DFO Symposium

Escaping unknown discontinuous regions in blackbox optimization

Solène Kojtych

July, 19th 2022

Supervisors: Charles Audet, Alain Batailly

Fonds de recherche Nature et technologies Québec 🕸 🕸

Motivation : design of aircraft engines

aircraft engine , adapted from 1.

¹Y. Colaïtis. https://tel.archives-ouvertes.fr/tel-03318777. PhD thesis. École Polytechnique de Montréal, 2021.

Motivation : design of aircraft engines

contact and friction interfaces

- nonlinear vibrations
- detrimental phenomena

aircraft engine , adapted from 1.

¹Y. Colaïtis. https://tel.archives-ouvertes.fr/tel-03318777. PhD thesis. École Polytechnique de Montréal, 2021.

Motivation : design of aircraft engines

aircraft engine , adapted from 1.

¹Y. Colaïtis. https://tel.archives-ouvertes.fr/tel-03318777. PhD thesis. École Polytechnique de Montréal, 2021.

.4

Motivation : design of aircraft engines

▶ aircraft engine , adapted from 1.

¹Y. Colaïtis. https://tel.archives-ouvertes.fr/tel-03318777. PhD thesis. École Polytechnique de Montréal, 2021.

\implies Need to account for nonlinear simulations in the early stages of the design cycle

¹Y. Colaïtis. https://tel.archives-ouvertes.fr/tel-03318777. PhD thesis. École Polytechnique de Montréal, 2021.

DFO Symposium † Context Motivation Framework Problem Modelling Basics on Mads DiscoMads

Mathematical framework

Mathematical framework

Mathematical framework

DFO Symposium * Context Modwation Framework Probern Modeling Basics on Mads DiscoMads Convergence Results

Mathematical framework

÷ Framework

Mathematical framework

DFO Symposium + Context Modeling Basics on Mads DiscoMads Convergence Results

Mathematical framework

DFO Symposium + Context Motivation Proteim Modeling Basics on Mads DiscoMads Convergence Results

Mathematical framework

Problem

Basics on Mads DiscoMads

Blackbox optimization problem

notations

- ▶ $x \in X \subseteq \mathbb{R}^n$: vector of variables ▶ $f: X \to \mathbb{R} \cup \{\infty\}$: objective function

Blackbox optimization problem

Problem

DiscoMads

 e_2 e_1

(1)

X

Problem

Modeling

- Basics on Mads
- DiscoMads

Blackbox optimization problem

 $\min_{x \in X}$ f(x)subject to $c(x) \leq 0$

notations

- \succ $x \in X \subset \mathbb{R}^n$: vector of variables
- $f: X \to \mathbb{R} \cup \{\infty\}: \text{objective function}$ $c: X \to \mathbb{R}^m \cup \{\infty\}^m: \text{models } m \text{ constraints}$ $c_j(x), j \in \{1, ..., m\}$

(1)

de.

- Problem
- Modeling
- Basics on Mads
- DiscoMads

Blackbox optimization problem

 $\min_{x \in X}$ f(x)subject to $c(x) \leq 0$

notations

- \succ $x \in X \subset \mathbb{R}^n$: vector of variables
- $f: X \to \mathbb{R} \cup \{\infty\}: \text{objective function}$ $c: X \to \mathbb{R}^m \cup \{\infty\}^m: \text{models } m \text{ constraints}$ $c_j(x), j \in \{1, ..., m\}$

(1)

de.

- Problem
- Modeling
- Basics on Mads
- DiscoMads

Blackbox optimization problem

 $\min_{x \in X}$ f(x)subject to $c(x) \leq 0$

notations

- \succ $x \in X \subset \mathbb{R}^n$: vector of variables
- $f: X \to \mathbb{R} \cup \{\infty\}: \text{objective function}$ $c: X \to \mathbb{R}^m \cup \{\infty\}^m: \text{models } m \text{ constraints}$ $c_j(x), j \in \{1, ..., m\}$

(1)

Problem

- Modeling
- Basics on Mads
- DiscoMads

Blackbox optimization problem

 $\min_{x \in X}$ f(x)subject to $c(x) \leq 0$

and $d(x) \leq 0 \iff x$ "far" from discontinuities of outputs $j \in J$

notations

- \succ $x \in X \subset \mathbb{R}^n$: vector of variables
- $\blacktriangleright f: X \rightarrow \mathbb{R} \cup \{\infty\}$: objective function
- \triangleright $c: X \to \mathbb{R}^m \cup \{\infty\}^m$: models *m* constraints $\begin{array}{l} c_j(x), j \in \{1, ..., m\} \\ \blacktriangleright \ J \subseteq \{0, 1, ..., m\} \text{ user-defined indexes of outputs} \\ \blacktriangleright \ d: X \to \mathbb{R}: \text{ remoteness constraint} \end{array}$

(1)

- Problem
- Modeling
- Basics on Mads
- DiscoMads
- Results

Blackbox optimization problem

 $\min_{x \in X}$ f(x)subject to $c(x) \leq 0$

and $d(x) \leq 0 \iff x$ "far" from discontinuities of outputs $j \in J$

notations

- \succ $x \in X \subset \mathbb{R}^n$: vector of variables
- $\blacktriangleright f: X \rightarrow \mathbb{R} \cup \{\infty\}$: objective function
- \succ $c: X \to \mathbb{R}^m \cup \{\infty\}^m$: models *m* constraints $\begin{array}{l} c_j(x), j \in \{1, ..., m\} \\ \blacktriangleright \ J \subseteq \{0, 1, ..., m\} \text{ user-defined indexes of outputs} \\ \blacktriangleright \ d: X \to \mathbb{R}: \text{ remoteness constraint} \end{array}$

characteristics

 \blacktriangleright f and c: deterministic **blackbox** functions, possibly discontinuous

(1)

- Problem
- Modeling
- Basics on Mads
- DiscoMads
- Results

Blackbox optimization problem

 $\min_{x \in X}$ f(x)

subject to $c(x) \leq 0$

and $d(x) \leq 0 \iff x$ "far" from discontinuities of outputs $j \in J$

notations

- \succ $x \in X \subset \mathbb{R}^n$: vector of variables
- ▶ $f: X \to \mathbb{R} \cup \{\infty\}$: objective function
- \succ $c: X \to \mathbb{R}^m \cup \{\infty\}^m$: models *m* constraints $c_j(x), j \in \{1, ..., m\}$ $J \subseteq \{0, 1, ..., m\}$ user-defined indexes of outputs
- $\blacktriangleright d: X \to \mathbb{R}$: remoteness constraint
- characteristics
 - \blacktriangleright f and c: deterministic **blackbox** functions, possibly discontinuous
 - d: infinite constraint

(1)

Problem

- Modeling
- Basics on Mads
- DiscoMads
- Results

Blackbox optimization problem

min f(x) $x \in X$

subject to $c(x) \leq 0$

and $d(x) \leq 0 \iff x$ "far" from discontinuities of outputs $j \in J$

notations

- $x \in X \subseteq \mathbb{R}^n$: vector of variables
- ▶ $f: X \to \mathbb{R} \cup \{\infty\}$: objective function
- \succ $c: X \to \mathbb{R}^m \cup \{\infty\}^m$: models *m* constraints $c_j(x), j \in \{1, ..., m\}$ $J \subseteq \{0, 1, ..., m\}$ user-defined indexes of outputs
- $\blacktriangleright d: X \to \mathbb{R}$: remoteness constraint

characteristics

- f and c: deterministic blackbox functions, possibly discontinuous
- d. infinite constraint

