execution time as compared to
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other encryption techniques like SHA256 and RIPEMD160.
The blockchain is used here as an underlying security fabric
in the service provisioning systems. Finally, the authors have
evaluated the efficiency of the proposed scheme by comparing
four encryption algorithms in terms of execution time. The
evaluation results show that using PoA, the total gas consump-
tion is reduced 17% as compared to Proof of Work as well as
the reputation of the SP increases, its participation rate also
increases.

Similarly,the study in [102] proposed a blockchain-based
secure data sharing for vehicular networks. To motivate the
nodes for contribution and ensure their privacy, an incentive
model has been proposed and all the communications were
done in an encrypted manner using the AES128 technique.
Using AES128 made the retrieval of the original data from
the ciphertext quite impossible for the intrusion node. In
addition, to reduce the gas consumption of the proposed
system, the authors used a consensus mechanism based on
Proof-of-Authority (PoA). The results of AES128 is better than
AES256 in terms of average execution time.

Although encryption-based techniques ensure data confiden-
tiality, it is computationally expensive, where the users should
save the set of encryption keys.

3) Differential-based Privacy Preservation: Differential-
based privacy techniques can solve the above issues and ef-
ficiently protect data privacy [103]. Differential-based privacy
techniques (DP) based on data distortion was proposed by
Dwork [104] in 2006. The privacy parameter ϵ quantifies the
difference, and lower ϵ is more private.

To securely aggregate data and guarantee rewards for
patients for lightweight e-Healthcare IoT devices,the work
in [62] proposed a privacy protection strategy using a DP
mechanism and provide rewards to the data owners (i.e., pa-
tients). The authors applied DP to support data confidentiality
during data transmission and guarantee data privacy (e.g., iden-
tities, location). In more detail, the patients sign their private
data with a secret key, then the healthcare centers add noises
to the collected patients’ data and encrypt the perturbed data.
Then, the ciphertext is transmitted to the cloud to aggregate the
ciphertext, decrypts the aggregated ciphertext, and sends back
the result to the data user requests. The results demonstrate
that the proposed system ensures patients’ data privacy, low
communication overhead, and storage requirement.

Another work in [105] proposed an incentive privacy-
enhanced mechanism by combining FL, DP, and blockchain
in IoT environments. Unlike the other work in [106], that
was executed in the clients/devices side, the authors have used
DP noise on the extracted features with CNN local model
instead of the original data. Then, these features are used
as input for fully connected layers for classification tasks in
the MEC server. The experiment results demonstrate that the
proposed mechanism achieves high accuracy and protects both
the model and the clients’ data. Moreover, the results show
that integrating FL into the consensus process of blockchain,
not only improves the utilization of computing resources
but also increases the efficiency of the data-sharing scheme.
Although this technique has been successfully used to protect
user privacy, it can lead to losing performance [107]. Due

to the privacy and accuracy trade-off in IoT systems, utilizing
differential privacy is a challenging task. The value of the noise
addition parameter “ϵ” represents the level of data protection
and by varying this parameter, the users can control the level
of privacy depending on their needs.

4) Smart Contract-based Privacy Preservation: Smart con-
tracts (SC) are programmable code stored inside of a
blockchain that will be executed when certain conditions are
met [108]. SC plays the role of an intermediary between
contract members and hence replaces the trusted third parties.
This helps to reduce the cost and risk as well as making the
execution of the statement automatically whenever the SC
condition is satisfied. As a result, several researchers have
combined SC and blockchain to incentivize the workers who
participate in order to improve the security and effectiveness
of IoT systems. A contract theory-based incentive mechanism
is proposed in [50] to avoid the information asymmetry issues
in the FL system. In the proposed approach, each worker
has direct reputation opinions generated from past interactions
with the FL server and indirect reputation opinions from other
FL servers (i.e., task publishers). Before the training task, the
workers choose a contract that corresponds to its computation
resource and data quality. Then, the FL server selects the
workers that have reputations larger than a threshold which is
securely stored in blockchain. The results reveal that with the
help of SC, the system attracts the workers with high-quality
private data and the malicious workers can not participate in
the FL task because they will not choose to sign the contract.
Also, it maximizes the utilities of both the task publishers and
the workers.

Another interesting work in [109] used the SC to perform
secure and self-driven data (traffic load and weather condi-
tion) sharing for a blockchain on the Internet of Vehicles
environment. The experimental results demonstrate that the
proposed system maximizes social welfare, ensures security
and scalability, as well as the computing cost of SC, which is
suitable for low-power devices.

E. Summary and Discussion
Incentive techniques based on AI, blockchain, and game

theory play a significant role in motivating the IoT devices
to actively participate in several IoT services such as data
sharing, data offloading and caching, mobile crowdsensing,
and privacy and security. However, several challenges like
dynamic calculation of incentives based on the complexity of
the tasks, extracting high quality of data from IoT devices
without compromising on the privacy of the users, etc. have
to be addressed to realize the full potential of incentive
mechanisms for high-quality data collection from IoT devices.
The applications of incentive techniques for IoT services are
summarized in Tables II and III.

IV. APPLICATIONS OF INCENTIVE TECHNIQUES IN
VERTICAL IOT DOMAINS

In this section, the applications of incentive techniques in
several IoT domains such as smart healthcare, smart trans-
portation, smart city, and smart grid are discussed along with
recent state of the art.
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TABLE II
SUMMARY OF APPLICATIONS OF INCENTIVE TECHNIQUES FOR IOT SERVICES.

IoT Service Ref. Incentive
Mechanism

Contributions Limitations and Challenges

IoT
Data Sharing

[55] Shapley value Increase the number of collaborations that provide useful data
and enhance data validity. Shapley value is used to provide a
dynamic and fair incentive system for data sharing.

The dynamic incentive distribution
based on Shapley value did not
offer sufficient evaluation and in-
vestigation.

