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We define a cellular approximation for the diagonal of the Forcey-Loday realizations of the multiplihedra, and endow them with a compatible topological cellular operadic bimodule structure over the Loday realizations of the associahedra. This provides us with a model for topological and algebraic A ∞ -morphisms, as well as a universal and explicit formula for their tensor product. We study the monoidal properties of this newly defined tensor product and conclude by outlining several applications, notably in algebraic and symplectic topology.

The n-dimensional associahedron, a polytope whose faces are in bijection with planar trees with n + 2 leaves, was first introduced as a topological cell complex by J. Stashe to describe algebras whose product is associative up to homotopy [START_REF] Stashe | Homotopy associativity of H-spaces. I, II[END_REF]. The problem of giving polytopal realizations of these CW-complexes has a rich history [START_REF] Ceballos | Realizing the associahedron: mysteries and questions, Associahedra, Tamari lattices and related structures[END_REF], and the algebras that they encode, called A ∞ -algebras, have been extensively studied in various branches of mathematics. They were used in algebraic topology for the study of iterated loop spaces [START_REF] May | The geometry of iterated loop spaces[END_REF][START_REF] Boardman | Homotopy invariant algebraic structures on topological spaces[END_REF] or the study of homotopy theory of di erential graded associative algebras [START_REF] Lefèvre-Hasegawa | Sur les A ∞ -catégories[END_REF][START_REF] Vallette | Homotopy theory of homotopy algebras[END_REF] ; in symplectic topology to define Fukaya categories of symplectic manifolds [START_REF] Seidel | Fukaya categories and Picard-Lefschetz theory[END_REF][START_REF] Fukaya | Lagrangian intersection Floer theory[END_REF][START_REF]Lagrangian intersection Floer theory[END_REF], through the interpretation of the associahedra as moduli spaces of disks with marked boundary points; and more recently, in mathematical physics, mirror symmetry, Galois cohomology or non-commutative probability.

The n-dimensional multiplihedron is a polytope whose faces are in bijection with 2-colored planar trees with n + 1 leaves. It was first introduced as a topological cell complex by J. Stashe to describe morphisms between A ∞ -algebras [START_REF]H-spaces from a homotopy point of view[END_REF]. It was only recently realized as a convex polytope in the work of S. Forcey [START_REF] Forcey | Convex hull realizations of the multiplihedra[END_REF], followed by the work of S. Forcey and S. Devadoss [START_REF] Devadoss | Marked tubes and the graph multiplihedron[END_REF], F. Ardila and J. Doker [START_REF] Ardila | Lifted generalized permutahedra and composition polynomials[END_REF], and F. Chapoton and V. Pilaud [START_REF] Chapoton | Shu es of deformed permutahedra, multiplihedra, constrainahedra, and biassociahedra[END_REF]. The multiplihedra were studied in algebraic topology [START_REF] Boardman | Homotopy invariant algebraic structures on topological spaces[END_REF], as well as in symplectic topology [START_REF] Ma | Geometric realizations of the multiplihedra[END_REF][START_REF] Ma'u | A ∞ functors for Lagrangian correspondences[END_REF] and Morse theory [START_REF] Mazuir | Higher algebra of A ∞ and ΩB As-algebras in Morse theory I[END_REF][START_REF]Higher algebra of A ∞ and ΩB As-algebras in Morse theory II[END_REF], as they can be respectively realized as moduli spaces of quilted disks with marked boundary points and as moduli spaces of 2colored metric trees.

In this paper, we define and study a cellular approximation of the diagonal of the multiplihedra. The need for such an approximation comes from the fact that the standard thin diagonal P : P → P × P, x → (x, x) of a polytope P is not cellular in general, i.e. its image is not a union of faces of P × P. A cellular approximation of the diagonal is a cellular map cell P : P → P × P which is homotopic to P and which agrees with P on the vertices of P. The Alexander-Whitney map [START_REF] Eilenberg | On the groups of H(Π, n). I[END_REF] and the Serre diagonal [START_REF] Serre | Homologie singulière des espaces brés[END_REF] respectively define cellular approximations for the diagonal of the simplices and for the diagonal of the cubes, yielding the cup product in singular cohomology and the cup product in cubical cohomology. A cellular approximation for the diagonal of the associahedra was constructed in [START_REF] Masuda | The diagonal of the associahedra[END_REF] and yields a universal formula for the tensor product of two A ∞ -algebras. See also [START_REF] Saneblidze | Diagonals on the permutahedra, multiplihedra and associahedra[END_REF][START_REF] Markl | Associahedra, cellular W -construction and products of A ∞ -algebras[END_REF]. By the term universal, we mean that the same formula applies uniformly to any pair of A ∞ -algebras. In a similar fashion, the cellular approximation of the diagonal of the multiplihedra will be used to define a universal tensor product of A ∞ -morphisms in this paper. Our main results can be summarized as follows.

(1) We define a cellular approximation of the diagonal on Forcey-Loday realizations of the multiplihedra (Definition 2.12). (2) We endow them with a compatible operadic bimodule structure over the Loday realizations of the associahedra (Theorem 1). (3) We compute explicitly the associated combinatorial formula for the cellular image of the diagonal (Theorem 2). (4) We apply the cellular chains functor to the diagonal in order to define a universal tensor product of A ∞ -morphisms (Proposition 4.18), and we study its properties (Section 4.4).

To achieve these goals, we use the theory of cellular approximations of diagonals developed by the first author in [START_REF] Laplante-Anfossi | The diagonal of the operahedra[END_REF], which is based on the theory of fiber polytopes of [START_REF] Billera | Fiber polytopes[END_REF] and the method introduced in [START_REF] Masuda | The diagonal of the associahedra[END_REF]. We prove that the Forcey-Loday realizations of the multiplihedra [START_REF] Forcey | Convex hull realizations of the multiplihedra[END_REF] can be obtained from the Ardila-Doker realization of the multiplihedra [START_REF] Ardila | Lifted generalized permutahedra and composition polynomials[END_REF] by projection (Proposition 1.16). These last realizations are generalized permutahedra, in the sense of A. Postnikov [START_REF] Postnikov | associahedra, and beyond[END_REF], which allows us to apply the results of [START_REF] Laplante-Anfossi | The diagonal of the operahedra[END_REF] directly, both to define a cellular approximation of the diagonal and to describe its cellular image combinatorially.

The tensor product of A ∞ -morphisms defined by this diagonal does not however define a symmetric monoidal structure on the category ∞-A ∞ -alg of A ∞ -algebras and their A ∞morphisms, since it is not strictly compatible with the composition. This is not a defect of our construction: in Proposition 4.25, we prove that there is no tensor product of A ∞ -morphisms which is strictly compatible with the composition of A ∞ -morphisms. This proposition should be compared to a similar result by M. Markl and S. Shnider, saying that there is no strictly associative tensor product of A ∞ -algebras [START_REF] Markl | Associahedra, cellular W -construction and products of A ∞ -algebras[END_REF]Theorem 13]. The preceding two properties are in fact always satisfied up to homotopy (see Proposition 4.26), which points towards the idea that the category ∞-A ∞ -alg should possess some kind of homotopy symmetric monoidal structure. An analogous phenomenon was already observed for the category of homotopy representations of an algebraic group [START_REF] Arias Abad | Tensor products of representations up to homotopy[END_REF][START_REF] Poliakova | Cellular chains on freehedra and operadic pairs[END_REF].

Our results can be readily applied to di erent fields. The operadic bimodule structure of Point (2) above was used in the work of the second author, in order to realize A ∞ -algebras and A ∞ -morphisms in Morse theory [START_REF] Mazuir | Higher algebra of A ∞ and ΩB As-algebras in Morse theory I[END_REF][START_REF]Higher algebra of A ∞ and ΩB As-algebras in Morse theory II[END_REF]. The algebraic tensor product in Point (4) has applications in Heegaard Floer homology and could be used to relate the Fukaya categories of products of symplectic manifolds via Lagrangian correspondences, see Section 5.3. We also expect future applications of our work to the computation of the homology of fibered spaces, using the construction of the convolution A ∞ -algebra associated to an A ∞ -coalgebra and an A ∞ -algebra in Proposition 5.4. This last construction can also be related to the deformation theory of ∞-morphisms developed in [START_REF]Homotopy morphisms between convolution homotopy Lie algebras[END_REF][START_REF] Robert | Convolution algebras and the deformation theory of in nitymorphisms[END_REF], see Section 5.2.3. Moreover, our geometric methods shed a new light on a result of M. Markl and S. Shnider [START_REF] Markl | Associahedra, cellular W -construction and products of A ∞ -algebras[END_REF], pointing towards possible links with discrete and continuous Morse theory (Remark 5.3).

Finally, the results of this paper can be straightforwardly extended to the "multiploperahedra", a family of polytopes which is to the operahedra of [START_REF] Laplante-Anfossi | The diagonal of the operahedra[END_REF] what the multiplihedra are to the associahedra. They belong at the same time to the families of graph-multiplihedra [START_REF] Devadoss | Marked tubes and the graph multiplihedron[END_REF] and of nestomultiplihedra [START_REF] Ardila | Lifted generalized permutahedra and composition polynomials[END_REF]. Together with the results of [Lap22, Section 4], one would obtain a tensor product of ∞-morphisms between homotopy operads, defined by explicit formulae.

Layout. We introduce the Forcey-Loday and the Ardila-Doker realizations of the multiplihedra in Section 1. We define a cellular approximation of their diagonal and endow the Forcey-Loday multiplihedra with an operadic bimodule structure over the Loday associahedra in Section 2. We compute explicitly the associated combinatorial formula for the image of our diagonal in Section 3. We define a tensor product of A ∞ -algebras and of A ∞ -morphisms and study its properties in Section 4. We finally sketch future applications of our work in Section 5.

Conventions. We use the conventions and notations of [START_REF] Günter | Lectures on polytopes[END_REF] for convex polytopes and the ones of [START_REF] Loday | Algebraic operads, Grundlehren der Mathematischen Wissenschaften[END_REF] for operads. The word operad will always mean non-symmetric operad [LV12, Section 5.2.8] in this paper. We denote by [n] {1, . . . , n} and by {e i } i ∈[n] the standard basis of R n . The abbreviation "dg" will stand for the words "di erential graded".
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Drawing from the work of Forcey in [START_REF] Forcey | Convex hull realizations of the multiplihedra[END_REF], we define the weighted Forcey-Loday realizations of the multiplihedra and describe their geometric properties in Proposition 1.10. We then show how they can be recovered from the Ardila-Doker realizations of the multiplihedra, which are in particular generalized permutahedra.

1.1. 2-colored trees and multiplihedra.

1.1.1. 2-colored trees. We consider in this section planar rooted trees, which we simply abbreviate as trees. The term edge refers to both internal and external edges. The external edges will sometimes be called leaves.

De nition 1.1 (Cut).

A cut of a tree is a subset of edges or vertices which contains precisely one edge or vertex in each non-self crossing path from an incoming edge to the root.

A cut divides a tree into an upper part that we color in blue and a lower part that we color in red. The edges and vertices of the cut are represented by drawing a black line over them, as pictured in Figure 1.

De nition 1.2 (2-colored tree). A 2-colored tree is a tree together with a cut. We call 2-colored maximal tree a 2-colored binary tree whose cut is made of edges only.

We denote by CT n (resp. CMT n ) the set of 2-colored trees (resp. 2-colored maximal trees) with n leaves, for n ≥ 1.

De nition 1.3 (Face order). The face order s ⊂ t on 2-colored trees is de ned as follows: a 2colored tree s is less than a 2-colored tree t if t can be obtained from s by a sequence of contractions of monochrome edges or moves of the cut from a family of edges to an adjacent vertex.

⊂ F

1. Two 2-colored trees, related by the face order.

De nition 1.4 (Tamari-type order). The Tamari-type order s < t on 2-colored maximal trees is generated by the following three covering relations:

t 1 t 2 t 3 t 4 ≺ t 3 t 2 t 1 t 4 , t 1 t 2 t 3 t 4 ≺ t 3 t 2 t 1 t 4 , t 1 t 2 t 3 ≺ t 1 t 2 t 3
, where each t i , 1 ≤ i ≤ 4, is a binary tree of the appropriate color.

We add a minimum element ∅ n to the poset of 2-colored trees (CT n , ⊂).

Proposition 1.5. The posets (CT n , ⊂) and (CMT n , <) are lattices.