 $\Omega = \{ x \in X : c(x) \leq 0 \}$

Objective: a Mesh Adaptive Direct Search algorithm to solve problem (1)

(1)

DFO Symposium The second seco

1 Context

2 Modeling

Basics on Mads

④ DiscoMads

⑤ Convergence analysis

6 Numerical results

Conclusion

DFO Symposium T Context Modeling Basics on Mad: DiscoMads Convergence Results Conclusion

Context

2 Modeling

Basics on Mads

④ DiscoMads

6 Convergence analysis

6 Numerical results

Conclusion

DFO Symposiu T Context Modeling Basics on Ma DiscoMads Convergence Results

Modeling of discontinuities

 $\begin{array}{ll} \min_{x\in X} & f(x)\\ \text{s.t.} & c(x)\leqslant 0\\ \text{and} & d(x)\leqslant 0 \iff x \text{ "far" from discontinuities of outputs } j\in J \end{array}$

Modeling Basics on Mads DiscoMads Results

Modeling of discontinuities

 $\min_{x \in X}$ f(x)

s.t. $c(x) \leq 0$ and $d(x) \leq 0 \iff x$ "far" from discontinuities of outputs $j \in J$

• region of weak discontinuities D (\blacksquare): rate of change of $c_i, j \in J$ between two points at distance at most r_{d} exceeds a limit rate τ

 $D = \{ y \in X : \exists j \in J, \exists z \in X \cap B_{r_{d}}(y), |c_{j}(y) - c_{j}(z)| > \tau ||y - z|| \}$

DFO Symposium 4 Context Modeling Basics on Mads DiscoMads Convergence Results Conclusion

Modeling of discontinuities

 $\min_{x \in X} \quad f(x)$ s.t. $c(x) \leq$

s.t. $c(x) \leq 0$ and $d(x) \leq 0 \iff x$ "far" from discontinuities of outputs $j \in J$

- region of weak discontinuities D (=): rate of change of $c_j, j \in J$ between two points at distance at most r_d exceeds a limit rate τ
- safety margin M (■ ∪ ■): region of radius r_e around D

$$\begin{split} D = \{ y \in X \ : \ \exists j \in J, \ \exists z \in X \cap B_{r_{\mathbf{d}}}(y), \ |c_j(y) - c_j(z)| > \tau \ \|y - z\| \} \\ M = X \cap \left(\cup_{x \in D} B_{r_{\mathbf{d}}}(x) \right) \end{split}$$

Modeling Basics on Mads DiscoMads Results

Modeling of discontinuities

 $\min_{x \in X}$ f(x)

s.t. $c(x) \leq 0$ and $d(x) \leq 0 \iff x$ "far" from discontinuities of outputs $j \in J$

- region of weak discontinuities D (\blacksquare): rate of change of $c_i, j \in J$ between two points at distance at most r_{d} exceeds a limit rate τ
- safety margin $M (\blacksquare \cup \blacksquare)$: region of radius r_{e} around D

$$\begin{split} D = \{ y \in X \ : \ \exists j \in J, \ \exists z \in X \cap B_{r_{\mathbf{d}}}(y), \ |c_j(y) - c_j(z)| > \tau \ \|y - z\| \} \\ M = X \cap \left(\cup_{x \in D} B_{r_{\mathbf{d}}}(x) \right) \end{split}$$
 $x \notin M \iff d(x) \leq 0$

Modeling Basics on Mads DiscoMads Results

Modeling of discontinuities

 $\min_{x \in X}$ f(x)

s.t. $c(x) \leq 0$ and $d(x) \leq 0 \iff x$ "far" from discontinuities of outputs $j \in J$

- region of weak discontinuities D (\blacksquare): rate of change of $c_i, j \in J$ between two points at distance at most r_{d} exceeds a limit rate τ
- safety margin $M (\blacksquare \cup \blacksquare)$: region of radius r_{e} around D

$$\begin{split} D = \{ y \in X \ : \ \exists j \in J, \ \exists z \in X \cap B_{r_{\mathbf{d}}}(y), \ |c_j(y) - c_j(z)| > \tau \ \|y - z\| \} \\ M = X \cap \left(\cup_{x \in D} B_{r_{\mathbf{d}}}(x) \right) \end{split}$$
 $x \notin M \iff d(x) \leq 0$

DFO Symposium + Context Modeling Basics on Mad: Mads Mads PB DiscoMads Convergence Results Conclusion

Context

2 Modeling

Basics on Mads

④ DiscoMads

5 Convergence analysis

6 Numerical results

Conclusion

DiscoMads

Convergence

Results

Conclusion

Mesh Adaptive Direct Search² (Mads) for unconstrained problems

 $\begin{array}{ccc}
\min_{x \in X} & f(x)
\end{array}$

²C. Audet et al. SIAM Journal on Optimization (2006). DOI: 10.1137/040603371.

A Mads iteration

²C. Audet et al. SIAM Journal on Optimization (2006). DOI: 10.1137/040603371.

A Mads iteration

 $\bullet\,$ Aim : find a better solution than the current incumbent x^k on the mesh of size δ^k

 $\min_{x \in X}$

f(x)

²C. Audet et al. SIAM Journal on Optimization (2006). DOI: 10.1137/040603371.

A Mads iteration

 $\bullet\,$ Aim : find a better solution than the current incumbent x^k on the mesh of size δ^k

search

 $\min_{x \in X}$

f(x)

search

A Mads iteration

 $\bullet\,$ Aim : find a better solution than the current incumbent x^k on the mesh of size δ^k

opll

 $f(x^0) \leq f(t^1)$

search

🛛 poll

 \blacktriangleright poll directions in frame of size Δ^k

 $\min_{x \in X}$

f(x)

²C. Audet et al. SIAM Journal on Optimization (2006). DOI: 10.1137/040603371.

A Mads iteration

 $\bullet\,$ Aim : find a better solution than the current incumbent x^k on the mesh of size δ^k

search

🛛 poll

 \blacktriangleright poll directions in frame of size Δ^k

 $\min_{x \in X}$

f(x)

search

oll

$$f(x^0) \leqslant f(t^1)$$

$$\blacktriangleright f(x^0) \leqslant f(t^2)$$

$$\blacktriangleright f(x^0) > f(t^3) \Rightarrow \text{success}$$

²C. Audet et al. SIAM Journal on Optimization (2006). DOI: 10.1137/040603371.

A Mads iteration

 $\bullet\,$ Aim : find a better solution than the current incumbent x^k on the mesh of size δ^k

search

user-defined, optional

🥑 poll

 \blacktriangleright poll directions in frame of size Δ^k

opdate depending on success/failure

 \blacktriangleright computation of Δ^{k+1} , δ^{k+1} , x^{k+1}

 $\min_{x \in X}$

f(x)

search

poll

$$f(x^0) \leqslant f(t^1)$$

$$\blacktriangleright f(x^0) \leqslant f(t^2)$$

$$\blacktriangleright \ f(x^0) > f(t^3) \Rightarrow \text{success}$$

²C. Audet et al. SIAM Journal on Optimization (2006). DOI: 10.1137/040603371.