[56] Evolutionary
game theory

The primary goal of evolutionary game theory with an incen-
tive model is to constantly modify the incentive price in order
to increase user involvement in sharing data.

The proposed study does not ac-
count for the large number of users
who participate in data sharing,
large data sizes.

[59] FL
Incentivization

Proposed a sustainable incentive scheme for an FL based
framework. The budget is dynamically divided, following the
context aware technique between the owners of data in a
federation.

The authors were unable to focus
on the issue of estimating the costs
incurred by data owners.

[60] Stackelberg
game

Proposed the development of a Dynamic Digital Twin in
association with FL along with its incentives for air-ground
networks.

The authors failed to show the
global and local updates in which
customers chose to participate in
the static and dynamic cases.

[50] Contract
theory

Uses a joint optimization technique for combining reputation
and contract theory wherein reputation is used as a metric for
measuring the reliability of mobile devices.

The authors were unable to demon-
strate optimised reputation calcu-
lation accuracy because they used
fewer weight parameters, which
degraded the reputation analysis.

[61] 3-D contract-
based
approach

Proposed an incentive scheme developing a differential private
DPFL to prevent privacy leakage issues and also models the
computation, communication and privacy costs of the data
owners which are considered as private information.

It is difficult for the model owners
to extract data owner specific data
and construct the proper contract.

Mobile
Crowdsensing

[84] Stackelberg
game

A two-stage Stackelberg gaming approach is proposed to
determine the incentive mechanism based on levels of sensing
of mobile users, who are chosen based on their previous
reputation and coverage areas.

The proposed work work does
not consider the selection of users
when multiple tasks are released.

[85] Multi-stage
Stackelberg
game

Interactions between MUs and SPs are formulated as a multi-
stage Stackelberg game in which SP is considered as a lead
player and MUs are considered as followers. Multi-agent DRL
algorithm is used for designing incentive mechanism.

Single point of failure of the SP
will affect the entire crowdsensing
process.

[11] 2-users
cooperative
game

An incentive mechanism is designed to enable cooperation
between the intelligent vehicles, and the edge server. The
pricing process between the participating candidate and the
edge server is modeled as a 2-users cooperative game.

The proposed work is validated
using simulations, but not on a
testbed.

[86] DRL Incentives are issued to the vehicles based on the social
network effect and the tasks that are priced dynamically.

Hyperparameter tuning is not done
for the DRL model.

[87] Stackelberg
game

An incentive approach for MCS is formulated by using
Stackelberg game and by considering the resource demand
of the MUs as the economical model. Through this approach
the SP can learn about the strategy for optimal pricing from
the game experience directly.

The proposed approach requires
large number of interactions be-
tween Mus and SP that may in-
crease the time complexity to find
the optimal price.

[88] Game theory The service requester rates the task performed by the worker
based on the quality of the data provided by the worker. The
worker’s reliability is then updated by the platform based on
the rating given by the requester.

The proposed work is validated
using simulations, but not on a
testbed.

A. Smart Healthcare

In the Internet of medical things (IoMT) systems, mobile
devices are usually connected with fog and cloud servers to
upload and store electronic health records and other medical
information for diagnosis and treatments, and they lack an
effective incentive mechanism to collect and share sensitive
health and medical data between authorized parties in a secure
and private manner [110]–[113]. Indeed, activating collabo-
rative health data sharing between hospitals over different
data storage infrastructures can enable third parties to take
advantage of big data and AI to provide precise medical and
healthcare diagnoses. In [114], an effective data sharing model

was proposed for cloud-based healthcare systems, in which the
blockchain technology with a smart contract was embedded
to ensure high privacy and security during data transmission
and storage. Remarkably, a dynamic incentive mechanism was
developed to encourage the participants to share authentic
and reliable data over multiple cloud platforms, in which the
revenue distribution fairness is examined and scored using
the Shapley metric [115]. Regarding the use case scenario
of health data sharing, a patient collects the examination
data from the hospital and sends it to the diagnosis center.
Subsequently, the patient will receive the correct diagnosis
report if and only if the fee paid by the patient is fairly divided
to the diagnosis center and the hospital as their revenues.
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TABLE III
SUMMARY OF APPLICATIONS OF INCENTIVE TECHNIQUES FOR IOT SERVICES (CONTINUED).

IoT Service Ref. Incentive Mech-
anism

Contributions Limitations and Challenges

Privacy
and

Security

[92] Blockchain-
based anonymous

A privacy-preserving incentive mechanism based on the
blockchain is proposed for crowdsensing applications. In
this work, the authors have proposed to use a cryptocur-
rency based on blockchain for secure incentive payment
mechanism.

High latency.

[101] Blockchain Blockchain based incentive mechanism is proposed to
motivate the users in vehicular announcement networks
by preserving the privacy of the users through an anony-
mous vehicular announcement aggregation protocol.

Suffers from limited scalability.

[35] Blockchain-
based encryption

A consortium blockchain-based AES128 encryption tech-
nique for LCs is proposed. A reputation based incentive
mechanism is proposed to provide fair incentives for LCs.

An incentive mechanism is pro-
vided based only on the reputation
values.

[102] Blockchain Blockchain based incentive mechanism is proposed to
encourage the edge nodes in vehicular networks for
efficient provisioning of services in a secured manner.

When the data size increase, vehi-
cles authentication, and data stor-
ing costs increase.

[62] Differential Pri-
vacy

Signature techniques are used to incentivize and en-
courage the patients to contribute their healthcare data.
Samir’s secret sharing and Boneh–Goh–Nissim cryp-
tosystem are used to secure and preserve the privacy of
the patients data.

Low security since it assumes that
the transmission channel is secure.

[105] Blockchain-
based differential
privacy

Blockchain based differential privacy mechanism is pro-
posed for privacy preservation of the customers who pro-
vide sensitive data of their home appliances for training
the FL model to obtain the customers feedback on the
home appliances. Reputation based incentive mechanism
is to incentivize reliable customers.