Proof. The poset of 2-colored trees was proven in [START_REF] Forcey | Convex hull realizations of the multiplihedra[END_REF] to be isomorphic to the face lattice of a polytope, the multiplihedron; see Point (3) of Proposition 1.10. The Hasse diagram of the poset of 2-colored maximal trees was proven to be isomorphic to the oriented 1-skeleton of the multiplihedron, and also to be the Hasse diagram of a lattice in [CP22, Proposition 117]. R 1.6. F. Chapoton and V. Pilaud introduced in [START_REF] Chapoton | Shu es of deformed permutahedra, multiplihedra, constrainahedra, and biassociahedra[END_REF] the shu e of two generalized permutahedra (see Section 1.3 for definition and examples). The fact that the poset (CMT n , <) is a lattice follows from the fact that the multiplihedron arises as the shu e of the associahedron and the interval, which both have the lattice property, and that the shu e operation preserves the lattice property in this case, see [CP22, Corollary 95].

1.1.2. Grafting of trees. We will denote the operation of grafting a planar tree v at the i th -leaf of a 2-colored tree u by u • i v. We will also denote the grafting of a level of 2-colored trees v 1 , . . . , v k on the k leaves of a planar tree by u(v 1 , . . . , v k ). We denote by c T n and by c B n the corollae with n leaves fully painted with the upper and the lower color respectively; we denote by c n the corolla with n leaves with frontier color at the vertex. It is straightforward to see that these two grafting operations on corollae generate all the 2-colored trees of codimension 1: we call (B), for "bottom", the first type of 2-colored trees c p+1+r • p+1 c T q , with p + q + r = n and 2 ≤ q ≤ n, and we call (T), for "top", the second type of 2-colored trees c B k (c 1 , . . . , c k ),

with i 1 + • • • + i k = n, i 1 , . . . , i k ≥ 1, and k ≥ 2. type (B) type (T) F 2.
Examples of 2-colored trees of type (B) and (T) respectively.

1.1.3. Multiplihedra.

De nition 1.7 (Multiplihedra). For any n ≥ 1, an (n -1)-dimensional multiplihedron is a polytope of dimension (n -1) whose face lattice is isomorphic to the lattice (CT n , ⊂) of 2-colored trees with n leaves.

• • F 3. A 2-dimensional multiplihedron and the Tamari-type poset (CMT 3 , <) on its oriented 1-skeleton.

The dimension of a face labeled by a 2-colored tree is given by the sum of the degrees of its vertices defined by

k 1 • • • = k -2 , k 1 • • • = k -2 , k 1 • • • = k -1 .
The codimension of a 2-colored tree is then equal to the number of blue and red vertices.

In the example of the 2-colored tree depicted on the left of Figure 1, the dimension is equal to 4 and the codimension is equal to 5. As proven in [CP22, Proposition 117], the oriented 1-skeleton of a multiplihedron is the Hasse diagram of the Tamari-type poset.

1.2. Forcey-Loday realizations of the multiplihedra. Jean-Louis Loday gave in [START_REF] Loday | Realization of the Stashe polytope[END_REF] realizations of the associahedra in the form of polytopes with integer coordinates. Stefan Forcey generalized this construction in [START_REF] Forcey | Convex hull realizations of the multiplihedra[END_REF] in order to give similar realizations for the multiplihedra.

De nition 1.8 (Weighted 2-colored maximal tree). A weighted 2-colored maximal tree is a pair (t, ω) made up of a 2-colored maximal tree t ∈ CMT n with n leaves with a weight ω = (ω 1 , . . . , ω n ) ∈ R n >0 . We call ω the weight and n the length of the weight ω. Let (t, ω) be a weighted 2-colored maximal tree with n leaves. We order its n-1 vertices from left to right. At the i th vertex, we consider the sum α i of the weights of the leaves supported by its left input and the sum β i of the weights of the leaves supported by its right input. If the i th vertex is colored by the upper color, we consider the product α i β i and if the i th vertex is colored by the lower color, we consider the product 2α i β i . The associated string produces a point with integer coordinates M(t, ω) ∈ R n-1 >0 . For example, if only the first and last vertices of t are blue, we obtain a point of the form

M(t, ω) = 2α 1 β 1 , α 2 β 2 , . . . , α n-2 β n-2 , 2α n-1 β n-1 ∈ R n-1 >0 . 1 2 1 2 3 4 1 2 3 4 F 4.
Examples of points associated to 2-colored maximal trees, with standard weight.

De nition 1.9 (Forcey-Loday Realization). The Forcey-Loday realization of weight ω of the (n -1)-dimensional multiplihedron is the polytope

J ω conv M(t, ω) | t ∈ CMT n ⊂ R n-1 .
The Forcey-Loday realization associated to the standard weight (1, . . . , 1) will simply be denoted by J n . By convention, we define the polytope J ω with weight ω = (ω 1 ) of length 1 to be made up of one point labeled by the 2-colored tree i T B .

x 1

x 2

x 3 F 5. The Forcey-Loday realization of the multiplihedron J 4 .

Proposition 1.10. The Forcey-Loday realization J ω satis es the following properties.

(1) Let t ∈ CMT n be a 2-colored maximal tree. For p + q + r = n, with 2 ≤ q ≤ n, the point M(t, ω) is contained in the half-space de ned by the inequality

(B) x p+1 + • • • + x p+q-1 ≥ p+1≤a<b ≤ p+q ω a ω b ,
with equality if and only if the 2-colored maximal tree t can be decomposed as t = u • p+1 v, where u ∈ CMT p+1+r and v ∈ PBT q .

For i 1 + • • • +i k = n, with i 1 , . . . , i k ≥ 1 and k ≥ 2, the point M(t, ω) is contained in the half-space de ned by the inequality

(T) x i 1 + x i 1 +i 2 + • • • + x i 1 +•••+i k -1 ≤ 2 1≤ j <l ≤k ω I j ω I l ,
where

I j = [i 1 + • • • + i j-1 + 1, . . . , i 1 + • • • + i j ]
and ω I j a ∈I j ω a , with equality if and only if the 2-colored maximal tree t can be decomposed as t = u(v 1 , . . . , v k ), where u ∈ PBT k and v j ∈ CMT i j , for 1 ≤ j ≤ k.

(2) The polytope J ω is the intersection of the half-spaces de ned in (1).

(3) The face lattice (L(J ω ), ⊂) is isomorphic to the lattice (CT n , ⊂) of 2-colored trees with n leaves. (4) Any face of a Forcey-Loday realization of a multiplihedron is isomorphic to a product of a Loday realization of an associahedron with possibly many Forcey-Loday realizations of multiplihedra, via a permutation of coordinates.

Proof. Points (1)-(3) were proved in [START_REF] Forcey | Convex hull realizations of the multiplihedra[END_REF]. We prove Point (4) by induction on n. It clearly holds true for n = 1. Let us suppose that it holds true up to n -1 and let us prove it for the polytopes J ω , for any weight ω of length n. We examine first facets. In the case of a facet of type (B) associated to p + q + r = n with 2 ≤ q ≤ n -1, we consider the following two weights ω (ω 1 , . . . , ω p , ω p+1 + • • • + ω p+q , ω p+q+1 , . . . , ω n ) and ω (ω p+1 , . . . , ω p+q )

and the isomorphism Θ p,q,r : R p+r × R q-1 -→ R n-1 (x 1 , . . . , x p+r ) × (y 1 , . . . , y q-1 ) → (x 1 , . . . , x p , y 1 , . . . , y q-1 , x p+1 , . . . , x p+r ) .

The image of the vertices of J ω × K ω are sent to the vertices of the facet of J ω labelled by the 2colored tree c p+1+r • p+1 c T q . In other words, the permutation of coordinates Θ sends bijectively J ω × K ω to J ω . Similarly, in the case of a facet of type (T)

associated to i 1 + • • • + i k = n with i 1 , . . . , i k ≥ 1 and k ≥ 2, we consider the following weights ω √ 2ω I 1 , . . . , √ 2ω I k and ω j (ω i 1 +•••+i j-1 +1 , . . . , ω i 1 +•••+i j-1 +i j ), for 1 ≤ j ≤ k,
and the isomorphism

Θ i 1 , ...,i k : R k-1 × R i 1 -1 × • • • × R i k -1 -→ R n-1
which sends (x 1 , . . . , x k-1 ) × (y 1 1 , . . . ,

y 1 i 1 -1 ) × • • • × (y k 1 , . . . , y k i k -1 ) to (y 1 1 , . . . , y 1 i 1 -1 , x 1 , y 2 1 , . . . , y 2 i 2 -1 , x 2 , y 3 1 , . . . , x k-1 , y k 1 , . . . , y k i k -1
) . The image of the vertices of K ω × J ω 1 × • • • × J ω k are sent to the vertices of the facet of J ω labelled by the 2-colored tree c B k (c 1 , . . . , c k ). In other words, the permutation of coordinates Θ sends bijectively K

ω × J ω 1 × • • • × J ω k to J ω .
We can finally conclude the proof with these decompositions of facets of J ω , the induction hypothesis, and Point (5) of [MTTV21, Proposition 1].

1.3. Ardila-Doker realizations of the multiplihedra.

De nition 1.11 (Permutahedron). The (n -1)-dimensional permutahedron is the polytope in R n equivalently de ned as:

• the convex hull of the points n i=1 ie σ(i) for all permutations σ ∈ S n , or

• the intersection of the hyperplane

     x ∈ R n n i=1 x i = n + 1 2     
with the a ne half-spaces

     x ∈ R n i ∈I x i ≥ |I| + 1 2      for all ∅ I ⊆ [n].
For a face F of a polytope P ⊂ R n , the normal cone of F is the cone

N P (F) c ∈ (R n ) * F ⊆ {x ∈ P | cx = max y ∈P cy} .
The codimension of N P (F) is equal to the dimension of F. The normal fan of P is the collection of the normal cones N P {N P (F) | F ∈ L(P) \ ∅}. We refer to [Zie95, Chapter 7] for more details.

De nition 1.12 (Generalized permutahedron). A generalized permutahedron is a polytope equivalently de ned as:

• a polytope whose normal fan coarsens the one of the permutahedron, or

• the convex set      x ∈ R n : n i=1 x i = z [n] , i ∈I x i ≥ z I for all I ⊆ [n]     
, where {z I } I ⊆[n] are real numbers which satisfy the inequalities z I + z J ≤ z I ∪J + z I ∩J for all I, J ⊆ [n], and where z ∅ = 0. Generalized permutahedra were introduced by A. Postnikov in [START_REF] Postnikov | associahedra, and beyond[END_REF]. Loday realizations of the associahedra are all generalized permutahedra (see [START_REF] Postnikov | associahedra, and beyond[END_REF]Corollary 8.2]), while Forcey-Loday realizations of the multiplihedra are not. However, F. Ardila and J. Doker introduced in [START_REF] Ardila | Lifted generalized permutahedra and composition polynomials[END_REF] realizations of the multiplihedra that are generalized permutahedra. They are obtained from the Loday realizations of the associahedra via the operation of q-lifting. We will consider the special case q = 1/2 of their construction.

De nition 1.13 (Lifting of a generalized permutahedron [AD13, Definition 2.3]). For a generalized permutahedron P ⊂ R n , its 1 2 -lifting P 1 2 ⊂ R n+1 is de ned by

P 1 2        x ∈ R n+1 : n+1 i=1 x i = z [n] , i ∈I x i ≥ 1 2 z I , i ∈I ∪{n+1} x i ≥ z I for all I ⊆ [n]        .
Proposition 1.14 ([AD13, Proposition 2.4]). The 1 2 -lifting P 1 2 of a generalized permutahedron is again a generalized permutahedron.

Proposition 1.15. The 1 2 -lifting K ω 1 2 of the Loday realization of weight ω of the associahedron is a realization of the multiplihedron.

Proof. This is a particular case of [AD13, Corollary 4.10].

We call the lifting of the Loday associahedron K ω 1 2 the Ardila-Doker realization of the multiplihedron. It is related to the Forcey-Loday realization via the projection π : R n+1 → R n which forgets the last coordinate.

Proposition 1.16. The Forcey-Loday realization of the multiplihedron is the image under the projection π of the 1 2 -lifting of the Loday realization of the associahedron, scaled by 2. That is, we have

J ω = π 2K ω 1 2
.

Proof. This follows from the vertex description of 1 2 -lifting given in [Dok11, Definition 3.5.3], together with the description of the projection from the permutahedron to the multiplihedron given in the proof of [START_REF] Rey | Geometry of generalized permutohedra[END_REF]Theorem 3.3.6]. The coordinates of a vertex in 2K ω are of the form (2α 1 β 1 , . . . , 2α n β n ). A coordinate 2α i β i is then multiplied by 1/2 in the lifting if and only if its associated vertex in the 2-colored maximal tree is of the upper color. We thus recover the description of Definition 1.9.

