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THE DIAGONAL OF THE MULTIPLIHEDRA AND
THE TENSOR PRODUCT OF A∞-MORPHISMS

GUILLAUME LAPLANTE-ANFOSSI AND THIBAUT MAZUIR

Abstract. We define a cellular approximation for the diagonal of the Forcey–Loday realiza-
tions of the multiplihedra, and endow them with a compatible topological cellular operadic
bimodule structure over the Loday realizations of the associahedra. This provides us with a
model for topological and algebraic A∞-morphisms, as well as a universal and explicit formula
for their tensor product. We study the monoidal properties of this newly defined tensor product
and conclude by outlining several applications, notably in algebraic and symplectic topology.
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Introduction

The n-dimensional associahedron, a polytope whose faces are in bijection with planar trees
with n + 2 leaves, was first introduced as a topological cell complex by J. Stashe� to describe
algebras whose product is associative up to homotopy [Sta63]. The problem of giving polytopal
realizations of these CW-complexes has a rich history [CZ12], and the algebras that they
encode, called A∞-algebras, have been extensively studied in various branches of mathematics.
They were used in algebraic topology for the study of iterated loop spaces [May72, BV73] or
the study of homotopy theory of di�erential graded associative algebras [LH03, Val20] ; in
symplectic topology to define Fukaya categories of symplectic manifolds [Sei08, FOOO09a,
FOOO09b], through the interpretation of the associahedra as moduli spaces of disks with
marked boundary points; and more recently, in mathematical physics, mirror symmetry, Galois
cohomology or non-commutative probability.

The n-dimensional multiplihedron is a polytope whose faces are in bijection with 2-colored
planar trees with n + 1 leaves. It was first introduced as a topological cell complex by J.
Stashe� to describe morphisms between A∞-algebras [Sta70]. It was only recently realized as
a convex polytope in the work of S. Forcey [For08], followed by the work of S. Forcey and S.
Devadoss [DF08], F. Ardila and J. Doker [AD13], and F. Chapoton and V. Pilaud [CP22]. The
multiplihedra were studied in algebraic topology [BV73], as well as in symplectic topology
[MW10, MWW18] and Morse theory [Maz21a, Maz21b], as they can be respectively realized
as moduli spaces of quilted disks with marked boundary points and as moduli spaces of 2-
colored metric trees.

In this paper, we define and study a cellular approximation of the diagonal of the multi-
plihedra. The need for such an approximation comes from the fact that the standard thin
diagonal 4P : P → P × P, x 7→ (x, x) of a polytope P is not cellular in general, i.e. its image
is not a union of faces of P × P. A cellular approximation of the diagonal is a cellular map
4cellP : P → P × P which is homotopic to 4P and which agrees with 4P on the vertices of P.

The Alexander–Whitney map [EML53] and the Serre diagonal [Ser51] respectively de-
fine cellular approximations for the diagonal of the simplices and for the diagonal of the
cubes, yielding the cup product in singular cohomology and the cup product in cubical co-
homology. A cellular approximation for the diagonal of the associahedra was constructed in
[MTTV21] and yields a universal formula for the tensor product of two A∞-algebras. See also
[SU04, MS06]. By the term universal, we mean that the same formula applies uniformly to any
pair of A∞-algebras. In a similar fashion, the cellular approximation of the diagonal of the
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multiplihedra will be used to define a universal tensor product of A∞-morphisms in this paper.
Our main results can be summarized as follows.

(1) We define a cellular approximation of the diagonal on Forcey–Loday realizations of
the multiplihedra (Definition 2.12).

(2) We endow them with a compatible operadic bimodule structure over the Loday real-
izations of the associahedra (Theorem 1).

(3) We compute explicitly the associated combinatorial formula for the cellular image of
the diagonal (Theorem 2).

(4) We apply the cellular chains functor to the diagonal in order to define a universal tensor
product of A∞-morphisms (Proposition 4.18), and we study its properties (Section 4.4).

To achieve these goals, we use the theory of cellular approximations of diagonals developed
by the first author in [Lap22], which is based on the theory of fiber polytopes of [BS92] and
the method introduced in [MTTV21]. We prove that the Forcey–Loday realizations of the
multiplihedra [For08] can be obtained from the Ardila–Doker realization of the multiplihedra
[AD13] by projection (Proposition 1.16). These last realizations are generalized permutahedra,
in the sense of A. Postnikov [Pos09], which allows us to apply the results of [Lap22] directly,
both to define a cellular approximation of the diagonal and to describe its cellular image
combinatorially.

The tensor product of A∞-morphisms defined by this diagonal does not however define
a symmetric monoidal structure on the category ∞-A∞-alg of A∞-algebras and their A∞-
morphisms, since it is not strictly compatible with the composition. This is not a defect of our
construction: in Proposition 4.25, we prove that there is no tensor product of A∞-morphisms
which is strictly compatible with the composition of A∞-morphisms. This proposition should
be compared to a similar result by M. Markl and S. Shnider, saying that there is no strictly
associative tensor product of A∞-algebras [MS06, Theorem 13]. The preceding two properties
are in fact always satisfied up to homotopy (see Proposition 4.26), which points towards the
idea that the category ∞-A∞-alg should possess some kind of homotopy symmetric monoidal
structure. An analogous phenomenon was already observed for the category of homotopy
representations of an algebraic group [AACD11, Pol20].

Our results can be readily applied to di�erent fields. The operadic bimodule structure of
Point (2) above was used in the work of the second author, in order to realize A∞-algebras and
A∞-morphisms in Morse theory [Maz21a, Maz21b]. The algebraic tensor product in Point (4)
has applications in Heegaard Floer homology and could be used to relate the Fukaya categories
of products of symplectic manifolds via Lagrangian correspondences, see Section 5.3. We also
expect future applications of our work to the computation of the homology of fibered spaces,
using the construction of the convolution A∞-algebra associated to an A∞-coalgebra and an
A∞-algebra in Proposition 5.4. This last construction can also be related to the deformation
theory of ∞-morphisms developed in [RNW19b, RNW19a], see Section 5.2.3. Moreover, our
geometric methods shed a new light on a result of M. Markl and S. Shnider [MS06], pointing
towards possible links with discrete and continuous Morse theory (Remark 5.3).

Finally, the results of this paper can be straightforwardly extended to the "multiplopera-
hedra", a family of polytopes which is to the operahedra of [Lap22] what the multiplihedra
are to the associahedra. They belong at the same time to the families of graph-multiplihedra
[DF08] and of nestomultiplihedra [AD13]. Together with the results of [Lap22, Section 4],
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one would obtain a tensor product of ∞-morphisms between homotopy operads, defined by
explicit formulæ.

Layout. We introduce the Forcey–Loday and the Ardila-Doker realizations of the multipli-
hedra in Section 1. We define a cellular approximation of their diagonal and endow the
Forcey–Loday multiplihedra with an operadic bimodule structure over the Loday associahe-
dra in Section 2. We compute explicitly the associated combinatorial formula for the image of
our diagonal in Section 3. We define a tensor product of A∞-algebras and of A∞-morphisms
and study its properties in Section 4. We finally sketch future applications of our work in
Section 5.

Conventions. We use the conventions and notations of [Zie95] for convex polytopes and the
ones of [LV12] for operads. The word operad will always mean non-symmetric operad [LV12,
Section 5.2.8] in this paper. We denote by [n] B {1, . . . , n} and by {ei}i∈[n] the standard basis
of Rn . The abbreviation "dg" will stand for the words "di�erential graded".

Acknowledgements. We would like to thank Bruno Vallette for numerous discussions and
for his careful reading of our paper, as well as Alexandru Oancea and Eric Ho�beck for their
comments on earlier versions. We are also indebted to Lino Amorim and Robert Lipshitz,
for explaining to us their work and for their detailed insights on possible applications of our
results in symplectic topology. We finally express our gratitude to Sushmita Venugopalan,
for taking the time to discuss potential connections between our work and results on toric
varieties, and to Daniel Robert-Nicoud, for discussing his work with us and suggesting new
directions of research.

1. Realizations of the multiplihedra

Drawing from the work of Forcey in [For08], we define the weighted Forcey–Loday real-
izations of the multiplihedra and describe their geometric properties in Proposition 1.10. We
then show how they can be recovered from the Ardila–Doker realizations of the multiplihedra,
which are in particular generalized permutahedra.

1.1. 2-colored trees and multiplihedra.

1.1.1. 2-colored trees. We consider in this section planar rooted trees, which we simply abbreviate
as trees. The term edge refers to both internal and external edges. The external edges will
sometimes be called leaves.

De�nition 1.1 (Cut). A cut of a tree is a subset of edges or vertices which contains precisely one edge
or vertex in each non-self crossing path from an incoming edge to the root.

A cut divides a tree into an upper part that we color in blue and a lower part that we color
in red. The edges and vertices of the cut are represented by drawing a black line over them,
as pictured in Figure 1.

De�nition 1.2 (2-colored tree). A 2-colored tree is a tree together with a cut. We call 2-colored
maximal tree a 2-colored binary tree whose cut is made of edges only.

We denote by CTn (resp. CMTn) the set of 2-colored trees (resp. 2-colored maximal trees)
with n leaves, for n ≥ 1.
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De�nition 1.3 (Face order). The face order s ⊂ t on 2-colored trees is de�ned as follows: a 2-
colored tree s is less than a 2-colored tree t if t can be obtained from s by a sequence of contractions of
monochrome edges or moves of the cut from a family of edges to an adjacent vertex.

⊂

Figure 1. Two 2-colored trees, related by the face order.

De�nition 1.4 (Tamari-type order). The Tamari-type order s < t on 2-colored maximal trees is
generated by the following three covering relations:

t1 t2 t3

t4

≺

t3t2t1

t4

,

t1 t2 t3

t4

≺

t3t2t1

t4

,

t1 t2

t3

≺

t1 t2

t3

,

where each ti , 1 ≤ i ≤ 4, is a binary tree of the appropriate color.

We add a minimum element ∅n to the poset of 2-colored trees (CTn, ⊂).
Proposition 1.5. The posets (CTn, ⊂) and (CMTn, <) are lattices.
Proof. The poset of 2-colored trees was proven in [For08] to be isomorphic to the face lattice
of a polytope, the multiplihedron; see Point (3) of Proposition 1.10. The Hasse diagram of the
poset of 2-colored maximal trees was proven to be isomorphic to the oriented 1-skeleton of the
multiplihedron, and also to be the Hasse diagram of a lattice in [CP22, Proposition 117]. �

Remark 1.6. F. Chapoton and V. Pilaud introduced in [CP22] the shu�e of two generalized
permutahedra (see Section 1.3 for definition and examples). The fact that the poset (CMTn, <)
is a lattice follows from the fact that the multiplihedron arises as the shu�e of the associa-
hedron and the interval, which both have the lattice property, and that the shu�e operation
preserves the lattice property in this case, see [CP22, Corollary 95].

1.1.2. Grafting of trees. We will denote the operation of grafting a planar tree v at the ith-leaf
of a 2-colored tree u by u ◦i v. We will also denote the grafting of a level of 2-colored trees
v1, . . . , vk on the k leaves of a planar tree by u(v1, . . . , vk ). We denote by cTn and by cBn the
corollae with n leaves fully painted with the upper and the lower color respectively; we denote
by cn the corolla with n leaves with frontier color at the vertex. It is straightforward to see
that these two grafting operations on corollae generate all the 2-colored trees of codimension
1: we call (B), for “bottom”, the first type of 2-colored trees cp+1+r ◦p+1 cTq , with p + q + r = n
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and 2 ≤ q ≤ n, and we call (T), for “top”, the second type of 2-colored trees cB
k
(c1, . . . , ck ),

with i1 + · · · + ik = n, i1, . . . , ik ≥ 1, and k ≥ 2.

type (B) type (T)

Figure 2. Examples of 2-colored trees of type (B) and (T) respectively.

1.1.3. Multiplihedra.

De�nition 1.7 (Multiplihedra). For any n ≥ 1, an (n − 1)-dimensional multiplihedron is a
polytope of dimension (n − 1) whose face lattice is isomorphic to the lattice (CTn, ⊂) of 2-colored trees
with n leaves.

•

•

Figure 3. A 2-dimensional multiplihedron and the Tamari-type poset
(CMT3, <) on its oriented 1-skeleton.