Optimal balance between local and
global epochs is not performed for
achieving high accuracy.

[50] Blockchain-
based smart
contract

A blockchain based secured reputation management ap-
proach is proposed to preserve the privacy of the highly
reputed devices to participate in the training phase of
federated learning to extract high quality data.

Very few parameters were consid-
ered for calculation of reputation of
the participating devices.

[109] Blockchain-
based smart
contract

Quality-driven auction model is used to incentivize the
high quality data providers in Internet of vehicles. Con-
sortium blockchain is used in this work to guarantee trust
in off-chain as well as on-chain data.

The system depends on the net-
work infrastructure.

IoT Data
Offloading

and
Caching

[66] VCG mechanism
and Rubinstein
bargaining model

This game theory-based incentive mechanism contributes
significantly to congestion reduction and quality-of-
service (QoS) enhancement in mobile network systems.

In the proposed work if the dynam-
ics of time-varying topology and
node mobility are not taken into
account, this strategy may result in
data loss and delay.

[67] Behavioral
economics-
based incentive
mechanism

This incentive mechanism promotes the active participa-
tion of access points.

its impact on the cost to service
provider due to unpredictable be-
havior of the user.

[68] Deep-learning
based incentive
mechanism

This incentive mechanism helps in effective utilization of
the bandwidth and efficient use of edge devices.

Uncertainty in user engagement
was not addressed in the proposed
work.

In order to motivate participants to share their own medical
data instead of acquiring the available data on free access plat-
forms, an information entropy-based incentive mechanism was
recommended in [116], in which the rewards for participants
are validated by a smart contract in the blockchain. Unlike
the other incentive mechanisms that pay the rewards over the
data size for contribution, the proposed mechanism rewards
the contributors based on the information entropy of medical
data. Interestingly, the value of medical data, measured based
on the information entropy, can be converted into transaction
points for trading between different single parties in a group
and inter-groups via smart contract. After the participants
record and upload patients medical data, the consensus node

broadcasts the data to an authorized network. With over 50%
of node verification in the network using proof of work (PoW),
the new data is written into the blockchain, and the block
information is returned to the data provider. It is worth noting
that the provider is responsible for generating a smart contract
(including the complete data, signatures, transaction points,
and other information) and sending it to the consumer to con-
firm the payment points. The proposed incentive mechanism
promoted more hospitals and medical institutions to contribute
high-quality medical data and encouraged sharing activities.

As an effort to reduce the gap of economic discrepancy
while curtailing the virus spread in the period of Coronavirus
disease (COVID-19) pandemic, a unique incentive mechanism
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was developed for national medical systems [117], where
government and people can receive some benefits with a win-
win situation. In order to prevent the information tempering
from unauthorized parties, blockchain is applied to ensure the
privacy and security of medical data, including COVID test
results and other health records. In the proposed mechanism,
an incentive token is issued to the individual for a voluntary
COVID test or self-quarantine agreement. This allows the
government to keep tracking of the person who willingly
joints at the beginning stage or suddenly breaks the pre-
signed commitment. The incentive token can be used as a
direct monetary benefit or can be exchanged for other living
supplies from the government, such as a free supply of daily
necessities, a reduction of tax and utility fees (electricity and
water), and a reduction of housing rent. The information im-
mutability and accessibility can be attained comprehensively
using blockchain, which in turn actuates the revival of the
national economy as soon as possible.

In many medical and healthcare systems, the affordability
and accessibility of patients for approaching medicine pre-
scription are usually unfair to underserved communities. Con-
sequently, abandoned patients who do not have enough budget
for expensive prescriptions cannot access high-quality medical
services. To address this challenging issue, a prescription
management framework, namely BlockPres, was introduced
with an innovative incentive mechanism to encourage patients
who are willing to join and engage the services to earn
rewards [118]. In the BlockPres framework, blockchain is
embedded to possibly provide authorization and authentica-
tion to healthcare providers and patients for regular and fair
participation. Remarkably, an incentive token as a reward is
issued for each time of successful prescription payment, and
the token can be redeemed for additional health services and
other products in the future. When a patient signs in the service
via an authority tool, an account associated with a unique
address of a crypto wallet is created for authentication and
verification. The tokens as rewards are transferred and stored
in the crypto wallet (which links to the management systems
of different healthcare centers) to next appointment bookings
and prescription payments.

B. Smart Transportation

In intelligent transportation systems (ITS), the overflow
of non-cooperative vehicle nodes (individual users) can
degrade the performance of vehicular ad hoc networks
(VANETs) seriously. To overcome this challenge, two ad-
vanced game theory models, namely dynamic member public
goods game (DMPGG) and dynamic grouping public goods
game (DGPGG) [119] were proposed for being suitable with
dynamic VANETs conditions. In DMPGG, vehicle nodes as
members of a game can be dynamically varied for being adap-
tive with the real-world scenario of VANETs, while DGPGG is
with a greedy neighbor selection scheme to cooperate vehicle
nodes more effectively than the conventional random selection
scheme. An incentive mechanism was developed to encourage
the vehicle nodes to join the game and propagate their own
real-time traffic data. Depending on the incentive degree
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Fig. 6. System model with the SPIR scheme [121].

measured as the number of cooperative neighbors in the game,
the revenue was paid by the meaningful data circulated in a
group. Two models improved the performance of cooperative
nodes proportions under high-vehicle density conditions with
static and dynamic networks.

Game theory has been leveraged to improve traffic efficiency
and reduce accidents in ITS. In [120], the Stackelberg equi-
librium game model was combined with a model predictive
control in a multivehicle coordinated lane change (MCLC)
algorithm to learn the interactive patterns between the lane-
changing vehicle and its neighbors in IoV networks. The high-
level information about driving styles (i.e., how fast and how
long the driver speeds up and slow down) is encouraged to
share among vehicle nodes via a fair incentive scheme. As
being the rewards, the information received from neighbors
can be cooperatively processed by the MCLC algorithm to im-
prove the accuracy of lane-changing detection and estimation.
The proposed game theory-based path planning algorithm with
the incentive-based extra information not only improved the
performance of traffic scheduling in a heavy traffic condition
but also encouragingly reduced urban traffic collision.

