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Abstract. The analysis of time series for clustering and classification
is becoming ever more popular because of the increasingly ubiquitous
nature of IoT, satellite constellations, and handheld and smart-wearable
devices, etc. The presence of phase shift, differences in sample dura-
tion, and/or compression and dilation of a signal means that Euclidean
distance is unsuitable in many cases. As such, several similarity mea-
sures specific to time-series have been proposed, Dynamic Time Warping
(DTW) being the most popular. Nevertheless, DTW does not respect the
axioms of a metric and therefore Learning DTW-Preserving Shapelets
(LDPS) have been developed to regain these properties by using the con-
cept of shapelet transform. LDPS learns an unsupervised representation
that models DTW distances using Euclidean distance in shapelet space.
This article proposes constrained DTW-preserving shapelets (CDPS),
in which a limited amount of user knowledge is available in the form
of must link and cannot link constraints, to guide the representation
such that it better captures the user’s interpretation of the data rather
than the algorithm’s bias. Subsequently, any unconstrained algorithm
can be applied, e.g. K-means clustering, k-NN classification, etc, to ob-
tain a result that fulfils the constraints (without explicit knowledge of
them). Furthermore, this representation is generalisable to out-of-sample
data, overcoming the limitations of standard transductive constrained-
clustering algorithms. CLDPS is shown to outperform the state-of-the-
art constrained-clustering algorithms on multiple time-series datasets.
An open-source implementation based on PyTorch is available1, which
takes full advantage of GPU acceleration.

Keywords: Shapelets · Semi-supervised Learning · Clustering · Constrained-
Clustering · Time series · Learning representation.
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1 Introduction

The availability of time series data is increasing rapidly with the development of
sensing technology and the increasing number of fields that uses such technology.
This increase in data volume means that providing ground truth labels becomes
difficult due to the time and cost needed. Labelling difficulty is exacerbated
when making exploratory analyses and when working in nascent domains for
which classes are not well defined. For that reason, supervised approaches such
as classification become unfeasible and unsupervised clustering is often preferred.
However, unsupervised approaches may lead to irrelevant or unreliable results
since they have no knowledge about the user’s requirements and are instead lead
by the algorithm’s bias. On the other hand, semi-supervised algorithms try to
remove the rigid requirements of supervised approaches but retain the ability
of a user to guide the algorithm to produce a meaningful output. This can be
achieved by providing a set of constraints to the algorithm that encode some
expert knowledge. These can take many forms but this work is concerned with
must-link and cannot-link constraints since they are the easiest to interpret and
provide.

Must-link and cannot-link constraints do not define what a sample represents
(a class), instead they label pairs of samples as being the same (must-link), thus
belong to the same cluster, or not (cannot-link). In this way the algorithm is
guided to converge on a result that is meaningful to the user without explic-
itly, nor exhaustively labelling samples. Generally, time series are characterised
by trend, shapes, and distortions either to time or shape [22] and therefore ex-
hibit phase shifts and warping. As such, the Euclidean distance is unsuitable
and several similarity measures specific to time-series have been proposed [17],
for example compression-based measures [7], Levenshtein Distance [10], Longest
Common Subsequnce [25] and Dynamic Time Warping (DTW) [19,20]. DTW
is one of the most popular since it overcomes these problems by aligning two
series through the computation of a cost function based on Euclidean distance
[8], it is therefore known as an elastic measure [17]. Moreover, Paparrizos et al.
show that DTW is a good basis for calculating embeddings, an approach that
employs a similarity to construct a new representation. Time series also exhibit
complex structure which are often highly correlated [22]. This makes their analy-
sis difficult to achieve and time consuming, indeed several attempts to accelerate
DTW’s computation have been proposed [1,22]. Shapelets [30] offer a simpler
approach to increase the accuracy of time-series analysis. Shapelets are phase-
independent discriminative sub-sequences extracted or learnt to form features
that map a time-series into a more discriminative representational space, there-
fore increasing the reliability and interpretability of downstream tasks. Since
DTW does not respect the axioms of a metric, LDPS [13] extends shapelets to
preserve DTW distances in a Euclidean embedding.