In summary, we have the following diagram: 

K ω → K ω 1 2 π(2•) J ω R n → R n+1 R n
Gen. permutahedron Gen. permutahedron Not a gen. permutahedron

D

In this section, we define a cellular approximation of the diagonal of the Forcey-Loday realizations of the multiplihedra, and we endow them with an operadic bimodule structure over the Loday realizations of the associahedra in the category Poly. We use the methods of [START_REF] Masuda | The diagonal of the associahedra[END_REF] and the general theory developed in [START_REF] Laplante-Anfossi | The diagonal of the operahedra[END_REF]. Our construction of the cellular approximation relies crucially on the fact that the Forcey-Loday multiplihedra, are obtained from the Ardila-Doker multiplihedra by projection (Proposition 1.16). 

The monoidal category

⊂ L(Q) of Q such that f -1 (D)
defines a polytopal subdivision of P. We will use the notion of operad, operadic bimodule and Hadamard product of operads and operadic bimodules in the rest of this paper. For the sake of concision, we refer respectively to [Maz21a, Section 1.1.1], [Maz21a, Section 1.1.3] and [LV12, Section 5.1.12] for a complete definition of these notions. An operad will in particular be a non-symmetric operad in the language of [LV12, Section 5.2.8]. The fact that the category Poly is monoidal will moreover allow us to define operads and operadic bimodules in polytopes.

2.2.

Positively oriented polytopes and diagonal maps. For a polytope P, we will denote by ρ z P 2z -P its reflection with respect to a point z ∈ P.

De nition 2.1. A positively oriented polytope (P, v) is a polytope P ⊂ R n together with a vector v ∈ R n which is not perpendicular to any edge of P ∩ ρ z P, for any z ∈ P.

Any positively oriented polytope admits a diagonal map of the form

(P, v) : P → P × P z → bot v (P ∩ ρ z P), top v (P ∩ ρ z P) .
Such a diagonal map is a morphism in Poly, coincides with the usual thin diagonal x → (x, x) on vertices, and is fiber-homotopic to it, see [MTTV21, Proposition 5] and [Lap22, Proposition 1.1]. Its cellular image admits a combinatorial description in terms of the fundamental hyperplane arrangement of P, as we will now recall.

De nition 2.2 (Fundamental hyperplane arrangement

). An edge hyperplane of P is an hyperplane in R n which is orthogonal to the direction of an edge of P ∩ ρ z P for some z ∈ P. The fundamental hyperplane arrangement H P of P is the collection of all edge hyperplanes of P.

Recall that a face F of a polytope P ⊂ R n is equal to the intersection of a family of facets {F i }. If we choose an outward pointing normal vector F i for each facet F i (see [Lap22, Definition 1.24]) and a basis {b k } of the orthogonal complement of the a ne hull of P in R n , then the normal cone of F is given by N

P (F) = Cone({ F i } ∪ {b k , -b k }). Proposition 2.3 ([Lap22, Theorem 1.23]). Let (P, v) be a positively oriented polytope in R n . For each H ∈ H P , we choose a normal vector d H such that d H , v > 0. We have (F, G) ∈ Im (P, v) ⇐⇒ ∀H ∈ H P , ∃i, F i , d H < 0 or ∃ j, G j , d H > 0 .
We finally recall general facts from [Lap22, Section 1.6].

De nition 2.4 (Coarsening projection).

Let P and Q be two polytopes in R n such that the normal fan of P re nes the normal fan of Q. The coarsening projection from P to Q is the application θ : L(P) → L(Q) which sends a face F of P to the face θ(F) of Q whose normal cone N Q (θ(F)) is the minimal cone with respect to inclusion which contains N P (F).

Proposition 2.5. Let P and Q be two polytopes such that the normal fan of P re nes the one of Q. If P is positively oriented by v, then so is Q. Moreover, the coarsening projection from P to Q commutes with the diagonal maps (P, v) and (Q, v) , and we have

(F, G) ∈ Im (Q, v) ⇐⇒ ∀H ∈ H P , ∃i, F i , d H < 0 or ∃ j, G j , d H > 0 .
We will apply Proposition 2.5 to P the permutahedron and Q the Ardila-Doker multiplihedron, in order to define a diagonal map on the Forcey-Loday multiplihedron and to compute an explicit formula for its cellular image in Theorem 2.

2.3. Good orientation vectors and generalized permutahedra. The projection π : R n+1 → R n forgetting the last coordinate defines an a ne isomorphism between any hyperplane H of equation n+1 i=1 x i = c ∈ R, and R n . The inverse map (π |H ) -1 is given by the assignment

(x 1 , . . . , x n ) → x 1 , . . . , x n , c - n i=1 x i .
If a polytope P is contained in the hyperplane H, then the polytope π(P) is a nely isomorphic to P, and the projection π defines a bijection between the faces of P and the faces of π(P). Moreover, for every face F of P, we have dim F = dim π(F).

However, the projection π does not preserve orthogonality in general, so if P is positively oriented by v, the projection π(P) might not be positively oriented by π( v). We restrict our attention to a certain class of orientation vectors for which this property holds, in the case where P is a generalized permutahedron.

De nition 2.6. A good orientation vector is a vector

v = (v 1 , . . . , v n+1 ) ∈ R n+1 satisfying v i ≥ 2v i+1 , for any 1 ≤ i ≤ n , and v n+1 > 0 .
Observe that the family of good orientation vectors is stable under the projection forgetting the last coordinate: if v is a good orientation vector, then so is π( v). Being a good orientation vector is a more restrictive condition than being a principal orientation vector in the sense of [START_REF] Laplante-Anfossi | The diagonal of the operahedra[END_REF]Definition 3.15]. Thus, a good orientation vector orients positively any generalized permutahedron.

Proposition 2.7. Let P ⊂ R n+1 be a generalized permutahedron, and let v ∈ R n+1 be a good orientation vector. Then, the polytope π(P) is positively oriented by π( v). Moreover, the projection π commutes with the diagonal maps of P and π(P), that is

(π(P),π( v)) = (π × π) (P, v) .
Proof. Since P is a generalized permutahedron, the direction of the edges of the intersection P ∩ ρ z P, for any z ∈ P, are vectors with coordinates equal to 0, 1 or -1, and the same number of 1 and -1 (combine Proposition 1.27 and Proposition 3.4 of [START_REF] Laplante-Anfossi | The diagonal of the operahedra[END_REF]). The direction d of such an edge satisfies d, v 0, since the first non-zero coordinate of d will contribute a greater amount than the sum of the remaining coordinates in the scalar product. For the same reason, we have π( d), π( v) 0. As π(P ∩ ρ z P) = π(P) ∩ ρ π(z) π(P), we have in particular that the image of the edges of P ∩ ρ z P under π are the edges of π(P) ∩ ρ π(z) π(P) and thus that π(P) is positively oriented by π( v). For the last part of the statement, observe that π preserves the orientation of the edges: if we have d, v > 0, then we have π( d), π( v) > 0. Hence, the image of the vertex top v (P ∩ ρ z P), which maximizes -, v over P ∩ ρ z P, under π is equal to the vertex top π( v) (π(P) ∩ ρ π(z) π(P)) which maximizes -, π( v) over π(P) ∩ ρ π(z) π(P). The argument for the minimum bot(P ∩ ρ z P) is the same.

Proposition 2.8. Let P ⊂ R n+1 be a generalized permutahedron. Any two good orientation vectors v, w de ne the same diagonal maps on P and π(P), that is, we have (P, v) = (P, w) and (π(P),π( v)) = (π(P),π( w)) .

Proof. Good orientation vectors are principal orientation vectors [Lap22, Definition 3.15]. Since all principal orientation vectors live in the same chamber of the fundamental hyperplane arrangement of the permutahedron, they all define the same diagonal on the permutahedron [Lap22, Proposition 1.21], and thus the same diagonal on any generalized permutahedron (Proposition 2.5). So, we have (P, v) = (P, w) . Finally, using Proposition 2.7, we have

(π(P),π( v)) = (π × π) (P, v) = (π × π) (P, w) = (π(P),π( w)) .
2.4. Diagonal of the Forcey-Loday multiplihedra.

De nition 2.9. A well-oriented realization of the multiplihedron is a positively oriented polytope which realizes the multiplihedron and such that the orientation vector induces the Tamari-type order on the set of vertices.

Proposition 2.10. Any good orientation vector induces a well-oriented realization J ω , v of the Forcey-Loday multiplihedron, for any weight ω.

Proof. Using Definition 1.9, we can compute that any edge of the realization of the multiplihedron J ω is directed, according to the Tamari type order, by either e i or e ie j , for i < j. Since v has strictly decreasing coordinates, the scalar product is in each case positive. It remains to show that P ∩ ρ z P is oriented by v, for any z ∈ P. This follows directly from Proposition 2.7, and the fact that J ω arises as the projection under π of a generalized permutahedron as shown in Proposition 1.16.

Any good orientation vector therefore defines a diagonal map ω : J ω → J ω × J ω , for any weight ω. These diagonal maps are all equivalent up to isomorphim in the category Poly.

Proposition 2.11. For any pair of weights ω and θ of length n, there exists a unique isomorphism tr = tr θ ω : J ω → J θ in the category Poly, which preserves homeomorphically the faces of the same type and which commutes with the respective diagonals.

Proof. The arguments of [MTTV21, Sections 3.1-3.2] hold in the present case using Proposition 1.10. We note that the crucial condition above is that the map tr commutes with the respective diagonals: this makes the map tr unique and highly non-trivial to construct, see the proof of [MTTV21, Proposition 7].

De nition 2.12. We de ne n : J n → J n × J n to be the diagonal induced by any good orientation vector for the Forcey-Loday realization of standard weight ω = (1, . . . , 1). 2.5. Operadic bimodule structure on the Forcey-Loday multiplihedra. We will use the transition maps tr of Proposition 2.11 above to endow the family of standard weight Forcey-Loday multiplihedra with an operadic bimodule structure over the standard weight Loday associahedra. The uniqueness property of the map tr will be used in a crucial way.

De nition 2.13 (Action-composition maps). For any n, m ≥ 1 and any 1 ≤ i ≤ m, for any k ≥ 2 and any i 1 , . . . , i k ≥ 1, we de ne the action-composition maps by

• p+1 : J p+1+r × K q J (1, ...,q, ...,1) × K q J n and tr×id Θ p, q, r γ i 1 , ...,i k : K k × J i 1 × • • • × J i k K (i 1 , ...,i k ) × J i 1 × • • • × J i k J i 1 +•••+i k , tr×id Θ i 1 , ..., i k
where the last inclusions are given by the block permutations of the coordinates introduced in the proof of Proposition 1.10.

Recall from [MTTV21, Theorem 1] that the diagonal maps n : K n → K n × K n define a morphism of operads, where the operad {K n × K n } is to be understood as the Hadamard product {K n } × {K n }. The next proposition shows that the diagonal maps n : K n → K n × K n and n : J n → J n × J n are compatible with the action-composition maps introduced in Definition 2.13.

Proposition 2.14. The diagonal maps n commute with the maps Θ.

Proof. First observe that a good orientation vector has decreasing coordinates, thereby induces the diagonal maps n : K n → K n ×K n and the operad structure on {K n } defined in [START_REF] Masuda | The diagonal of the associahedra[END_REF]. Following [Lap22, Proposition 4.14], to prove the claim it su ces to show that the preimage under Θ -1 of a good orientation vector is still a good orientation vector for each associahedron and multiplihedron. This is easily seen to be the case from the definition of Θ, in the proof of Proposition 1.10.

Theorem 1.

(1) The collection {J n } n ≥1 together with the action-composition maps • i and γ i 1 , ...,i k form an operadic bimodule over the operad {K n } in the category Poly.

(2) The maps { n : J n → J n × J n } n ≥1 form a morphism of ({K n }, {K n })-operadic bimodules in the category Poly.

Proof. Using Proposition 2.14, we can apply the proof of [MTTV21, Theorem 1] mutatis mutandis. The uniqueness of the transition map tr is the key argument, as it forces the operadic axioms to hold. We also point out that {J n × J n } is to be understood as the Hadamard product {J n } × {J n }, and that its ({K n }, {K n })-operadic bimodule structure is defined as the pullback of its natural

({K n × K n }, {K n × K n })-operadic bimodule structure under the diagonal maps { n : K n → K n × K n }.
Point (1) of Theorem 1 was already mentioned in [Maz21a, Section 1.2], where associahedra and multiplihedra are realized as compactifications of moduli spaces of metric trees and used to construct A ∞ -structures on the Morse cochains of a closed manifold.

C

We compute in Theorem 2 an explicit cellular formula for the diagonal of the Forcey-Loday multiplihedra, using again the key fact that the Ardila-Doker multiplihedron is a generalized permutahedron to which one can apply Proposition 2.5 and the results of [START_REF] Laplante-Anfossi | The diagonal of the operahedra[END_REF]. We then explain geometrically why this formula necessarily has to di er from the "magical formula" computed for the associahedra in [START_REF] Masuda | The diagonal of the associahedra[END_REF].