In VANETs, the resource-constrained vehicles may not be
exciting to cooperate for saving energy, memory, and buffer. In
this context, an incentive and punishment scheme (IPS) [122]
was proposed to motivate the cooperation between vehicle
nodes in a network. The VCG game-theoretic model [123]
was applied to elect cluster head, auxiliary head, and incentive
head for each cluster involving participating vehicle nodes
and to examine the weight (as the number of resources
possessed by a node) of these heads. Vehicle nodes partici-
pating in the election game can increase their incentive (i.e.,
impression/reputation) via active activities like forwarding
data, whereas the nodes exposing selfish behaviors or showing
lazy activities will be penalized. Besides, the proposed IPS
suggested a positive payment in the form of a reputation
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for generous nodes and a negative payment in the form of
punishment for selfish nodes. Relying on the simulations using
VDTNSim, an extension of the opportunistic environment
simulator, the proposed IPS achieved high performance in
terms of packet delivery ratio, average cost, average delay,
and overhead.

Parking availability information management plays an im-
portant role in ITS. However, it suffers two critical issues:
untrustworthy data and sluggish participation of a few vehicle
nodes. In this context, a novel incentive platform, namely
TruCentive [124], was designed to utilize the parking data
acquired from mobile users in high-density traffic areas. In
particular, the TruCentive platform offers hierarchical incen-
tives to encourage mobile users to provide parking infor-
mation (e.g., time, location, and current status), and the
customers are drivers who use that information for seeking
a parking slot. The incentive is paid regarding the utility
level of contributed data, where the data validation and data
utilization confirmation are performed via a game-theoretically
formulated protocol. The TruCentive platform has addressed
the drawback of existing static and bidding-based dynamic
incentive mechanisms while ensuring high practicability and
stability.

In the context of how to satisfy the demand for low-
latency and high-rate services and applications in 5G-enabled
VANETs, edge caching reveals to be a promising solution
to optimize resource utilization and offload backhaul. As an
effort to encourage vehicle nodes to improve caching effi-
ciency, a game-based incentive mechanism was designed for
VANETs [125], in which a small base station (SBS) activates
mobile vehicles as participants to store popular contents on
their embarked caches and share it to others via vehicle-to-
vehicle (V2V) communication. To record the contributions
of participating vehicles, SBS can offer rewards regarding
caching activities. The content popularity is validated at the
centralized global software-defined network (SDN) controller
to make caching decisions. For modeling the interaction be-
tween the SBS and cache-ready vehicles, a Stackelberg game-
theoretic algorithm is applied, in which a non-cooperative sub-
game strategy is exploited to address the conflict between
cache-ready vehicles. The interaction flow can be described
as follows: the SBS at first notifies the amount of data that
requests to cache, the cache-ready vehicles then respond to the
amount of data that accepts to cache, and finally the caching
incentive is estimated correspondingly. With the proposed
incentive caching mechanism, the network backhaul traffic was
reduced significantly in VANETs.

As a key feature in autonomous vehicles navigation, the
real-time high-precision map updates with MCS combining
different sensing technologies to reflect dynamic maps effec-
tively and accurately, however, resource-constrained vehicle
nodes may not be willing to collect and share their sensing data
for updating and maintaining maps without benefit. Moreover,
critical concerns about security and privacy should be taken
into account in data transmission and storage in vehicles and
a data center. In consideration of these problems, a secure and
private incentive scheme, namely SPIR [121], was proposed
for a reliable real-time map update system as shown in Fig. 6.

In general, based on the type of data that the map service
platform (MSP) requires, the participating vehicle nodes can
collect data properly and bid for it via an auction. The MSP
is responsible for deciding the winner according to its budget
and user’s quotation. Then, the winner has a responsibility to
provide data to the MSP. Finally, after the data examination
(of quantity and quality) and acceptance of MSP, the revenue
will be paid over a secure blockchain-based payment system.
Concerning the incentive process, a pseudonym management
mechanism is deployed to achieve secrecy and conditional
privacy of participating vehicle nodes, which consists of three
processing steps: pseudonym registration of vehicle nodes,
certificate issuance, and identity tracing with credit updating.
The proposed SPIR scheme enhanced the performance of
real-time map updating services with high-reliable data while
providing a good agreement between MSP and vehicle nodes.

C. Smart City

Smart city aims to improve the quality of life of urban
citizens by integrating the ICT infrastructure with social and
physical infrastructure in cities to provide smart services to
the citizens of smart cities such as utilities, transportation,
public safety, healthcare, education, administration, etc [126]–
[128]. In order to provide these services, citizens, vehicles,
IoT devices, etc. can be employed to sense the quality data
and provide the same to the administration so that they can
take appropriate and timely decisions to improve the quality of
life of the urban citizens. To motivate the providers of data to
participate in sensing, effective incentives have to be offered
to them [129]. Some of the applications where incentive
mechanisms can effectively improve the administration of
smart cities are, incentivizing citizens, vehicles, hospitals, who
provide data related to the condition of the roads, bridges,
traffic sharing, potholes, sharing of resources with their peers,
and so on, as depicted in Fig. 7. Several state-of-the-art studies
on incentivizing the participants in smart city environments are
discussed in the rest of the sub-section.

A blockchain-based edge computing system with three
layers for incentivizing the nodes participating in the mining
process using game theory is proposed in [130]. In the
proposed work, computing resources can be purchased by
the miners from the edge service providers. The limitations
of wireless sensor networks in the smart city due to limited
storage and computing resources of sensors can be overcome
by the proposed system. To encourage the edge service
providers to provide the computational resources and the nodes
to participate in mining, the authors proposed an optimal
incentive mechanism using a Stackelberg game by explor-
ing the interactions and relations between them. The edge
service provider is the leader and the miners are considered
as followers in this work. The results obtained proved that
the proposed approach has achieved better performance with
respect to rewarding the miners compared to state of the art.