The contribution of this article is to introduce constrained DTW-preserving
shapelets (CDPS), in which a time series representation is learnt to overcome
time series distortions by approximating DTW and is influenced by a limited
amount of user knowledge by providing constraints. Thus CDPS can model a
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user’s interpretation, rather than being influenced by the algorithm’s bias. Sub-
sequently, any unconstrained algorithm can be applied to the embedding, e.g.
K-means clustering, k-NN classification, etc, to obtain a result that fulfils the
constraints (without explicit knowledge of them). The proposed embedding pro-
cess is studied in a constrained clustering setting, on multiple datasets, and is
compared to COP-KMeans [27], FeatTS [23], and unsupervised DTW-preserving
shapelets [13].

The representational embedding that is learnt by CDPS is generalisable to
out-of-sample data, overcoming the limitations of standard constrained-clustering
algorithms such as COP-KMeans. It is interpretable, since the learnt shapelets
can themselves be visualised as time-series. Finally, since CDPS results in a
vectorial representation of the data, they and the constraints can be analysed
using norm-base measures, something that is not possible when using DTW as
a similarity measure [8]. This opens up the possibility of measuring constraint
informativeness [3] and constraint consistency [26] in time-series clustering, and
explaining and interpreting the constraints, which is a concern for future work.
Such measures, and notions of density, are needed to develop novel interactive
and active constrained clustering processes for time-series.

The rest of this article is organised as follows: in Section 2 related work
is reviewed, in Section 3 the Constrained DTW-Preserving Shapelets (CDPS)
algorithm is presented, in Section 4 CDPS is compared to constrained/semi-
supervised and unconstrained approaches from the literature, and finally Section
6 presents the conclusions and future work.

2 Related Work

This section will present works related to shapelets and constrained clustering.

2.1 Shapelets

Shapelets are sub-sequences of time-series that were originally developed to dis-
criminate between time-series using a tree based classifier [30,31]. As such, the
shapelets themselves were chosen from a set of all possible sub-sequences of
the set of time series being analysed, which is time consuming and exhaustive.
Different approaches are proposed to increase the speed of finding shapelets.
Rakthanmanon and Keogh [18] propose to first project the time-series into a
symbolic representation to increase the speed of discovering the shapelets. Sub-
sequently, Mueen et al. [14] introduce logical shapelets, which combines shapelets
with complex rules of discrimination to increase the reliability of the shapelets
and their ability to discriminate between the time-series. Sperandio [22] presents
a detailed review of early shapelet approaches.

Lines et al. [12] proposed a new way of handling shapelets that separated
classification from transformation. This was later extended by Hills et al. [6] to
the shapelet transform, which transforms the raw data into a vectorial repre-
sentation in which the shapelets define the representation space’s bases. It was
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proved that this separation leads to more accurate classification results even
with non-tree based approaches.

2.2 Learning Shapelets

In order to overcome the exhaustive search for optimal shapelets, Grabocka et
al. [4] introduce the concept of learning shapelets in a supervised setting. In
this approach the optimal shapelets are learnt by minimising a classification
objective function. The authors consider shapelets to be features to be learnt
instead of searching for a set of possible candidates, they report that this method
provides a significant improvement in accuracy compared to previous search
based approaches. Other supervised approaches have been proposed, Shah et al.
[21] increase accuracy by learning more relevant and representative shapelets.
This is achieved by using DTW similarity instead of Euclidean distance, since
it is better adapted to measure the similarity between the shapelets and the
time-series. Another approach for learning shapelets is to optimise the partial
AUC [29], in which shapelets are learnt in conjunction with a classifier.

2.3 Unsupervised Shapelets

Zakaria et al. [32] introduced the first approach for clustering time-series with
shapelets, called unsupervised-shapelets or u-shapelets. U-shapelets are those
that best partition a subset of the time series from the rest of the data set.
The shapelets are chosen from a set of all possible sub-sequences by partitioning
the dataset and removing the time series that are similar to the shapelet, this
process is repeated until no further improvements (i.e. partitions) can be made.
It is therefore an exhaustive search, as were the early supervised approaches. U-
shapelets have been used in several works since their initial introduction [24,33].
Since these unsupervised methods take a similar approach to the original super-
vised shapelets, they have the same drawbacks. To overcome these, Zhang et al.
[34] propose to combine learning shapelets with unsupervised feature selection
to learn the optimal shapelets. Learning DTW-preserving shapelets (LDPS) ex-
pands the learning paradigm for shapelets by integrating additional constraints
on the learnt representation. In LDPS these constrain the representation space
to model the DTW distances between the time-series, instead of focusing on
learning shapelets that best discriminate between them.