3.1. 2-colored nested linear graphs. Let be a linear graph with n vertices, as represented in Figure 6. We respectively write V ( ) and E( ) for its sets of vertices and edges. Any subset of edges N ⊂ E( ) defines a subgraph of whose edges are N and whose vertices are all the vertices adjacent to an edge in N. We call this graph the closure of N.

De nition 3.1 (Nest and nesting).

• A nest of a linear graph with n vertices is a non-empty set of edges N ⊂ E( ) whose closure is a connected subgraph of .

• A nesting of a linear graph is a set N = {N i } i ∈I of nests such that (1) the trivial nest E( ) is in N, (2) 
for every pair of nests N i N j , we have either

N i N j , N j N i or N i ∩ N j = ∅, and (3) if N i ∩ N j = ∅ then no edge of N i is adjacent to an edge of N j .
Two nests that satisfy Conditions (2) and (3) are said to be compatible. We denote the set of nestings of by N( ). We naturally represent a nesting by circling the closure of each nest as in Figure 6. A nesting is moreover maximal if it has maximal cardinality |N| = |E( )|.

De nition 3.2 (2-colored nesting).

A 2-colored nesting is a nesting where each nest is either colored in blue, red or both red and blue (that is, purple), and which satisfy the following properties:

(1) if a nest N is blue or purple, then all nests contained in N are blue, and

(2) if a nest N is red or purple, then all nests that contain N are red.

We call monochrome the nests that are either blue or red, and bicolored the purple nests. We denote by mono(N) the set of monochrome nests of a 2-colored nesting N, and by N 2 ( ) the set of 2-colored nestings of . A 2-colored nesting is moreover maximal if it has maximal cardinality, and it is made of monochrome nests only. R 3.3. The data of a 2-colored nesting on a graph is equivalent to the data of a marked tubing on its line graph, as defined in [START_REF] Devadoss | Marked tubes and the graph multiplihedron[END_REF]. See also [START_REF] Laplante-Anfossi | The diagonal of the operahedra[END_REF]Remark 2.4].

Lemma 3.4. There is a bijection between (2-colored) trees with n leaves and (2-colored) nested linear graphs with n vertices. Under this map, (2-colored) maximal trees are in bijection with maximal (2colored) nested linear graphs.

Under this bijection, vertices of 2-colored trees correspond to nests, and their colors agree under the previous conventions.

←→ ←→ ( • ( ( • • ) • ) ) F 6.
Bijections between 2-colored trees, 2-colored nested linear graphs, and 2-colored parenthesizations.

Cellular formula for the diagonal.

De nition 3.5. Let ( , N) be a nested linear graph. We respectively denote by B(N), P(N) and R(N) the set of blue, purple and red nests of N. We de ne Q(N) to be the set whose elements are the unions of nests

k i=1 R i ∪ B ∈B(N) B ∪ P ∈P(N)

P

where R 1 , . . . , R k ∈ R(N), the case ∪R i = ∅ being allowed, and where two unions that result in the same set are identi ed.

We number the edges of the linear graph with n vertices from bottom to top as represented in Figure 6, starting at 1 and ending at n -1. To each blue nest B ∈ B(N) in a 2-colored nesting N of a linear graph with n vertices, we associate the characteristic vector B ∈ R n which has a 1 in position i if i ∈ B, 0 in position i if i B and 0 in position n. To each union of nests Q ∈ Q(N), we associate the characteristic vector Q ∈ R n which has a 1 in position i if i ∈ Q, 0 in position i if i Q and 1 in position n. We denote moreover by n the vector (1, . . . , 1) ∈ R n .

Lemma 3.6. The normal cone of the face of the Ardila-Doker realization of the multiplihedron labeled by the 2-colored nesting N is given by

Cone {-B} B ∈B(N) ∪ {-Q} Q ∈Q(N) ∪ { n, -n} .
Proof. This follows from the description of the Ardila-Doker multiplihedron as a generalized permutahedron: the normal cone of a face of the multiplihedron is a union of normal cones of faces of the permutahedron, and these faces can be easily determined from the projection from the permutahedron to the multiplihedron, written down explicitly in the proof of [Dok11, Theorem 3.3.6].

We are now ready to compute the cellular formula for the diagonal of the Forcey-Loday multiplihedra. We introduce

D(n) {(I, J) | I, J ⊂ {1, . . . , n}, |I| = | J|, I ∩ J = ∅, min(I ∪ J) ∈ I}.
We number again the edges of the linear graph with n vertices from bottom to top, starting at 1 and ending at n -1. Blue nests and unions of blue, purple and red nests can then in particular be seen as subsets of {1, . . . , n -1}, hence of {1, . . . , n}.

Theorem 2. The cellular image of the diagonal map n : J n → J n × J n introduced in De nition 2.12 admits the following description. For N and N two 2-colored nestings of the linear graph with n vertices, we have that

(N, N ) ∈ Im n ⇐⇒ ∀(I, J) ∈ D(n), ∃B ∈ B(N), |B ∩ I| > |B ∩ J| or ∃Q ∈ Q(N), |(Q ∪ {n}) ∩ I| > |(Q ∪ {n}) ∩ J| or ∃B ∈ B(N ), |B ∩ I| < |B ∩ J| or ∃Q ∈ Q(N ), |(Q ∪ {n}) ∩ I| < |(Q ∪ {n}) ∩ J| .
Proof. The essential ingredient is the computation of the fundamental hyperplane arrangement of the permutahedron, which was done in [Lap22, Section 3.1]. The result follows in three steps:

(1) Since a good orientation vector v is also a principal orientation vector [Lap22, Definition 3.15], it orients positively the permutahedron. (2) Using Proposition 2.5 and the description of the normal cones of the faces of the multiplihedron in Lemma 3.6, we get the above formula for the Ardila-Doker realizations of the multiplihedra.

(3) Proposition 2.7 garantees that this formula holds for the Forcey-Loday realizations, which completes the proof.

We now make this formula explicit in dimension 1, 2 and 3. We write 2-colored nestings of a linear graph with n vertices as 2-colored parenthesizations of a word with n symbols •, which are easier to read and shorter to type, see Figure 6. We moreover only write pairs of faces (F, G) such that dim

F + dim G = dim P. 3 (( • • • )) = ( ( • • ) • ) × ( • • • ) ∪ ( • • • ) × ( • ( • • ) ) ∪ ( • • • ) × ( • ( • • ) ) ∪ ( • • • ) × ( • ( • • ) ) ∪ ( • ( • • ) ) × ( • ( • • ) ) ∪ ( ( • • ) • ) × ( ( • • ) • ) ∪ ( ( • • ) • ) × ( • • • ) ∪ ( ( • • ) • ) × ( • • • ) 4 (( • • • • )) = ( ( ( • • ) • ) • ) × ( • • • • ) ∪ ( • • • • ) × ( • ( • ( • • ) ) ) ∪ ( ( • • • ) • ) × ( • ( • • ) • ) ∪ ( ( • • )( • • ) ) × ( • •( • • ) ) ∪ ( ( • • • ) • ) × ( • ( • • • ) ) ∪ ( ( • • ) • • ) × ( • •( • • ) ) ∪ ( • ( • • ) • ) × ( • ( • • • ) ) ∪ ( ( • • • ) • ) × ( • ( • • ) • ) ∪ ( ( • • ) • • ) × ( • •( • • ) ) ∪ ( ( • • • ) • ) × ( • ( • • • ) ) ∪ ( ( ( • • ) • ) • ) × ( ( • • • ) • ) ∪ ( • •( • • ) ) × ( • ( • ( • • ) ) ) ∪ ( ( • • )( • • ) ) × ( ( • • )( • • ) ) ∪ ( • ( • • ) • ) × ( • ( ( • • ) • ) ) ∪ ( ( • • ) • • ) × ( ( • • )( • • ) ) ∪ ( • ( • • ) • ) × ( • ( • • • ) ) ∪ ( • ( ( • • ) • ) ) × ( • ( • • • ) ) ∪ ( ( • • ) • • ) × ( ( • • )( • • ) ) ∪ ( • ( • • ) • ) × ( • ( • • • ) ) ∪ ( ( • • • ) • ) × ( • ( • • • ) ) ∪ ( ( • • ) • • ) × ( • •( • • ) ) ∪ ( ( ( • • ) • ) • ) × ( ( • • ) • • ) ∪ ( • ( • • • ) ) × ( • ( • ( • • ) ) ) ∪ ( ( ( • • ) • ) • ) × ( ( • • ) • • ) ∪ ( • ( • • • ) ) × ( • ( • ( • • ) ) ) ∪ ( • ( • • ) • ) × ( • ( • • • ) ) ∪ ( ( ( • • ) • ) • ) × ( • • • • ) ∪ ( • • • • ) × ( • ( • ( • • ) ) ) ∪ ( ( ( • • ) • ) • ) × ( • • • • ) ∪ ( • • • • ) × ( • ( • ( • • ) ) ) ∪ ( ( ( • • ) • ) • ) × ( • • • • ) ∪ ( • • • • ) × ( • ( • ( • • ) ) ) ∪ ( ( • • )( • • ) ) × ( • •( • • ) ) ∪ ( ( • • • ) • ) × ( ( • ( • • ) ) • ) ∪ ( ( • • )( • • ) ) × ( • •( • • ) ) ∪ ( ( • • • ) • ) × ( • ( ( • • ) • ) ) ∪ ( ( • • • ) • ) × ( • ( • • ) • ) ∪ ( ( • • ) • • ) × ( • •( • • ) ) ∪ ( ( • • • ) • ) × ( • ( • • • ) ) ∪ ( ( • ( • • ) ) • ) × ( • ( • • ) • ) ∪ ( ( • • • ) • ) × ( • ( • • ) • ) ∪ ( ( ( • • ) • ) • ) × ( • ( • • ) • )
We also compute in Figure 7 the number of faces of complementary dimensions and the number of pairs of vertices in the cellular image of the diagonal of the multiplihedra in dimensions 0 to 6. They are compared with the diagonals induced by the same orientation vector on the Loday associahedra and the permutahedra. The two sequences of numbers that we obtain did not appear before in [START_REF] Oeis | The on-line encyclopedia of integer sequences[END_REF]. 3.3. About the cellular formula. Given a face F of a positively oriented polytope (P, v), the orientation vector v defines a unique vertex top F (resp. bot F) which maximizes (resp. minimizes) the scalar product -, v over F. By [Lap22, Proposition 1.15], any pair of faces (F, G) ∈ Im (P, v) satisfies top F ≤ bot G. In the case of the simplices, the cubes and the associahedra, the converse also holds: the image of the diagonal is given by the "magical formula"

Pairs (F, G) ∈ Im (P, v) Polytopes 0 1 2 3 4 5 6 [OEI22] Associahedra 1 2 6 22 91 408 1938 A000139 dim F + dim G = dim P
(F, G) ∈ Im n ⇐⇒ top F ≤ bot G . (1)
This formula, however, does not hold for the diagonal of the Forcey-Loday multiplihedra.

Proposition 3.7. The diagonal on the multiplihedron J 4 is such that

Im 4 {(F, G), top F ≤ bot G} .
Proof. The pairs of faces (F, G) that satisfy dim F + dim G = 3 and top F ≤ bot G include the four pairs

(2)

( ( • • • ) • ) × ( ( • ( • • ) ) • ) ( ( • • • ) • ) × ( • ( • • ) • ) ( ( • • • ) • ) × ( • ( • • ) • ) ( ( • ( • • ) ) • ) × ( • ( • • ) • )
and the four pairs

(3) ( ( • • • ) • ) × ( ( • ( • • ) ) • ) ( ( • • • ) • ) × ( • ( • • ) • ) ( ( • • • ) • ) × ( • ( • • ) • ) ( ( • ( • • ) ) • ) × ( • ( • • ) • ) .
While the image Im 4 contains the four pairs in (2), it does not include the four pairs in (3), as can be checked directly from Theorem 2. R 3.8. We point out that Formula (1) also does not hold neither for the permutahedra nor the operahedra in general, as proven in [Lap22, Section 3.2].

The diagonal n being a section of the projection π : J n × J n → J n , (x, y) → (x + y)/2 [Lap22, Proposition 1.1], one can in fact represent its cellular image by projecting it to J n : for each pair of faces (F, G) ∈ Im n , one draws the polytope (F + G)/2 in J n . This defines a polytopal subdivision of J n . The polytopal subdivision of J 3 can be found in [Lap22, Figure 3], while the polytopal subdivision of J 4 is illustrated on the first page of this article.

