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CNRS, France

Abstract

Background and Objective: The effective application of deep learning to digital
histopathology is hampered by the shortage of high-quality annotated images. In this
paper we focus on the supervised segmentation of glomerular structures in patches of
whole slide images of renal histopathological slides. Considering a U-Net model em-
ployed for segmentation, our goal is to evaluate the impact of augmenting training data
with random spatial deformations.
Methods: We define a random spatial deformation as a vector field resulting from the
realization of a stochastic process with uniform or Gaussian distribution. We perform
a comparative study of state-of-the-art models that produce this type of deformation,
including Random Displacement Fields and deformations based on control points. We
introduce a method based on the detection of cell nuclei centers for the automatic po-
sitioning of scattered control points that simplifies the control of deformations w.r.t.
previous approaches.
Results: We show that augmenting training data with spatially deformed images yields
an improvement of up to 0.23 in average Dice score, with respect to training with
no augmentation. We demonstrate that deformations with relatively strong distortions
yield the best performance increase, while previous work only report the use of de-
formations with low distortions. The selected deformation models yield similar per-
formance increase, provided that their parameters are properly adjusted. We provide
bounds on the optimal parameter values, obtained through parameter sampling, which
is achieved in a lower computational complexity with our single-parameter method.
The paper is accompanied by a framework for evaluating the impact of random spatial
deformations on the performance of any U-Net segmentation model.
Conclusions: To our knowledge, this study is the first to evaluate the impact of random
spatial deformations on the segmentation of histopathological images. Our study and
framework provide tools to help practitioners and researchers to make a better usage of
random spatial deformations when training deep models for segmentation.

Keywords: Histopathological images, glomeruli segmentation, data augmentation,
random spatial deformations
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1. Introduction

In the field of digital pathology, deep learning techniques for whole slide image
(WSI) analysis have attracted considerable attention in recent years [1, 2, 3, 4, 5, 6].
Deep models based on Convolutional Neural Networks (CNN) have the ability to au-
tomatically identify microscopic structures, which brings significant support to diag-
nosis. However, these models are based on learning patterns in images and require a
large amount of annotated data to be generalizable. This requirement is a challenge,
especially for application of deep models to diseases where few samples are available.
This is the case for renal pathology on which we focus on [7]. Data augmentation [8]
tackles this limitation by expanding the variety of training datasets in an artificial man-
ner, which may involve various image manipulations such as spatial and colorimetric
transformations, noise injection, image mixing, or synthetic image generation using
generative models. While data augmentation has proven to improve the performance
of deep models for various applications, augmentations are domain-dependent and re-
quire data-specific design [8]. Automatically finding optimal augmentation policies
has been investigated recently for classification, detection or segmentation tasks, using
meta-learning schemes or adversarial training (see e.g. AutoAugment [9, 10]). These
methods still require to select appropriate models for transformations.

In this paper we consider the supervised segmentation of glomerular structures in
WSI patches of renal histopathological slides. These complex structures are respon-
sible for blood filtration and production of urine. Renal histopathology is crucial in
the study of kidney diseases, and especially transplant rejection, which occurs with
an incidence of 7.9% in the first year [11]. Glomeruli are ball-shaped structures that
incorporate multiple substructures: membranes, capillaries, mesangial and endothe-
lial cells, podocytes. The appearance of glomeruli can thus exhibit great variability in
WSIs (Fig. 1). Besides sectioning, this variability also stems from stainings, patients,
procedures in laboratories, and/or microscope and imaging devices, making the robust
detection and segmentation of glomeruli challenging.

Figure 1: Examples of glomeruli in patches of WSIs, with variable shapes (Periodic acid-Schiff staining).

While there has been recent advances regarding invariance to staining variabil-
ity [12, 13, 14], we focus here on the variability in shapes, i.e. geometric variability,
which has not yet been addressed thoroughly in the Medical Imaging literature. We
rely on a standard U-Net model [15] for segmentation and evaluate the impact of aug-
menting training data with random spatial deformations. We define a random spatial
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deformation as a vector field resulting from the filtering of a white noise, i.e. the real-
ization of a stochastic process with uniform or Gaussian distribution. Random spatial
deformations can be implemented in many different ways, and a vast variety of models
has been proposed in the literature, differing on how the vector field is generated.