A multitude of other unsupervised approaches to build an embedding space
for time series exist (other than shapelets) and Paparrizos et al. [17] provide an
extensive study of them. Generic Representation Learning (GRAIL) [15], Shift
Invariant Dictionary Learning (SIDL) [35], Preserving Representation Learning
method (SPIRAL) [9], and Random Warping Series (RWS) [28] are different
approaches to building such representations. Since these are unsupervised they
are not of concern in this article.
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2.4 Constrained Clustering

Constrained clustering algorithms are those that add expert knowledge to the
process such as COP-Kmeans [27] and Constraint Clustering via Spectral Reg-
ularization (CCSR) [11]. Constraints can be given in different forms such as
cluster level constraints and instance level constraints. Must-link and cannot-
link constraints between samples fall under the latter.

Many constrained clustering algorithms have been proposed, some of which
have been adapted to time-series. For a full review, the reader is referred to
[8]. Here, those relevant to this study are mentioned. COP-KMeans is an exten-
sion to k-Means that often offers state-of-the-art performance without the need
to choose parameters [8]. Cluster allocations are validated using the constraint
set at each iteration to verify that no constraints are violated. For use with
time-series the DTW distance measure is often used along with an appropriate
averaging method such as DTW barycenter averaging (DBA) [8] to calculate
the cluster centres. Another semi-supervised approach developed specifically for
clustering time series is FeatTS [23]. FeatTS uses a percentage of labeled sam-
ples to extract relevant features used to calculate a co-occurrence matrix from a
graph created by the features. The co-occurrence matrix is then used to cluster
the dataset.

Other approaches to time-series clustering exist, such as k-shape [16], however
being unsupervised, these fall outside the scope of this article.

3 Constrained DTW-Preserving Shapelets

This section proposes Constrained DTW-Preserving Shapelets (CDPS), which
learns shapelets in a semi-supervised manner using ML and CL constraints.
Therefore allowing expert knowledge to influence the transformation learning
process, while also preserving DTW similarity and interpretability of the result-
ing shapelets. Definitions and notations are presented in sub-section 3.1, and the
algorithm in sub-section 3.3.

3.1 Definitions and Notations

Time series: is an ordered set of real-valued observations. Let T = {T1 ,T2 , . . . ,TN }
be a set of N uni-dimensional time series (for simplicity of notation, neverthe-
less CDPS is also applicable to multi-dimensional time series). Li is the length
of a time series such that Ti is composed of Li elements (each time-series may
have different lengths), such that

Ti = Ti,1 , . . . ,Ti,Li . (1)

A segment of a time series Ti at the mth element with length L is denoted as
Ti,m:L = {Ti,m , . . . ,Ti,L}.
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Shapelet: is an ordered set of real-valued variables, with a length smaller than,
or equal to, that of the shortest time series in the dataset. Let a Shapelet be de-
noted as S having length Lk . Let S = {S1 , . . . ,SK} be a set of K shapelets, where
Sk = Sj,1:Lk

. In our work, the set S can have shapelets with different lengths,
but for the simplicity we will use shapelets with same length in the formulation.

Squared Euclidean Score: is the similarity score between a shapelet Sk and
a time series sub-sequence Ti,m:LS

, such that

Di,k,m =
1

l

l∑
x=1

(Ti,m+x−l − Sk,x)
2. (2)

Euclidean Shapelet Match: represents the matching score between shapelet
Sk and a time series Ti, such that

T i,k = min
m∈{1:Li−Lk+1}

Di,k,m. (3)

Shapelet transform: is the mapping of time series Ti using Euclidean shapelet
matching with respect to the set of shapelets S. Where the new vectorial repre-
sentation is

T i = {T i,1, . . . , T i,K}. (4)