Proposition 3.7 can then be illustrated geometrically as follows. There are two distinct diagonals on J 4 which agree with the Tamari-type order on the vertices. The first one, corresponding to the diagonal defined in this paper, is induced by the choice of any orientation vector

v = (v 1 , v 2 , v 3 , v 4 ) satisfying v 1 > v 2 > v 3 > v 4 and v 1 + v 4 > v 2 + v 3 (
here we work with the Ardila-Doker realization of the multiplihedron). Changing the last condition to v 1 +v 4 < v 2 +v 3 gives the second choice of diagonal, which is in fact exactly the diagonal of Saneblidze-Umble [SU04, Section 5]. These two diagonals on J 4 then di er by four pairs of faces, as represented in Figure 8: the first diagonal includes the pairs of (2), while the second diagonal includes the pairs of (3). Under the projection π : J 4 × J 4 → J 4 , (x, y) → (x + y)/2, these two families of faces induce two distinct polytopal subdivisions of the same "diamond" inside J 4 , represented in Figure 9. We also refer to the last paragraph of Section 4.2.3 for an algebraic counterpart of Proposition 3.7. R 3.9. The two previous families of orientation vectors correspond to two adjacent chambers in the fundamental hyperplane arrangement of the permutahedron [Lap22, Theorem 3.6], separated by the hyperplane x 1 + x 4 = x 2 + x 3 , pictured in blue in [Lap22, Figure 12]. A way to relate the diagonal constructed in this article to the diagonal of [SU04, Section 5] would possibly be to find further choices of chambers in the fundamental hyperplane arrangements of the permutahedra (or the multiplihedra) in all dimensions n ≥ 4 recovering the latter diagonal, see also [START_REF] Laplante-Anfossi | The diagonal of the operahedra[END_REF]Remark 3.18].

• • F 8. The four pairs of (2) represented in blue on the two top copies of J 4 and the four pairs of (3) represented in red on the two bottom copies of J 4 . The minimal (top right) and maximal (bottom left) vertices for the Tamari-type order are drawn in black, in the top left copy.
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∞ - A ∞ -
We begin by proving that for a certain choice of cellular orientation, the cellular chains functor maps the Loday associahedra to the operad A ∞ encoding A ∞ -algebras and the Forcey-Loday multiplihedra to the operadic bimodule M ∞ encoding A ∞ -morphisms between them. It then maps the respective geometric diagonals to algebraic ones, which can be used to define compatible tensor products of A ∞ -algebras and A ∞ -morphisms (with signs). Tensor product of A ∞ -categories and A ∞ -functors are defined in a similar fashion, and we relate them to the di erent notions of A ∞ -categories with identities. We finally study coassociativity, cocommutativity and compatibility with composition of A ∞ -morphisms for these diagonals. 9. The two distinct subdivisions of the same "diamond" in J 4 , respectively induced by the pairs of (2) and (3).

We show that these properties are always satisfied up to homotopy, hinting at the idea that the category ∞-A ∞ -alg should possess some kind of homotopy symmetric monoidal structure.

A ∞ -algebras and A ∞ -morphisms.

4.1.1. De nitions. We work in the rest of this article with homological convention. We will refer to chain complexes as dg modules, where the abbreviation dg stands for "di erential graded", and their di erential will always have degree -1.

De nition 4.1 (A ∞ -algebra

). An A ∞ -algebra is the data of a dg module (A, ∂) together with operations

m n : A ⊗n → A , n ≥ 2 of degree |m n | = n -2, satisfying the equations [∂, m n ] = - p+q+r =n 2≤q ≤n-1 (-1) p+qr m p+1+r (id ⊗ p ⊗ m q ⊗ id ⊗r ) , n ≥ 2 . De nition 4.2 (A ∞ -morphism). An A ∞ -morphism F : A B between two A ∞ -algebras (A, {m n }) and (B, {m n }) is a family of linear maps f n : A ⊗n → B , n ≥ 1 of degree | f n | = n -1, satisfying the equations [∂, f n ] = p+q+r =n q ≥2
(-1) p+qr f p+1+r (id ⊗ p ⊗ m q ⊗ id ⊗r ) -

i 1 +•••+i k =n k ≥2 (-1) ε m k ( f i 1 ⊗ • • • ⊗ f i k ) , n ≥ 1 , where ε = k u=1 (k -u)(1 -i u ).
For three A ∞ -algebras A, B, C and two A ∞ -morphisms F : A B, B C, their composition G • F : A C is the A ∞ -morphism whose operation of arity n is given by the formula

(G • F) n := i 1 +•••+i k =n (-1) ε g k ( f i 1 ⊗ • • • ⊗ f i k ) .
This composition is associative. We moreover point out that a standard dg (associative) algebra can be defined as an A ∞ -algebra whose higher operations m n vanish for n ≥ 3. For more details on these notions, we refer to [LV12, Chapter 9].

De nition 4.3. We denote by ∞-A ∞ -alg the category of A ∞ -algebras with A ∞ -morphisms.

Representing the operations m n as corollae of arity n, the equations of Definition 4.1 read as

(4) [∂, ] = - p+q+r =n 2≤q ≤n-1 (-1) p+qr p q r .
Representing the operations m n in blue , the operations m n in red and the operations f n by , the equations of Definition 4.2 can be rewritten as

[∂, ] = p+q+r =n q ≥2 (-1) p+qr p q r - i 1 +•••+i k =n k ≥2 (-1) ε i 1 i k . (5)
Finally, representing the operations f n by and the operations g n by , the formula for the composition of A ∞ -morphisms reads as

i 1 +•••+i k =n (-1) ε i 1 i k . (6)
4.1.2. The operad A ∞ and the operadic bimodule M ∞ .

De nition 4.4 (Operad A ∞ ).

The operad A ∞ is the quasi-free dg operad generated in arity n ≥ 2 by one operation of degree n -2 A ∞ := T( , , , • • • ), ∂ , and whose di erential is de ned by Equations (4).

De nition 4.5 (Operadic bimodule M

∞ ). The operadic bimodule M ∞ is the quasi-free (A ∞ , A ∞ )- operadic bimodule generated in arity n ≥ 1 by one operation of degree n -1 M ∞ := T A ∞ ,A ∞ ( , , , , • • • ), ∂ ,
and whose di erential is de ned by Equations (5).

We denote by End A the endomorphism operad of a dg module A, i.e. the operad whose dg module of operations of arity n is End A (n) := Hom(A ⊗n , A). An A ∞ -algebra structure on A is then equivalent to the datum of a morphism of operads A ∞ → End A . We denote similarly by Hom A B the (End B , End A )-operadic bimodule defined by Hom A B (n) := Hom(A ⊗n , B). An A ∞morphism between two A ∞ -algebras A and B is then equivalent to the datum of a morphism of operadic bimodules M ∞ → Hom A B . Composition of A ∞ -morphisms can also be formulated at the level of the operadic bimodule M ∞ as a morphism of

(A ∞ , A ∞ )-operadic bimodules M ∞ → M ∞ • A ∞ M ∞ ,
where the notation • A ∞ denotes the relative composite product [LV12, Section 11.2.1]. We write the first factor of M ∞ • A ∞ M ∞ using green for the color above the gauge and red for the color below the gauge,

M ∞ := T A ∞ ,A ∞ ( , , , , • • • ) ,
and its second factor using blue for the color above the gauge and green for the color below the gauge

M ∞ := T A ∞ ,A ∞ ( , , , , • • • ) .
De nition 4.6 (Composition morphism). The composition morphism is de ned to be the morphism of

(A ∞ , A ∞ )-operadic bimodules comp : M ∞ → M ∞ • A ∞ M ∞ given on the generating operations of M ∞ by comp = i 1 +•••+i k =n (-1) ε i 1 i k .
The composition of two A ∞ -morphisms A B and B C is then equivalent to the following composition of morphisms of operadic bimodules

M ∞ comp -→ M ∞ • A ∞ M ∞ -→ Hom B C • End B Hom A B -→ Hom A C .
4.1.3. The Forcey-Loday multiplihedra realize the operadic bimodule M ∞ .

De nition 4.7 (Cellular orientation). Let P ⊂ R n be a polytope, and let F be a face of P. A cellular orientation of F is a choice of orientation of its linear span. A cellular orientation of P is a choice of cellular orientation for each face F of P.

We respectively denote by CW and dgmod the symmetric monoidal categories of CW complexes and of dg modules over Z, and by C cell De nition 4.8 (Left-levelwise order). Let t be a (2-colored) tree t. The left-levelwise order on the vertices of t is de ned by ordering them from bottom to top and from left to right, proceeding one level at a time.

Given a tree t, there is a unique decomposition

t = (• • • ((c n 1 • i 1 c n 2 )• i 2 c n 3 ) • • •• i k c n k +1 )
where the corollae c n are grafted according to this total order. Using the grafting operations defined in Section 1.1.2, a 2-colored tree admits similarly a unique decomposition as a sequence of blue corollae, red corollae and 2-colored corollae ordered according to this total order. We can then make the same choices of cellular orientations as in [Maz21a, Section 1.4], illustrated in Figure 10 : F 10. The tree on the left decomposes as (c 4 • 3 c 4 )• 3 c 3 and the orientation on the face it labels is determined by the product K 4 × K 4 × K 3 . The tree on the right decomposes as (c 4 • 1 c 3 ) • 6 c 4 and defines the orientation determined by the product K 4 × K 3 × K 4 .

• For the Loday associahedra K n ⊂ R n-1 of [MTTV21], we choose the basis {e 1e j+1 } 1≤ j ≤n-2 as positively oriented basis of the top dimensional cell . We then choose the orientation of any other face t of K n to be the image of the positively oriented bases of the top cells of the polytopes K n i under the sequence of partial compositions following the left-levelwise order on t.

• We choose the basis {-e j } 1≤ j ≤n-1 as positively oriented basis of the top dimensional cell of the Forcey-Loday multiplihedra J n ⊂ R n-1 . We then choose the orientation of any other face t of J n to be the image of the positively oriented bases of the top cells of the polytopes K n i and J n j under the sequence of action-compositions maps, following the left-levelwise order on t. Proposition 4.9. These cellular orientations on the Loday associahedra and the Forcey-Loday multiplihedra provide an isomorphism of dg operads C cell • ({K n }) A ∞ and an isomorphism of dg operadic bimodules C cell • ({J n }) M ∞ . Proof. The choice of a cellular orientation endows the K n and J n with a natural CW structure (see [START_REF] Laplante-Anfossi | The diagonal of the operahedra[END_REF]Proposition 4.22]). The choice of the left-levelwise order on trees ensures that we recover precisely the usual sign conventions for the partial compositions of the quasi-free operad A ∞ and for the action-composition maps of the quasi-free operadic bimodule M ∞ . The signs for the respecive di erentials were computed in [Maz21a, Section 1.4].

4.2.

Tensor product of A ∞ -algebras and A ∞ -morphisms.

Diagonals on the operad

A ∞ and on the operadic bimodule M ∞ .

De nition 4.10 (Operadic diagonals).

(1) A diagonal on the operad A ∞ is a morphism of dg operads

: A ∞ → A ∞ ⊗ A ∞ which satis es ( ) = ⊗ .
(2) Given a diagonal on the operad A ∞ , a diagonal on the operadic bimodule M ∞ is a morphism of operadic bimodules : M ∞ → M ∞ ⊗ M ∞ which satis es ( ) = ⊗ , and where M ∞ ⊗ M ∞ is endowed with its (A ∞ , A ∞ )-operadic bimodule structure induced by the diagonal on A ∞ .

Diagonals provide an adapted framework to define tensor products of A ∞ -algebras and A ∞morphisms. Given a diagonal A ∞ → A ∞ ⊗ A ∞ and two A ∞ -algebras A and B, one can define an A ∞ -algebra structure on A ⊗ B by considering the following composition

A ∞ -→ A ∞ ⊗ A ∞ -→ End A ⊗ End B -→ End A ⊗B . Given similarly a diagonal M ∞ → M ∞ ⊗ M ∞ and two A ∞ -morphisms F 1 : A 1 B 1 and F 2 : A 2 B 2 , one can define an A ∞ -morphism F 1 ⊗ F 2 : A 1 ⊗ A 2 B 1 ⊗ B 2 by the following composition M ∞ → M ∞ ⊗ M ∞ → Hom A 1 B 1 ⊗ Hom A 2 B 2 → Hom A 1 ⊗ A 2 B 1 ⊗B 2 .
We moreover point out that the conditions ( ) = ⊗ and ( ) = ⊗ respectively imply that these constructions recover the standard tensor product of dg algebras and the standard tensor product of ordinary morphisms between dg algebras. 4.2.2. Admissible edges and permutations. We fix a (2-colored) nested linear graph ( , N). We denote by N i the unique minimal nest of N with respect to nest inclusion, which contains the edge i. De nition 4.11 (Admissible edge). For a nested linear graph ( , N), an edge i is admissible with respect to N if i min N i . For a 2-colored nested linear graph ( , N), an edge i is admissible with respect to N when N i is bicolored, or if i min N i when N i is monochrome. We denote the set of admissible edges of N by Ad(N).