Considering a selection of state-of-the-art models for random spatial deformations,
we address the following questions: (1) Among the considered deformation mod-
els, which are best suitable for data augmentation, with the objective of segmenting
glomeruli in WSI patches using U-Net? (2) Which range of parameter values are ad-
equate? (3) How can we improve deformation models to achieve better segmentation
results? In this context, our contributions are the following:
• We propose a comparative study of a selection of state-of-the-art random spatial de-

formation models, including Random Displacement Fields and deformations based
on control points.
• We provide appropriate range of parameter values for each of the considered ran-

dom spatial deformation models.
• We propose an original method based on the detection of cell nuclei centers for

the automatic positioning of scattered control points, that simplifies the control of
random deformations and reduces the computational complexity of finding best
parameter values.
• We provide a complete framework for identifying which deformation models and

range of parameter values are the best choices for a given application.
In the following section, we review related work (Section 2). Next, we provide a

description of the spatial deformation models considered in this paper (Section 3). Our
evaluation protocol is then developed (Section 4), before we present and discuss our
experimental results (Section 5 and 6). Complementary results discussed in the paper
are provided as a Supplemental material.

2. Related work

Glomeruli segmentation. We consider the semantic segmentation of glomeruli from
tissue (i.e. background) in patches extracted from WSIs [16, 13, 17, 18, 19, 20], which
consists in solving a two-class problem at pixel level for each input patch. We suppose
that each patch contains either a single glomerulus surrounded by tissue, or partial
glomeruli, or tissue only. The U-Net model [15] is the state-of-the-art CNN archi-
tecture for segmentation in Biomedical Imaging [2], especially for glomeruli segmen-
tation in WSI patches [16, 18, 19]. Some variants like U-Net++ [21, 22] or SE U-
Net [23] result in slight improvements, as reported in [13]. Other architectures like
Seg-Net [17] or U-Net with a ResNet34 backbone [20], pre-trained on the ImageNet
dataset, have been proposed. Both works report improved segmentation results w.r.t.
U-Net, Salvi et al. [20] adding a post-processing stage based on cell nuclei and lumen
detection to refine the segmentation results. These works only consider flipping, rota-
tion and scaling as geometric transformations. In this paper, we choose to rely on the
basic, well established and still widely used standard U-Net model, in order to study
and understand the benefits of random spatial deformations as an augmentation. Note
also that we do not use a pre-trained model.
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Augmentations [16] [18] [19] [20] [24] [26] [27] [29] [38] [31] [36]
Rotations ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Mirroring ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Shift/crops ✓ ✓ ✓ ✓
Scaling ✓ ✓ ✓ ✓ ✓ ✓
Shearing ✓ ✓
Elastic deformations ✓ ✓ ✓ ✓ ✓ ✓ ✓
Blur ✓ ✓ ✓ ✓ ✓ ✓
Additive noise ✓ ✓ ✓
Cutout ✓
Color shifting ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Augmentations used in a selection of papers from the digital histopathology field.

Glomeruli segmentation in patches of WSIs is different from direct segmentation
of WSIs, as achieved e.g. in [24, 25, 26, 27], where modified U-Net architectures
are used to account for high-resolution input images. Also note that segmentation of
glomeruli in WSI patches is different from glomeruli detection, which is achieved with
CNN architectures conceived for object detection like Faster RCNN or YOLOv3 in the
most recent works [28, 29, 13, 30, 31].