Constraint Sets: Let Ck be the kth cluster, ML be the set containing time
series connected by a must link and CL the set such that they are connected by
a cannot link. Thus, ∀ Ti, Tj such that i, j ∈ {1, . . . , N} and i ̸= j we have

ML = {(i, j)|∀ k ∈ {1, . . . ,K}, Ti ∈ Ck ⇔ Tj ∈ Ck}, (5)
CL = {(i, j)|∀ k ∈ {1, . . . ,K},¬(Ti ∈ Ck ∧ Tj ∈ Ck)}. (6)

3.2 Objective Function

In order to achieve a guided constrained learning approach, a new objective
function is introduced based on contrastive learning [5] that extends the loss
function used in LDPS [13] to a semi-supervised setting. The loss between two
time-series takes the form

L(Ti, Tj) =
1

2
(DTW (Ti, Tj)− βDisti,j)

2
+ ϕi,j , (7)

where DTW (Ti, Tj) is the dynamic time warping similarity between time-series
Ti and Tj , Disti,j = ||T i − T j ||2 is the similarity measure between Ti and Tj

in the embedded space such that || · ||2 is the L2 norm, and β scales the time-
series similarity (distance) in the embedded space to the corresponding DTW
similarity. The term ϕi,j is inspired by the contrastive loss and is defined, such
that

ϕi,j =


αDist2i,j , if (i, j) ∈ ML,

γmax(0, w −Disti,j)
2, if (i, j) ∈ CL,

0, otherwise,

(8)
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where α, γ are weights that regularise the must-link and cannot-link similarity
distances respectively, and w is the minimum distance between samples for them
to be considered well separated in the embedded space (after which, there is
no influence on the loss) and is calculated using the following function w =

max∀i,∀j(DTW (Ti, Tj))− log( DTW (Ti,Tj)
max∀i,∀j(DTW (Ti,Tj)

), such that i ̸= j.
The overall loss function is therefore defined, such that

L(T ) =
2

K(K − 1)

K∑
i=1

K−1∑
j=i+1

L(Ti, Tj). (9)

3.3 CDPS algorithm

Algorithm 1 CDPS algorithm
Input: T a set of Time-series,

ML and CL constraint sets,
Lmin minimum length of shapelets,
Smax maximum number of shapelet blocks,
nepochs, sbatch, cbatch

Output: Set S of shapelets,
Embeddings of T .

1: ShapeletBlocks ← Get_Shapelet_Blocks(Lmin, Smax, Li)
2: Shapelets ← Initialize_Shapelets(ShapeletBlocks)
3: for i← 0 to nepochs do
4: for 1 to |T |/sbatch do
5: minibatch ← Get_Batch(T , ML, CL, Sbatch, Cbatch)
6: Compute the DTW between the Ti′s and Tj′s in minibatch
7: Update the Shapelets and β by descending the gradient ∇L(Ti, Tj)

8: Embeddings ← Shapelet_Transfrom(T )

Algorithm 1 describes CDPS’s approach to learning the representational em-
bedding. In which ShapeletBlocks is a dictionary containing Smax pairs, {shapelet
length; shapelet number}, where shapelet length is Lmin · bind, Lmin is the mini-
mum shapelet length and bind ∈ {1, . . . , Smax} is the index of the shapelet block.
The number of shapelets for each block is calculated using the same approach as
LDPS [13]: 10 log(Li − Lmin · bind)× 10. The parameter Cbatch defines the num-
ber of constraints in each training batch, the aim of this parameter is to increase
the importance of the constrained time-series in face of the large number of
the unconstrained time-series. Initialize_shapelets initialises the shapelets
either randomly or rule-based. Here the following rule-based approach is taken:
(1) Shapelets are initialised by drawing a number of time series samples then
reshaping them into sub-sequences with length equal to that of the shapelets;
(2) k-means clustering is then performed on the sub-sequences and the clus-
ter centers are extracted to form the initial shapelets. Get_batch generates
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batches containing both constrained and unconstrained samples. If there are in-
sufficient constraints to fulfil Cbatch then they are repeated. For speed and to
take advantage of GPU acceleration, the above algorithm can be implemented
as a 1D convolutional neural network in which each layer represents a shapelet
block composed of all the shapelets having the same length followed by max-
pooling in order to obtain the embeddings. The derivation of the gradient of
L(T ), ∇L(Ti, Tj) (Algorithm 1, Line 7), is given in the supplementary material.