De nition 4.12 (Left-levelwise order). The left-levelwise order on N is de ned by ordering the nests by decreasing order of cardinality, and ordering two nests of the same cardinality according to the increasing order on their minimal elements.

Under the bijection of Lemma 3.4, the left-levelwise order on the nesting of a nested linear graph is equivalent to the left-levelwise order on the vertices of the corresponding tree t, as defined in Definition 4.8 .

Consider the left-levelwise order N 1 < N 2 < • • • < N k on the nesting N = {N j } 1≤ j ≤k . We endow the set Ad(N) with a total order, by ordering the admissible edges of N 1 \ ∪ 2≤ j ≤k N j in increasing order, then the admissible edges of N 2 \ ∪ 3≤ j ≤k N j in increasing order, and so on. Given two nestings N, N of , we endow the set Ad(N) Ad(N ) with the total order given by following the total order on Ad(N) and then the total order on Ad(N ). We denote by K and J the algebraic diagonals obtained from the polytopal ones by applying the cellular chains functor, see Propositions 4.15 and 4.18 below. The proofs of these two propositions include the proofs of the following two lemmas.

Lemma 4.13. For a pair of nestings of complementary dimensions (N, N ) ∈ Im K , the function

σ NN : Ad(N) Ad(N ) → (1, 2, . . . , |Ad(N) Ad(N )|) de ned on i ∈ Ad(N) by σ NN (i) =      min N i -1 if i ∈ Ad(N) ∩ Ad(N ) and 1 min N i < min N i i -1 otherwise ,
and similarly on i ∈ Ad(N ) by reversing the roles of N and N , induces a permutation of the set {1, 2, . . . , |Ad(N) Ad(N )|} that we will still denote by σ NN .

Lemma 4.14. For a pair of 2-colored nestings of complementary dimensions (N, N ) ∈ Im J , the function σ NN : Ad(N) Ad(N ) → (1, 2, . . . , |Ad(N) Ad(N )|) de ned on i ∈ Ad(N) by of the diagonal of the Loday associahedra constructed in [START_REF] Masuda | The diagonal of the associahedra[END_REF] de nes a diagonal on the operad A ∞ , that we denote K . It is determined by the formula

σ NN (i) =                min N i if i ∈ Ad(N) ∩ Ad(N ), N i is monochrome and N i is not min N i if i ∈ Ad(N) ∩ Ad(N ), N i
K (( • • • • • )) = N,N ∈N n top(N)≤bot(N ) |N|+|N |=n (-1) |Ad(N)∩Ad(N )| sgn(σ NN )N ⊗ N ,
where • • • • • stands for the linear graph with n vertices.

Proof. The image of the diagonal on the Loday associahedra under the functor C cell • defines a diagonal on the operad A ∞ as this functor is strong monoidal. This diagonal K : A ∞ → A ∞ ⊗ A ∞ is determined by the image of the generating operations of the quasi-free operad A ∞ , which are the trivially nested linear graphs. The signs arise from the choices of cellular orientations on the Loday associahedra made in Section 4.1.3 as follows. As explained in the proof of [Lap22, Proposition 4.27], the computation of the signs boils down to the computation of the determinant of the bases e F j , e G j determining the cellular orientations of the faces F and G associated to the nestings N and N , expressed in the basis e j of the top dimensional cell of K n . The second part of the proof of [Lap22, Theorem 1.26] shows that dim(F ∩ ρ z G) = 0, for any z ∈ ( F + G)/2. Combined with the fact that dim F + dim G = dim K n , this implies that the two bases e F j , e G j form together a basis of the linear span of K n . Writing horizontally the e F j and then the e G j in the basis e j defines a square matrix. The positions of the rightmost nonzero entries of each line are given by the admissible edges of N and N . The permutation σ NN corresponds to a permutation of the lines of this matrix, sending these righmost entries to the diagonal, except for one case: when N and N share the same admissible edge. In this case, linear independence guarantees that the two vectors di er in another place. We moreover point out that that the -1 term in the definition of the permutation σ NN in Lemma 4.13 stems from the fact that K n is defined in R n-1 but has dimension n -2. We compute in particular , by explicitly computing the signs for the polytopal diagonal on the dg level. This formula corresponds in fact to the formula originally computed in [START_REF] Markl | Associahedra, cellular W -construction and products of A ∞ -algebras[END_REF] (up to signs verification). We also conjecture that this diagonal is equal to the diagonal constructed in [START_REF] Saneblidze | Diagonals on the permutahedra, multiplihedra and associahedra[END_REF].

K (( • • )) = ( • • ) ⊗ ( • • ) , K (( • • • )) = ( ( • • ) • ) ⊗ ( • • • ) + ( • • • ) ⊗ ( • ( • • ) ) , K (( • • • • )) = ( • • • • ) ⊗ ( • ( • ( • • ) ) ) + ( ( ( • • ) • ) • ) ⊗ ( • • • • ) -( ( • • ) • • ) ⊗ ( • •( • • ) ) + ( ( • • • ) • ) ⊗ ( • ( • • ) • ) + ( ( • • • ) • ) ⊗ ( • ( • • • ) ) + ( • ( • • ) • ) ⊗ ( • ( • • • ) ) .
De nition 4.17 (Tensor product of A ∞ -algebras). Given A and B two A ∞ -algebras, their tensor product as A ∞ -algebras is de ned to be the dg module A ⊗ B endowed with the A ∞ -algebra structure induced by the diagonal K .

Proposition 4.18. The image under the functor C cell • of the diagonal on the Forcey-Loday multiplihedra constructed in this paper de nes a diagonal on the operadic bimodule M ∞ , that we denote J . It is determined by the formula

J (( • • • • • )) = N,N (-1) |Ad(N)∩Ad(N )| sgn(σ NN )N ⊗ N ,
where the sum runs over the pairs N, N ∈ N 2 n such that |mono(N)| + |mono(N )| = n -1 and which satisfy the conditions in Theorem 2.

Proof. The proof is similar to the proof of Proposition 4.15. Note that in this case, there is no -1 term in the definition of the permutation σ NN in Lemma 4.14 since J n is full-dimensional.

We compute in particular

J (( • )) = ( • ) ⊗ ( • ) , J (( • • )) = ( • • ) ⊗ ( • • ) + ( • • ) ⊗ ( • • ) , J (( • • • )) = ( ( • • ) • ) ⊗ ( • • • ) + ( • • • ) ⊗ ( • ( • • ) ) -( • • • ) ⊗ ( • ( • • ) ) -( • • • ) ⊗ ( • ( • • ) ) + ( • ( • • ) ) ⊗ ( • ( • • ) ) -( ( • • ) • ) ⊗ ( ( • • ) • ) + ( ( • • ) • ) ⊗ ( • • • ) + ( ( • • ) • ) ⊗ ( • • • ) .
De nition 4.19 (Tensor product of A ∞ -morphisms). Let F 1 : A 1 B 1 and F 2 : A 2 B 2 be two A ∞ -morphisms between A ∞ -algebras. Their tensor product is de ned to be the A ∞ -morphism

F 1 ⊗ F 2 : A 1 ⊗ A 2 B 1 ⊗ B 2 induced by the diagonal J on M ∞ .
One can ask whether the dg "magical formula" for the diagonal on the operad A ∞ also defines a diagonal on the operadic bimodule M ∞ , i.e. if by relaxing the conditions of Theorem 2 to the condition top(N) ≤ bot(N ), the formula of Proposition 4.18 still defines a diagonal on M ∞ . A simple computation in arity 4 shows that the answer to this question is negative. In other words, it is not possible to naively extend the "magical formula" for the tensor product of A ∞ -algebras to define a tensor product of A ∞ -morphisms, see also Section 3.3.

Categori cation.

4.3.1.

Tensor product of A ∞ -categories and A ∞ -functors. The horizontal categorifications of the notions of A ∞ -algebra and A ∞ -morphism are the notions of A ∞ -category and A ∞ -functor, respectively. We refer to [Sei08, Chapter 1] for the definitions of these two notions. We borrow the notations from [START_REF] Seidel | Fukaya categories and Picard-Lefschetz theory[END_REF] and will moreover use the sign conventions of Section 4.1.

De nition 4.20 (Tensor product of A ∞ -categories). The tensor product of two A ∞ -categories A and B is given by • the set of objects Ob(A ⊗ B) Ob(A) × Ob(B),

• for each pair of objects X 1 × Y 1 , X 2 × Y 2 ∈ Ob(A ⊗ B), the dg module of morphisms A ⊗ B(X 1 × Y 1 , X 2 × Y 2 ) A(X 1 , X 2 ) ⊗ B(Y 1 , Y 2 ) ,
and by de ning the higher compositions m n as in Proposition 4.15.

De nition 4.21 (Tensor product of A ∞ -functors). The tensor product of two A ∞ -functors F : A 1 B 1 and G : A 2 B 2 is given by the function

Ob(F ⊗ G) Ob(F) × Ob( G) : Ob(A 1 ⊗ B 1 ) → Ob(A 2 ⊗ B 2 ) ,
and by de ning the operations (F ⊗ G) n as in Proposition 4.18.

4.3.2. Identities. The category H * (A) associated to an A ∞ -category A does not necessarily have identity morphisms. As explained in [Sei08, Section 1.2], there exist three notions of A ∞category with identity morphisms : strictly unital A ∞ -category, cohomologically unital A ∞ -category and homotopy unital A ∞ -category.

(1) A cohomologically unital A ∞ -category is an A ∞ -category A which is such that H * (A) has identity morphisms. (2) A strictly unital A ∞ -category is an A ∞ -category together with an element e X ∈ A(X, X)

for every

X ∈ Ob(A) such that ∂(e X ) = 0, m 2 (e, •) = m 2 (•, e) = id and m n (• • • , e, • • • ) = 0 for n ≥ 3.
(3) A homotopy unital A ∞ -category is defined to be an A ∞ -category together with elements e X ∈ A(X, X) and endowed with additional operations encoding the fact that the previous relations on the m n and the e X are satisfied only up to higher coherent homotopies, see also [HM12, Section 6.1].

We have in particular that unital ⇒ homotopy unital ⇒ cohomologically unital .

The proof of the following proposition is straightforward.

Proposition 4.22.

(1) If A and B are cohomologically unital A ∞ -categories, the tensor A ∞ -category A ⊗ B is again cohomologically unital. (2) If A and B are unital A ∞ -categories, the tensor A ∞ -category A⊗ B is again unital, with identity morphisms e X ×Y := e X ⊗ e Y for X ∈ Ob(A) and Y ∈ Ob(B).

If A and B are homotopy unital A ∞ -categories, we have to define the additional operations associated to the fact that the elements e X ⊗ e Y are identity morphisms up to homotopy in order to endow the A ∞ -category A ⊗ B with a homotopy unital A ∞ -category structure. In other words, we have to define a diagonal on the operad uA ∞ encoding homotopy unital A ∞ -algebras, which has not been done yet to the authors knowledge. An idea would be to define a diagonal on the unital associahedra, which are CW-complexes constructed by Muro and Tonks in [START_REF] Muro | Unital associahedra[END_REF] and which form an operad whose image under the cellular chains is the operad uA ∞ . However, not all unital associahedra are polytopes, meaning that the present techniques cannot be directly applied to them. 4.4. Homotopy properties of diagonals on A ∞ and M ∞ . by rearranging (A ⊗ B) ⊗n into (B ⊗ A) ⊗n and A ⊗ B into B ⊗ A. In operadic terms, this amounts to ask if the diagonal on A ∞ is cocommutative or not.

Proposition 4.24. The diagonals K and J are not cocommutative.

Proof. We compute indeed that

K -τ K (( • • • )) = ∂ (( • • • ) ⊗ ( • • • )) ,
where τ acts by the permutation (1 2) on the operad A ∞ ⊗ A ∞ . We also compute that

J -τ J (( • • )) = ∂ (( • • ) ⊗ ( • • )) .
We conjecture in fact that Proposition 4.24 holds for any diagonal on the operad A ∞ and for any diagonal on the operadic bimodule M ∞ . 4.4.3. Compatibility with the composition. We would finally like to know whether the tensor product is functorial with respect to the composition of A ∞ -morphisms. In other words, if given four A ∞ -morphisms

F 1 : A 1 B 1 , G 1 : B 1 C 1 , F 2 : A 2 B 2 and G 2 : B 2 C 2 they satisfy the following equality (G 1 ⊗ F 1 ) • (G 2 ⊗ F 2 ) = (G 1 ⊗ G 2 ) • (F 1 ⊗ F 2 ) .
In operadic terms, this amounts to ask if the diagonal on M ∞ together with the composition morphism comp of Section 4.1.2 satisfy the following equality

(comp ⊗ comp) = ( • A ∞ )comp .
Proposition 4.25. There is no diagonal on the operadic bimodule M ∞ which is compatible with the composition of A ∞ -morphisms.