The dimension of a face labeled by a 2-colored tree is given by the sum of the degrees of
its vertices defined by

��������

k1 · · · ��������
= k − 2 ,

��������

k1 · · · ��������
= k − 2 ,

��������

k1 · · · ��������
= k − 1 .
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The codimension of a 2-colored tree is then equal to the number of blue and red vertices.
In the example of the 2-colored tree depicted on the left of Figure 1, the dimension is equal
to 4 and the codimension is equal to 5. As proven in [CP22, Proposition 117], the oriented
1-skeleton of a multiplihedron is the Hasse diagram of the Tamari-type poset.

1.2. Forcey–Loday realizations of the multiplihedra. Jean-Louis Loday gave in [Lod04]
realizations of the associahedra in the form of polytopes with integer coordinates. Stefan
Forcey generalized this construction in [For08] in order to give similar realizations for the
multiplihedra.

De�nition 1.8 (Weighted 2-colored maximal tree). Aweighted 2-colored maximal tree is a pair
(t, ω) made up of a 2-colored maximal tree t ∈ CMTn with n leaves with a weight ω = (ω1, . . . , ωn) ∈
Rn
>0. We call ω the weight and n the length of the weight ω.

Let (t, ω) be a weighted 2-colored maximal tree with n leaves. We order its n−1 vertices from
left to right. At the ith vertex, we consider the sum αi of the weights of the leaves supported
by its left input and the sum βi of the weights of the leaves supported by its right input. If the
ith vertex is colored by the upper color, we consider the product αi βi and if the ith vertex is
colored by the lower color, we consider the product 2αi βi . The associated string produces a
point with integer coordinates M(t, ω) ∈ Rn−1

>0 . For example, if only the first and last vertices
of t are blue, we obtain a point of the form

M(t, ω) = �
2α1 β1, α2 β2, . . . , αn−2 βn−2, 2αn−1 βn−1

�
∈ Rn−1

>0 .

1 2

1 2 3 4

1

2

3

4

Figure 4. Examples of points associated to 2-colored maximal trees, with stan-
dard weight.
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De�nition 1.9 (Forcey–Loday Realization). The Forcey–Loday realization of weight ω of the
(n − 1)-dimensional multiplihedron is the polytope

Jω B conv
�
M(t, ω) | t ∈ CMTn

	
⊂ Rn−1 .

The Forcey–Loday realization associated to the standard weight (1, . . . , 1) will simply be
denoted by Jn . By convention, we define the polytope Jω with weight ω = (ω1) of length 1 to
be made up of one point labeled by the 2-colored tree iTB B .

x1 x2

x3

Figure 5. The Forcey–Loday realization of the multiplihedron J4 .

Proposition 1.10. The Forcey–Loday realization Jω satis�es the following properties.
(1) Let t ∈ CMTn be a 2-colored maximal tree.

For p + q + r = n, with 2 ≤ q ≤ n, the point M(t, ω) is contained in the half-space de�ned by the
inequality

(B) xp+1 + · · · + xp+q−1 ≥
∑

p+1≤a<b≤p+q

ωaωb ,

with equality if and only if the 2-colored maximal tree t can be decomposed as t = u ◦p+1 v, where
u ∈ CMTp+1+r and v ∈ PBTq .
For i1+ · · ·+ik = n, with i1, . . . , ik ≥ 1 and k ≥ 2, the point M(t, ω) is contained in the half-space
de�ned by the inequality

(T) xi1 + xi1+i2 + · · · + xi1+· · ·+ik−1 ≤ 2
∑

1≤ j<l≤k

ωI jωIl ,

where I j = [i1 + · · · + i j−1 + 1, . . . , i1 + · · · + i j ] and ωI j B
∑

a∈I j ωa , with equality if and
only if the 2-colored maximal tree t can be decomposed as t = u(v1, . . . , vk ), where u ∈ PBTk and
v j ∈ CMTi j , for 1 ≤ j ≤ k .

(2) The polytope Jω is the intersection of the half-spaces de�ned in (1).
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(3) The face lattice (L(Jω), ⊂) is isomorphic to the lattice (CTn, ⊂) of 2-colored trees with n leaves.
(4) Any face of a Forcey–Loday realization of a multiplihedron is isomorphic to a product of a Loday

realization of an associahedron with possibly many Forcey–Loday realizations of multiplihedra, via
a permutation of coordinates.

Proof. Points (1)–(3) were proved in [For08]. We prove Point (4) by induction on n. It clearly
holds true for n = 1. Let us suppose that it holds true up to n − 1 and let us prove it for the
polytopes Jω , for any weight ω of length n. We examine first facets. In the case of a facet of
type (B) associated to p + q + r = n with 2 ≤ q ≤ n − 1, we consider the following two weights

ω B (ω1, . . . , ωp, ωp+1 + · · · + ωp+q, ωp+q+1, . . . , ωn) and ω̃ B (ωp+1, . . . , ωp+q)
and the isomorphism

Θp,q,r : Rp+r ×Rq−1 �
−→ Rn−1

(x1, . . . , xp+r ) × (y1, . . . , yq−1) 7→ (x1, . . . , xp, y1, . . . , yq−1, xp+1, . . . , xp+r ) .
The image of the vertices of Jω ×Kω̃ are sent to the vertices of the facet of Jω labelled by the 2-
colored tree cp+1+r ◦p+1 cTq . In other words, the permutation of coordinates Θ sends bijectively
Jω × Kω̃ to Jω . Similarly, in the case of a facet of type (T) associated to i1 + · · · + ik = n with
i1, . . . , ik ≥ 1 and k ≥ 2, we consider the following weights

ω B
�√

2ωI1, . . . ,
√
2ωIk

�
and ω̃ j B (ωi1+· · ·+i j−1+1, . . . , ωi1+· · ·+i j−1+i j ), for 1 ≤ j ≤ k,

and the isomorphism

Θi1, ..., ik : Rk−1 ×Ri1−1 × · · · ×Rik−1
�
−→ Rn−1

which sends
(x1, . . . , xk−1) × (y11, . . . , y1i1−1) × · · · × (yk1 , . . . , ykik−1)

to
(y11, . . . , y1i1−1, x1, y21, . . . , y

2
i2−1

, x2, y31, . . . , xk−1, yk1 , . . . , y
k
ik−1

) .
The image of the vertices of Kω × Jω̃1 × · · · × Jω̃k

are sent to the vertices of the facet of Jω
labelled by the 2-colored tree cB

k
(c1, . . . , ck ). In other words, the permutation of coordinates Θ

sends bijectively Kω × Jω̃1 × · · · × Jω̃k
to Jω .

We can finally conclude the proof with these decompositions of facets of Jω , the induction
hypothesis, and Point (5) of [MTTV21, Proposition 1]. �

1.3. Ardila-Doker realizations of the multiplihedra.

De�nition 1.11 (Permutahedron). The (n − 1)-dimensional permutahedron is the polytope in
Rn equivalently de�ned as:

• the convex hull of the points
n∑
i=1

ieσ(i) for all permutations σ ∈ Sn , or

• the intersection of the hyperplane



x ∈ Rn ����

n∑
i=1

xi =
(
n + 1
2

)

with the a�ne half-spaces




x ∈ Rn ����
∑
i∈I

xi ≥
(|I | + 1

2

)

for all ∅ , I ⊆ [n].
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For a face F of a polytope P ⊂ Rn , the normal cone of F is the cone

NP(F) B
{

c ∈ (Rn)∗ ���� F ⊆ {x ∈ P | cx = max
y∈P

cy}
}
.

The codimension ofNP(F) is equal to the dimension of F. The normal fan of P is the collection
of the normal cones NP B {NP(F) | F ∈ L(P) \ ∅}. We refer to [Zie95, Chapter 7] for more
details.

De�nition 1.12 (Generalized permutahedron). A generalized permutahedron is a polytope
equivalently de�ned as:

• a polytope whose normal fan coarsens the one of the permutahedron, or
• the convex set




x ∈ Rn :
n∑
i=1

xi = z[n] ,
∑
i∈I

xi ≥ zI for all I ⊆ [n]


,

where {zI }I ⊆[n] are real numbers which satisfy the inequalities zI + zJ ≤ zI∪J + zI∩J for all
I, J ⊆ [n], and where z∅ = 0.

Generalized permutahedra were introduced by A. Postnikov in [Pos09]. Loday realiza-
tions of the associahedra are all generalized permutahedra (see [Pos09, Corollary 8.2]), while
Forcey–Loday realizations of the multiplihedra are not. However, F. Ardila and J. Doker intro-
duced in [AD13] realizations of the multiplihedra that are generalized permutahedra. They
are obtained from the Loday realizations of the associahedra via the operation of q-lifting. We
will consider the special case q = 1/2 of their construction.

De�nition 1.13 (Lifting of a generalized permutahedron [AD13, Definition 2.3]). For a gener-
alized permutahedron P ⊂ Rn , its 1

2 -lifting P
� 1
2

�
⊂ Rn+1 is de�ned by

P
� 1
2

�
B




x ∈ Rn+1 :
n+1∑
i=1

xi = z[n] ,
∑
i∈I

xi ≥ 1
2 zI ,

∑
i∈I∪{n+1}

xi ≥ zI for all I ⊆ [n]


.

Proposition 1.14 ([AD13, Proposition 2.4]). The 1
2 -lifting P

� 1
2

�
of a generalized permutahedron

is again a generalized permutahedron.

Proposition 1.15. The 1
2 -lifting Kω

� 1
2

�
of the Loday realization of weight ω of the associahedron is

a realization of the multiplihedron.

Proof. This is a particular case of [AD13, Corollary 4.10]. �

We call the lifting of the Loday associahedron Kω
� 1
2

�
the Ardila–Doker realization of the

multiplihedron. It is related to the Forcey–Loday realization via the projection π : Rn+1 → Rn

which forgets the last coordinate.

Proposition 1.16. The Forcey–Loday realization of the multiplihedron is the image under the projec-
tion π of the 1

2 -lifting of the Loday realization of the associahedron, scaled by 2. That is, we have

Jω = π
�
2Kω

� 1
2

��
.
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Proof. This follows from the vertex description of 1
2 -lifting given in [Dok11, Definition 3.5.3],

together with the description of the projection from the permutahedron to the multiplihedron
given in the proof of [Dok11, Theorem 3.3.6]. The coordinates of a vertex in 2Kω are of the
form (2α1 β1, . . . , 2αn βn). A coordinate 2αi βi is then multiplied by 1/2 in the lifting if and
only if its associated vertex in the 2-colored maximal tree is of the upper color. We thus recover
the description of Definition 1.9. �

In summary, we have the following diagram:

Loday Ardila–Doker Forcey–Loday
associahedron multiplihedron multiplihedron

Kω ↪→ Kω
� 1
2

� π(2·)
� Jω

Rn ↪→ Rn+1 � Rn

Gen. permutahedron Gen. permutahedron Not a gen. permutahedron

2. Diagonal of the multiplihedra

In this section, we define a cellular approximation of the diagonal of the Forcey–Loday
realizations of the multiplihedra, and we endow them with an operadic bimodule structure
over the Loday realizations of the associahedra in the category Poly. We use the methods
of [MTTV21] and the general theory developed in [Lap22]. Our construction of the cellular
approximation relies crucially on the fact that the Forcey–Loday multiplihedra, are obtained
from the Ardila–Doker multiplihedra by projection (Proposition 1.16).

2.1. The monoidal category Poly. Let us recall the definition of the symmetric monoidal
category (Poly,×) from [MTTV21, Section 2.1].

Objects: An object of Poly is a d-dimensional polytope P in the n-dimensional Euclidian
space Rn , for any 0 ≤ d ≤ n.

Morphisms: A morphism in Poly is a continuous map f : P → Q which sends P homeomor-
phically to the underlying set |D| of a polytopal subcomplex D ⊂ L(Q) of Q such
that f −1(D) defines a polytopal subdivision of P.

We will use the notion of operad, operadic bimodule and Hadamard product of operads and
operadic bimodules in the rest of this paper. For the sake of concision, we refer respectively
to [Maz21a, Section 1.1.1], [Maz21a, Section 1.1.3] and [LV12, Section 5.1.12] for a complete
definition of these notions. An operad will in particular be a non-symmetric operad in the
language of [LV12, Section 5.2.8]. The fact that the category Poly is monoidal will moreover
allow us to define operads and operadic bimodules in polytopes.

2.2. Positively oriented polytopes and diagonal maps. For a polytope P, we will denote
by ρzP B 2z − P its reflection with respect to a point z ∈ P.

De�nition 2.1. A positively oriented polytope (P,~v) is a polytope P ⊂ Rn together with a vector
~v ∈ Rn which is not perpendicular to any edge of P ∩ ρzP, for any z ∈ P.
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Any positively oriented polytope admits a diagonal map of the form

4(P,~v) : P → P × P
z 7→

�
bot~v(P ∩ ρzP), top~v(P ∩ ρzP)� .