4 Evaluation

In this section CDPS is evaluated with respect to different constraint sets un-
der two cases: the classical constrained clustering setting in which clusters are
extracted from a dataset, called transductive learning; and the second, which is
normally not possible using classical constrained clustering algorithms, in which
the constraints used to learn a representation are generalised to an unseen test
set, called inductive learning.

4.1 Experimental Setup

Algorithm 1 is executed using mini-batch gradient descent with a batch size
sbatch = 64, cbatch = 16 constraints in each batch for the transductive setting,
while sbatch = 32, cbatch = 8 for the inductive setting (since there are fewer
samples). The influence of α and γ on accuracy were evaluated and the algorithm
was found to be stable to variations in most of the cases and for that reason the
value for both is fixed to 2.5. The minimum shapelet length Lmin = 0.15 ·Li , and
the maximum number of shapelets Smax = 3 are taken to be the same as used
in LDPS [13]. All models are trained for 500 epochs using the Adam optimiser.

K-means and COP-KMeans [27] are used as comparison methods (uncon-
strained and constrained respectively) since k-means based algorithms are the
most widely applied in real-world applications, offering state-of-the-art (or close
to state-of-the-art) performance. CDPS is also compared to FeatTS [23], which
is a semi-supervised algorithm that extracts features and uses k-Mediods clus-
tering.

Thirty-five datasets 2 chosen randomly from the UCR repository [2] are used
for evaluation. The number of clusters is set to the number of classes in each
dataset. The Normalised Mutual Information (NMI), which measures the coher-
ence between the true and predicted labels, is measured to evaluate the resulting
clusters with 0 indicating no mutual information and 1 a perfect correlation.

For the first use case, termed Transductive, the training and test sets of
the UCR datasets are combined, this reflects the real-world transductive case in
which a dataset is to be explored and knowledge extracted. In the second, termed
Inductive, the embedding is learnt on the training set and its generalised per-
formance on the test set is evaluated. This inductive use-case is something that

2 Details on the datasets used are provided in the supplementary material.
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is not normally possible when evaluating constrained clustering algorithms since
clustering is a transductive operation and this highlights one of the key contribu-
tions of CDPS - the ability generalise constraints to unseen data. The third use
case, highlights the importance of CDPS shapelets as features and their general
ability to be integrated into any downstream algorithm. As such, FeatTS’s semi-
supervised statistical features are replaced with the dataset’s CDPS embedding.

Each algorithm’s performance is evaluated on each dataset with increasing
numbers of constraints, expressed in percentages of samples that are subject
to a constraint in the 5%, 15%, 25%. These represent a very small fraction of
the total number of possible constraints, which is 1

2N(N − 1). Each clustering
experiment is repeated 10 times, each with a different random constraint set,
and each clustering algorithm is repeated 10 times for each constraint set (i.e.
there are 100 repetitions for each percentage of constraints3). The constraints
are generated by taking the ground truth data, randomly selecting two samples,
and adding an ML or CL constraint depending on their class labels until the
correct number of constraints are created.

In the FeatTS comparison, both the train and test sets were used (i.e. trans-
ductive). FeatTS and CDPS were evaluated using 25% of the ground truth in-
formation: FeatTS takes this information in the form of labels; while CDPS in
the form of ML/CL constraints, CDPS embeddings are generated and replace
FeatTS’s features (CDPS+FeatTS). The number of features used for FeatTS was
20, as indicated in the author’s paper. With both feature sets, k-Mediods was
applied on the co-occurrence matrix to obtain the final clustering [23].

4.2 Results

In this section the results of each use case (described in Section 4.1) are presented.

Transductive: Figure 1 shows the NMI scores for CDPS (Euclidean k-means
performed on the CDPS embeddings) compared to k-means (on the raw time-
series), COP-Kmeans (also on the raw time-series), and LDPS (Euclidean k-
means on the LDPS embeddings). Unconstrained k-means and LDPS are pre-
sented as a reference for the constrained algorithms (COP-kmeans and CDPS
respectively) to give insight into the benefit of constraints for each. It can be
seen that overall LDPS and k-means offer similar performance.