Proof. Let be a diagonal M ∞ → M ∞ ⊗ M ∞ . The compatibility with the di erential implies that is necessarily of the form

(( • )) = ( • ) ⊗ ( • ) and (( • • )) = α(( • • ) ⊗ ( • • ) + ( • • ) ⊗ ( • • )) + (1 -α)(( • • ) ⊗ ( • • ) + ( • • ) ⊗ ( • • )) ,
where α ∈ Z. We compute that if the equality

(comp ⊗ comp) (( • • )) = ( • A ∞ )comp(( • • ))
holds, we necessarily have that α = 0 and that α = 1, which is not possible.

In the case of the diagonals K and J , we compute that comp

• J -( J • A ∞ J ) • comp = ∂ ⊗ .
4.4.4. Homotopy properties. While coassociativity, cocommutativity and compatibility with the composition are not satisfied by the diagonals K and J , we will now prove that a diagonal on the 2-colored operad A 2 ∞ always satisfies these properties up to homotopy. We use the notion of homotopy between morphisms of 2-colored operads as defined in [MSS02, Section 3.10].

Proposition 4.26. Let be a diagonal on the 2-colored operad A 2 ∞ .

(1) The morphisms of operads ( ⊗ id) ) and (id ⊗ ) ) are homotopic. In other words, a diagonal on A 2 ∞ is always coassociative up to homotopy. (2) The morphisms of operads and τ are homotopic. In other words, a diagonal on A 2 ∞ is always cocommutative up to homotopy.

(3) The morphisms of operads comp • J and ( J • A ∞ J ) • comp are homotopic. In other words, a diagonal on A 2 ∞ is always compatible with the composition of A ∞ -morphisms up to homotopy. Proof. The proof of this proposition is a simple adaptation of the results of [MS06, Section 2] in the context of 2-colored dg operads, applied to the minimal model A 2 ∞ for the 2-colored dg operad As 2 encoding pairs of dg algebras together with morphisms between them.

While Proposition 4.25 shows that it is not possible to endow the category ∞-A ∞ -alg with a symmetric monoidal category structure using the viewpoint of diagonals, Proposition 4.26 exhibits a first level of homotopies that could be involved in the definition of some kind of homotopy symmetric monoidal category structure on ∞-A ∞ -alg. This question will be studied in a future work by D. Poliakova and the two authors of this paper. As a first step towards solving that problem, we will inspect in particular which higher coherent homotopies arise from the lack of coassociativity of K n and J n on the level of polytopes.

F

We first prove that a diagonal on the dg operad A ∞ is equivalent to a retraction of the bar-cobar resolution AA ∞ onto the operad A ∞ . We then explain how to associate a convolution A ∞ -algebra to an A ∞ -coalgebra and an A ∞ -algebra, as well as A ∞ -morphisms between convolution A ∞ -algebras, using diagonals on A ∞ and M ∞ . We finally describe two possible applications of our results in symplectic topology: in the context of Heegard Floer homology, and to study tensor products of Fukaya categories/algebras and A ∞ -functors between them. 5.1. Retractions and diagonals. Recall that the operad A ∞ is the minimal model A ∞ = ΩAs ¡ of the dg operad As encoding associative algebras. Another cofibrant replacement of the operad As is given by the bar-cobar (or Boardman-Vogt) resolution AA ∞ := ΩB As, which is defined as the quasi-free operad

AA ∞ := T( , , , , • • • , PT n , • • • ), ∂ ,
where PT n is the set of planar rooted trees of arity n and the degree of a tree is defined as the number of its internal edges. We refer to [LV12, Section 9.3] for a complete study of the operad AA ∞ , and in particular for a definition of its di erential. There exists an explicit embedding of dg operads A ∞ → AA ∞ , as constructed in [MS06, Section 4] and in [Maz21a, Section 1.3.1.5]. The problem of the construction of an explicit morphism of dg operads AA ∞ → A ∞ is more complicated and is the subject of the following proposition.

De nition 5.1 (Retraction).

A morphism of dg operads AA ∞ → A ∞ sending to will be called a retraction of the operad AA ∞ onto the operad A ∞ .

Proposition 5.2. The datum of a diagonal on the operad A ∞ is equivalent to the datum of a retraction r : AA ∞ → A ∞ .

Proof. We apply the general theory of operadic twisting morphisms [LV12, Section 6.4] to prove the following sequence of isomorphisms:

Hom Op (ΩAs ¡ , ΩAs ¡ ⊗ ΩAs ¡ ) Tw(As ¡ , ΩAs ¡ ⊗ ΩAs ¡ ) Tw(B As, ΩAs ¡ ) Hom Op (ΩB As, ΩAs ¡ ) .
The first and last isomorphisms are given by the bar-cobar adjunction. We thus only need to explain the second isomorphism. A twisting morphism As ¡ → ΩAs ¡ ⊗ ΩAs ¡ is by definition a Maurer-Cartan element in the convolution pre-Lie algebra associated to the convolution dg operad Hom(As ¡ , ΩAs ¡ ⊗ ΩAs ¡ ). This convolution dg operad is in turn isomorphic to the desuspension S -1 (ΩAs ¡ ⊗ ΩAs ¡ ). Since the cooperad As ¡ is 1-dimensional in every arity, and since the arity-wise linear dual dg cooperad of the desuspended dg operad S -1 (ΩAs ¡ ) is isomorphic to the bar construction B As, we have that the desuspension S -1 (ΩAs ¡ ⊗ ΩAs ¡ ) is isomorphic to the convolution dg operad Hom(B As, ΩAs ¡ ). We hence have the following isomorphisms of dg operads

Hom(As ¡ , ΩAs ¡ ⊗ ΩAs ¡ ) S -1 (ΩAs ¡ ⊗ ΩAs ¡ ) Hom(B As, ΩAs ¡ ) .
This implies an isomorphism on the level of the Maurer-Cartan elements of the associated dg pre-Lie algebras, that is Tw(As ¡ , ΩAs ¡ ⊗ ΩAs ¡ ) Tw(B As, ΩAs ¡ ) .

We finally check that the condition ( ) = ⊗ is equivalent to the condition r( ) = .

Proposition 5.2 clarifies in particular the construction of the diagonal on the operad A ∞ given in [START_REF] Markl | Associahedra, cellular W -construction and products of A ∞ -algebras[END_REF]. The operad AA ∞ can indeed be seen as the cellular chains on the cubical realization of the associahedra [LV12, Section 9.3.1]. It comes with an elementary diagonal AA ∞ → AA ∞ ⊗ AA ∞ defined using the Serre cubical diagonal of [START_REF] Serre | Homologie singulière des espaces brés[END_REF]. M. Markl and S. Shnider then define a retraction r : AA ∞ → A ∞ and deduce a diagonal on the operad A ∞ as the composite

A ∞ -→ AA ∞ -→ AA ∞ ⊗ AA ∞ r ⊗r -→ A ∞ ⊗ A ∞ .
Their choice of retraction recovers the diagonal constructed directly on the level of the associahedra in [MTTV21, Theorem 2]. A similar proof would however not adapt to the case of the multiplihedra, as they are not simple polytopes hence do not admit a cubical realization. R 5.3. As observed in [Lap22, Remark 1.6], the methods used to construct our cellular approximation of the diagonal could be related to the Fulton-Sturmfels formula [FS97, Theorem 4.2], appearing in the study of the intersection theory on toric varieties. We also expect an interpretation of Proposition 5.2 in terms of Morse theory, in the vein of [START_REF] Friedman | Flowing from intersection product to cup product[END_REF][START_REF] Frankland | Théorème de künneth en homologie de Morse[END_REF]. There should also be an interpretation in terms of discrete Morse theory as in [Tho18, Section 1.1.4] for the case of the standard simplices. 

Convolution

α := ∂ C ⊗ A + (id ⊗ µ A )(id ⊗ α ⊗ id)(∆ C ⊗ id) .
Twisted di erentials appear in the computation of the singular homology of fiber spaces [START_REF] Edgar | Twisted tensor products. I[END_REF]. Given a fibration F → X → B satisfying some mild assumptions, the singular homology of X can then be computed as the homology of the tensor product C * (B) ⊗ C * (F) endowed with a twisted di erential, where C * (F) is seen as a dg module over the dg algebra C * (ΩB).

Convolution

A ∞ -algebra. One defines an A ∞ -coalgebra structure on a dg module C to be a morphism of dg operads A ∞ → coEnd C , where coEnd C (n) = Hom(C, C ⊗n ). Put di erently, it is the structure dual to the structure of A ∞ -algebra, i.e. it corresponds to a collection of operations c n : C → C ⊗n of degree n -2 satisfying the equations obtained by inverting inputs and outputs in the equations for A ∞ -algebras. The notion of an A ∞ -morphism between A ∞coalgebras is defined in a similar fashion: either in terms of operations f n : C → D ⊗n of degree n -1 and satisfying the equations dual to the equations for A ∞ -morphisms, or equivalently as a morphism of dg operadic bimodules M ∞ → coHom C 1 C 2 . Our results allow us to extend the convolution algebra construction when C is an A ∞ -coalgebra and A is an A ∞ -algebra.

Proposition 5.4.

(1) Let C be an A ∞ -coalgebra and A be an A ∞ -algebra. A diagonal on the operad A ∞ yields an A ∞ -algebra structure on the dg module (Hom(C, A), ∂). We call this A ∞ -algebra the convolution A ∞ -algebra of C and A.

(2) Let F : A 1 A 2 be an A ∞ -morphism between two A ∞ -algebras A 1 and A 2 and G : C 2 C 1 be an A ∞ -morphism between two A ∞ -coalgebras C 2 and C 1 . A diagonal on the operad M ∞ yields an A ∞ -morphism between the convolution A ∞ -algebras Hom(C 1 , A 1 ) and Hom(C 2 , A 2 ).

Proof.

(1) Given a diagonal A ∞ → A ∞ ⊗A ∞ , the following composite of morphism of operads defines the A ∞ -algebra structure on Hom(C, A) :

A ∞ → A ∞ ⊗ A ∞ → coEnd C ⊗ End A → End Hom(C, A) ,
where the morphism of dg operads coEnd

C ⊗ End A → End Hom(C, A) is straightforward to define. (2) Given a diagonal M ∞ → M ∞ ⊗ M ∞ , we consider in a similar fashion the composite of morphism of operadic bimodules M ∞ → M ∞ ⊗ M ∞ → coHom C 2 C 1 ⊗ Hom A 1 A 2 → Hom Hom(C 1 , A 1 )
Hom(C 2 , A 2 ) .

Proposition 5.5. For any diagonal on A ∞ , and for any diagonal on M ∞ , the convolution A ∞ -algebra Hom(C, A) does not de ne a bifunctor

(∞-A ∞ -cog) op × ∞-A ∞ -alg → ∞-A ∞ -alg.
Proof. This is a direct corollary to Proposition 4.25.

Proposition 5.4 implies in particular that for an A ∞ -coalgebra C and an A ∞ -algebra A, it is still possible to define the notion of a twisting morphism α : C → A as a Maurer-Cartan element in the A ∞ -algebra Hom(C, A), see [DSV18, Equation 1, p.8] for instance. It also implies that the A ∞ -morphism Hom(C 1 , A 1 )

Hom(C 2 , A 2 ) defined by the A ∞ -morphism F : A 1 A 2 and G : C 2 C 1 , sends a twisting morphism C 1 → A 1 to a twisting morphism C 2 → A 2 .
We will use this key property in order to pursue the work of Brown [START_REF] Edgar | Twisted tensor products. I[END_REF] and [START_REF] Prouté | A ∞ -structures, modèle minimal de Baues-Lemaire et homologie des brations[END_REF] on the homology of fibered spaces in a forthcoming paper. 5.2.3. Diagonals as twisting morphisms. The results of Section 5.2.2 can be interpreted in a more general framework, developed by D. Robert-Nicoud and F. Wierstra in [START_REF]Homotopy morphisms between convolution homotopy Lie algebras[END_REF][START_REF] Robert | Convolution algebras and the deformation theory of in nitymorphisms[END_REF].

Proposition 5.6. The datum of a diagonal on A ∞ is equivalent to the datum of a twisting morphism α ∈ Tw(B As, ΩAs ¡ ) sending to .

Proof. This result was proven in the proof of Proposition 5.2.