Such a diagonal map is a morphism in Poly, coincides with the usual thin diagonal x 7→ (x, x)
on vertices, and is fiber-homotopic to it, see [MTTV21, Proposition 5] and [Lap22, Proposi-
tion 1.1]. Its cellular image admits a combinatorial description in terms of the fundamental
hyperplane arrangement of P, as we will now recall.

De�nition 2.2 (Fundamental hyperplane arrangement). An edge hyperplane of P is an hy-
perplane in Rn which is orthogonal to the direction of an edge of P ∩ ρzP for some z ∈ P. The
fundamental hyperplane arrangement HP of P is the collection of all edge hyperplanes of P.

Recall that a face F of a polytope P ⊂ Rn is equal to the intersection of a family of facets
{Fi}. If we choose an outward pointing normal vector ~Fi for each facet Fi (see [Lap22,
Definition 1.24]) and a basis {bk } of the orthogonal complement of the a�ne hull of P in Rn ,
then the normal cone of F is given by NP(F) = Cone({ ~Fi} ∪ {bk,−bk }).
Proposition 2.3 ([Lap22, Theorem 1.23]). Let (P,~v) be a positively oriented polytope in Rn . For
each H ∈ HP , we choose a normal vector ~dH such that 〈 ~dH,~v〉 > 0. We have

(F,G) ∈ Im4(P,~v) ⇐⇒ ∀H ∈ HP, ∃i, 〈~Fi, ~dH 〉 < 0 or ∃ j, 〈~G j, ~dH 〉 > 0 .

We finally recall general facts from [Lap22, Section 1.6].

De�nition 2.4 (Coarsening projection). Let P and Q be two polytopes in Rn such that the normal
fan of P re�nes the normal fan of Q. The coarsening projection from P to Q is the application
θ : L(P) → L(Q) which sends a face F of P to the face θ(F) of Q whose normal cone NQ(θ(F)) is
the minimal cone with respect to inclusion which containsNP(F).
Proposition 2.5. Let P and Q be two polytopes such that the normal fan of P re�nes the one of Q.
If P is positively oriented by ~v, then so is Q. Moreover, the coarsening projection from P to Q commutes
with the diagonal maps 4(P,~v) and 4(Q,~v), and we have

(F,G) ∈ Im4(Q,~v) ⇐⇒ ∀H ∈ HP, ∃i, 〈~Fi, ~dH 〉 < 0 or ∃ j, 〈~G j, ~dH 〉 > 0 .

We will apply Proposition 2.5 to P the permutahedron and Q the Ardila–Doker multiplihe-
dron, in order to define a diagonal map on the Forcey–Loday multiplihedron and to compute
an explicit formula for its cellular image in Theorem 2.

2.3. Good orientation vectors and generalized permutahedra. The projection π : Rn+1 →

Rn forgetting the last coordinate defines an a�ne isomorphism between any hyperplane H of
equation

∑n+1
i=1 xi = c ∈ R, and Rn . The inverse map (π|H )−1 is given by the assignment

(x1, . . . , xn) 7→ *
,

x1, . . . , xn, c −
n∑
i=1

xi+
-
.

If a polytope P is contained in the hyperplane H, then the polytope π(P) is a�nely isomorphic
to P, and the projection π defines a bijection between the faces of P and the faces of π(P).
Moreover, for every face F of P, we have dim F = dim π(F).
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However, the projection π does not preserve orthogonality in general, so if P is positively
oriented by ~v, the projection π(P) might not be positively oriented by π(~v). We restrict our
attention to a certain class of orientation vectors for which this property holds, in the case
where P is a generalized permutahedron.

De�nition 2.6. A good orientation vector is a vector ~v = (v1, . . . , vn+1) ∈ Rn+1 satisfying

vi ≥ 2vi+1 , for any 1 ≤ i ≤ n , and vn+1 > 0 .

Observe that the family of good orientation vectors is stable under the projection forgetting
the last coordinate: if ~v is a good orientation vector, then so is π(~v). Being a good orientation
vector is a more restrictive condition than being a principal orientation vector in the sense of
[Lap22, Definition 3.15]. Thus, a good orientation vector orients positively any generalized
permutahedron.

Proposition 2.7. Let P ⊂ Rn+1 be a generalized permutahedron, and let ~v ∈ Rn+1 be a good
orientation vector. Then, the polytope π(P) is positively oriented by π(~v). Moreover, the projection π
commutes with the diagonal maps of P and π(P), that is 4(π(P),π(~v)) = (π × π)4(P,~v).
Proof. Since P is a generalized permutahedron, the direction of the edges of the intersection
P∩ ρzP, for any z ∈ P, are vectors with coordinates equal to 0, 1 or −1, and the same number
of 1 and −1 (combine Proposition 1.27 and Proposition 3.4 of [Lap22]). The direction ~d of
such an edge satisfies 〈 ~d,~v〉 , 0, since the first non-zero coordinate of ~d will contribute a
greater amount than the sum of the remaining coordinates in the scalar product. For the same
reason, we have 〈π( ~d), π(~v)〉 , 0. As π(P ∩ ρzP) = π(P) ∩ ρπ(z)π(P), we have in particular that
the image of the edges of P ∩ ρzP under π are the edges of π(P) ∩ ρπ(z)π(P) and thus that
π(P) is positively oriented by π(~v). For the last part of the statement, observe that π preserves
the orientation of the edges: if we have 〈 ~d,~v〉 > 0, then we have 〈π( ~d), π(~v)〉 > 0. Hence, the
image of the vertex top~v(P ∩ ρzP), which maximizes 〈−,~v〉 over P ∩ ρzP, under π is equal
to the vertex topπ(~v)(π(P) ∩ ρπ(z)π(P)) which maximizes 〈−, π(~v)〉 over π(P) ∩ ρπ(z)π(P). The
argument for the minimum bot(P ∩ ρzP) is the same. �

Proposition 2.8. Let P ⊂ Rn+1 be a generalized permutahedron. Any two good orientation vectors
~v, ~w de�ne the same diagonal maps on P and π(P), that is, we have 4(P,~v) = 4(P, ~w) and 4(π(P),π(~v)) =
4(π(P),π(~w)).

Proof. Good orientation vectors are principal orientation vectors [Lap22, Definition 3.15].
Since all principal orientation vectors live in the same chamber of the fundamental hyper-
plane arrangement of the permutahedron, they all define the same diagonal on the permuta-
hedron [Lap22, Proposition 1.21], and thus the same diagonal on any generalized permutahe-
dron (Proposition 2.5). So, we have 4(P,~v) = 4(P, ~w). Finally, using Proposition 2.7, we have
4(π(P),π(~v)) = (π × π)4(P,~v) = (π × π)4(P, ~w) = 4(π(P),π(~w)). �

2.4. Diagonal of the Forcey–Loday multiplihedra.

De�nition 2.9. A well-oriented realization of the multiplihedron is a positively oriented polytope
which realizes the multiplihedron and such that the orientation vector induces the Tamari-type order on
the set of vertices.
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Proposition 2.10. Any good orientation vector induces a well-oriented realization
�
Jω,~v

�
of the

Forcey–Loday multiplihedron, for any weight ω.

Proof. Using Definition 1.9, we can compute that any edge of the realization of the multiplihe-
dron Jω is directed, according to the Tamari type order, by either ei or ei − e j , for i < j. Since
~v has strictly decreasing coordinates, the scalar product is in each case positive. It remains to
show that P ∩ ρzP is oriented by ~v, for any z ∈ P. This follows directly from Proposition 2.7,
and the fact that Jω arises as the projection under π of a generalized permutahedron as shown
in Proposition 1.16. �

Any good orientation vector therefore defines a diagonal map 4ω : Jω → Jω × Jω , for any
weight ω. These diagonal maps are all equivalent up to isomorphim in the category Poly.

Proposition 2.11. For any pair of weights ω and θ of length n, there exists a unique isomorphism
tr = trθω : Jω → Jθ in the category Poly, which preserves homeomorphically the faces of the same type
and which commutes with the respective diagonals.

Proof. The arguments of [MTTV21, Sections 3.1-3.2] hold in the present case using Propo-
sition 1.10. We note that the crucial condition above is that the map tr commutes with the
respective diagonals: this makes the map tr unique and highly non-trivial to construct, see the
proof of [MTTV21, Proposition 7]. �

De�nition 2.12. We de�ne 4n : Jn → Jn × Jn to be the diagonal induced by any good orientation
vector for the Forcey–Loday realization of standard weight ω = (1, . . . , 1).
2.5. Operadic bimodule structure on the Forcey–Loday multiplihedra. We will use the
transition maps tr of Proposition 2.11 above to endow the family of standard weight Forcey–
Loday multiplihedra with an operadic bimodule structure over the standard weight Loday
associahedra. The uniqueness property of the map tr will be used in a crucial way.

De�nition 2.13 (Action-composition maps). For any n,m ≥ 1 and any 1 ≤ i ≤ m, for any k ≥ 2
and any i1, . . . , ik ≥ 1, we de�ne the action-composition maps by

◦p+1 : Jp+1+r ×Kq J(1, ...,q, ...,1) ×Kq Jn andtr×id Θp,q,r

γi1, ..., ik : Kk × Ji1 × · · · × Jik K(i1, ..., ik ) × Ji1 × · · · × Jik Ji1+· · ·+ik ,
tr×id Θi1, . . ., ik

where the last inclusions are given by the block permutations of the coordinates introduced in the proof
of Proposition 1.10.

Recall from [MTTV21, Theorem 1] that the diagonal maps 4n : Kn → Kn × Kn define
a morphism of operads, where the operad {Kn × Kn} is to be understood as the Hadamard
product {Kn} × {Kn}. The next proposition shows that the diagonal maps 4n : Kn → Kn ×

Kn and 4n : Jn → Jn × Jn are compatible with the action-composition maps introduced in
Definition 2.13.

Proposition 2.14. The diagonal maps 4n commute with the maps Θ.

Proof. First observe that a good orientation vector has decreasing coordinates, thereby induces
the diagonal maps 4n : Kn → Kn×Kn and the operad structure on {Kn} defined in [MTTV21].
Following [Lap22, Proposition 4.14], to prove the claim it su�ces to show that the preimage
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under Θ−1 of a good orientation vector is still a good orientation vector for each associahedron
and multiplihedron. This is easily seen to be the case from the definition of Θ, in the proof of
Proposition 1.10. �

Theorem 1.
(1) The collection {Jn}n≥1 together with the action-composition maps ◦i and γi1, ..., ik form an operadic

bimodule over the operad {Kn} in the category Poly.
(2) The maps {4n : Jn → Jn × Jn}n≥1 form a morphism of ({Kn}, {Kn})-operadic bimodules in the

category Poly.

Proof. Using Proposition 2.14, we can apply the proof of [MTTV21, Theorem 1] mutatis mu-
tandis. The uniqueness of the transition map tr is the key argument, as it forces the operadic
axioms to hold. We also point out that {Jn × Jn} is to be understood as the Hadamard product
{Jn} × {Jn}, and that its ({Kn}, {Kn})-operadic bimodule structure is defined as the pullback
of its natural ({Kn × Kn}, {Kn × Kn})-operadic bimodule structure under the diagonal maps
{4n : Kn → Kn ×Kn}. �

Point (1) of Theorem 1 was already mentioned in [Maz21a, Section 1.2], where associahedra
and multiplihedra are realized as compactifications of moduli spaces of metric trees and used
to construct A∞-structures on the Morse cochains of a closed manifold.

3. Cellular formula for the diagonal of the multiplihedra

We compute in Theorem 2 an explicit cellular formula for the diagonal of the Forcey–Loday
multiplihedra, using again the key fact that the Ardila–Doker multiplihedron is a generalized
permutahedron to which one can apply Proposition 2.5 and the results of [Lap22]. We then
explain geometrically why this formula necessarily has to di�er from the "magical formula"
computed for the associahedra in [MTTV21].

3.1. 2-colored nested linear graphs. Let ` be a linear graph with n vertices, as represented
in Figure 6. We respectively write V (`) and E(`) for its sets of vertices and edges. Any subset
of edges N ⊂ E(`) defines a subgraph of ` whose edges are N and whose vertices are all the
vertices adjacent to an edge in N . We call this graph the closure of N .