A Mads iteration

 $\bullet\,$ Aim : find a better solution than the current incumbent x^k on the mesh of size δ^k

search

user-defined, optional

🥑 poll

 \blacktriangleright poll directions in frame of size Δ^k

opdate depending on success/failure

 \blacktriangleright computation of Δ^{k+1} , δ^{k+1} , x^{k+1}

 $\min_{x \in X}$

f(x)

searchpoll

A Mads iteration

 $\bullet\,$ Aim : find a better solution than the current incumbent x^k on the mesh of size δ^k

search

user-defined, optional

🥑 poll

 \blacktriangleright poll directions in frame of size Δ^k

e update depending on success/failure

 \blacktriangleright computation of Δ^{k+1} , δ^{k+1} , x^{k+1}

 $\min_{x \in X}$

f(x)

search

oll

$$f(x^1) \leqslant f(t^4)$$

$$\blacktriangleright f(x^1) \leqslant f(t^5)$$

$$\blacktriangleright \ f(x^1) \leqslant f(t^6) \Rightarrow \mathsf{failure}$$

²C. Audet et al. SIAM Journal on Optimization (2006). DOI: 10.1137/040603371.

A Mads iteration

 $\bullet\,$ Aim : find a better solution than the current incumbent x^k on the mesh of size δ^k

search

user-defined, optional

🥑 poll

 $\blacktriangleright\,$ poll directions in frame of size Δ^k

opdate depending on success/failure

 \blacktriangleright computation of Δ^{k+1} , δ^{k+1} , x^{k+1}

 $\min_{x \in X}$

f(x)

A Mads iteration

 $\bullet\,$ Aim : find a better solution than the current incumbent x^k on the mesh of size δ^k

search

user-defined, optional

🕘 poll

- $\blacktriangleright\,$ poll directions in frame of size Δ^k
- update depending on success/failure
 - $\blacktriangleright~$ computation of Δ^{k+1} , δ^{k+1} , x^{k+1}

A Mads iteration

 $\bullet\,$ Aim : find a better solution than the current incumbent x^k on the mesh of size δ^k

search

user-defined, optional

🕘 poll

- \blacktriangleright poll directions in frame of size Δ^k
- update depending on success/failure
 computation of Δ^{k+1}, δ^{k+1}, x^{k+1}

Progressive barrier approach • constraint violation function $h(x) = \begin{cases} \sum_{j=1}^{m} (\max(c_j(x), 0))^2 & \text{if } x \in X, \\ \infty & \text{otherwise} \end{cases}$

³C. Audet et al. SIAM Journal on Optimization (2009). DOI: 10.1137/070692662.

 $\begin{array}{ll} \min_{x \in X} & f(x) \\ \text{s.t.} & c(x) \leqslant 0 \end{array}$

Modeling

Mads³ for constrained problems

A Mads iteration

 $\bullet\,$ Aim : find a better solution than the current incumbent x^k on the mesh of size δ^k

search

user-defined, optional

📀 poll

- ▶ poll directions in frame of size Δ^k
- update depending on success/failure
 computation of Δ^{k+1}, δ^{k+1}, x^{k+1}

Progressive barrier approach • constraint violation function $h(x) = \begin{cases} \sum_{j=1}^{m} (\max(c_j(x), 0))^2 & \text{if } x \in X, \\ \infty & \text{otherwise} \end{cases}$ • threshold h_{\max}^k to reject points

 $\begin{array}{|c|c|} \min_{x \in X} & f(x) \\ \text{s.t.} & c(x) \leqslant 0 \end{array}$

A Mads iteration

 $\bullet\,$ Aim : find a better solution than the current incumbent x^k on the mesh of size δ^k

search

user-defined, optional

🕘 poll

- \blacktriangleright poll directions in frame of size Δ^k
- update depending on success/failure • computation of Δ^{k+1} , δ^{k+1} , x^{k+1}

 $\begin{array}{ll} \min_{x \in X} & f(x) \\ \text{s.t.} & c(x) \leqslant 0 \end{array}$

A Mads iteration with the progressive barrier approach

 $\bullet\,$ Aim : find a better solution than the current incumbent x^k on the mesh of size δ^k

search

user-defined, optional

🕘 poll

- $\blacktriangleright\,$ poll directions in frame of size Δ^k
- update depending on success/failure • computation of Δ^{k+1} , δ^{k+1} , x^{k+1}

f(x)

s.t. $c(x) \leq 0$

 $\min_{x \in X}$

A Mads iteration with the progressive barrier approach

 $\bullet\,$ Aim : find a better solution than the current incumbent x^k on the mesh of size δ^k

search

user-defined, optional

📀 poll

- \blacktriangleright poll directions in frame of size Δ^k
- update depending on success/failure
 - \blacktriangleright computation of Δ^{k+1} , δ^{k+1} , x^{k+1}

f(x)

s.t. $c(x) \leq 0$

 $\min_{x \in X}$

³C. Audet et al. SIAM Journal on Optimization (2009). DOI: 10.1137/070692662.

A Mads iteration with the progressive barrier approach

 $\bullet\,$ Aim : find a better solution than the current incumbent x^k on the mesh of size δ^k

search

user-defined, optional

📀 poll

- $\blacktriangleright\,$ poll directions in frame of size Δ^k
- update depending on success/failure
 - $\blacktriangleright \quad \text{computation of } \Delta^{k+1} \text{, } \delta^{k+1} \text{, } x^{k+1} \text{, } h^{k+1}_{\max}$

 $\begin{array}{ll} \min_{x \in X} & f(x) \\ \text{s.t.} & c(x) \leqslant 0 \end{array}$

DFO Symposium + Context Modeling Basics on Mads DiscoMads DiscoMads Principle Ingredients Convergence Results Conclusion

Context

Basics on Ma

④ DiscoMads

6 Convergence analysis

6 Numerical results

Conclusion

DiscoMads

Principle

ingredients

Convergence

Results

Conclusion

Proposed algorithm: DiscoMads

Proposed algorithm: DiscoMads

A DiscoMads iteration

 $\bullet\,$ Aim : find a better solution than the current incumbent x^k on the mesh of size δ^k

search

user-defined, optional

🛛 poll

 \blacktriangleright poll directions in frame of size Δ^k

opdate depending on success/failure

 $\blacktriangleright~$ computation of Δ^{k+1} , δ^{k+1} , x^{k+1} , h^{k+1}_{\max}

Proposed algorithm: DiscoMads

A DiscoMads iteration

 $\,$ $\,$ Aim : find a better solution than the current incumbent x^k on the mesh of size δ^k

search

- user-defined, optional
- revelation after each evaluation

🛛 poll

- \blacktriangleright poll directions in frame of size Δ^k
- revelation after each evaluation
- opdate depending on success/failure
 - $\blacktriangleright~$ computation of Δ^{k+1} , δ^{k+1} , x^{k+1} , h^{k+1}_{\max}