Data augmentation for histopathology. Data augmentation has been introduced in
deep learning to prevent overfitting issues that arise from small and imbalanced datasets.
A complete review is beyond the scope of this paper, the reader can refer to [8] for
a survey. There exist two main approaches: 1) The transformation approach con-
sists in applying individual (or compositions of) transformations to training datasets,
or in some cases, to test datasets; 2) The generative approach consists in generating
new data by means of a trained generative model, e.g. a Generative Adversarial Net-
work (GAN). We focus here on augmentations of the first category, applied to training
datasets. Geometric transformations like affine transformations and spatial deforma-
tions have become usual for almost all applications, besides color shifting, addition
of noise, or image mixing or blending, that are part of libraries like Augmentor [32].
In the field of digital histopathology, common augmentations include geometric trans-
formations and specific transformations related to staining variations [33, 34, 35, 36].
Those types of augmentations have been especially used for glomeruli detection and
segmentation [16, 26, 24, 31, 18, 19, 36, 20]. See Table 2 for a summary of the
augmentation methods used in these papers. One can note that rotations and mirror-
ing are systematically used, and that staining transformations and elastic deformations
are among the most commonly used augmentation methods. Elastic deformations re-
fer to random spatial deformations based on control points on a regular grid, as typ-
ically proposed by Ronneberger et al. [15]. The benefits of staining transformations
[37, 12, 14, 36] and affine transformations [36] have been quantified. The impact of
using different augmentations for the segmentation of WSIs of rat organs is evalu-
ated in [27], including affine transformations and elastic deformations, but only with
a binary approach (with/without). In this paper, we propose to fill the gap regarding
random spatial deformations and the adjustment of the parameter values for the case
of glomeruli segmentation in WSI patches.
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Augmentations Bel et al, 2018 Merveille et al, 2021 Davis et al, 2021 Salvi et al, 2021 Altini et al, 2020
Rotations ✓ ✓ ✓ ✓ ✓
Mirroring ✓ ✓ ✓ ✓ ✓
Shift/crops ✓ ✓
Scaling ✓ ✓ ✓ ✓
Elastic deformations ✓ ✓ ✓ ✓
Blur ✓ ✓ ✓ ✓
Additive noise ✓ ✓
Cutout ✓
Color shifting ✓ ✓ ✓ ✓

Table 2: Augmentations used in a selection of papers from the digital histopathology field.

Automatic data augmentation. Some recent works attempt to find optimal data aug-
mentation policies automatically, through meta-learning schemes [9, 39, 40], adver-
sarial training [10] or a combination for better performance [41]. [36] apply the Ran-
dAugment methodology [40] in the context of a WSI patch classification task for breast
cancer detection. In this paper, we evaluate the impact of data augmentation by con-
sidering a single deformation model at a time, i.e. we do not mix deformed images
obtained with different models. Therefore we use a simple meta-learning scheme that
performs parameter sampling inspired by RandAugment [40], in order to find the pa-
rameter values that achieve the best segmentation performance.

Spatial deformation models. The most basic spatial deformation model consists of
linear transformations, that include affine and projective transformations. While linear
transformations are ubiquitous in data augmentation policies [8], often only consisting
of flips and rotations, they enable limited variations in image content.

Non-linear models have been developed to increase the variety and locality of spa-
tial deformations, some of them describing the deformations in terms of a physical
process, and known in the literature as elastic deformations, non-rigid deformations, or
domain warping (see [42] for a survey). In the Medical Imaging community, non-linear
deformations have been widely employed for image registration [43]. They attracted
attention more recently for the purpose of improving the training of deep learning mod-
els. Chlap et al. [44] surveyed deformation models in the context of data augmentation
for CT and MRI images. In the field of digital histopathology, correspondences can-
not be established between images, which makes image registration or statistical shape
models inadequate to produce variations of training images. The alternative is to gener-
ate random deformations, i.e. vector fields resulting from the realization of a stochastic
process with controlled statistics.

Previous work in the field of digital histopathology [16, 26, 24, 31, 18, 19] report
the use of two random spatial deformation models involved in data augmentation for the
segmentation of WSIs patches: Random Displacement Fields as proposed in [45], and
grid-based deformations, as suggested in the original U-Net paper [15]. Two choices
have to be done: 1) the deformation model, and 2) the parameter values. In this paper,
we review these models (Section 3), and we evaluate their impact when used for data
augmentation in the context for glomeruli segmentation (Section 4). We note that the
influence of the parameter values chosen in previous work is not evaluated, and that
these values result in deformed images that are visually close to the available training
ones. The search for optimal parameter values for the data augmentation task has not
yet been investigated. In the present paper, we explore the appropriate values for each
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of the considered deformation models.

3. Random spatial deformations

3.1. Background and notations

A 2D spatial deformation is a continuous functionD : R2 → R2 that maps input co-
ordinates x = [x, y] to transformed coordinates

[
Dx(x),Dy(y)

]
, possibly not bijective.