De�nition 3.1 (Nest and nesting).
• A nest of a linear graph ` with n vertices is a non-empty set of edges N ⊂ E(`) whose closure is a
connected subgraph of `.
• A nesting of a linear graph ` is a setN= {Ni}i∈I of nests such that
(1) the trivial nest E(`) is inN,
(2) for every pair of nests Ni , Nj , we have either Ni ( Nj , Nj ( Ni or Ni ∩ Nj = ∅, and
(3) if Ni ∩ Nj = ∅ then no edge of Ni is adjacent to an edge of Nj .

Two nests that satisfy Conditions (2) and (3) are said to be compatible. We denote the set
of nestings of ` by N(`). We naturally represent a nesting by circling the closure of each nest
as in Figure 6. A nesting is moreover maximal if it has maximal cardinality |N| = |E(`)|.
De�nition 3.2 (2-colored nesting). A 2-colored nesting is a nesting where each nest is either
colored in blue, red or both red and blue (that is, purple), and which satisfy the following properties:
(1) if a nest N is blue or purple, then all nests contained in N are blue, and



16 GUILLAUME LAPLANTE-ANFOSSI AND THIBAUT MAZUIR

(2) if a nest N is red or purple, then all nests that contain N are red.

We call monochrome the nests that are either blue or red, and bicolored the purple nests.
We denote by mono(N) the set of monochrome nests of a 2-colored nesting N, and by N2(`)
the set of 2-colored nestings of `. A 2-colored nesting is moreover maximal if it has maximal
cardinality, and it is made of monochrome nests only.

Remark 3.3. The data of a 2-colored nesting on a graph is equivalent to the data of a marked
tubing on its line graph, as defined in [DF08]. See also [Lap22, Remark 2.4].

Lemma 3.4. There is a bijection between (2-colored) trees with n leaves and (2-colored) nested linear
graphs with n vertices. Under this map, (2-colored) maximal trees are in bijection with maximal (2-
colored) nested linear graphs.

Under this bijection, vertices of 2-colored trees correspond to nests, and their colors agree
under the previous conventions.

←→ ←→ ( • ( ( • • ) • ) )

Figure 6. Bijections between 2-colored trees, 2-colored nested linear graphs,
and 2-colored parenthesizations.

3.2. Cellular formula for the diagonal.

De�nition 3.5. Let (`,N) be a nested linear graph. We respectively denote by B(N), P(N) and R(N)
the set of blue, purple and red nests of N. We de�ne Q(N) to be the set whose elements are the unions
of nests

k⋃
i=1

Ri ∪
⋃

B∈B(N)
B ∪

⋃
P∈P(N)

P

where R1, . . . , Rk ∈ R(N), the case ∪Ri = ∅ being allowed, and where two unions that result in the
same set are identi�ed.

We number the edges of the linear graph with n vertices from bottom to top as represented
in Figure 6, starting at 1 and ending at n − 1. To each blue nest B ∈ B(N) in a 2-colored
nesting N of a linear graph with n vertices, we associate the characteristic vector ~B ∈ Rn which
has a 1 in position i if i ∈ B, 0 in position i if i < B and 0 in position n. To each union of nests
Q ∈ Q(N), we associate the characteristic vector ~Q ∈ Rn which has a 1 in position i if i ∈ Q, 0
in position i if i < Q and 1 in position n. We denote moreover by ~n the vector (1, . . . , 1) ∈ Rn .
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Lemma 3.6. The normal cone of the face of the Ardila–Doker realization of the multiplihedron labeled
by the 2-colored nestingN is given by

Cone
({−~B}B∈B(N) ∪ {− ~Q}Q∈Q(N) ∪ {~n,−~n}) .

Proof. This follows from the description of the Ardila–Doker multiplihedron as a generalized
permutahedron: the normal cone of a face of the multiplihedron is a union of normal cones
of faces of the permutahedron, and these faces can be easily determined from the projection
from the permutahedron to the multiplihedron, written down explicitly in the proof of [Dok11,
Theorem 3.3.6]. �

We are now ready to compute the cellular formula for the diagonal of the Forcey–Loday
multiplihedra. We introduce

D(n) B {(I, J) | I, J ⊂ {1, . . . , n}, |I | = |J |, I ∩ J = ∅,min(I ∪ J) ∈ I}.
We number again the edges of the linear graph with n vertices from bottom to top, starting
at 1 and ending at n − 1. Blue nests and unions of blue, purple and red nests can then in
particular be seen as subsets of {1, . . . , n − 1}, hence of {1, . . . , n}.
Theorem 2. The cellular image of the diagonal map 4n : Jn → Jn × Jn introduced in De�nition 2.12
admits the following description. For N and N′ two 2-colored nestings of the linear graph with n
vertices, we have that

(N,N′) ∈ Im4n ⇐⇒ ∀(I, J) ∈ D(n),
∃B ∈ B(N), |B ∩ I | > |B ∩ J | or
∃Q ∈ Q(N), |(Q ∪ {n}) ∩ I | > |(Q ∪ {n}) ∩ J | or
∃B′ ∈ B(N′), |B′ ∩ I | < |B′ ∩ J | or
∃Q′ ∈ Q(N′), |(Q′ ∪ {n}) ∩ I | < |(Q′ ∪ {n}) ∩ J | .

Proof. The essential ingredient is the computation of the fundamental hyperplane arrangement
of the permutahedron, which was done in [Lap22, Section 3.1]. The result follows in three
steps:

(1) Since a good orientation vector ~v is also a principal orientation vector [Lap22, Definition
3.15], it orients positively the permutahedron.

(2) Using Proposition 2.5 and the description of the normal cones of the faces of the multipli-
hedron in Lemma 3.6, we get the above formula for the Ardila–Doker realizations of the
multiplihedra.

(3) Proposition 2.7 garantees that this formula holds for the Forcey–Loday realizations, which
completes the proof.

�

We now make this formula explicit in dimension 1, 2 and 3. We write 2-colored nestings
of a linear graph with n vertices as 2-colored parenthesizations of a word with n symbols •,
which are easier to read and shorter to type, see Figure 6. We moreover only write pairs of
faces (F,G) such that dim F + dimG = dim P.

42(( • • )) = ( • • ) × ( • • ) ∪ ( • • ) × ( • • )
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43(( • • • )) = ( ( • • ) • ) × ( • • • ) ∪ ( • • • ) × ( • ( • • ) ) ∪ ( • • • ) × ( • ( • • ) )
∪ ( • • • ) × ( • ( • • ) ) ∪ ( • ( • • ) ) × ( • ( • • ) ) ∪ ( ( • • ) • ) × ( ( • • ) • )
∪ ( ( • • ) • ) × ( • • • ) ∪ ( ( • • ) • ) × ( • • • )

44(( • • • • )) =
( ( ( • • ) • ) • ) × ( • • • • ) ∪ ( • • • • ) × ( • ( • ( • • ) ) ) ∪ ( ( • • • ) • ) × ( • ( • • ) • )

∪ ( ( • • )( • • ) ) × ( • •( • • ) ) ∪ ( ( • • • ) • ) × ( • ( • • • ) ) ∪ ( ( • • ) • • ) × ( • •( • • ) )
∪ ( • ( • • ) • ) × ( • ( • • • ) ) ∪ ( ( • • • ) • ) × ( • ( • • ) • ) ∪ ( ( • • ) • • ) × ( • •( • • ) )
∪ ( ( • • • ) • ) × ( • ( • • • ) ) ∪ ( ( ( • • ) • ) • ) × ( ( • • • ) • ) ∪ ( • •( • • ) ) × ( • ( • ( • • ) ) )
∪ ( ( • • )( • • ) ) × ( ( • • )( • • ) ) ∪ ( • ( • • ) • ) × ( • ( ( • • ) • ) ) ∪ ( ( • • ) • • ) × ( ( • • )( • • ) )
∪ ( • ( • • ) • ) × ( • ( • • • ) ) ∪ ( • ( ( • • ) • ) ) × ( • ( • • • ) ) ∪ ( ( • • ) • • ) × ( ( • • )( • • ) )
∪ ( • ( • • ) • ) × ( • ( • • • ) ) ∪ ( ( • • • ) • ) × ( • ( • • • ) ) ∪ ( ( • • ) • • ) × ( • •( • • ) )
∪ ( ( ( • • ) • ) • ) × ( ( • • ) • • ) ∪ ( • ( • • • ) ) × ( • ( • ( • • ) ) ) ∪ ( ( ( • • ) • ) • ) × ( ( • • ) • • )
∪ ( • ( • • • ) ) × ( • ( • ( • • ) ) ) ∪ ( • ( • • ) • ) × ( • ( • • • ) ) ∪ ( ( ( • • ) • ) • ) × ( • • • • )
∪ ( • • • • ) × ( • ( • ( • • ) ) ) ∪ ( ( ( • • ) • ) • ) × ( • • • • ) ∪ ( • • • • ) × ( • ( • ( • • ) ) )
∪ ( ( ( • • ) • ) • ) × ( • • • • ) ∪ ( • • • • ) × ( • ( • ( • • ) ) ) ∪ ( ( • • )( • • ) ) × ( • •( • • ) )
∪ ( ( • • • ) • ) × ( ( • ( • • ) ) • ) ∪ ( ( • • )( • • ) ) × ( • •( • • ) ) ∪ ( ( • • • ) • ) × ( • ( ( • • ) • ) )
∪ ( ( • • • ) • ) × ( • ( • • ) • ) ∪ ( ( • • ) • • ) × ( • •( • • ) ) ∪ ( ( • • • ) • ) × ( • ( • • • ) )
∪ ( ( • ( • • ) ) • ) × ( • ( • • ) • ) ∪ ( ( • • • ) • ) × ( • ( • • ) • ) ∪ ( ( ( • • ) • ) • ) × ( • ( • • ) • )
We also compute in Figure 7 the number of faces of complementary dimensions and the

number of pairs of vertices in the cellular image of the diagonal of the multiplihedra in dimen-
sions 0 to 6. They are compared with the diagonals induced by the same orientation vector
on the Loday associahedra and the permutahedra. The two sequences of numbers that we
obtain did not appear before in [OEI22].

Pairs (F,G) ∈ Im4(P,~v) Polytopes 0 1 2 3 4 5 6 [OEI22]
Associahedra 1 2 6 22 91 408 1938 A000139

dim F + dimG = dim P Multiplihedra 1 2 8 42 254 1678 11790 to appear
Permutahedra 1 2 8 50 432 4802 65536 A007334
Associahedra 1 3 13 68 399 2530 16965 A000260

dim F = dimG = 0 Multiplihedra 1 3 17 122 992 8721 80920 to appear
Permutahedra 1 3 17 149 1809 28399 550297 A213507

Figure 7. Number of pairs of faces in the cellular image of the diagonal of the
associahedra, multiplihedra and permutahedra of dimension 0 ≤ dim P ≤ 6,
induced by any good orientation vector.

http://oeis.org/A000139
http://oeis.org/A007334
http://oeis.org/A000260
http://oeis.org/A213507
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3.3. About the cellular formula. Given a face F of a positively oriented polytope (P,~v),
the orientation vector ~v defines a unique vertex top F (resp. bot F) which maximizes (resp.
minimizes) the scalar product 〈−,~v〉 over F. By [Lap22, Proposition 1.15], any pair of faces
(F,G) ∈ Im4(P,~v) satisfies top F ≤ botG. In the case of the simplices, the cubes and the
associahedra, the converse also holds: the image of the diagonal is given by the "magical
formula"

(F,G) ∈ Im4n ⇐⇒ top F ≤ botG .(1)

This formula, however, does not hold for the diagonal of the Forcey–Loday multiplihedra.

Proposition 3.7. The diagonal on the multiplihedron J4 is such that

Im44 ( {(F,G), top F ≤ botG} .
Proof. The pairs of faces (F,G) that satisfy dim F + dimG = 3 and top F ≤ botG include the
four pairs

(2)
( ( • • • ) • ) × ( ( • ( • • ) ) • ) ( ( • • • ) • ) × ( • ( • • ) • )
( ( • • • ) • ) × ( • ( • • ) • ) ( ( • ( • • ) ) • ) × ( • ( • • ) • )

and the four pairs

(3)
( ( • • • ) • ) × ( ( • ( • • ) ) • ) ( ( • • • ) • ) × ( • ( • • ) • )
( ( • • • ) • ) × ( • ( • • ) • ) ( ( • ( • • ) ) • ) × ( • ( • • ) • ) .

While the image Im44 contains the four pairs in (2), it does not include the four pairs in (3),
as can be checked directly from Theorem 2. �

Remark 3.8. We point out that Formula (1) also does not hold neither for the permutahedra
nor the operahedra in general, as proven in [Lap22, Section 3.2].