One of the essential smart city services is to provide
dynamic travel routes and modalities to travelers as part of ITS.
ITS can incentivize the travelers to make cognizant choices
regarding transport modality and make their trip choices
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Fig. 7. Incentive mechanisms for smart city applications.

during their daily travel that will help them in achieving
sustainable transport goals. Incentive generation in ITS, which
supports multidimensional travel goals and is personalized
and context-driven, is a challenging task as the travelers will
have their own constraints and preferences for modality and
route due to dynamic travelling conditions. The generation
of personalized incentives should meet multiple travel goals
from several travelers that change dynamically. To address this
issue, the work in [131] has proposed a rule-based incentive
mechanism that uses evolutionary game theory and decision
tree for processing the traveling information and generating the
personalized incentives intelligently for the travelers. Personal
evolution is used in this work for addressing the personal
incentives problem. The simulation results proved that the
personal evolution approach improved the average utility of
the incentive member population.

Crowdsourcing based on vehicles is a powerful mechanism
in smart cities through which important tasks can be out-
sourced to the vehicles by using their resources. A delay-aware
incentive mechanism is designed in [132] based on reverse
auction to motivate the vehicles to join the crowdsourcing
system in a timely manner. The proposed system does not
acquire the sensitive trajectory information of the vehicles.
The proposed method allows the vehicles to estimate and
report their estimated time of completion for the tasks they
bid for. Based on costs and the estimated time of completion
of sensing tasks by the vehicles participating in the bidding,
the crowdsourcing platform identifies the winning bids and
payments. The simulation results prove the effectiveness of
the proposed incentive mechanism.

Due to the rapid growth of mobile crowdsensing, the sensing
tasks in smart city applications are recently outsourced to
vehicles or mobile devices. Even though mobile crowdsensing

can be used for diverse smart city applications, due to the
lack of an efficient incentive methodology, the development
of some of the applications of smart cities and IoT, such
as IoV, is restricted. As the vehicles are usually reluctant
to participate in sensing tasks. In IoV environment, some
of the sensing tasks may be arriving suddenly, but due to
the lack of resources in a vehicle for sensing tasks, it is
required that the multiple vehicles collaborate in sensing tasks.
In such cases, task scheduling and incentive mechanisms for
collective collaboration of the vehicles are required. To address
these issues, the study in [133] proposed a novel model for
the collaboration of two vehicles that considers the sudden
arrival of sensing tasks. The authors have proposed a bidding
mechanism for general sensing tasks to encourage the vehicles
to give their resources, and accordingly the scheduling of tasks
will be done for those vehicles. The authors have proposed a
novel method based on time-window for sudden sensing tasks
for incentivizing and managing the tasks among the vehicles.
A blockchain-based framework is developed for the proposed
models in IoV to secure the exchange of information with
the help of smart contracts. The results obtained proved the
superiority of the proposed approach where emergent tasks are
given better incentives when compared to general tasks.

D. Smart Grid

Smart grids play a significant role in providing electricity
in a smart manner to households and industry through elec-
tricity grids. Through smart grid, automatic fault detection in
the electric lanes, load optimization, detection of electricity
thefts, etc., will be easier. IoT is a key enabler in smart
grids [134]. Incentive mechanisms can play a vital role in
several operations of smart grid-like voluntary shedding of
loads by the consumers, excess energy sharing, energy trading,
encouraging the electricity providers to use renewable energy,
etc., as depicted in Fig. 8.

Demand response (DR) is a mechanism in which the con-
sumers can play an important role in the operation of a smart
grid by shifting or reducing their power consumption during
peak hours. The electricity operators and electric system
planners are using DR to balance the demand and supply of the
electricity, which can help in the reduction of the electricity
cost in the wholesale markets, which results in lowering of
retail rates [135]. To encourage the customers to participate in
the DR by proactively shedding the load of their appliances
during peak time, the utilities have to provide incentives to
them [136]. Several researchers have proposed interesting
works to incentivize the consumers who participate in DR.
The authors in [137] proposed an approach for incentivizing
the consumers, in which the DR problem is formulated a
Stackelberg game. In the proposed approach, the leader in the
utility company and the customers are treated as followers
of the leader. To maximize the weighted summation of peak-
to-average ratio and weighted summation of the revenue, the
utility will define a price. The authors formulated the compe-
tition between the customers as a non-cooperative sub-game
with respect to the rate of power transmission. The simulation
results proved that the proposed real-time pricing incentive
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scheme can reduce the daily costs by 37%. A similar work
in [138] considered a real-time pricing policy for electricity
for calculating the incentives with respect to reduced cost
and electricity price. The authors have developed a technique
based on backtracking to develop a mathematical model for
calculating the load consumed and shifted in a particular time
slot, through which the price of the electricity is calculated
for all categories of users for estimating the incentives based
on the profile of load shifting. The load is shifted to other
time slots to keep the load under the upper limit that helps
in accommodating the consumers in social welfare schemes.
A customer will not get any benefit if he is not interested in
participating. A genetic algorithm is then used to solve the
optimization problem. The results obtained proved that the
customers participating in the DR get reasonable incentives
without impacting the electricity bills of other customers.
Similarly, the work in [139] proposed a Stackelberg game with
multiple users and multiple power retailers for maximizing
the retailers’ revenue and also the users’ payoff in the retail
power market. The authors also have designed an incentive
mechanism to adjust the retailers’ price information to ensure
the proper operation of a smart grid and also to balance the
supply-demand. The results obtained proved that the real-time
pricing of the power can be reduced by the proposed scheme.