Setting C = B As and P = ΩAs ¡ and working in the context of non-symmetric operads where the operad L ∞ of [START_REF]Homotopy morphisms between convolution homotopy Lie algebras[END_REF][START_REF] Robert | Convolution algebras and the deformation theory of in nitymorphisms[END_REF] Hom(id, -) :

(A ∞ -cog) op × ∞-A ∞ -alg → A ∞ -alg (8)
given by the convolution A ∞ -algebra extend to bifunctors. The authors also show that these two bifunctors do not extend to a bifunctor Hom(-, -) : (∞-A ∞ -cog) op × ∞-A ∞ -alg → ∞-A ∞ -alg (9) in general, since this assignment is not compatible with the composition of A ∞ -morphisms [RNW19b, Theorem 6.6]. Point (2) of Proposition 5.4 allows us to define the assignment (9) directly, and Proposition 5.5 can be seen as a stronger version of [RNW19b, Theorem 6.6], in the special case of A ∞ -algebras.

The main result of [START_REF] Robert | Convolution algebras and the deformation theory of in nitymorphisms[END_REF] says that if a twisting morphism α ∈ Tw(B As, ΩAs ¡ ) is Koszul, then the possible compositions of the two bifunctors (7) and (8) are homotopic and that they extend to a bifunctor on the level of the homotopy categories [RNW19a, Theorem 3.6 and Corollary 3.8]. This should be seen as a statement analogous to Point (3) of Proposition 4.26. It would be interesting to know how the results of [START_REF]Homotopy morphisms between convolution homotopy Lie algebras[END_REF][START_REF] Robert | Convolution algebras and the deformation theory of in nitymorphisms[END_REF] can be interpreted from the viewpoint of diagonals, and if they admit an interpretation on the level of polytopes. 5.3. Diagonals in symplectic topology. 5.3.1. The work of Lipshitz, Oszváth and Thurston. In [LOT20], R. Lipshitz, P. Oszváth and D. Thurston also study diagonals on the dg operad A ∞ and on the dg operadic bimodule M ∞ . They however work exclusively on the dg level, constructing abstract diagonals by using the fact that A ∞ and M ∞ are contractible, and do not provide explicit formulae for these diagonals as in Proposition 4.15 and Proposition 4.18. The goal of their work is to study bordered Heegaard Floer homology of 3-manifolds. Given a 3-manifold Y with two boundary components, they aim to construct a bimodule twisted complex CF DD -(Y ), also called a type DD-bimodule. The definition of such an object uses a diagonal on the dg operad A ∞ . A diagonal on M ∞ is then needed in order to relate the categories of bimodules defined with di erent diagonals on A ∞ , which in turn is needed for properties like the associativity of tensor products. They also expect that diagonals on M ∞ could be needed in a distant future to define A ∞ -morphisms between bimodule twisted complexes arising from a cobordism between 3manifolds Y 1 and Y 2 . Thus, the explicit formula for the diagonal defined in this paper could be used to compute invariants of 3 and 4-manifolds, via implementation in a computer program for instance. 5.3.2. Künneth theorems in Lagrangian Floer theory. Let (M, ω) be a closed symplectic manifold, i.e. a closed manifold M together with a closed non-degenerate 2-form ω on M. The Fukaya category Fuk(M, ω) of (M, ω) is defined to be the (curved filtered unital) A ∞ -category whose objects are (unobstructed) Lagrangian submanifolds of M and higher compositions are defined by counting pseudo-holomorphic disks with Lagrangian boundary conditions and marked points on their boundary, as represented in Figure 11. We refer for instance to [START_REF] Smith | A symplectic prolegomenon[END_REF] and [START_REF] Auroux | A beginner's introduction to Fukaya categories, Contact and symplectic topology[END_REF] for introductions to this subject. Given a closed spin Lagrangian submanifold L ⊂ M, K. Fukaya also constructs in [START_REF] Fukaya | Cyclic symmetry and adic convergence in Lagrangian Floer theory[END_REF] a strictly unital A ∞ -algebra F(L), the Fukaya algebra of the Lagrangian L, whose higher multiplications are again defined by counting pseudo-holomorphic disks.

x n
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x 1 x 2 y L n-1 L 1 L 0 L n M x n x n-1 x 1 x 2 y L n-1 L 1 L 0 L n M 0 M 1 L 01 F 11.
On the left, a pseudo-holomorphic disk defining the A ∞ -category structure on Fuk(M). On the right, a pseudo-holomorphic quilted disk defining an A ∞ -functor Fuk(M 0 ) Fuk(M 1 )

In [Amo17], L. Amorim shows that given two symplectic manifolds M 1 and M 2 together with Lagrangians L i ⊂ M i , the Fukaya algebra of the product Lagrangian L 1 × L 2 is quasiisomorphic to the tensor product of their Fukaya algebras, i.e. F(L 1 × L 2 ) F(L 1 ) ⊗ F(L 2 ). His proof relies on a theorem that he proves in [START_REF] Amorim | Tensor product of ltered A ∞ -algebras[END_REF], giving a criterion for an A ∞ -algebra C to be quasi-isomorphic to the tensor A ∞ -algebra A ⊗ B (see Definition 4.17) of two commuting A ∞ -subalgebras A ⊂ C and B ⊂ C, which he then applies to the two A ∞ -subalgebras F(L 1 ) ⊂ F(L 1 × L 2 ) and F(L 2 ) ⊂ F(L 1 × L 2 ). Fukaya generalizes this result in [START_REF] Fukaya | Unobstructed immersed Lagrangian correspondence and ltered A ∞ functor[END_REF], working this time on the level of Fukaya categories. He proves that for two closed symplectic manifolds M 0 and M 1 there exists a unital A ∞ -functor Fuk(M 0 ) ⊗ Fuk(M 1 ) -→ Fuk(M - 0 × M 1 ) which is a homotopy equivalence to its image.

Let now M 0 and M 1 be two compact symplectic manifolds. Define a Lagrangian correspondence from M 0 to M 1 to be a Lagrangian submanifold L ⊂ M - 0 × M 1 . In [START_REF] Ma'u | A ∞ functors for Lagrangian correspondences[END_REF], S. Mau, K. Wehrheim and C. Woodward associate to a Lagrangian correspondence L (with additional technical assumptions) an A ∞ -functor Φ L : Fuk(M 0 )

Fuk(M 1 ). It is defined on objects as Φ L (L 0 ) := π M 1 (L 0 × M 0 L) , where π M 1 denotes the projection M 0 × M - 0 × M 1 → M 1 and × M 0 is the fiber product over M 0 . The operations of Φ L are defined by counting pseudo-holomorphic quilted disks with Lagrangian boundary conditions, seam condition on L and marked points on their boundary, as represented in Figure 11. The tensor product of A ∞ -functors defined in the present paper allows one to consider the A ∞ -functor Φ L M ⊗ Φ L N associated to a pair of Lagrangian correspondences, raising the following question.

Problem. Does the diagram

Fuk(M 0 ) ⊗ Fuk(N 0 ) Fuk(M 1 ) ⊗ Fuk(N 1 )

Fuk(M 0 × N 0 ) Fuk(M 1 × N 1 ) Φ L M ⊗Φ L N Φ τ(L M ×L N )
commute up to homotopy of A ∞ -functors?

In this diagram, L M ⊂ M - 0 × M 1 , L N ⊂ N - 0 × N 1 and the symplectomorphism τ is defined by rearranging the factors of M - 0 × M 1 × N - 0 × N 1 into the factors of M - 0 × N - 0 × M 1 × N 1 . In other words, we would like to know whether the algebraic (tensor) product of geometric A ∞ -functors between Fukaya categories defined in this paper is homotopic to the A ∞ -functor defined by the geometric product of the Lagrangian correspondences. We refer to [Fuk17, Section 13] for a discussion on two definitions of the notion of a homotopy between A ∞ -functors. 
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  Poly. Let us recall the definition of the symmetric monoidal category (Poly, ×) from [MTTV21, Section 2.1]. O : An object of Poly is a d-dimensional polytope P in the n-dimensional Euclidian space R n , for any 0 ≤ d ≤ n. M : A morphism in Poly is a continuous map f : P → Q which sends P homeomorphically to the underlying set | D| of a polytopal subcomplex D

F 7 .

 7 Number of pairs of faces in the cellular image of the diagonal of the associahedra, multiplihedra and permutahedra of dimension 0 ≤ dim P ≤ 6, induced by any good orientation vector.
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•:

  CW → dgmod the cellular chains functor. A choice of a cellular orientation for every polytope P ∈ Poly defines an inclusion Poly ⊂ CW. Then, the strong symmetric monoidal functor C cell • respectively sends operads and operadic bimodules in polytopes to dg operads and dg operadic bimodules.

  and N i are monochrome and min N i < min N i , i otherwise , and similarly on i ∈ Ad(N ) by reversing the roles of N and N , induces a permutation of the set {1, 2, . . . , |Ad(N) Ad(N )|} that we will still denote by σ NN . 4.2.3. The polytopal diagonals on A ∞ and M ∞ . We use nested linear graphs introduced in Section 3.1 to work with the operad A ∞ and the operadic bimodule M ∞ . The generating operation of arity n of A ∞ corresponds to the trivial nested linear graph with n vertices ( • • • • • ), while the generating operation of arity n of M ∞ is represented by the trivial 2-colored nested linear graph with n vertices ( • • • • • ). Proposition 4.15. The image under the functor C cell •

R 4 .

 4 16. Proposition 4.15 completes the work of[START_REF] Masuda | The diagonal of the associahedra[END_REF]

  A ∞ -algebra. 5.2.1. Standard convolution algebra. Given a dg algebra A and a dg coalgebra C, recall from [LV12, Section 1.6] that one can define the convolution algebra of C and A as the dg algebra (Hom(C, A), [∂, •], ), where Hom(C, A) is the dg module of maps C → A, endowed with the convolution product f g := µ A • ( f ⊗ g) • ∆ C . The convolution algebra construction is in fact functorial, i.e. fits into a bifunctor (dgcog) op × dgalg → dgalg defined on objects as (C, A) → Hom(C, A). A Maurer-Cartan element α of Hom(C, A), i.e. a map α : C → A such that [∂, α] + α α = 0, is then called a twisting morphism. Twisting morphisms define twisted di erentials on the tensor product C ⊗ A via the formula ∂

  is replaced by the operad A ∞ , we recover Proposition 5.6 (and thus Proposition 5.2) via [RNW19b, Theorem 7.1] and Point (1) of Proposition 5.4 via [RNW19b, Theorem 4.1]. We denote by A ∞ -alg the category of A ∞ -algebras and their strict morphisms [LV12, Section 10.2.1]. It is shown in [RNW19b, Corollary 5.4] that the assignments Hom(-, id) : (∞-A ∞ -cog) op × A ∞ -alg → A ∞ -alg (7)
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4.4.1. The 2-colored viewpoint. The operad A ∞ together with the operadic bimodule M ∞ define the quasi-free 2-colored operad

whose di erential is given by the equations of Definition 4.1 and Definition 4.2. We refer to [Yau16, Section 11] for a complete definition of a 2-colored operad. The data of A ∞ -algebra structures on two dg modules A and B together with an A ∞ -morphism A B between them is equivalent to a morphism of 2-colored operads A 2 ∞ -→ End(A ; B), where End(A; B) is the endomorphism 2-colored operad naturally associated to A and B. The data of a diagonal on the operad A ∞ and of a diagonal on the operadic bimodule M ∞ is moreover equivalent to the datum of a morphism of 2-colored operads A 2

4.4.2. Coassociativity and cocommutativity. First, we would like to know whether given three A ∞algebras A, B and C, the two A ∞ -algebra structures (A ⊗ B) ⊗ C and A ⊗ (B ⊗ C) on the dg module A ⊗ B ⊗ C are the same. In operadic terms, this amounts to ask if the diagonal on A ∞ is coassociative.

Proposition 4.23.

(1) There is no diagonal on the operad A ∞ which is coassociative.

(2) There is no diagonal on the operadic bimodule M ∞ which is coassociative.

Proof. The non-existence of a coassociative diagonal on the operad A ∞ was already proven in [MS06, Section 6]. The non-existence of a coassociative diagonal on the operad A ∞ implies the non-existence of a coassociative diagonal on the operad M ∞ . Given indeed diagonals A ∞ and M ∞ , it is not possible to compare the two morphisms of dg operadic bimodules

We can in fact prove a stronger result: for any diagonal :

The proof of this result involves computations identical to the ones of [MS06, Section 6], that we do not include for the sake of concision.

This proposition implies in particular that a diagonal on the 2-colored operad A 2 ∞ is never coassociative. In the specific cases of K and J we compute moreover that

and that

Given two A ∞ -algebras A and B, we would also like to know whether the A ∞ -algebra structure on B ⊗ A can simply be obtained from the maps defining the A ∞ -algebra structure on A ⊗ B m A ⊗B n : (A ⊗ B) ⊗n → A ⊗ B