The diagonal 4n being a section of the projection π : Jn × Jn → Jn, (x, y) 7→ (x+ y)/2 [Lap22,
Proposition 1.1], one can in fact represent its cellular image by projecting it to Jn : for each
pair of faces (F,G) ∈ Im4n , one draws the polytope (F +G)/2 in Jn . This defines a polytopal
subdivision of Jn . The polytopal subdivision of J3 can be found in [Lap22, Figure 3], while the
polytopal subdivision of J4 is illustrated on the first page of this article.

Proposition 3.7 can then be illustrated geometrically as follows. There are two distinct
diagonals on J4 which agree with the Tamari-type order on the vertices. The first one, corre-
sponding to the diagonal defined in this paper, is induced by the choice of any orientation
vector ~v = (v1, v2, v3, v4) satisfying v1 > v2 > v3 > v4 and v1+v4 > v2+v3 (here we work with the
Ardila–Doker realization of the multiplihedron). Changing the last condition to v1+v4 < v2+v3
gives the second choice of diagonal, which is in fact exactly the diagonal of Saneblidze–Umble
[SU04, Section 5]. These two diagonals on J4 then di�er by four pairs of faces, as represented
in Figure 8: the first diagonal includes the pairs of (2), while the second diagonal includes the
pairs of (3). Under the projection π : J4 × J4 → J4, (x, y) 7→ (x + y)/2, these two families of
faces induce two distinct polytopal subdivisions of the same "diamond" inside J4, represented
in Figure 9. We also refer to the last paragraph of Section 4.2.3 for an algebraic counterpart
of Proposition 3.7.
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Remark 3.9. The two previous families of orientation vectors correspond to two adjacent
chambers in the fundamental hyperplane arrangement of the permutahedron [Lap22, Theo-
rem 3.6], separated by the hyperplane x1 + x4 = x2 + x3, pictured in blue in [Lap22, Figure
12]. A way to relate the diagonal constructed in this article to the diagonal of [SU04, Section
5] would possibly be to find further choices of chambers in the fundamental hyperplane ar-
rangements of the permutahedra (or the multiplihedra) in all dimensions n ≥ 4 recovering
the latter diagonal, see also [Lap22, Remark 3.18].

•

•

Figure 8. The four pairs of (2) represented in blue on the two top copies of
J4 and the four pairs of (3) represented in red on the two bottom copies of J4.
The minimal (top right) and maximal (bottom left) vertices for the Tamari-type
order are drawn in black, in the top left copy.

4. Tensor product of A∞-morphisms and A∞-functors

We begin by proving that for a certain choice of cellular orientation, the cellular chains
functor maps the Loday associahedra to the operad A∞ encoding A∞-algebras and the Forcey–
Loday multiplihedra to the operadic bimodule M∞ encoding A∞-morphisms between them.
It then maps the respective geometric diagonals to algebraic ones, which can be used to
define compatible tensor products of A∞-algebras and A∞-morphisms (with signs). Tensor
product of A∞-categories and A∞-functors are defined in a similar fashion, and we relate
them to the di�erent notions of A∞-categories with identities. We finally study coassociativity,
cocommutativity and compatibility with composition of A∞-morphisms for these diagonals.
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Figure 9. The two distinct subdivisions of the same "diamond" in J4, respec-
tively induced by the pairs of (2) and (3).

We show that these properties are always satisfied up to homotopy, hinting at the idea that the
category ∞-A∞-alg should possess some kind of homotopy symmetric monoidal structure.

4.1. A∞-algebras and A∞-morphisms.

4.1.1. De�nitions. Wework in the rest of this article with homological convention. We will refer
to chain complexes as dg modules, where the abbreviation dg stands for "di�erential graded",
and their di�erential will always have degree −1.

De�nition 4.1 (A∞-algebra). An A∞-algebra is the data of a dg module (A, ∂) together with oper-
ations

mn : A⊗n → A , n ≥ 2

of degree |mn | = n − 2, satisfying the equations

[∂,mn] = −
∑

p+q+r=n
2≤q≤n−1

(−1)p+qrmp+1+r (id⊗p ⊗ mq ⊗ id⊗r ) , n ≥ 2 .

De�nition 4.2 (A∞-morphism). AnA∞-morphism F : A B between twoA∞-algebras (A, {mn})
and (B, {m′n}) is a family of linear maps

fn : A⊗n → B , n ≥ 1

of degree | fn | = n − 1, satisfying the equations

[∂, fn] =
∑

p+q+r=n
q≥2

(−1)p+qr f p+1+r (id⊗p ⊗mq ⊗ id⊗r ) −
∑

i1+· · ·+ik=n
k≥2

(−1)εm′k ( f i1 ⊗ · · · ⊗ f ik ) , n ≥ 1 ,

where ε =
∑k

u=1(k − u)(1 − iu).
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For three A∞-algebras A, B, C and two A∞-morphisms F : A B, B C, their composi-
tion G ◦ F : A C is the A∞-morphism whose operation of arity n is given by the formula

(G ◦ F)n :=
∑

i1+· · ·+ik=n

(−1)εgk ( f i1 ⊗ · · · ⊗ f ik ) .

This composition is associative. We moreover point out that a standard dg (associative) algebra
can be defined as an A∞-algebra whose higher operations mn vanish for n ≥ 3. For more
details on these notions, we refer to [LV12, Chapter 9].

De�nition 4.3. We denote by ∞-A∞-alg the category of A∞-algebras with A∞-morphisms.

Representing the operations mn as corollae of arity n, the equations of Definition 4.1
read as

(4) [∂, ] = −
∑

p+q+r=n
2≤q≤n−1

(−1)p+qr p

q

r .

Representing the operations mn in blue , the operations m′n in red and the operations
fn by , the equations of Definition 4.2 can be rewritten as

[∂, ] =
∑

p+q+r=n
q≥2

(−1)p+qr p

q

r
−

∑
i1+· · ·+ik=n

k≥2

(−1)ε
i1 ik

.(5)

Finally, representing the operations fn by and the operations gn by , the formula for
the composition of A∞-morphisms reads as

∑
i1+· · ·+ik=n

(−1)ε
i1 ik

.(6)

4.1.2. The operad A∞ and the operadic bimodule M∞.

De�nition 4.4 (Operad A∞). The operad A∞ is the quasi-free dg operad generated in arity n ≥ 2
by one operation of degree n − 2

A∞ :=
�
T( , , , · · · ), ∂�

,

and whose di�erential is de�ned by Equations (4).

De�nition 4.5 (Operadic bimodule M∞). The operadic bimodule M∞ is the quasi-free (A∞,A∞)-
operadic bimodule generated in arity n ≥ 1 by one operation of degree n − 1

M∞ :=
(
TA∞,A∞( , , , , · · · ), ∂) ,

and whose di�erential is de�ned by Equations (5).

We denote by EndA the endomorphism operad of a dg module A, i.e. the operad whose dg
module of operations of arity n is EndA(n) := Hom(A⊗n, A). An A∞-algebra structure on A is
then equivalent to the datum of a morphism of operads A∞ → EndA. We denote similarly by
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HomA
B the (EndB,EndA)-operadic bimodule defined by HomA

B(n) := Hom(A⊗n, B). An A∞-
morphism between two A∞-algebras A and B is then equivalent to the datum of a morphism
of operadic bimodules M∞ → HomA

B.
Composition of A∞-morphisms can also be formulated at the level of the operadic bimodule

M∞ as a morphism of (A∞,A∞)-operadic bimodules M∞ → M∞ ◦A∞ M∞, where the notation
◦A∞ denotes the relative composite product [LV12, Section 11.2.1]. We write the first factor of
M∞ ◦A∞ M∞ using green for the color above the gauge and red for the color below the gauge,

M∞ := TA∞,A∞( , , , , · · · ) ,
and its second factor using blue for the color above the gauge and green for the color below
the gauge

M∞ := TA∞,A∞( , , , , · · · ) .
De�nition 4.6 (Composition morphism). The composition morphism is de�ned to be the mor-
phism of (A∞,A∞)-operadic bimodules comp : M∞ → M∞ ◦A∞M∞ given on the generating operations
of M∞ by

comp
� �

=
∑

i1+· · ·+ik=n

(−1)ε
i1 ik

.

The composition of two A∞-morphisms A B and B C is then equivalent to the following
composition of morphisms of operadic bimodules

M∞
comp
−→ M∞ ◦A∞ M∞ −→ HomB

C ◦EndB
HomA

B −→ HomA
C .

4.1.3. The Forcey–Loday multiplihedra realize the operadic bimodule M∞.

De�nition 4.7 (Cellular orientation). Let P ⊂ Rn be a polytope, and let F be a face of P. A
cellular orientation of F is a choice of orientation of its linear span. A cellular orientation of P is
a choice of cellular orientation for each face F of P.

We respectively denote by CW and dg −mod the symmetric monoidal categories of CW
complexes and of dg modules over Z, and by Ccell

• : CW → dg −mod the cellular chains
functor. A choice of a cellular orientation for every polytope P ∈ Poly defines an inclusion
Poly ⊂ CW. Then, the strong symmetric monoidal functor Ccell

• respectively sends operads
and operadic bimodules in polytopes to dg operads and dg operadic bimodules.

De�nition 4.8 (Left-levelwise order). Let t be a (2-colored) tree t. The left-levelwise order on the
vertices of t is de�ned by ordering them from bottom to top and from left to right, proceeding one level
at a time.

Given a tree t, there is a unique decomposition t = (· · · ((cn1 ◦i1 cn2)◦i2 cn3) · · ·◦ik cnk+1) where
the corollae cn are grafted according to this total order. Using the grafting operations defined
in Section 1.1.2, a 2-colored tree admits similarly a unique decomposition as a sequence of
blue corollae, red corollae and 2-colored corollae ordered according to this total order. We
can then make the same choices of cellular orientations as in [Maz21a, Section 1.4], illustrated
in Figure 10 :
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Figure 10. The tree on the left decomposes as (c4◦3c4)◦3c3 and the orientation
on the face it labels is determined by the product K4 × K4 × K3. The tree on
the right decomposes as (c4 ◦1 c3) ◦6 c4 and defines the orientation determined
by the product K4 × K3 × K4.

• For the Loday associahedra Kn ⊂ Rn−1 of [MTTV21], we choose the basis {e1 −
e j+1}1≤ j≤n−2 as positively oriented basis of the top dimensional cell . We then
choose the orientation of any other face t of Kn to be the image of the positively
oriented bases of the top cells of the polytopes Kni under the sequence of partial
compositions following the left-levelwise order on t.
• We choose the basis {−e j}1≤ j≤n−1 as positively oriented basis of the top dimensional
cell of the Forcey–Loday multiplihedra Jn ⊂ Rn−1. We then choose the orientation
of any other face t of Jn to be the image of the positively oriented bases of the top
cells of the polytopes Kni and Jn j under the sequence of action-compositions maps,
following the left-levelwise order on t.

Proposition 4.9. These cellular orientations on the Loday associahedra and the Forcey–Loday multi-
plihedra provide an isomorphism of dg operads Ccell

• ({Kn}) � A∞ and an isomorphism of dg operadic
bimodules Ccell

• ({Jn}) � M∞.

Proof. The choice of a cellular orientation endows the Kn and Jn with a natural CW structure
(see [Lap22, Proposition 4.22]). The choice of the left-levelwise order on trees ensures that
we recover precisely the usual sign conventions for the partial compositions of the quasi-free
operad A∞ and for the action-composition maps of the quasi-free operadic bimodule M∞. The
signs for the respecive di�erentials were computed in [Maz21a, Section 1.4]. �

4.2. Tensor product of A∞-algebras and A∞-morphisms.

4.2.1. Diagonals on the operad A∞ and on the operadic bimodule M∞.

De�nition 4.10 (Operadic diagonals).
(1) A diagonal on the operad A∞ is a morphism of dg operads 4 : A∞ → A∞ ⊗ A∞ which satis�es
4( ) = ⊗ .