The authors in [10] proposed a novel real-time incentive-
based DR algorithm with deep neural networks and RL for
smart grids. The aim of this work is to support the service
providers in purchasing the energy from their consumers
that balances energy fluctuations, which in turn ensures the
reliability of the smart grid. For predicting the energy demands
and unknown prices, a deep neural network is used. To get the
apt incentive rates for every customer, the RL algorithm is used
by the authors, considering the profits of consumers as well
as the service providers. The results obtained proved that the
proposed incentive based DR algorithm encourages demand
side participation, increase the profitabilities of customers as
well as service providers, thus improving the reliability of
the system by balancing the energy resources. Another work
in [140] proposed an approach based on layered stochastic

optimization based on incentive mechanism and real-time
pricing for residential DR. In this work, homes are incentivized
by the residential load aggregator, and the loads are controlled
by the home energy management systems to maximize the
rewards in real-time. The case studies presented by the authors
proved that the proposed incentive based energy management
system reduced the energy cost by 28%, reduced the peak
demand by 17%. An interesting work in [141] proposed a
score-based incentive mechanism to motivate the residential
users in participating in the DR. In the proposed approach,
firstly, the authors establish the load models of the appliances
in residencies taking into account the comfort levels of the
consumers. Later, based on the residential users and power grid
company, a cost-benefit analysis is performed, based on which
a score-based incentive mechanism to promote the DR is
formulated by a bi-level optimization model. The case studies
proved that after the implementation of the proposed scheme
the peak load is reduced by 18.99% and the late peak period is
reduced by 20.41%. Also, an increase of 14.06% is observed
in the total profit of the power grid company. Similarly, [142]
proposed a direct load control planning that provides free
energy credits to the consumers for a load of air conditioning,
ventilation, and heating appliances during the DR events. The
consumers can use the credit obtained during the periods of
higher price-free of cost that will enable the consumers to
reduce the electricity costs. DR in data centers is a promising
approach to mitigate the operational stability issues in smart
grids. It has significant potential in the reduction of peak
loads that paves the way for distributed generation of power.
Incentives from the utilities to the cloud service providers can
help reduce the burden of cloud providers to meet the demands
on increased electricity costs. The simulation results proved
that the proposed energy credits strategy reduced the total cost
by approximately 10%.

Peer-to-peer selling of energy through local energy markets
is possible in smart grids when renewable energy sources
are integrated with smart grids. This approach faces some
challenges such as single-point of failure in the management of
energy data, lack of trust in the trading of energy, verification
and transparency in the distribution of energy, and non-
incentivized energy trading. To address the aforementioned
problems, the authors in [95] proposed an incentivized and
trustworthy framework for energy trading in a smart grid. An
iterative VCG approach is used by the authors in this work
for incentivizing energy trading. In this approach, by Vikrey
auction method, prosumers are issued cash coins, consumers
are issued energy tokens, and the results are updated in the
blockchain. In this way, the proposed method incentivizes the
consumers, addresses the challenges related to transparency,
trust issues through blockchain. The vickrey auction [143]
approach is designed for ensuring the selling of a product in
which the bidder who bids highest will be getting the product
in the auction. The winner of the bidding has to pay the bidded
amount equal to the next highest bid as an incentive. The
authors have modified the basic Vickrey’s auction mechanism
to map the demands of consumer’s energy with the energy
generation of prosumers. The ownership of energy tokens is
then updated by assigning the tokens to the winner of the
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auction, after which the winner is removed from the auction
process and the energy won is reduced from the available
energy. This process of auctioning is carried out recursively
for the energy available without changing the bidding value
of the bidders until the energy available becomes zero. The
government’s energy generators can provide the energy to the
loser of the auction. The unsold energy from the prosumers
can be sold directly to the government. The simulation results
proved that the winner percentage is more in the proposed
framework when compared to existing works. In a similar
work, the authors in [144] proposed an incentive mechanism
based on blockchain for the trading of renewable energy
power to motivate the improvement in the scale and quality
of generation of power from the producers. The remunera-
tion can be paid fairly and automatically according to the
incentive algorithm to the producers of renewable energy. The
simulation results proved that the purchasing price of the
power is reduced along with the reduced load on the grid.
In another interesting work, to address the growing privacy
and security concerns and to detect malicious activities in a
smart grid, the work in [145] proposed a novel data analytics
based on blockchain. The data integrity issues in smart grid
such as smart meter failure and false data injection attacks,
are detected by the proposed approach. A smart contract-based
blockchain incentive mechanism is proposed by the authors for
the utility providers to handle the malicious activities on their
side that offers incentives if malicious activity is detected. The
simulation results showed that the proposed approach achieves
a trip latency of below 1 milli second and reliability of 99.99%
that is better when compared to traditional approaches.

E. Other Applications

The rapid digitization of industrial production is seeing a
tremendous amount of data being generated from smart facto-
ries through IoT sensors, actuators, etc. Traditional centralized
processing in clouds in industrial IoT faces several issues such
as high maintenance costs and large infrastructure. Also, the
privacy and security of the smart factories and device manufac-
turers are main concerns due to the interconnection of devices.
A blockchain-based framework is proposed in [146] for indus-
trial IoT to address the issues such as trustworthiness, privacy
preservation in the construction of the ecosystem of industrial
IoT. In this work, smart contracts and other blockchain-based
techniques are integrated with IoT. Smart contract acts as a
contract of manufacturing resources and consumers to provide
manufacturing services on-demand. To encourage the SPs or
third parties to provide their resources for smart factories,
the authors proposed an incentive mechanism for the SPs,
where the SPs will act as miners in the blockchain network
that will enable the construction of a trusted blockchain-based
data-sharing network. The SPs contributing their resources can
participate in the blockchain network management and obtain
the incentive.