Proposed algorithm: DiscoMads

A DiscoMads iteration

 $\bullet\,$ Aim : find a better solution than the current incumbent x^k on the mesh of size δ^k

search

- user-defined, optional
- revelation after each evaluation

📀 poll

- \blacktriangleright poll directions in frame of size Δ^k
- revelation after each evaluation

e update depending on success/failure

- computation of
$$\Delta^{k+1}$$
 , δ^{k+1} , x^{k+1} , h^{k+1}_{\max}

revelation

f(x)

and $d(x) \leq 0$

 $c(x) \leq 0$

 $\min_{\substack{x \in X \\ \text{s.t.}}}$

Proposed algorithm: DiscoMads

A DiscoMads iteration

 $\bullet\,$ Aim : find a better solution than the current incumbent x^k on the mesh of size δ^k

search

- user-defined, optional
- revelation after each evaluation

🛛 poll

- \blacktriangleright poll directions in frame of size Δ^k
- revelation after each evaluation

opdate depending on success/failure

- computation of
$$\Delta^{k+1}$$
 , δ^{k+1} , x^{k+1} , h^{k+1}_{\max}

 $\min_{x \in X} \quad f(x) \\ \text{s.t.} \quad c(x) \leq 0 \\ \text{and} \quad d(x) \leq 0 \\ \end{array}$

Proposed algorithm: DiscoMads

A DiscoMads iteration

 $\bullet\,$ Aim : find a better solution than the current incumbent x^k on the mesh of size δ^k

search

- user-defined, optional
- revelation after each evaluation

🛛 poll

- \blacktriangleright poll directions in frame of size Δ^k
- revelation after each evaluation

opdate depending on success/failure

- computation of
$$\Delta^{k+1}$$
 , δ^{k+1} , x^{k+1} , h^{k+1}_{\max}

 $\begin{array}{ll} \min_{x \in X} & f(x) \\ \text{s.t.} & c(x) \leqslant 0 \\ \text{and} & d(x) \leqslant 0 \end{array}$

Proposed algorithm: DiscoMads

A DiscoMads iteration

 $\bullet\,$ Aim : find a better solution than the current incumbent x^k on the mesh of size δ^k

search

- user-defined, optional
- revelation after each evaluation

🛛 poll

- \blacktriangleright poll directions in frame of size Δ^k
- revelation after each evaluation
- opdate depending on success/failure

- computation of
$$\Delta^{k+1}$$
 , δ^{k+1} , x^{k+1} , h^{k+1}_{\max}

 \blacktriangleright exclusion constraint around x^1 and t^3

exclusion

 \min

 $x \in X$

s.t.

and

f(x)

 $c(x) \leq 0$

 $d(x) \leq 0$

DFO Symposium ‡ Context Modeling Basics on Mads DiscoMads

Principle

Ingredient

Convergence

Results

Conclusion

Proposed algorithm: DiscoMads

A DiscoMads iteration

 $\bullet\,$ Aim : find a better solution than the current incumbent x^k on the mesh of size δ^k

search

- user-defined, optional
- revelation after each evaluation

🛛 poll

- \blacktriangleright poll directions in frame of size Δ^k
- revelation after each evaluation
- update depending on success/failure or revelation
 - \blacktriangleright computation of Δ^{k+1} , δ^{k+1} , x^{k+1} , h^{k+1}_{\max}

 \blacktriangleright exclusion constraint around x^1 and t^3

exclusion

f(x)

 $c(x) \leq 0$

 $d(x) \leq 0$

 $\min_{x \in X}$

s.t.

and

DFO Symposium + Context Modeling Basics on Mads

DiscoMads

Principle

Convergence

Results

Conclusion

Proposed algorithm: DiscoMads

A DiscoMads iteration

 $\bullet\,$ Aim : find a better solution than the current incumbent x^k on the mesh of size δ^k

search

- user-defined, optional
- revelation after each evaluation

📀 poll

- \blacktriangleright revealing poll: random point(s) around x^k
- $\blacktriangleright\,$ poll directions in frame of size Δ^k
- revelation after each evaluation
- update depending on success/failure or revelation
 - $\blacktriangleright~$ computation of Δ^{k+1} , δ^{k+1} , x^{k+1} , h^{k+1}_{\max}

- revelation
- exclusion

 \blacktriangleright exclusion constraint around x^1 and t^3

f(x)

 $c(x) \leq 0$

 $d(x) \leq 0$

 $\min_{x \in X}$

s.t.

and

DFO Symposium T Context Modeling Basics on Ma DiscoMads

Ingredients

Convergence

Results

Conclusion

Revelation and exclusion

DFO Symposium T Context Modeling Basics on Ma DiscoMads

Ingredients

Convergence

Results

Conclusion

Revelation and exclusion

DFO Symposium T Context Modeling Basics on Mac DiscoMads

Ingredients

Convergence

Results

Conclusion

Revelation and exclusion

() set of revealing points D^k at iteration k

$$D^{k} = \left\{ y \in V^{k} \cap X : \exists z \in V^{k} \cap X \cap B_{r_{d}}(y), \exists j \in J, |c_{j}(y) - c_{j}(z)| > \tau \left\| y - z \right\| \right\} \in D$$

DFO Symposium T Context Modeling Basics on Mad: DiscoMads Principle Ingredients

Convergence

Results

Conclusion

Revelation and exclusion

() set of revealing points D^k at iteration k

$$D^{k} = \left\{ y \in V^{k} \cap X : \exists z \in V^{k} \cap X \cap B_{r_{d}}(y), \exists j \in J, |c_{j}(y) - c_{j}(z)| > \tau ||y - z|| \right\} \in D$$

2 exclusion constraint d^k at iteration k

$$d^k(x) = \begin{cases} 1 - \frac{\operatorname{dist}(x, D^k)}{r_{\mathrm{e}}} & \text{if } D^k \cap B_{r_{\mathrm{e}}}(x) \neq \emptyset, \\ 0 & \text{otherwise} \end{cases}$$

DFO Symposium + Context Modeling Basics on Mads DiscoMads Principle Ingredients Conversergers

Results

Revelation and exclusion

1 set of revealing points D^k at iteration k

$$D^{k} = \left\{ y \in V^{k} \cap X : \exists z \in V^{k} \cap X \cap B_{r_{d}}(y), \exists j \in J, |c_{j}(y) - c_{j}(z)| > \tau ||y - z|| \right\} \in D$$

2 exclusion constraint d^k at iteration k

$$d^k(x) = \begin{cases} 1 - \frac{\operatorname{dist}(x, D^k)}{r_{\mathrm{e}}} & \text{if } D^k \cap B_{r_{\mathrm{e}}}(x) \neq \emptyset, \\ 0 & \text{otherwise} \end{cases}$$

problem solved at iteration k $\begin{array}{ll} \min\limits_{x\in X} & f(x)\\ \text{s.t.} & c(x)\leqslant 0\\ \text{and} & \mathbf{d^k}(\mathbf{x})\leqslant \mathbf{0} \end{array}$

DFO Symposium + Context Modeling Basics on Mads DiscoMads Principle Ingredients Convergence

Results

Revelation and exclusion

1 set of revealing points D^k at iteration k

$$D^{k} = \left\{ y \in V^{k} \cap X : \exists z \in V^{k} \cap X \cap B_{r_{d}}(y), \exists j \in J, |c_{j}(y) - c_{j}(z)| > \tau \left\| y - z \right\| \right\} \in D$$