It can also be seen that CDPS uses the information gained by constraints
more efficiently, outperforming COP-Kmeans in almost all the different con-
straint fractions for most datasets.

It appears, nevertheless, that some datasets lend themselves to (unconstrained)
k-means based algorithms since it outperforms LDPS. Nevertheless, CPDS ex-
hibits an increase in performance as the number of constraints increase, whereas
COP-Kmeans tends to stagnate. This can be seen as the cloud of points move
3 Note that it is not always possible for COP-KMeans to converge on a result due

to constraint violations, although many initialisation were tried to obtain as many
results as possible some of the COP-KMeans results represent fewer repetitions.
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Fig. 1: A Transductive comparison between CDPS+kmeans and Raw-
TS+CopKmeans with different constraint fractions.

upwards (CDPS score increases) as more constraints are given. We can also ob-
serve that for some datasets the constrained algorithms behave similarly with
5% constraints, i.e. the cloud of points in the lower left corner, but again CDPS
benefits most from increasing the number of constraints and significantly out-
performs COP-KMeans with larger constraint percentages.

Inductive: Figure 2 presents the Inductive results, in which the embedding
space is learnt on the training set and the generalisation performance evaluated
on the unseen test set.

It should be noted that when training on the train set, there are significantly
fewer constraints then when using the merged datasets for the same constraint
percentage. It can therefore be concluded that even in the face of few data and
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Fig. 2: An Inductive comparison between CDPS+kmeans and Raw-
TS+CopKmeans with different constraint fractions.

constraints, CDPS is still able to learn a generalisable representation and attain
(within a certain margin) the same clustering performance then when trained
on the merged dataset. This is probably explained by the fact that having a
smaller number of samples with few constraints means that they are repeated
in the mini-batches (see Section 3.3), and this allows CDPS to focus on learning
shapelets that are discriminative and preserve DTW rather than shapelets that
model larger numbers of time series. Thus the resulting representation space is
more faithful to the constraints, allowing better clustering of unseen time-series.

FeatTS comparison: This study investigates the significance of the shapelets
learnt using CDPS as features over the semi-supervised statistical features ex-
tracted using FeatTS. Figure 3 shows the NMI scores of CDPS+FeatTS and
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Fig. 3: A comparison between CDPS+FeatTS and FeatTS with respect to NMI
score.

FeatTS, and we observe that, out of 35 datasets, CDPS+FeatTS outperforms
FeatTS in 27. This indicates that the shapelets learnt using CDPS are better for
clustering than the statistical features. For the datasets that achieved around
zero NMI with respect to CDPS+FeatTS while high NMI with FeatTS (e.g.
GunPointAgeSpan CDPS+FeatTS: 0.001, FeatTS: 0.559) it appears that the
shapelets learnt in these cases are not discriminative enough, which is confirmed
by CDPS’ low scores (CDPS+Kmeans: 0.004).

5 Discussion

Since LDPS only models DTW distance, the comparisons between it and k-
means (Figs. 2a & 1a) give approximately equal performance. Nevertheless,
CDPS is better able to exploit the information contained in the constraints
when they are introduced, giving more accurate clustering results overall. Both
LDPS and CDPS result in a metric space, which is beneficial for further analysis
and processing.

Being a hard constraint algorithm, COP-KMeans offers no guarantee of con-
vergence, which was evident in the presented study where several of the results
were missing after multiple tries. This is due to the difficulty of clustering with
an elastic distance measure such as DTW. In these experiments, all constraints
can be considered as coherent since they are generated from the ground truth
data, however, in real-world situations this problem would be exacerbated by
inconsistent constraints, particularly considering time-series since these are very
hard to label. CDPS, does not suffer from such limitations.