F. Summary and Discussion

Incentive mechanisms based on AI, blockchain, and game
theory have been extensively studied and experimented to

motivate the users to share quality data to the requesters in
several IoT-based applications such as smart healthcare, smart
transportation, smart city, and smart grid. However, to further
improve the data collected from the participants, some of the
challenges such as fair incentive calculation, transparency in
reward calculation for the data providers/IoT devices, sharing
of the resources among the incentive providers, providing
incentives to the applications that require high bandwidth and
low latency in the upcoming 6G era have to be addressed. The
applications of incentive techniques in vertical IoT domains
are summarized in Table IV.

V. CHALLENGES, OPEN ISSUES, AND FUTURE
DIRECTIONS

In this section, several open research challenges related to
the incentive techniques for IoT and possible solutions are
discussed.

A. Issues in IoT Data Offloading and Caching

Although data offloading and caching incentives help, their
implementation is still challenging. The data in use is dynamic
and depends on user needs. In an environment of constant
change, incentives can’t be effective. A failure could occur if
the network is overloaded because all users are maxing out
their allotted bandwidth. To overcome this issue, we suggest a
categorical and AI-based incentive mechanism where the data
usage demand is predicted based on historical events, and the
data is categorized by its importance. Additionally, there is
a concern about how IoT devices will impact the networks
because some devices tend to frequently offload data. Some
sensors are randomly placed throughout the facility, with huge
amounts of data transmitted via cellular networks. Due to the
sensors’ growth, the network’s load will continually increase.
A strategy to counteract this problem is to use meta-heuristic
algorithms to place sensors strategically, which helps with
offloading mobile network data efficiently.

B. On-device Intelligent Incentive Platforms

One of the challenges in developing on-device incentive
platforms in IoT devices is the limited hardware, storage, and
computational capabilities in IoT devices [65]. For example,
AI-based incentive platforms require sufficient storage capa-
bilities to store the data for training the algorithms. They also
need sufficient hardware and computational resources to run
the AI algorithms in calculating the incentives. One of the
solutions to address these issues is to use edge devices for
offloading the data generated from IoT devices [147]. Edge de-
vices can use edge analytics that can support AI/game theory-
based incentive platforms. Also, some effective pre-processing
mechanisms can be applied to filter out the unrelated/noisy
data that can reduce the dimensionality of the data [148] [149].
In addition, using lightweight ML/DL models is helpful to get
faster prediction as well as to achieve the trade-off between
the energy consumption of certain IoT devices and the final
model performance.



21

TABLE IV
SUMMARY OF APPLICATIONS OF INCENTIVE TECHNIQUES IN VERTICAL IOT DOMAINS.

IoT
Applications

Ref. Incentive
Mechanism

Contributions Limitations and Challenges

Smart
Healthcare

[114] Blockchain A dynamic incentive mechanism aims to promote data sharing over
cloud-based healthcare systems. Revenue distribution fairness is mea-
sured based on the Shapley metric.

The revenues for hospital and diagnosis
center is fairly divided regardless their
inequitable roles.

[116] Blockchain An information entropy-based incentive mechanism to motivate partic-
ipants in sharing medical data. Rewards are verified and confirmed via
a blockchain network using PoW as the consensus algorithm.

The consensus algorithm with 50%
node verification can be vulnerable.

[117] Blockchain A blockchain-based incentive mechanism to reduce the gap of economic
discrepancy caused by COVID-19. Incentive tokens are issued to an
individual for free COVID test and self-quarantine agreement.

The system deployment is expensive
besides some critical concerns about
authority and security.

[118] Blockchain A prescription management framework with an incentive mechanism to
enable low-budget patients to approach high-quality medical services.
Transactions are secured for authentication and authorization using
cryptographic methods.

Lack of incentive verification and dis-
tribution schemes.

Smart
Transportation

[119] Public good
game

A game theory-based incentive technique to encourage vehicle nodes
in VANETs to share real-time traffic data. Revenue is paid based on
the valuable data circulated in a group of vehicles joining a game.

More rounds of the game may be re-
quired to calculate revenue for non-
cooperative conditions.

[120] Stackelberg
game

Rewards paid by an incentive scheme are meaningful information to
improve accuracy of lane changing detection and estimation.

The diversity of sharing information is
limited. Lack of a mechanism to vali-
date the trustworthiness of data.

[122] VCG game A game-based incentive and punishment scheme is to motivate the
cooperation between vehicles nodes. Nodes joining a game can earn
incentive via active activities, whereas nodes with lazy activities can
be penalized.

It is so hard to identity active/lazy
nodes in calculating incentive.

[124] Game
theory

A hierarchical incentive mechanism is to encourage mobile users to
share trustworthy parking data. The incentive is paid based on the utility
level of data validated and confirmed by a game theory-based protocol.

The proposed mechanism is quite sim-
ple and therefore cannot reflect compli-
cated real-world behaviors.

[125] Stackelberg
game

A game based incentive mechanism allows mobile vehicles to store and
share popular contents via V2V communication. Rewards are calculated
as a content popularity metric by the centralized global SDN controller.

As an assumption, all SBSs should be
homogeneous to calculate cost and re-
ward of moving controller vehicles.

[121] Blockchain A secure and private incentive scheme to encourage vehicles nodes to
collect and share sensing data for a real-time map update system. Via
an auction, the winner will collect data on demand of MSP and the
revenue will be calculated and paid over a blockchain-based payment
system with a smart contract.

The incentive method can be crashed
due to the failure of auction and the
withdrawal of winner.

Smart City

[130] Stackelberg
game

To encourage the edge service providers to provide the computational
resources and the nodes to participate in mining in smart city appli-
cations, an optimal incentive mechanism using a Stackelberg game is
proposed by exploring the interactions and relations between them.

The proposed work does not consider
the co-existence of multiple edge ser-
vice providers in the system.

[131] Game
theory

A rule-based incentive mechanism that uses evolutionary game theory
and decision tree for processing the travelling information and generat-
ing the personalized incentives intelligently for the travellers in smart
city is proposed.

The proposed work is not validated
on a testbed. The proposed approach
will give better results when the sample
dataset is large.