(2) Given a diagonal on the operad A∞, a diagonal on the operadic bimodule M∞ is a morphism of
operadic bimodules 4 : M∞ → M∞ ⊗M∞ which satis�es 4( ) = ⊗ , and whereM∞ ⊗M∞
is endowed with its (A∞,A∞)-operadic bimodule structure induced by the diagonal on A∞.
Diagonals provide an adapted framework to define tensor products of A∞-algebras and A∞-

morphisms. Given a diagonal A∞ → A∞ ⊗ A∞ and two A∞-algebras A and B, one can define
an A∞-algebra structure on A ⊗ B by considering the following composition

A∞ −→ A∞ ⊗ A∞ −→ EndA ⊗ EndB −→ EndA⊗B .
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Given similarly a diagonal M∞ → M∞ ⊗ M∞ and two A∞-morphisms F1 : A1  B1 and
F2 : A2  B2, one can define an A∞-morphism F1 ⊗ F2 : A1 ⊗ A2  B1 ⊗ B2 by the following
composition

M∞ → M∞ ⊗M∞ → HomA1
B1
⊗ HomA2

B2
→ HomA1⊗A2

B1⊗B2
.

We moreover point out that the conditions 4( ) = ⊗ and 4( ) = ⊗ respectively
imply that these constructions recover the standard tensor product of dg algebras and the
standard tensor product of ordinary morphisms between dg algebras.

4.2.2. Admissible edges and permutations. We fix a (2-colored) nested linear graph (`,N). We
denote by Ni the unique minimal nest of Nwith respect to nest inclusion, which contains the
edge i.

De�nition 4.11 (Admissible edge). For a nested linear graph (`,N), an edge i is admissible with
respect to N if i , min Ni . For a 2-colored nested linear graph (`,N), an edge i is admissible with
respect to N when Ni is bicolored, or if i , min Ni when Ni is monochrome. We denote the set of
admissible edges ofN by Ad(N).
De�nition 4.12 (Left-levelwise order). The left-levelwise order on N is de�ned by ordering the
nests by decreasing order of cardinality, and ordering two nests of the same cardinality according to the
increasing order on their minimal elements.

Under the bijection of Lemma 3.4, the left-levelwise order on the nesting of a nested linear
graph is equivalent to the left-levelwise order on the vertices of the corresponding tree t, as
defined in Definition 4.8 .

Consider the left-levelwise order N1 < N2 < · · · < Nk on the nesting N = {N j}1≤ j≤k . We
endow the set Ad(N) with a total order, by ordering the admissible edges of N1 \ ∪2≤ j≤k Nj in
increasing order, then the admissible edges of N2 \ ∪3≤ j≤k Nj in increasing order, and so on.
Given two nestings N,N′ of `, we endow the set Ad(N)tAd(N′) with the total order given by
following the total order on Ad(N) and then the total order on Ad(N′). We denote by 4K and
4J the algebraic diagonals obtained from the polytopal ones by applying the cellular chains
functor, see Propositions 4.15 and 4.18 below. The proofs of these two propositions include
the proofs of the following two lemmas.

Lemma 4.13. For a pair of nestings of complementary dimensions (N,N′) ∈ Im4K , the function
σNN′ : Ad(N) tAd(N′)→ (1, 2, . . . , |Ad(N) tAd(N′)|) de�ned on i ∈ Ad(N) by

σNN′(i) =



min Ni − 1 if i ∈ Ad(N) ∩Ad(N′) and 1 , min Ni < min N ′i
i − 1 otherwise ,

and similarly on i ∈ Ad(N′) by reversing the roles of N and N′, induces a permutation of the set
{1, 2, . . . , |Ad(N) tAd(N′)|} that we will still denote by σNN′ .

Lemma 4.14. For a pair of 2-colored nestings of complementary dimensions (N,N′) ∈ Im4J , the
function σNN′ : Ad(N) tAd(N′)→ (1, 2, . . . , |Ad(N) tAd(N′)|) de�ned on i ∈ Ad(N) by

σNN′(i) =



min Ni if i ∈ Ad(N) ∩Ad(N′), Ni is monochrome and N ′i is not

min Ni
if i ∈ Ad(N) ∩Ad(N′), Ni and N ′i are monochrome
and min Ni < min N ′i ,

i otherwise ,
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and similarly on i ∈ Ad(N′) by reversing the roles of N and N′, induces a permutation of the set
{1, 2, . . . , |Ad(N) tAd(N′)|} that we will still denote by σNN′ .

4.2.3. The polytopal diagonals on A∞ and M∞. We use nested linear graphs introduced in Sec-
tion 3.1 to work with the operad A∞ and the operadic bimodule M∞. The generating operation
of arity n of A∞ corresponds to the trivial nested linear graph with n vertices ( • · · · • ), while
the generating operation of arity n of M∞ is represented by the trivial 2-colored nested linear
graph with n vertices ( • · · · • ).
Proposition 4.15. The image under the functor Ccell

• of the diagonal of the Loday associahedra
constructed in [MTTV21] de�nes a diagonal on the operad A∞, that we denote 4K . It is determined
by the formula

4K (( • · · · • )) =
∑

N,N′∈Nn
top(N)≤bot(N′)

|N|+|N′ |=n

(−1)|Ad(N)∩Ad(N′)|sgn(σNN′)N⊗N′ ,

where • · · · • stands for the linear graph with n vertices.

Proof. The image of the diagonal on the Loday associahedra under the functor Ccell
• defines

a diagonal on the operad A∞ as this functor is strong monoidal. This diagonal 4K : A∞ →
A∞ ⊗ A∞ is determined by the image of the generating operations of the quasi-free operad
A∞, which are the trivially nested linear graphs. The signs arise from the choices of cellular
orientations on the Loday associahedra made in Section 4.1.3 as follows. As explained in the
proof of [Lap22, Proposition 4.27], the computation of the signs boils down to the computation
of the determinant of the bases eFj , e

G
j determining the cellular orientations of the faces F and

G associated to the nestings Nand N′, expressed in the basis e j of the top dimensional cell of
Kn . The second part of the proof of [Lap22, Theorem 1.26] shows that dim(F ∩ ρzG) = 0, for
any z ∈ (F̊ + G̊)/2. Combined with the fact that dim F + dimG = dimKn , this implies that the
two bases eFj , e

G
j form together a basis of the linear span of Kn . Writing horizontally the eFj

and then the eGj in the basis e j defines a square matrix. The positions of the rightmost non-
zero entries of each line are given by the admissible edges ofNandN′. The permutation σNN′

corresponds to a permutation of the lines of this matrix, sending these righmost entries to the
diagonal, except for one case: when N and N′ share the same admissible edge. In this case,
linear independence guarantees that the two vectors di�er in another place. We moreover
point out that that the −1 term in the definition of the permutation σNN′ in Lemma 4.13
stems from the fact that Kn is defined in Rn−1 but has dimension n − 2. �

We compute in particular

4K (( • • )) = ( • • ) ⊗ ( • • ) ,
4K (( • • • )) = ( ( • • ) • ) ⊗ ( • • • ) + ( • • • ) ⊗ ( • ( • • ) ) ,
4K (( • • • • )) = ( • • • • ) ⊗ ( • ( • ( • • ) ) ) + ( ( ( • • ) • ) • ) ⊗ ( • • • • )

− ( ( • • ) • • ) ⊗ ( • •( • • ) ) + ( ( • • • ) • ) ⊗ ( • ( • • ) • )
+ ( ( • • • ) • ) ⊗ ( • ( • • • ) ) + ( • ( • • ) • ) ⊗ ( • ( • • • ) ) .

Remark 4.16. Proposition 4.15 completes the work of [MTTV21], by explicitly computing
the signs for the polytopal diagonal on the dg level. This formula corresponds in fact to the
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formula originally computed in [MS06] (up to signs verification). We also conjecture that this
diagonal is equal to the diagonal constructed in [SU04].

De�nition 4.17 (Tensor product of A∞-algebras). Given A and B two A∞-algebras, their tensor
product as A∞-algebras is de�ned to be the dg module A ⊗ B endowed with the A∞-algebra structure
induced by the diagonal 4K .

Proposition 4.18. The image under the functor Ccell
• of the diagonal on the Forcey–Loday multipli-

hedra constructed in this paper de�nes a diagonal on the operadic bimoduleM∞, that we denote 4J . It
is determined by the formula

4J (( • · · · • )) =
∑
N,N′

(−1)|Ad(N)∩Ad(N′)|sgn(σNN′)N⊗N′ ,

where the sum runs over the pairsN,N′ ∈ N2
n such that |mono(N)|+ |mono(N′)| = n−1 and which

satisfy the conditions in Theorem 2.

Proof. The proof is similar to the proof of Proposition 4.15. Note that in this case, there is no −1
term in the definition of the permutation σNN′ in Lemma 4.14 since Jn is full-dimensional. �

We compute in particular

4J (( • )) = ( • ) ⊗ ( • ) ,
4J (( • • )) = ( • • ) ⊗ ( • • ) + ( • • ) ⊗ ( • • ) ,
4J (( • • • )) = ( ( • • ) • ) ⊗ ( • • • ) + ( • • • ) ⊗ ( • ( • • ) )

− ( • • • ) ⊗ ( • ( • • ) ) − ( • • • ) ⊗ ( • ( • • ) )
+ ( • ( • • ) ) ⊗ ( • ( • • ) ) − ( ( • • ) • ) ⊗ ( ( • • ) • )
+ ( ( • • ) • ) ⊗ ( • • • ) + ( ( • • ) • ) ⊗ ( • • • ) .

De�nition 4.19 (Tensor product of A∞-morphisms). Let F1 : A1  B1 and F2 : A2  B2
be two A∞-morphisms between A∞-algebras. Their tensor product is de�ned to be the A∞-morphism
F1 ⊗ F2 : A1 ⊗ A2 B1 ⊗ B2 induced by the diagonal 4Jon M∞ .

One can ask whether the dg "magical formula" for the diagonal on the operad A∞ also de-
fines a diagonal on the operadic bimodule M∞, i.e. if by relaxing the conditions of Theorem 2
to the condition top(N) ≤ bot(N′), the formula of Proposition 4.18 still defines a diagonal on
M∞ . A simple computation in arity 4 shows that the answer to this question is negative. In
other words, it is not possible to naively extend the "magical formula" for the tensor product
of A∞-algebras to define a tensor product of A∞-morphisms, see also Section 3.3.

4.3. Categori�cation.

4.3.1. Tensor product of A∞-categories and A∞-functors. The horizontal categorifications of the
notions of A∞-algebra and A∞-morphism are the notions of A∞-category and A∞-functor,
respectively. We refer to [Sei08, Chapter 1] for the definitions of these two notions. We borrow
the notations from [Sei08] and will moreover use the sign conventions of Section 4.1.

De�nition 4.20 (Tensor product of A∞-categories). The tensor product of two A∞-categories A
and B is given by

• the set of objects Ob(A⊗B) B Ob(A) ×Ob(B),
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• for each pair of objects X1 × Y1, X2 × Y2 ∈ Ob(A⊗B), the dg module of morphisms
A⊗B(X1 × Y1, X2 × Y2) B A(X1, X2) ⊗B(Y1,Y2) ,

and by de�ning the higher compositions mn as in Proposition 4.15.

De�nition 4.21 (Tensor product of A∞-functors). The tensor product of two A∞-functors F :
A1 B1 and G : A2 B2 is given by the function

Ob(F⊗ G) B Ob(F) ×Ob(G) : Ob(A1 ⊗B1)→ Ob(A2 ⊗B2) ,
and by de�ning the operations (F⊗ G)n as in Proposition 4.18.
4.3.2. Identities. The category H∗(A) associated to an A∞-category A does not necessarily
have identity morphisms. As explained in [Sei08, Section 1.2], there exist three notions of A∞-
category with identity morphisms : strictly unital A∞-category, cohomologically unital A∞-category
and homotopy unital A∞-category.

(1) A cohomologically unital A∞-category is an A∞-category A which is such that H∗(A) has
identity morphisms.

(2) A strictly unital A∞-category is an A∞-category together with an element eX ∈ A(X, X)
for every X ∈ Ob(A) such that ∂(eX ) = 0, m2(e, ·) = m2(·, e) = id and mn(· · · , e, · · · ) =
0 for n ≥ 3.

(3) A homotopy unital A∞-category is defined to be an A∞-category together with elements
eX ∈ A(X, X) and endowed with additional operations encoding the fact that the previous
relations on the mn and the eX are satisfied only up to higher coherent homotopies, see
also [HM12, Section 6.1].

We have in particular that

unital⇒ homotopy unital⇒ cohomologically unital .

The proof of the following proposition is straightforward.

Proposition 4.22.

(1) If A and B are cohomologically unital A∞-categories, the tensor A∞-category A ⊗ B is again
cohomologically unital.