Although it was included in this study in order to have a comparison method,
using COP-KMeans in an inductive use-case is not usual practice for a classical
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clustering algorithm. It was simulated by providing COP-KMeans with the com-
bined ‘training’ dataset, its constraints, and the test data to be clustered. CDPS,
on the other hand, offers a truly inductive approach in which new data can be
projected into the resulting space, which inherently models user constraints. In
this setting the difference between COP-KMeans is reduced, however, it should
be noted that CDPS does not ‘see’ the training data during the inductive setup,
whereas COP-KMeans used all the data to derive the clusters. This also exposes
the infeasibility of using COP-KMeans in this way, the data needs to be stored,
and accessed each time new data should be clustered, which will become com-
putationally expensive as its size grows. Finally, CDPS’s embedding can be used
for tasks other than clustering (classification, generation, etc).

CDPS’s inductive complexity (once the space has been determined) is
O(NLkK), plus kmeans’ complexity O(NkKi), where k is the number of clus-
ters, i the number of iterations until convergence, and the complexity of COP-
KMeans is O(NkKi|ML ∪ CL|).

Overall, the CDPS algorithm leads to better clustering results since it is able
to exploit the information brought to the learning process by the constraints.
Relatively, it can be seen that the number of datasets in which CDPS outper-
forms COP-KMeans increases in line with the number of constraints. In absolute
terms, COP-KMeans’ performance tends to decrease as more constraints are in-
troduced, and the opposite can be said for CDPS. These constraints bias CDPS
to find shapelets that define a representation that respects them while retain-
ing the properties of DTW. Although the focus of this article is not to evaluate
whether clustering on these datasets benefits from constraints, it can be observed
that generally better performance is found when constraints are introduced.

The studies in the previous section show that the transformed space not only
preserves the desirable properties of DTW but also implicitly models the con-
straints given during training. Although it was not evaluated, it is also possible
to use COP-Kmeans (constrained) clustering in the Inductive CDPS embedding,
thus allowing another mechanism to integrate constraints after the embedding
has been learnt. Although CDPS has several parameters, it has been shown that
these do not need to be fine-tuned for each dataset to achieve state-of-the-art
performance (although better performance may be achieved if this is done).

5.1 Model Selection

When performing clustering there is no validation data with which to determine
a stopping criteria. It is therefore important to analyse the behaviour of CDPS
during training to give some general recommendations.

Figure 4 presents the CDPS clustering quality (NMI) as a function of the
number of epochs for each dataset (using 30% constraints). It demonstrates that
generally most of the models converge within a small number of epochs, with
FaceFour taking the most epochs to converge. Moreover, the quality of the learnt
representation does not deteriorate as the number of epochs increases, i.e. neither
the DTW preserving aspect nor the constraint influence dominate the loss and
diminish the other as epochs increase.
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Fig. 4: Clustering quality (NMI) as a function of the number of epochs for each
dataset, using a constraint fraction of 30%.
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Fig. 5: Relationship between NMI and CDPS Loss for each dataset. To highlight
the relationship between datasets, both loss and NMI have been scaled to be-
tween 0 and 1.

Figure 5 presents scatter-plots of the NMI and CDPS loss (both normalised
to between 0 and 1) for several datasets. In addition to the total loss, both the
ML and CL losses have been included. The general trend observed in the overall
loss is that a lower loss equates to a higher NMI.

These show that the loss can be used as a model selection criterion without
any additional knowledge of the dataset. For practical application, the embed-
ding can be trained for a fixed large enough number of epochs (as done in this
study) or until stability is achieved. This is in line with the typical manner in
which clustering algorithms are applied.

6 Conclusions

This article has presented CDPS, an approach for learning shapelet based time-
series representations that respect user constraints while also respecting the
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DTW similarity of the raw time-series. The constraints take the form of must-
link and cannot-link pairs of samples provided by the user. The influence of the
constraints on the learning process is ensured through the use of mini-batch
gradient descent in which a fraction of each batch contains samples under con-
straint. The resulting space removes many limitations inherent with using the
DTW similarity measure for time-series, particularly interpretability, constraint
analysis, and the analysis of sample density. CDPS therefore paves the way for
new developments in constraint proposition and incremental (active) learning for
time-series clustering. The representations learnt by CDPS are general purpose
and can be used with any machine learning task. The presented study focused on
its use in constrained clustering. By evaluating the proposed method on thirty-
five public datasets, it was found that using unconstrained k-means on CPDS
representations outperforms COP-Kmeans, unconstrained k-means (on the orig-
inal time-series), and LDPS with k-means. Also, CDPS is shown to outperform
FeatTS that uses statistical features. It was also shown that the representa-
tion learnt by CDPS is generalisable, something that is not possible with classic
constrained clustering algorithms and when applied to unseen data, CDPS out-
performs COP-KMeans.
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1 Derivation of the CDPS Loss Gradient