Applying deformations to images involves a sampling (i.e. continuous-to-discrete)
problem solving. Transformed coordinates may not correspond to pixel locations, and
may not cover the whole spatial image domain. Therefore, the transformationD is usu-
ally defined in an inverse fashion (a.k.a. reverse warping), and computed from the pixel
grid of the output image to the spatial domain of the input image. In what follows, we
will consider square images of size N2. The pixel grid of the output (deformed) image
I will be denoted as P = {pi}

N2

i=1, where pi = [xi, yi] are the pixel coordinates. The pixel
grid of the associated input image I′ will be denoted as P′ = {p′i}

N2

i=1. In our context, we
can write:

D(P) = P +
−→
D (1)

where
−→
D = {d⃗i}

N2

i=1 is a set of displacement vectors, or flow field. Following this ap-
proach, pixel values in I are obtained by interpolating pixel values in I′, considering
the pixel locations that are the closest from the deformed coordinatesD(P) in the spa-
tial domain of I′, i.e.:

I = S(D(P), I′) = S(P +
−→
D, I′) (2)

where S is a continuous interpolation function. Common choices for S are bilinear
interpolation, and higher-order interpolation such as bicubic or spline interpolation.
We consider that this choice is not critical for our study, and rely either on bilinear, or
bicubic interpolation.

Note that some locations in D(P) may fall outside the bounds of the input pixel
grid. We solve this issue by extending the input image with symmetric padding along
the edges of the input image.

3.2. Characterization of random deformations

Definition. A random spatial deformation model is defined by a specific method to
generate a flow field

−→
D from a set of random values, so that

−→
D is a multivariate Gaus-

sian random field where the displacement vectors on sampling (i.e. pixel) locations
are spatially correlated. Those spatial correlations may arise from filtering (e.g. for
Random Displacement Fields), or from the distance to control points and associated
interpolation function (e.g. for grid-based deformations).
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(a) (b) (c) (d)

Figure 2: Two examples of deformations applied to a WSI patch containing a single glomerulus, with plots
of the corresponding values of the determinant of the Jacobian matrix J. The first row shows a deformation
with moderate distortions, whereas the second row shows a deformation with foldover, which is reflected by
negative values of J. (a): Deformed image; (b): Deformation applied to a checkerboard; (c): HSV color-
coded flow field; (d): Plot of J.

Geometric properties. Random deformations may preserve the shapes and textures
contained in an image only at some degree, making the result more or less ”realistic”,
or ”distorted”. While previous work consider augmenting data with visually realistic
deformed images, our goal is to compare the deformation models and determine the op-
timal amount of distortion for the training of the segmentation model. For this purpose,
we propose to characterize random deformations from a geometric point of view.

The ability of random deformations to preserve the shapes and textures contained
in an image is directly related to the preservation of distances and angles. One special
case of distortion is foldover, that occurs when the orientation between pairs of pixel
locations is flipped. The occurrence of foldover can be seen as an upper limit of distor-
tion, since the induced topological inconsistencies may cause profound changes in the
local appearance of the deformed images.

The amount of local distortion induced by a flow field can be characterized by
the Jacobian matrix of the deformation function D at every point pi ∈ P, denoted by
∇D(pi). The determinant of the Jacobian matrix, i.e. J(pi) = det(∇D(pi)), encodes
the local scale factor by which the distances are shrunk (|J(p)| ∈ [0, 1)) or expanded
(|J(p)| > 1), and its sign reveals whether the deformation produces foldover (J(p) ≤
0) or not (J(p) > 0). The distances are preserved when |J(p)| = 1. The less the
displacement vectors at neighbor pixel locations are correlated, the more foldover is
thus likely to occur locally. Fig 2 shows plots of J for two examples of deformations
obtained with the Random Displacement Fields model. The case of the second line
exhibits foldover: J is negative at some locations of the flow field, representing about
20% of the pixel locations.

Another feature of flow fields involved in shape and texture preservation is the
local scaling of angles. A deformation that preserves angles is said to be conformal,
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and its Jacobian matrix is a rotation matrix multiplied by a scalar. We evaluate the
closeness of a deformation to a conformal deformation by computing the dot product
of the normalized components of the Jacobian matrix, i.e. S(p) = Dx(p)

∥Dx(p)∥ ·
Dy(p)
∥Dy(p)∥ . The

value of S(p) ranges between −1 (maximum angle expansion) and 1 (maximum angle
shrinking). The closest to 0, the highest the angle preservation.

For the selected deformation models and varying parameter values, we examine the
distribution of the previous metrics, calculated on 1k randomly generated flow fields in
the following form:
• Foldover rate, computed as:
|{pi ∈ P s.t. J(pi) ≤ 0}N

2

i=1|/N
2;

• Preservation of distance, computed as the histogram of {J(pi), pi ∈ P};
• Preservation of angles, computed as the histogram of {S(pi),pi ∈ P}.