(2) If Aand B are unital A∞-categories, the tensor A∞-category A⊗B is again unital, with identity
morphisms eX×Y := eX ⊗ eY for X ∈ Ob(A) and Y ∈ Ob(B).
If Aand B are homotopy unital A∞-categories, we have to define the additional operations

associated to the fact that the elements eX ⊗ eY are identity morphisms up to homotopy in
order to endow the A∞-category A ⊗ B with a homotopy unital A∞-category structure. In
other words, we have to define a diagonal on the operad uA∞ encoding homotopy unital
A∞-algebras, which has not been done yet to the authors knowledge. An idea would be to
define a diagonal on the unital associahedra, which are CW-complexes constructed by Muro
and Tonks in [MT14] and which form an operad whose image under the cellular chains is the
operad uA∞ . However, not all unital associahedra are polytopes, meaning that the present
techniques cannot be directly applied to them.

4.4. Homotopy properties of diagonals on A∞ and M∞.
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4.4.1. The 2-colored viewpoint. The operad A∞ together with the operadic bimodule M∞ define
the quasi-free 2-colored operad

A2
∞ :=

�
T( , , , · · · , , , , · · · , , , , , · · · ), ∂�

,

whose di�erential is given by the equations of Definition 4.1 and Definition 4.2. We refer to
[Yau16, Section 11] for a complete definition of a 2-colored operad. The data of A∞-algebra
structures on two dg modules A and B together with an A∞-morphism A B between them
is equivalent to a morphism of 2-colored operads A2

∞ −→ End(A ; B), where End(A; B) is the
endomorphism 2-colored operad naturally associated to A and B. The data of a diagonal on
the operad A∞ and of a diagonal on the operadic bimodule M∞ is moreover equivalent to
the datum of a morphism of 2-colored operads A2

∞ −→ A2
∞ ⊗ A2

∞, while the composition of
A∞-morphisms can be defined by a morphism of 2-colored operads A2

∞ −→ A2
∞ ◦A∞ A2

∞.

4.4.2. Coassociativity and cocommutativity. First, we would like to know whether given three A∞-
algebras A, B and C, the two A∞-algebra structures (A ⊗ B) ⊗ C and A ⊗ (B ⊗ C) on the dg
module A⊗ B ⊗C are the same. In operadic terms, this amounts to ask if the diagonal on A∞
is coassociative.

Proposition 4.23.
(1) There is no diagonal on the operad A∞ which is coassociative.
(2) There is no diagonal on the operadic bimodule M∞ which is coassociative.

Proof. The non-existence of a coassociative diagonal on the operad A∞ was already proven in
[MS06, Section 6]. The non-existence of a coassociative diagonal on the operad A∞ implies
the non-existence of a coassociative diagonal on the operad M∞. Given indeed diagonals
4A∞ and 4M∞ , it is not possible to compare the two morphisms of dg operadic bimodules
(4M∞⊗idM∞)4M∞ and (idM∞⊗4M∞)4M∞ , as the (A∞,A∞)-operadic bimodule structures induced
on M⊗3∞ by (4A∞ ⊗ idA∞)4A∞ and (idA∞ ⊗ 4A∞)4A∞ do not coincide. We can in fact prove a
stronger result: for any diagonal 4 : M∞ → M∞ ⊗M∞, we have that

((id ⊗ 4)4 − (4 ⊗ id)4) (( • • • )) , 0 .

The proof of this result involves computations identical to the ones of [MS06, Section 6], that
we do not include for the sake of concision. �

This proposition implies in particular that a diagonal on the 2-colored operad A2
∞ is never

coassociative. In the specific cases of 4K and 4J we compute moreover that
�(id ⊗ 4K )4K − (4K ⊗ id)4K � (( • • • • ))

= − ∂ (( ( • • • ) • ) ⊗ ( • ( • • ) • ) ⊗ ( • ( • • • ) )) ,
and that

�(id ⊗ 4J )4J − (4J ⊗ id)4J � (( • • • ))
= ∂ (( • • • ) ⊗ ( • ( • • ) ) ⊗ ( • ( • • ) ) − ( ( • • ) • ) ⊗ ( ( • • ) • ) ⊗ ( • • • )) .

Given two A∞-algebras A and B, we would also like to know whether the A∞-algebra struc-
ture on B ⊗ A can simply be obtained from the maps defining the A∞-algebra structure on
A ⊗ B

mA⊗B
n : (A ⊗ B)⊗n → A ⊗ B
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by rearranging (A⊗ B)⊗n into (B⊗ A)⊗n and A⊗ B into B⊗ A. In operadic terms, this amounts
to ask if the diagonal on A∞ is cocommutative or not.

Proposition 4.24. The diagonals 4K and 4J are not cocommutative.

Proof. We compute indeed that
�
4K − τ4K

� (( • • • )) = ∂ (( • • • ) ⊗ ( • • • )) ,
where τ acts by the permutation (1 2) on the operad A∞ ⊗ A∞. We also compute that

�
4J − τ4J

� (( • • )) = ∂ (( • • ) ⊗ ( • • )) .
�

We conjecture in fact that Proposition 4.24 holds for any diagonal on the operad A∞ and for
any diagonal on the operadic bimodule M∞.

4.4.3. Compatibility with the composition. We would finally like to know whether the tensor
product is functorial with respect to the composition of A∞-morphisms. In other words, if
given four A∞-morphisms F1 : A1  B1, G1 : B1  C1, F2 : A2  B2 and G2 : B2  C2 they
satisfy the following equality

(G1 ⊗ F1) ◦ (G2 ⊗ F2) = (G1 ⊗ G2) ◦ (F1 ⊗ F2) .
In operadic terms, this amounts to ask if the diagonal 4 on M∞ together with the composition
morphism comp of Section 4.1.2 satisfy the following equality

(comp ⊗ comp)4 = (4 ◦A∞ 4)comp .

Proposition 4.25. There is no diagonal on the operadic bimodule M∞ which is compatible with the
composition of A∞-morphisms.

Proof. Let 4 be a diagonal M∞ → M∞ ⊗M∞. The compatibility with the di�erential implies
that 4 is necessarily of the form

4(( • )) = ( • ) ⊗ ( • )
and

4(( • • )) = α(( • • ) ⊗ ( • • ) + ( • • ) ⊗ ( • • ))
+ (1 − α)(( • • ) ⊗ ( • • ) + ( • • ) ⊗ ( • • )) ,

where α ∈ Z. We compute that if the equality

(comp ⊗ comp)4(( • • )) = (4 ◦A∞ 4)comp(( • • ))
holds, we necessarily have that α = 0 and that α = 1, which is not possible. �

In the case of the diagonals 4K and 4J , we compute that

�
comp ◦ 4J − (4J ◦A∞ 4J ) ◦ comp

� � �
= ∂

(
⊗

)
.
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4.4.4. Homotopy properties. While coassociativity, cocommutativity and compatibility with the
composition are not satisfied by the diagonals 4K and 4J , we will now prove that a diagonal
on the 2-colored operad A2

∞ always satisfies these properties up to homotopy. We use the
notion of homotopy between morphisms of 2-colored operads as defined in [MSS02, Section
3.10].

Proposition 4.26. Let 4 be a diagonal on the 2-colored operad A2
∞.

(1) The morphisms of operads (4⊗ id)4) and (id⊗4)4) are homotopic. In other words, a diagonal
on A2

∞ is always coassociative up to homotopy.
(2) The morphisms of operads 4 and τ4 are homotopic. In other words, a diagonal on A2

∞ is
always cocommutative up to homotopy.

(3) The morphisms of operads comp◦4J and (4J ◦A∞ 4J )◦comp are homotopic. In other words,
a diagonal on A2

∞ is always compatible with the composition of A∞-morphisms up to homotopy.

Proof. The proof of this proposition is a simple adaptation of the results of [MS06, Section 2]
in the context of 2-colored dg operads, applied to the minimal model A2

∞ for the 2-colored dg
operad As2 encoding pairs of dg algebras together with morphisms between them. �

While Proposition 4.25 shows that it is not possible to endow the category ∞-A∞-alg with
a symmetric monoidal category structure using the viewpoint of diagonals, Proposition 4.26
exhibits a first level of homotopies that could be involved in the definition of some kind of
homotopy symmetric monoidal category structure on ∞-A∞-alg. This question will be studied in
a future work by D. Poliakova and the two authors of this paper. As a first step towards solving
that problem, we will inspect in particular which higher coherent homotopies arise from the
lack of coassociativity of 4Kn and 4Jn on the level of polytopes.

5. Further applications

We first prove that a diagonal on the dg operad A∞ is equivalent to a retraction of the
bar-cobar resolution AA∞ onto the operad A∞ . We then explain how to associate a convo-
lution A∞-algebra to an A∞-coalgebra and an A∞-algebra, as well as A∞-morphisms between
convolution A∞-algebras, using diagonals on A∞ and M∞. We finally describe two possible
applications of our results in symplectic topology: in the context of Heegard Floer homology,
and to study tensor products of Fukaya categories/algebras and A∞-functors between them.

5.1. Retractions and diagonals. Recall that the operad A∞ is the minimal model A∞ = ΩAs¡

of the dg operad As encoding associative algebras. Another cofibrant replacement of the
operad As is given by the bar-cobar (or Boardman-Vogt) resolution AA∞ := ΩBAs, which is
defined as the quasi-free operad

AA∞ :=
�
T( , , , , · · · ,PTn , · · · ), ∂�

,

where PTn is the set of planar rooted trees of arity n and the degree of a tree is defined as the
number of its internal edges. We refer to [LV12, Section 9.3] for a complete study of the operad
AA∞, and in particular for a definition of its di�erential. There exists an explicit embedding
of dg operads A∞ → AA∞, as constructed in [MS06, Section 4] and in [Maz21a, Section
1.3.1.5]. The problem of the construction of an explicit morphism of dg operads AA∞ → A∞
is more complicated and is the subject of the following proposition.
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De�nition 5.1 (Retraction). A morphism of dg operads AA∞ → A∞ sending to will be called
a retraction of the operad AA∞ onto the operad A∞.

Proposition 5.2. The datum of a diagonal on the operadA∞ is equivalent to the datum of a retraction
r : AA∞ → A∞.

Proof. We apply the general theory of operadic twisting morphisms [LV12, Section 6.4] to
prove the following sequence of isomorphisms:

HomOp(ΩAs¡,ΩAs¡ ⊗ ΩAs¡) � Tw(As¡,ΩAs¡ ⊗ ΩAs¡)
� Tw(BAs,ΩAs¡)
� HomOp(ΩBAs,ΩAs¡) .

The first and last isomorphisms are given by the bar-cobar adjunction. We thus only need to
explain the second isomorphism. A twisting morphism As¡ → ΩAs¡ ⊗ ΩAs¡ is by definition
a Maurer–Cartan element in the convolution pre-Lie algebra associated to the convolution
dg operad Hom(As¡,ΩAs¡ ⊗ ΩAs¡). This convolution dg operad is in turn isomorphic to
the desuspension S−1(ΩAs¡ ⊗ ΩAs¡). Since the cooperad As¡ is 1-dimensional in every arity,
and since the arity-wise linear dual dg cooperad of the desuspended dg operad S−1(ΩAs¡)
is isomorphic to the bar construction BAs, we have that the desuspension S−1(ΩAs¡ ⊗ ΩAs¡)
is isomorphic to the convolution dg operad Hom(BAs,ΩAs¡). We hence have the following
isomorphisms of dg operads

Hom(As¡,ΩAs¡ ⊗ ΩAs¡) � S−1(ΩAs¡ ⊗ ΩAs¡) � Hom(BAs,ΩAs¡) .
This implies an isomorphism on the level of the Maurer–Cartan elements of the associated dg
pre-Lie algebras, that is

Tw(As¡,ΩAs¡ ⊗ ΩAs¡) � Tw(BAs,ΩAs¡) .
We finally check that the condition 4( ) = ⊗ is equivalent to the condition r( ) = . �

Proposition 5.2 clarifies in particular the construction of the diagonal on the operad A∞
given in [MS06]. The operad AA∞ can indeed be seen as the cellular chains on the cubical
realization of the associahedra [LV12, Section 9.3.1]. It comes with an elementary diagonal
AA∞ → AA∞ ⊗ AA∞ defined using the Serre cubical diagonal of [Ser51]. M. Markl and S.
Shnider then define a retraction r : AA∞ → A∞ and deduce a diagonal on the operad A∞ as
the composite

A∞ −→ AA∞ −→ AA∞ ⊗ AA∞
r ⊗r
−→ A∞ ⊗ A∞ .

Their choice of retraction recovers the diagonal constructed directly on the level of the asso-
ciahedra in [MTTV21, Theorem 2]. A similar proof would however not adapt to the case of
the multiplihedra, as they are not simple polytopes hence do not admit a cubical realization.