2 exclusion constraint d^k at iteration k

$$d^{k}(x) = \begin{cases} 1 - \frac{\operatorname{dist}(x, D^{k})}{r_{e}} & \text{if } D^{k} \cap B_{r_{e}}(x) \neq \emptyset, \\ 0 & \text{otherwise} \end{cases}$$
problem solved at iteration k
$$\min_{x \in X} f(x)$$

s.t. $c(x) \leqslant 0$ and $\mathbf{d^k}(\mathbf{x}) \leqslant \mathbf{0}$

progressive barrier approach

 $\blacktriangleright~$ constraint violation function h^k

$$h^{k}(x) = \begin{cases} \sum_{j=1}^{m} \max(c_{j}(x), 0)^{2} + \max(d^{k}(x), 0)^{2} & \text{if } x \in X \\ \infty & \text{otherwise} \end{cases}$$

DFO Symposium † Context Modeling Basics on Mad

DiscoMads

Ingredients

Convergence

Results

Conclusion

 \blacktriangleright set R of new revealing points

DFO Symposium + Context Modeling Basics on Mads DiscoMads Principle

Ingredients

Convergence

Conclusion

Revealing iteration

 \blacksquare revealing point is found during iteration $k\implies$ stop evaluations

- \blacktriangleright set R of new revealing points
- opdate set of revealing points

 $D^{k+1} \leftarrow D^k \cup R$

DFO Symposium + Context Modeling Basics on Mads DiscoMads Principle Ingredients

Convergenc Results

Conclusion

() revealing point is found during iteration $k \implies$ stop evaluations

- \blacktriangleright set R of new revealing points
- opdate set of revealing points

$$D^{k+1} \leftarrow D^k \cup R$$

o update exclusion constraint and constraints violation function

 $d^{k+1}(x) \ge d^k(x)$

DFO Symposium + Context Modeling Basics on Mads DiscoMads Principle Ingredients

Convergence

Results

Conclusion

Revealing iteration

 ${\scriptstyle (\! \!)}$ revealing point is found during iteration $k \implies$ stop evaluations

- \blacktriangleright set R of new revealing points
- opdate set of revealing points

$$D^{k+1} \leftarrow D^k \cup R$$

o update exclusion constraint and constraints violation function

 $d^{k+1}(x) \geqslant d^k(x) \implies h^{k+1}(x) \geqslant h^k(x)$ may change the feasibility of points !

DFO Symposium + Context Modeling Basics on Mads DiscoMads Pinciple Ingredients Convergence

Results

Conclusion

Revealing iteration

 ${\scriptstyle (\! \!)}$ revealing point is found during iteration $k \implies$ stop evaluations

- \blacktriangleright set R of new revealing points
- update set of revealing points

 $D^{k+1} \leftarrow D^k \cup R$

o update exclusion constraint and constraints violation function

 $d^{k+1}(x) \geqslant d^k(x) \implies h^{k+1}(x) \geqslant h^k(x) \qquad \text{may change the feasibility of points !}$

o update barrier threshold adequately and Mads parameters

 $\delta^{k+1} = \delta^k \quad \text{and} \quad \Delta^{k+1} = \Delta^k$

DFO Symposium Dentext Modeling Basics on Mads DiscoMads Principle Ingredients Convergence

Results

Revealing iteration

 ${f 0}$ revealing point is found during iteration $k \implies$ stop evaluations

- \blacktriangleright set R of new revealing points
- update set of revealing points

 $D^{k+1} \leftarrow D^k \cup R$

o update exclusion constraint and constraints violation function

 $d^{k+1}(x) \geqslant d^k(x) \implies h^{k+1}(x) \geqslant h^k(x)$ may change the feasibility of points !

o update barrier threshold adequately and Mads parameters

 $\delta^{k+1} = \delta^k \quad \text{and} \quad \Delta^{k+1} = \Delta^k$

Revealing poll

• unsuccessful iterations \implies poll size parameter $\Delta^k\searrow \implies$ discontinuities may not be revealed

DFO Symposium † Context Modeling Basics on Mads DiscoMads Principle Ingredients Convergence

Results

Conclusion

Revealing iteration

 ${f 0}$ revealing point is found during iteration $k \implies$ stop evaluations

- \blacktriangleright set R of new revealing points
- update set of revealing points

 $D^{k+1} \leftarrow D^k \cup R$

o update exclusion constraint and constraints violation function

 $d^{k+1}(x) \geqslant d^k(x) \implies h^{k+1}(x) \geqslant h^k(x)$ may change the feasibility of points !

o update barrier threshold adequately and Mads parameters

 $\delta^{k+1} = \delta^k \quad \text{and} \quad \Delta^{k+1} = \Delta^k$

Revealing poll

- $\bullet\,$ unsuccessful iterations \implies poll size parameter $\Delta^k\searrow\implies$ discontinuities may not be revealed
- at least 1 random point in $B_{r_{\rm m}}(x^k)$ with $r_{\rm m}>r_{\rm d}+r_{\rm e}$

DFO Symposium Context Modeling Basics on Mad DiscoMads Convergence Objective Steps Results

Context

Ø Modeling

Basics on Mad

④ DiscoMads

5 Convergence analysis

6 Numerical results

Conclusion

÷ Modeling DiscoMads Objective Results

Convergence analysis in brief

Draw optimality conditions related to the original problem (1)

÷ Modeling DiscoMads Objective

Draw optimality conditions related to the original problem (1)

$$\begin{array}{ll} \min_{x \in X} & f(x) \\ (1) \quad \text{s.t.} \quad c(x) \leqslant 0 \\ \text{and} \quad d(x) \leqslant 0 \end{array} \qquad \text{with remoteness constraint} \quad d(x) = \begin{cases} 1 - \frac{\operatorname{dist}(x,D)}{r_{\mathrm{e}}} & \text{if } D \cap B_{r_{\mathrm{e}}}(x) \neq \emptyset, \\ 0 & \text{otherwise} \end{cases}$$

DFO Symposium Context Modeling Basics on Mads DiscoMads DiscoMads Convergence Objective Steps Results

Convergence analysis in brief

Draw optimality conditions related to the original problem (1)

$$\begin{array}{l} \min_{x \in X} \quad f(x) \\ (1) \quad \text{s.t.} \quad c(x) \leqslant 0 \\ \text{and} \quad d(x) \leqslant 0 \end{array} \qquad \text{with remoteness constraint} \quad d(x) = \begin{cases} 1 - \frac{\operatorname{dist}(x,D)}{r_{\mathrm{e}}} & \text{if } D \cap B_{r_{\mathrm{e}}}(x) \neq \emptyset, \\ 0 & \text{otherwise} \end{cases}$$

• "ideal" constraint violation function

$$\hat{h}(x) = \begin{cases} \sum_{j=1}^{m} \max(c_j(x), 0)^2 + \max(d(x), 0)^2 & \text{if } x \in X \\ \infty & \text{otherwise} \end{cases}$$

.4 Modeling Basics on Mads DiscoMads Objective Results

Convergence analysis in brief

Draw optimality conditions related to the original problem (1)

$$\begin{array}{ll} \min_{x \in X} & f(x) \\ (1) & \text{s.t.} & c(x) \leq 0 \\ \text{and} & d(x) \leq 0 \end{array} \qquad \text{with remoteness constraint} \quad d(x) = \begin{cases} 1 - \frac{\operatorname{dist}(x,D)}{r_e} & \text{if } D \cap B_{r_e}(x) \neq \emptyset, \\ 0 & \text{otherwise} \end{cases}$$

• "ideal" constraint violation function

$$\hat{h}(x) = \begin{cases} \sum_{j=1}^{m} \max(c_j(x), 0)^2 + \max(d(x), 0)^2 & \text{if } x \in X \\ \infty & \text{otherwise} \end{cases}$$

 \blacktriangleright only d^k and h^k are accessible !