[133] Blockchain A bidding mechanism for general sensing tasks to encourage the
vehicles to give their resources is proposed that can schedule the tasks
for those vehicles.

The proposed work is not validated on a
testbed, and large resources are required
for blockchain.

Smart Grid

[137] Stackelberg
game

An approach for incentiving the consumers is proposed, in which the
DR problem is formulated a Stackelberg game, where the leader is the
utility company and the customers are treated as followers of the leader.

The simulation is performed on existing
data. The performance of the proposed
approach is unknown in real-time.

[10] Deep neural
networks
and RL

A novel real-time incentive-based DR algorithm is proposed with deep
neural networks and RL for smart grids.

The proposed work is validated using
simulations, but not implemented on a
testbed or in real time. The proposed
work considered only single SP.

[141] Score-based
method

Based on the residential users and power grid company, a cost-benefit
analysis is performed and a score based incentive mechanism to
promote the DR is formulated by a bi-level optimization model.

The penalty incurred may be greater
than the benefits due to incentives, thus
the market may not be balanced.

[95] VCG
approach
and
blockchain

An incentivized and trustworthy framework for energy trading is
proposed for the smart grid. An iterative VCG approach is used for
incentivizing the energy trading.

Scalability of the proposed framework
has to be improved.

[145] Blockchain A smart contract based blockchain incentive mechanism is proposed
for the utility providers to handle the malicious activities on their side
that offers incentives if a malicious activity is detected.

The proposed work is validated using
simulations, but not implemented on a
testbed or in real time. The proposed
work considered only single SP.

C. Privacy for Incentive-IoT Systems

Data providers may be reluctant to provide the data even
if the incentives are attractive as they may be wary of their
personal and sensitive data being compromised. For example,

suppose the location of an IoT device is exposed. In that case,
the attackers may use the information to find the patterns of
the places being visited by the users and correctly predict a
location they may be visiting at a particular time/day to take
advantage. Hence, preserving the privacy of the IoT devices is
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of paramount importance to attract a good number of users to
voluntarily provide the data [85]. However, preserving privacy
comes with a cost. If the private data of the users is important
for the requester, and privacy has to be preserved, it may be
a direct conflict with the high-quality data requirement from
the requester. For example, consider that the requester wants
to analyze the patterns regarding the visits of customers to
a restaurant. As the location details are private and sensitive,
if the privacy of the users has to be preserved, the location
details may not be shared with the service providers. So the
data shared with the requester may be missing a very important
component, location. The data providers may end up providing
higher incentives for fewer quality data provided by the IoT
devices due to privacy preservation. Hence, the design of
incentive mechanism has to maintain the balance between the
privacy preservation and the quality of the data provided by
the IoT devices, which is a significant future direction in the
design of incentive mechanisms for IoT devices [3]. Moreover,
some privacy-preserving mechanisms may be expansive in
terms of computation and communication overhead and energy
consumption, especially with the lightweight IoT devices
having fewer CPU resources and limited battery capacity.
Consequently, certain IoT devices can be discouraged from
participating in collaborative tasks. Therefore, further security
and privacy protection in data aggregation is still an ongoing
research topic, and new techniques are required to improve
privacy for IoT-based systems.

D. Incentives for Edge-based IoT
As discussed earlier, edge devices play a vital role in real-

time analytics on the large volume of data generated from IoT-
based applications. The recent rise in fog/edge computing has
made it possible to migrate the services of cloud providers
to micro-data centers to address the issues faced by the
applications based on cloud computing. The edge devices
in MEC networks may belong to different organizations;
thus, storage, computation, and communication resources may
not be efficiently utilized. The establishment of data sharing
mechanism among the heterogeneous edge devices for IoT-
based applications is a challenge. The development of in-
centive mechanisms to attract micro-data centers for hosting
the services for IoT-based applications is an open issue that
needs to be addressed to balance the benefits of edge service
providers and IoT users [150]–[152].

E. Incentives for IoT Networks in the 6G era
In the future 6G communications, IoT-based applications

may use smart wearables, implanted devices, and nanodevices.
The development of suitable incentive mechanisms for these
devices in the upcoming 6G era is a challenge. Several
mission-critical applications such as remote surgery, smart
transportation through autonomous vehicles, smart grids, etc.,
require ultra-high network reliability with very low latency
to ensure the transfer of data with high reliability in a
few milliseconds. How to develop incentive mechanisms for
such IoT-based mission-critical applications that require huge
resources and spectrum from multiple service providers is a
challenge [153], [154].

F. Interpretability of AI-based Incentive Mechanisms

AI algorithms can be used effectively to design/develop in-
centive mechanisms for several IoT-based applications. These
algorithms can assist the requesters in calculating the rewards
for several participants in incentive mechanisms. However, the
black-box nature of AI algorithms makes it very difficult for
humans to understand the reasons behind the calculations of
incentive that may lead to a lack of trust in these mecha-
nisms. How to design incentive mechanisms for IoT-based
applications that can give interpretable decisions regarding the
incentive calculation to increase the trust of the participants is
a significant challenge. Explainable AI can be used to solve
the aforementioned challenges [155], [156].

VI. CONCLUSION

Incentive mechanisms are important in the manner through
which IoT devices are encouraged to participate and contribute
to the IoT network. This paper has been conducted to bridge
the gap in the existing studies that a comprehensive survey on
incentive techniques for IoT has not been carried out. In this
paper, we have provided a comprehensive survey on incentive
techniques for IoT. First, we have presented the fundamentals
of AI and three important incentive techniques, including game
theory, blockchain, and AI. Second, we have discussed the
use of incentive techniques for IoT applications and services
in more detail. Further, from the extensive review, we have
highlighted various challenges and future directions that drive
further research of IoT incentive studies. It is expected that
this paper will stimulate more attention and research efforts
toward the use of incentive techniques for IoT services and
applications.
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