This section presents the derivation of the loss function’s gradient. Let

Disti,j = ||T i − T j ||2,

L(Ti, Tj) =
1
2ψ + ϕi,j ,where,

ψ =
1

2
(DTW (Ti, Tj)− βDisti,j)

2
,

and

ϕi,j =


αDist2i,j , if (i, j) ∈ML,

γmax(0, w −Disti,j)
2, if (i, j) ∈ CL,

0, otherwise,

where w is a predefined constant.
Derivation with Respect to β

∂L(Ti, Tj)
∂β

=
1

2

∂ψ

∂β
+
∂ϕ

∂β
=

1

2

∂ψ

∂β
= −β[DTW (Ti, Tj)− βDisti,j ].

Derivation with Respect to the Shapelets

∂L(Ti, Tj)
∂Sk,l

=
1

2

∂ψ

∂Sk,l
+

∂ϕ

∂Sk,l
.

The derivations of ψ and ϕ with respect to the shapelets Sk,l will be presented
separately.

Using the chain rule, the derivation with respect to ψ can be written as such
that

∂ψ

∂Sk,l
=

∂ψ

∂Disti,j

∂Disti,j
∂∆i,j,k

∂∆i,j,k

∂Sk,l
,

where ∆i,j,k = T i,k − T j,k. The derivation of each term is straight-forward:

∂ψ

∂Disti,j
= −2β(DTW (Ti, Tj)− βDisti,j),
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∂Disti,j
∂∆i,j,k

=
∆i,j,k

Disti,j
, where Disti,j ̸= 0,

and
∂∆i,j,k

∂Sk,l
=
∂T i,k

∂Sk,l
− ∂T j,k

∂Sk,l
,

where
∂T i,k

∂Sk,l
=
∂min(Di,k,m)

∂Sk,l
=

∑
m

∂T i,k

∂Di,k,m

∂Di,k,m

∂Sk,l
.

Following the approximation used in LDPS [?] which gives ∂T i,k

∂Di,k,m
= δm,m∗ the

above can be written as:

∂T i,k

∂Sk,l
=

∑
m

δm,m∗
Di,k,m

∂Sk,l
,

∂ϕ

∂Sk,l
=

∂ϕ

∂Disti,j

∂Disti,j
∂∆i,j,k

∂∆i,j,k

∂Sk,l
,

where

∂ϕ

∂Disti,j
=


2αDisti,j , if (i, j) ∈ML,

−2γ(w −Disti,j), if (i, j) ∈ CL,

0, otherwise,

where w is a predefined constant.
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2 Dataset

Dataset Train size Test size Length No. of Classes

ShapesAll 600 600 512 60
OSULeaf 200 242 427 6
Coffee 28 28 286 2

ScreenType 375 375 720 3
Phoneme 214 1896 1024 39

CBF 30 900 128 3
Rock 20 50 2844 4

CricketZ 390 390 300 12
Lightning7 70 73 319 7

Mallat 55 2345 1024 8
Car 60 60 577 4

CricketX 390 390 300 12
MoteStrain 20 1252 84 2

Fungi 18 186 201 18
Symbols 25 995 398 6

GunPointAgeSpan 135 316 150 2
Lightning2 60 61 637 2
SwedishLeaf 500 625 128 15

ECG200 100 100 96 2
Adiac 390 391 176 37
Fish 175 175 463 7

BirdChicken 20 20 512 2
PowerCons 180 180 144 2

BME 30 150 128 3
Plane 105 105 144 7
Meat 60 60 448 3

SyntheticControl 300 300 60 6
Beef 30 30 470 5

FacesUCR 200 2050 131 14
GunPoint 50 150 150 2
FaceFour 24 88 350 4
Herring 64 64 512 2

FiftyWords 450 455 270 50
FaceAll 560 1690 131 14
CricketY 390 390 300 12

Table 1: List of UCR datasets used in the study.