Fig. 3 shows some plots of these distributions for the Random Displacement Fields
model. Additional plots are available in the Supplemental material.

3.3. Deformation models

In this section, we review Random Displacement Fields and deformations based on
control points for generating random deformations. We also introduce a novel approach
based on unstructured control points located at detected cell nuclei centers.

3.3.1. Random Displacement Fields

Random Displacement Fields (RDF) have been proposed by Simard et al. [45] to
simulate smooth deformations. First, a displacement field

−→
V = {v⃗i}

N2

i=1 is generated,
where vi = [vx, vy] is such that vx = rand(−1,+1) and vy = rand(−1,+1). The function
rand(−1,+1) returns uniformly distributed pseudo-random numbers between -1 and
+1. Then,

−→
V is convolved with a Gaussian filter Gσ of standard deviation σ, where

σ acts as an ”elasticity” coefficient (small values result in a completely random field,
while large values tend to produce rigid deformations). The RDF is finally multiplied
by a scaling factor α that controls the amplitude of the deformation. The flow field is
therefore obtained as:

−→
D = αGσ(

−→
V) (3)

The only work related to glomeruli segmentation that mentions the usage of RDF
for data augmentation is the work by Merveille et al. [18], where σ = 10 and α = 100,
for patches of size N = 508. This choice is not discussed by the authors. The sampling
resolution w.r.t. tissue size is the same as in our experiments (0.506 µm/pixel), making
it possible to deform our patches of size N = 256 with the same impact. These values
produce results that are visually close to the original images, as shown in Fig. 4.

The curve plot of Fig. 3(a), first row, illustrates the emergence of foldover for the
cases σ = 10, that occurs starting from α ≈ 150 (see the previous Section for inter-
pretation). The foldover rate remains low (less than 1%) for values of 150 < α < 200,
and only affects 10% of the deformation fields. Distances remain well preserved, while
the scale factor of angles approximately ranges between -0.5 and 0.5. These elements
question about the benefit of larger values of α w.r.t. σ, that may contribute favorably
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Figure 3: Characterization of the flow fields generated with Random Displacement Fields, based on 1k
randomly generated flow fields, for σ = 10 (first column) and σ = 40 (second column) and increasing
values of α. (a): Foldover rate (the central curve represents the median of the distribution, while surrounding
curves correspond to percentiles); (b): Preservation of distances (symmetric log2 scale is used for bin edges);
(c): Preservation of angles. Plots for random flow fields generated with the other models considered in this
paper are provided in the Supplemental material.

to data augmentation, and thus are to be considered for a study of the optimal parameter
values. Fig. 4 shows deformation results for σ = 10 and σ = 40, with varying α. This
figure, besides Fig. 3 shows that deformations with low distortion can be produced with
larger values of σ, and appropriate values of α, such as α = 2400 for σ = 40. This can
be explained by the band-limiting effect of the Gaussian filter, that increases with σ,
and requires larger values of α to produce distortions.

Controlling the amount of distortion is a difficult task with this model, since there
is no intuitive idea of the amplitude of the deformations induced by a value of α for
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σ = 10, α = 100 σ = 10, α = 200 σ = 40, α = 2400 σ = 40, α = 4000

(a)

(b)

(c)

Figure 4: Examples of RDF deformations applied to a WSI patch containing a single glomerulus, for varying
values of σ and α. Note that the directions of displacement vectors are identical in the four examples. (a):
Deformed patch; (b): Deformation applied to a checkerboard; (c): HSV color-coded flow field.
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Figure 5: Distribution of displacement distances for Random Displacement Fields, for varying parameter
values. For each set of parameter values, the displacement distances have been sampled from a random set
of 4 flow fields of size N = 256 (i.e. about 262k measurements). The central curve represents the median of
the distribution, while surrounding curves correspond to percentiles.

a given value of σ. Fig. 5 shows that, for a given value of σ, a linear relation exists
between α and the displacement distance computed as the norm of the displacement
vectors, with a slope that is however not proportional to σ. The following section
focuses on deformations based on control points, that remedy to this shortcoming.
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3.3.2. Deformations based on control points

Deformations based on control points are highly common, and a number of inter-
polation methods have been adapted to this task. Given a set of source control points
C′ = {c′k}