Remark 5.3. As observed in [Lap22, Remark 1.6], the methods used to construct our cellular
approximation of the diagonal could be related to the Fulton–Sturmfels formula [FS97, Theo-
rem 4.2], appearing in the study of the intersection theory on toric varieties. We also expect
an interpretation of Proposition 5.2 in terms of Morse theory, in the vein of [FMMS21, Fra07].
There should also be an interpretation in terms of discrete Morse theory as in [Tho18, Section
1.1.4] for the case of the standard simplices.
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5.2. Convolution A∞-algebra.

5.2.1. Standard convolution algebra. Given a dg algebra A and a dg coalgebra C, recall from
[LV12, Section 1.6] that one can define the convolution algebra of C and A as the dg algebra
(Hom(C, A), [∂, ·],?), where Hom(C, A) is the dg module of maps C → A, endowed with the
convolution product f ? g := µA ◦ ( f ⊗ g) ◦ ∆C . The convolution algebra construction is in
fact functorial, i.e. fits into a bifunctor (dg − cog)op × dg − alg → dg − alg defined on objects
as (C, A) 7→ Hom(C, A). A Maurer-Cartan element α of Hom(C, A), i.e. a map α : C → A such
that [∂, α] + α ? α = 0, is then called a twisting morphism. Twisting morphisms define twisted
di�erentials on the tensor product C ⊗ A via the formula

∂α := ∂C⊗A + (id ⊗ µA)(id ⊗ α ⊗ id)(∆C ⊗ id) .
Twisted di�erentials appear in the computation of the singular homology of fiber spaces

[Bro59]. Given a fibration F → X → B satisfying some mild assumptions, the singular homol-
ogy of X can then be computed as the homology of the tensor product C∗(B)⊗C∗(F) endowed
with a twisted di�erential, where C∗(F) is seen as a dg module over the dg algebra C∗(ΩB).
5.2.2. Convolution A∞-algebra. One defines an A∞-coalgebra structure on a dg module C to be
a morphism of dg operads A∞ → coEndC , where coEndC (n) = Hom(C,C⊗n). Put di�erently,
it is the structure dual to the structure of A∞-algebra, i.e. it corresponds to a collection of
operations cn : C → C⊗n of degree n − 2 satisfying the equations obtained by inverting inputs
and outputs in the equations for A∞-algebras. The notion of an A∞-morphism between A∞-
coalgebras is defined in a similar fashion: either in terms of operations fn : C → D⊗n of degree
n− 1 and satisfying the equations dual to the equations for A∞-morphisms, or equivalently as
a morphism of dg operadic bimodules M∞ → coHomC1

C2
. Our results allow us to extend the

convolution algebra construction when C is an A∞-coalgebra and A is an A∞-algebra.

Proposition 5.4.
(1) Let C be an A∞-coalgebra and A be an A∞-algebra. A diagonal on the operad A∞ yields an

A∞-algebra structure on the dg module (Hom(C, A), ∂). We call this A∞-algebra the convolution
A∞-algebra of C and A.

(2) Let F : A1  A2 be an A∞-morphism between two A∞-algebras A1 and A2 and G : C2  C1 be
an A∞-morphism between two A∞-coalgebras C2 and C1. A diagonal on the operad M∞ yields an
A∞-morphism between the convolution A∞-algebras Hom(C1, A1) and Hom(C2, A2).

Proof.

(1) Given a diagonal A∞ → A∞⊗A∞, the following composite of morphism of operads defines
the A∞-algebra structure on Hom(C, A) :

A∞ → A∞ ⊗ A∞ → coEndC ⊗ EndA → EndHom(C,A) ,
where the morphism of dg operads coEndC ⊗ EndA → EndHom(C,A) is straightforward to
define.

(2) Given a diagonal M∞ → M∞ ⊗ M∞, we consider in a similar fashion the composite of
morphism of operadic bimodules

M∞ → M∞ ⊗M∞ → coHomC2
C1
⊗ HomA1

A2
→ HomHom(C1,A1)

Hom(C2,A2) .
�
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Proposition 5.5. For any diagonal on A∞, and for any diagonal onM∞, the convolution A∞-algebra
Hom(C, A) does not de�ne a bifunctor (∞-A∞-cog)op ×∞-A∞-alg → ∞-A∞-alg.
Proof. This is a direct corollary to Proposition 4.25. �

Proposition 5.4 implies in particular that for an A∞-coalgebra C and an A∞-algebra A, it is
still possible to define the notion of a twisting morphism α : C → A as a Maurer-Cartan element
in the A∞-algebra Hom(C, A), see [DSV18, Equation 1, p.8] for instance. It also implies that
the A∞-morphism Hom(C1, A1)  Hom(C2, A2) defined by the A∞-morphism F : A1  A2
and G : C2  C1, sends a twisting morphism C1 → A1 to a twisting morphism C2 → A2. We
will use this key property in order to pursue the work of Brown [Bro59] and [Pro86] on the
homology of fibered spaces in a forthcoming paper.

5.2.3. Diagonals as twisting morphisms. The results of Section 5.2.2 can be interpreted in a more
general framework, developed by D. Robert-Nicoud and F. Wierstra in [RNW19b, RNW19a].

Proposition 5.6. The datum of a diagonal on A∞ is equivalent to the datum of a twisting morphism
α ∈ Tw(BAs,ΩAs¡) sending to .

Proof. This result was proven in the proof of Proposition 5.2. �

Setting C = BAs and P = ΩAs¡ and working in the context of non-symmetric operads
where the operad L∞ of [RNW19b, RNW19a] is replaced by the operad A∞, we recover Propo-
sition 5.6 (and thus Proposition 5.2) via [RNW19b, Theorem 7.1] and Point (1) of Proposi-
tion 5.4 via [RNW19b, Theorem 4.1]. We denote by A∞- alg the category of A∞-algebras and
their strict morphisms [LV12, Section 10.2.1]. It is shown in [RNW19b, Corollary 5.4] that the
assignments

Hom(−, id) : (∞-A∞-cog)op ×A∞- alg → A∞- alg(7)

Hom(id,−) : (A∞- cog)op ×∞-A∞-alg → A∞- alg(8)

given by the convolution A∞-algebra extend to bifunctors. The authors also show that these
two bifunctors do not extend to a bifunctor

Hom(−,−) : (∞-A∞-cog)op ×∞-A∞-alg → ∞-A∞-alg(9)

in general, since this assignment is not compatible with the composition of A∞-morphisms
[RNW19b, Theorem 6.6]. Point (2) of Proposition 5.4 allows us to define the assignment (9)
directly, and Proposition 5.5 can be seen as a stronger version of [RNW19b, Theorem 6.6], in
the special case of A∞-algebras.

The main result of [RNW19a] says that if a twisting morphism α ∈ Tw(BAs,ΩAs¡) is Koszul,
then the possible compositions of the two bifunctors (7) and (8) are homotopic and that they
extend to a bifunctor on the level of the homotopy categories [RNW19a, Theorem 3.6 and
Corollary 3.8]. This should be seen as a statement analogous to Point (3) of Proposition 4.26.
It would be interesting to know how the results of [RNW19b, RNW19a] can be interpreted
from the viewpoint of diagonals, and if they admit an interpretation on the level of polytopes.

5.3. Diagonals in symplectic topology.
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5.3.1. The work of Lipshitz, Oszváth and Thurston. In [LOT20], R. Lipshitz, P. Oszváth and
D. Thurston also study diagonals on the dg operad A∞ and on the dg operadic bimodule
M∞. They however work exclusively on the dg level, constructing abstract diagonals by using
the fact that A∞ and M∞ are contractible, and do not provide explicit formulae for these
diagonals as in Proposition 4.15 and Proposition 4.18. The goal of their work is to study
bordered Heegaard Floer homology of 3-manifolds. Given a 3-manifold Y with two boundary
components, they aim to construct a bimodule twisted complex CFDD−(Y ), also called a type
DD-bimodule. The definition of such an object uses a diagonal on the dg operad A∞. A
diagonal on M∞ is then needed in order to relate the categories of bimodules defined with
di�erent diagonals on A∞, which in turn is needed for properties like the associativity of tensor
products. They also expect that diagonals on M∞ could be needed in a distant future to define
A∞-morphisms between bimodule twisted complexes arising from a cobordism between 3-
manifolds Y1 and Y2. Thus, the explicit formula for the diagonal defined in this paper could be
used to compute invariants of 3 and 4-manifolds, via implementation in a computer program
for instance.

5.3.2. Künneth theorems in Lagrangian Floer theory. Let (M, ω) be a closed symplectic manifold,
i.e. a closed manifold M together with a closed non-degenerate 2-formω on M . The Fukaya cat-
egory Fuk(M, ω) of (M, ω) is defined to be the (curved filtered unital) A∞-category whose objects
are (unobstructed) Lagrangian submanifolds of M and higher compositions are defined by
counting pseudo-holomorphic disks with Lagrangian boundary conditions and marked points
on their boundary, as represented in Figure 11. We refer for instance to [Smi15] and [Aur14] for
introductions to this subject. Given a closed spin Lagrangian submanifold L ⊂ M, K. Fukaya
also constructs in [Fuk10] a strictly unital A∞-algebra F(L), the Fukaya algebra of the La-
grangian L, whose higher multiplications are again defined by counting pseudo-holomorphic
disks.

xn

xn−1

x1

x2

y

Ln−1L1

L0 Ln

M
xn

xn−1

x1

x2

y

Ln−1L1

L0 Ln

M0

M1

L01

Figure 11. On the left, a pseudo-holomorphic disk defining the A∞-category
structure on Fuk(M). On the right, a pseudo-holomorphic quilted disk defining
an A∞-functor Fuk(M0) Fuk(M1)

In [Amo17], L. Amorim shows that given two symplectic manifolds M1 and M2 together
with Lagrangians Li ⊂ Mi , the Fukaya algebra of the product Lagrangian L1 × L2 is quasi-
isomorphic to the tensor product of their Fukaya algebras, i.e. F(L1 × L2) ' F(L1) ⊗ F(L2).
His proof relies on a theorem that he proves in [Amo16], giving a criterion for an A∞-algebra C
to be quasi-isomorphic to the tensor A∞-algebra A⊗ B (see Definition 4.17) of two commuting
A∞-subalgebras A ⊂ C and B ⊂ C, which he then applies to the two A∞-subalgebras F(L1) ⊂
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F(L1 × L2) and F(L2) ⊂ F(L1 × L2). Fukaya generalizes this result in [Fuk17], working this
time on the level of Fukaya categories. He proves that for two closed symplectic manifolds M0
and M1 there exists a unital A∞-functor

Fuk(M0) ⊗ Fuk(M1) −→ Fuk(M−0 × M1)
which is a homotopy equivalence to its image.

Let now M0 and M1 be two compact symplectic manifolds. Define a Lagrangian correspondence
from M0 to M1 to be a Lagrangian submanifold L ⊂ M−0 × M1. In [MWW18], S. Mau, K.
Wehrheim and C. Woodward associate to a Lagrangian correspondence L (with additional
technical assumptions) an A∞-functor ΦL : Fuk(M0) Fuk(M1). It is defined on objects as

ΦL(L0) := πM1(L0 ×M0 L) ,
where πM1 denotes the projection M0 × M−0 × M1 → M1 and ×M0 is the fiber product over
M0. The operations of ΦL are defined by counting pseudo-holomorphic quilted disks with
Lagrangian boundary conditions, seam condition on L and marked points on their bound-
ary, as represented in Figure 11. The tensor product of A∞-functors defined in the present
paper allows one to consider the A∞-functor ΦLM ⊗ ΦLN associated to a pair of Lagrangian
correspondences, raising the following question.

Problem. Does the diagram

Fuk(M0) ⊗ Fuk(N0) Fuk(M1) ⊗ Fuk(N1)

Fuk(M0 × N0) Fuk(M1 × N1)

ΦLM
⊗ΦLN

Φτ(LM ×LN )

commute up to homotopy of A∞-functors?

In this diagram, LM ⊂ M−0 × M1, LN ⊂ N−0 × N1 and the symplectomorphism τ is defined
by rearranging the factors of M−0 ×M1×N−0 ×N1 into the factors of M−0 ×N−0 ×M1×N1. In other
words, we would like to know whether the algebraic (tensor) product of geometric A∞-functors
between Fukaya categories defined in this paper is homotopic to the A∞-functor defined by
the geometric product of the Lagrangian correspondences. We refer to [Fuk17, Section 13] for a
discussion on two definitions of the notion of a homotopy between A∞-functors.
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