DFO Symposium † Context Modeling Basics on Mac DiscoMads Convergence Convergence Objective Steps

Results

Conclusion

Convergence analysis in brief

DFO Symposium † Context Modeling Basics on Mac DiscoMads Convergence Objective

Steps

Results

Conclusion

() mesh gets infinitely fine : $\liminf_{k \to \infty} \delta^k = 0$

DFO Symposium T Context Modeling Basics on Ma DiscoMads Convergence

Steps

Results

Convergence analysis in brief

 ${\color{black}\bullet}$ mesh gets infinitely fine : $\liminf_{k\to\infty}\delta^k=0$

@ there exists at least one refining subsequence $\{x^k\}_{k\in K}
ightarrow \hat{x}$

DFO Symposium + Context Modeling Basics on Ma DiscoMads Convergence Objective

Steps

Results

onclusion

Convergence analysis in brief

() mesh gets infinitely fine : $\liminf_{k \to \infty} \delta^k = 0$

0 there exists at least one refining subsequence $\{x^k\}_{k\in K} \rightarrow \hat{x}$

 ${}_{\textcircled{3}}$ \hat{x} satisfies some conditions

DFO Symposiuu Context Modeling Basics on Ma DiscoMads Convergence Objective

Steps

Results

Conclusion

Convergence analysis in brief

() mesh gets infinitely fine : $\liminf_{k \to \infty} \delta^k = 0$

0 there exists at least one refining subsequence $\{x^k\}_{k\in K}\rightarrow \hat{x}$

(3) \hat{x} satisfies some conditions

case A

DFO Symposium + Context Modeling Basics on Mads DiscoMads Convergence Objective

Results

Conclusion

Convergence analysis in brief

 ${\color{black}\bullet}$ mesh gets infinitely fine : $\liminf_{k\to\infty}\delta^k=0$

- 0 there exists at least one refining subsequence $\{x^k\}_{k\in K}\rightarrow \hat{x}$
 - ${}_{\scriptsize (3)} \hat{x}$ satisfies some conditions
 - ▶ case A \implies $f^{\circ}(\hat{x}, p) \ge 0$ (from Mads)

DFO Symposium + Context Modeling Basics on Mads DiscoMads Convergence Objective

Steps

Conclusion

Convergence analysis in brief

 ${\scriptstyle \textcircled{0}}$ mesh gets infinitely fine : $\liminf_{k \to \infty} \delta^k = 0$

- 0 there exists at least one refining subsequence $\{x^k\}_{k\in K}\rightarrow \hat{x}$
- ${
 m (s)}~\hat{x}$ satisfies some conditions
 - ▶ case A \implies $f^{\circ}(\hat{x}, p) \ge 0$ (from Mads)
 - 🕨 case B

DFO Symposium T Context Modeling Basics on Mads DiscoMads Convergence Objective

Steps

Results

onclusion

Convergence analysis in brief

 ${\scriptstyle \bullet }$ mesh gets infinitely fine : $\liminf_{k \to \infty} \delta^k = 0$

- 0 there exists at least one refining subsequence $\{x^k\}_{k\in K}\rightarrow \hat{x}$
 - - ▶ case A \implies $f^{\circ}(\hat{x}, p) \ge 0$ (from Mads)
 - ► case B $\implies \hat{h}^{\circ}(\hat{x}, p) \ge 0$ (from Mads)

DFO Symposium + Context Modeling Basics on Mads DiscoMads Convergence Objective

Results

Conclusion

 ${\scriptstyle \bullet }$ mesh gets infinitely fine : $\liminf_{k \to \infty} \delta^k = 0$

- 0 there exists at least one refining subsequence $\{x^k\}_{k\in K}\rightarrow \hat{x}$
- ${
 m (s)}~\hat{x}$ satisfies some conditions
 - ▶ case A \implies $f^{\circ}(\hat{x}, p) \ge 0$ (from Mads)
 - ► case B $\implies \hat{h}^{\circ}(\hat{x}, p) \ge 0$ (from Mads)
 - ► case C $\implies \hat{x}$ is a local minimizer of \hat{h} on X \Rightarrow new result

- Results
- Conclusion

Convergence analysis in brief

 ${\scriptstyle \bullet }$ mesh gets infinitely fine : $\liminf_{k \to \infty} \delta^k = 0$

- 0 there exists at least one refining subsequence $\{x^k\}_{k\in K}\rightarrow \hat{x}$
- ${
 m (s)}~\hat{x}$ satisfies some conditions
 - ▶ case A $\implies f^{\circ}(\hat{x}, p) \ge 0$ (from Mads)
 - ▶ case B $\implies \hat{h}^{\circ}(\hat{x}, p) \ge 0$ (from Mads)
 - ► case C $\implies \hat{x}$ is a local minimizer of \hat{h} on X \implies new result

idea behind the proof

- ▶ $\lim_{k\to\infty} h^k(y) = \hat{h}(y)$ for y close to \hat{x}
- piecewise continuity assumption and revealing poll required

DFO Symposium + Context Modeling Basics on Mads DiscoMads Convergence Results Weak discontinuitie Hidden constraints

Conclusion

Context

Modeling

Basics on Mad

④ DiscoMads

5 Convergence analysis

6 Numerical results

Conclusion

Escaping weak discontinuities

1____

vibrations of aircraft engine blades

- blade-tip/casing clearance (<->)

⁴A. Batailly et al. Journal of Engineering for Gas Turbines and Power (2015). DOI: 10.1115/1.4028263.

1____

- vibrations of aircraft engine blades
- quantity of interest⁴: vibration magnitude at blade-tip

blade-tip/casing clearance (<->>)

⁴A. Batailly et al. Journal of Engineering for Gas Turbines and Power (2015). DOI: 10.1115/1.4028263.

Modeling Basics on Mads DiscoMads Results Weak discontinuities

Escaping weak discontinuities

- vibrations of aircraft engine blades

⁴A. Batailly et al. Journal of Engineering for Gas Turbines and Power (2015). DOI: 10.1115/1.4028263.

Modeling Basics on Mads DiscoMads Results Weak discontinuities

Escaping weak discontinuities

- vibrations of aircraft engine blades

⁴A. Batailly et al. Journal of Engineering for Gas Turbines and Power (2015). DOI: 10.1115/1.4028263.

DFO Symposium T Context Modeling Basics on Mads DiscoMads Convergence Results Weak discontinuities

Escaping weak discontinuities

DFO Symposium T Context Modeling Basics on Mads DiscoMads Convergence Results Weak discontinuities

Escaping weak discontinuities

Escaping weak discontinuities

simplified optimization problem

 $\min_{x \in X}$ f(x) $c(x) \leq 0$ s.t. $d(x) \leqslant 0$ and

Escaping weak discontinuities

simplified optimization problem

 $\begin{array}{ll} \min_{(s,\omega)} & f(s,\omega) \\ \\ \text{s.t.} & c(s,\omega) \leqslant 0 \\ \\ \text{and} & d(s,\omega) \leqslant 0 \end{array}$

Hidden constraints

Conclusion

Escaping weak discontinuities

• simplified optimization problem

$\min_{(s,\omega)}$	8
s.t.	$c(s,\omega \)\leqslant 0$
and	$d(s,\omega\;)\leqslant 0$

Escaping weak discontinuities

- simplified optimization problem
- $\begin{array}{ll} \min_{(s,\omega)} & s\\ \\ \text{s.t.} & v(s,\omega) \leqslant v_{max}\\ \\ \text{and} & d(s,\omega) \leqslant 0 \end{array}$

.4

Basics on Mads

Weak discontinuities

Modeling

DiscoMads

- simplified optimization problem
- $\begin{array}{ll} \min_{(s,\omega)} & s\\ \\ \text{s.t.} & v(s,\omega) \leqslant v_{max}\\ \\ \text{and} & d(s,\omega) \leqslant 0 \end{array}$

Modeling

DiscoMads

Results Weak discontinuities

Basics on Mads

- simplified optimization problem
- $\begin{array}{ll} \min_{(s,\omega)} & s\\ \text{s.t.} & v(s,\omega) \leqslant v_{max}\\ \text{and} & \underline{d}(s,\omega) \leqslant 0\\ \blacktriangleright r_{d} = 1 & \tau = 0.4 \quad r_{e} = 1 \end{array}$

14/17

Basics on Mads

Hiddon constraints

Conclusion

Modeling

DiscoMads

- simplified optimization problem
- $\begin{array}{ll} \min\limits_{\substack{(s,\omega)}} & s\\ \text{s.t.} & v(s,\omega) \leqslant v_{max}\\ \text{and} & d(s,\omega) \leqslant 0\\ \blacktriangleright r_{\rm cl} = 1 & \tau = 0.4 \quad r_{\rm e} = 1 \end{array}$

Weak discontinuities

Basics on Mads

Conclusion

Modeling

- simplified optimization problem
- $\begin{array}{ll} \min & s \\ (s,\omega) & \\ \text{s.t.} & v(s,\omega) \leqslant v_{max} \\ \text{and} & d(s,\omega) \leqslant 0 \\ \blacktriangleright r_d = 1 \quad \tau = 0.4 \quad r_e = 1 \end{array}$

DFO Symposium + Context Modeling Basics on Mads DiscoMads Convergence Results

Weak discontinuities

Conclusion

Escaping weak discontinuities

- simplified optimization problem
- $\begin{array}{ll} \min\limits_{\substack{(s,\omega)}} & s\\ \text{s.t.} & v(s,\omega) \leqslant v_{max}\\ \text{and} & \underline{d(s,\omega)} \leqslant 0\\ \blacktriangleright r_{\rm d} = 1 & \tau = 0.4 \quad r_{\rm e} = 1 \end{array}$

14/17

DFO Symposiu T Context Modeling Basics on M DiscoMads Convergenc

Results

Weak discontinuities

Hidden constraints

Conclusion

Escaping regions of hidden constraints

⁵C. Audet et al. *J. Global Optim.* (2008). por: 10.1007/s10898-007-9234-1. ⁶https://github.com/bbopt/styrene DFO Symposium T Context Modeling Basics on Mads DiscoMads

Convergenc

Results

Weak discontinuities

Hidden constraints

Conclusion

Escaping regions of hidden constraints

• styrene production problem $^5 \implies \text{styrene blackbox}^6$

- 8 variables, 11 constraints
- simulation fails for some $x \implies$ hidden constraints

 5 C. Audet et al. J. Global Optim. (2008). doi: 10.1007/s10898-007-9234-1. $^6https://github.com/bbopt/styrene$

DFO Symposium T Context Modeling Basics on Mads DiscoMads

Convergen

Results

Weak discontinuities

Hidden constraints

Conclusion

Escaping regions of hidden constraints

- styrene production problem⁵ \implies styrene blackbox⁶
 - 8 variables, 11 constraints
 - simulation fails for some $x \implies$ hidden constraints

Use DiscoMads to escape regions of hidden constraints

⁵C. Audet et al. *J. Global Optim.* (2008). por: 10.1007/s10898-007-9234-1. ⁶https://github.com/bbopt/styrene DFO Symposium T Context Modeling Basics on Mads DiscoMads Convergence

Results

Weak discontinuities

Hidden constraints

Conclusion

Escaping regions of hidden constraints

- styrene production problem $^5 \implies \text{styrene blackbox}^6$
 - 8 variables, 11 constraints
 - simulation fails for some $x \implies$ hidden constraints

Use DiscoMads to escape regions of hidden constraints

- modeling of hidden constraints
 - Failed evaluation $\implies f = 10^{20} \implies$ weak discontinuity of f

 $^{^5}$ C. Audet et al. J. Global Optim. (2008). DOI: 10.1007/s10898-007-9234-1. 6 https://github.com/bbopt/styrene

DFO Symposium + Context Modeling Basics on Mads DiscoMads Convergence Results

Results

Weak discontinuities

Hidden constraints

Conclusion

Escaping regions of hidden constraints

- styrene production problem $^5 \implies \text{styrene blackbox}^6$
 - 8 variables, 11 constraints
 - simulation fails for some $x \implies$ hidden constraints

Use DiscoMads to escape regions of hidden constraints

- modeling of hidden constraints
 - Failed evaluation $\implies f = 10^{20} \implies$ weak discontinuity of f
- how do we know if d is satisfied at x?

 $^{^5}$ C. Audet et al. J. Global Optim. (2008). DOI: 10.1007/s10898-007-9234-1. 6 https://github.com/bbopt/styrene

DFO Symposium T Context Modeling Basics on Mads DiscoMads

Results

Weak discontinuities

Hidden constraints

Conclusion

Escaping regions of hidden constraints

- styrene production problem⁵ \implies styrene blackbox⁶
 - 8 variables, 11 constraints
 - simulation fails for some $x \implies$ hidden constraints

Use DiscoMads to escape regions of hidden constraints

modeling of hidden constraints

Failed evaluation $\implies f = 10^{20} \implies$ weak discontinuity of f

• how do we know if d is satisfied at x?

- evaluation of severity of hidden constraints around x

 $H(x, \sigma) := \#\{y^i \in B_{\sigma}(x), i \in \{1, ..., 1000\}, \text{ evaluation at } y \text{ fails}\}$

⁵C. Audet et al. *J. Global Optim.* (2008). poi: 10.1007/s10898-007-9234-1. ⁶https://github.com/bbopt/styrene Modeling Basics on Mads

DiscoMads

Results

Hidden constraints

• problem parameters

•
$$r_{\rm d} = 5, \tau = 10^{15}, r_{\rm e} = 10$$

- initial point x^0
 - ▶ one of the best known solutions: $f(x^0) = -33709000$ ▶ $H(x^0, 15) = 435 \implies x^0$ in hidden constraints regions
DiscoMads

Results

Hidden constraints

•
$$r_{\rm d} = 5, \tau = 10^{15}, r_{\rm e} = 10$$

- initial point x^0
 - ▶ one of the best known solutions: $f(x^0) = -33709000$ ▶ $H(x^0, 15) = 435 \implies x^0$ in hidden constraints regions

Modeling

Basics on Mads

DiscoMads

Results

Hidden constraints

Escaping regions of hidden constraints

•
$$r_{\rm d} = 5, \tau = 10^{15}, r_{\rm e} = 10$$

- initial point x^0
 - ▶ one of the best known solutions: $f(x^0) = -33709000$ ▶ $H(x^0, 15) = 435 \implies x^0$ in hidden constraints regions
- 100 runs with 100 random seeds

Modeling

Basics on Mads

- DiscoMads
- Results
- Hidden constraints

Escaping regions of hidden constraints

•
$$r_{\rm d} = 5, \tau = 10^{15}, r_{\rm e} = 10$$

- initial point x^0
 - ▶ one of the best known solutions: $f(x^0) = -33709000$ ▶ $H(x^0, 15) = 435 \implies x^0$ in hidden constraints regions
- 100 runs with 100 random seeds
 - f values

Modeling

Basics on Mads

DiscoMads

Results

Hidden constraints

Escaping regions of hidden constraints

•
$$r_{\rm d} = 5, \tau = 10^{15}, r_{\rm e} = 10$$

- initial point x^0
 - ▶ one of the best known solutions: $f(x^0) = -33709000$ ▶ $H(x^0, 15) = 435 \implies x^0$ in hidden constraints regions
- 100 runs with 100 random seeds
 - f values

DiscoMads

Results

Hidden constraints

$$r_{\rm d} = 5, \tau = 10^{15}, r_{\rm e} = 10$$

- initial point x^0
 - ▶ one of the best known solutions: $f(x^0) = -33709000$ ▶ $H(x^0, 15) = 435 \implies x^0$ in hidden constraints regions
- 100 runs with 100 random seeds
 - hidden constraints violation

DiscoMads

Results

Hidden constraints

Escaping regions of hidden constraints

$$r_{\rm d} = 5, \tau = 10^{15}, r_{\rm e} = 10$$

- initial point x^0
 - ▶ one of the best known solutions: $f(x^0) = -33709000$ ▶ $H(x^0, 15) = 435 \implies x^0$ in hidden constraints regions
- 100 runs with 100 random seeds
 - hidden constraints violation

DiscoMads

Results

Hidden constraints

Escaping regions of hidden constraints

•
$$r_{\rm d} = 5, \tau = 10^{15}, r_{\rm e} = 10$$

- initial point x^0
 - ▶ one of the best known solutions: $f(x^0) = -33709000$ ▶ $H(x^0, 15) = 435 \implies x^0$ in hidden constraints regions
- 100 runs with 100 random seeds
 - hidden constraints violation

DFO Symposium + Context Modeling Basics on Mad: DiscoMads Convergence Results Conclusion

Context

2 Modeling

Basics on Mads

④ DiscoMads

6 Convergence analysis

6 Numerical results

Conclusion

.4 DiscoMads

Conclusion

A DiscoMads algorithm to escape unknown discontinuous regions

⁷C. Audet et al. Aug. 2020. eprint: https://www.gerad.ca/en/papers/G-2020-46/view.published.

DFO Symposium + Context Modeling Basics on Mads DiscoMads Convergence Results

Conclusion

A DiscoMads algorithm to escape unknown discontinuous regions

major points

 \blacktriangleright inner approximations of the safety margin to treat infinite constraint d

⁷C. Audet et al. Aug. 2020. eprint: https://www.gerad.ca/en/papers/G-2020-46/view.published.

DFO Symposium T Context Modeling Basics on Mads DiscoMads Convergence

Results

Conclusion

A DiscoMads algorithm to escape unknown discontinuous regions

major points

Conclusion

- \blacktriangleright inner approximations of the safety margin to treat infinite constraint d
- \blacktriangleright based on Mads \Rightarrow convergence properties preserved

⁷ C. Audet et al. Aug. 2020. eprint: https://www.gerad.ca/en/papers/G-2020-46/view.published.

DFO Symposium † Context Modeling Basics on Mads DiscoMads Convergence

Results

Conclusion

A DiscoMads algorithm to escape unknown discontinuous regions

major points

Conclusion

- \triangleright inner approximations of the safety margin to treat infinite constraint d
- ▶ based on Mads \Rightarrow convergence properties preserved
- validated on analytical and engineering problems

⁷C. Audet et al. Aug. 2020. eprint: https://www.gerad.ca/en/papers/G-2020-46/view.published.

DFO Symposium + Context Modeling Basics on Mads DiscoMads Convergence Results

. . .

Conclusion

A DiscoMads algorithm to escape unknown discontinuous regions

major points

- \blacktriangleright inner approximations of the safety margin to treat infinite constraint d
- ▶ based on Mads \Rightarrow convergence properties preserved
- validated on analytical and engineering problems

publication

 "Escaping unknown discontinuous regions in blackbox optimization", C. Audet, A. Batailly and S. Kojtych, SIAM Journal On Optimization (recently accepted, preprint available⁷)

⁷C. Audet et al. Aug. 2020. eprint: https://www.gerad.ca/en/papers/G-2020-46/view.published.

DFO Symposium + Context Modeling Basics on Mads DiscoMads Convergence Results

Conclusio

Conclusion

A DiscoMads algorithm to escape unknown discontinuous regions

major points

- \blacktriangleright inner approximations of the safety margin to treat infinite constraint d
- ▶ based on Mads \Rightarrow convergence properties preserved
- validated on analytical and engineering problems

• publication

 "Escaping unknown discontinuous regions in blackbox optimization", C. Audet, A. Batailly and S. Kojtych, SIAM Journal On Optimization (recently accepted, preprint available⁷)

Perspectives

• usages: discontinuities and hidden constraints

⁷C. Audet et al. Aug. 2020. eprint: https://www.gerad.ca/en/papers/G-2020-46/view.published.

DFO Symposium T Context Modeling Basics on Mads DiscoMads Convergence

- Results
- Conclusion

Conclusion

A DiscoMads algorithm to escape unknown discontinuous regions

major points

- \blacktriangleright inner approximations of the safety margin to treat infinite constraint d
- ▶ based on Mads \Rightarrow convergence properties preserved
- validated on analytical and engineering problems

• publication

 "Escaping unknown discontinuous regions in blackbox optimization", C. Audet, A. Batailly and S. Kojtych, SIAM Journal On Optimization (recently accepted, preprint available⁷)

Perspectives

- usages: discontinuities and hidden constraints
- short-term
 - ▶ implementation in Nomad 4 \Rightarrow hidden constraint problems

⁷C. Audet et al. Aug. 2020. eprint: https://www.gerad.ca/en/papers/G-2020-46/view.published.

DFO Symposium T Context Modeling Basics on Mads DiscoMads Convergence

- Results
- Conclusion

Conclusion

A DiscoMads algorithm to escape unknown discontinuous regions

major points

- \blacktriangleright inner approximations of the safety margin to treat infinite constraint d
- ▶ based on Mads ⇒ convergence properties preserved
- validated on analytical and engineering problems

publication

 "Escaping unknown discontinuous regions in blackbox optimization", C. Audet, A. Batailly and S. Kojtych, SIAM Journal On Optimization (recently accepted, preprint available⁷)

Perspectives

- usages: discontinuities and hidden constraints
- short-term
 - ▶ implementation in Nomad 4 \Rightarrow hidden constraint problems
- others
 - ▶ performance improvements \Rightarrow scaling of c and d^k , revealing poll, surrogates...
 - comparison with other methods adapted to treat d?
 - other infinite constraints?

Thank you for attention !