K
k=1, target locations C = {ck}

K
k=1 are computed with random displacements. As

suggested by the authors of U-Net [15], we consider here that the local magnitude of
the displacements follows a Normal distribution with zero mean and standard deviation
σ, i.e.:

C = C′ + σ
−→
V (4)

where
−→
V = {v⃗k}

K
k=1 is such that vk ∼ N(0, 1). The flow field

−→
D is computed by interpo-

lating the displacement vectors between the target control points C, i.e.
−→
D = T (P,−

−→
V) (5)

where T is an interpolation function. If topological relations between control points
are available, e.g. in the form of a regular grid, common choices are bilinear, or bicubic
interpolation as suggested by the authors of the U-Net model [15]. For a higher degree
of smoothness and unstructured control points respectively, we consider spline and
Moving Least Squares (MLS) interpolation, that we detail below.

In this approach, the source control points C′ and the scaling σ are the user-
controlled parameters. We detail the available options to generate control points later
on.

Spline interpolation. Polyharmonic splines can be applied to structured or unstruc-
tured control points. The interpolating function has the form:

f (p) =
K∑

k=1

wk ϕ(∥p − ck∥) + a⊤
[
p
1

]
(6)

where the first term is a weighted sum of polyharmonic Radial Basis Function (RBF)
terms, with centers C, and the second term is a polynomial linear term. In this paper
we consider the two following choices for ϕ:
• ϕ(r) = r2 ln(r), which corresponds to the well-known Thin Plate Spline (TPS) [46];
• ϕ(r) = r3, which is the cubic spline.

The weights {wk}
K
k=1 and the coefficients of the polynomial a are estimated such that

the interpolating function exactly fits the value of the function at the control points C,
which is achieved by solving a linear system.

Moving Least Squares deformations. Moving Least Squares (MLS) deformations
have been introduced by Schaefer et al. in [47]. Given the set of source control points
C′ and target points C, MLS deformation finds a transformation functionD that satis-
fies three conditions: (1) Interpolation: the control points C map to C′, i.e. D(C) = C′;
(2) Smoothness: D should produce smooth deformations; (3) Identity: if C′ = C, then
D should be the identity function, i.e. D(C) = C. For any input pixel location p to be
transformed,D(p) is constructed using Moving Least Squares to minimize

K∑
k=1

wk∥(ck − c̄)M − (c′k − c̄′)∥2, (7)
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n = 3, σ = 5 n = 5, σ = 5 n = 5, σ = 10 n = 5, σ = 20

(a)

(b)

(c)

Figure 6: Examples of grid-based deformations with order-3 interpolation applied to a WSI patch containing
a single glomerulus, for varying values of n and σ. Note that the directions of displacement vectors are iden-
tical in the three examples where n = 5. (a): Deformed patch; (b): Deformation applied to a checkerboard;
(c): HSV color-coded flow field.

where M is an affine transformation matrix, and weights wk are defined by wk =
1

∥ck−p∥4 .
The points c̄ and c̄′ are the weighted centroids of the target and source control points,
respectively. We focus here on the as-rigid-as-possible version of MLS deformations
(MLS-ARAP), where the constraint M⊤M = I is introduced (i.e. the matrix M contains
no scaling). Further mathematical details are provided in Appendix A.

The goal of MLS-ARAP is to produce a realistic result by preserving as much as
possible the shapes and textures in the input image when moving the control points.
For this purpose, control points should be placed on rigid parts, whereas other areas
are considered as flexible.

Control points on a regular grid. Control points on a regular grid are easily generated
by computing a tessellation of the input image. This method can thus be used to deform
any type of image content in a random fashion, and we call this kind of method Grid-
Based Deformation (GBD). The spacing between grid points determines how much
the displacement vectors at neighbor pixel locations are correlated, and hence fixes the
maximum amount of distortion of the flow field. The value of the scaling factor σ
determines the amount of distortion.

The grid points spacing is generally set by choosing the grid size for a given image
size, which we will denote by n2 = K. The corresponding distance in pixels between
neighbor control points is thus d = N/(n − 1). For the same value of d, a large scaling
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factor σ will yield a higher amount of distortion than a small scaling factor (see Sup-
plemental material for corresponding plots of foldover rate, preservation of distances
and preservation of angles).

The maximum displacement in pixels along one axis for a given value of σ obey
the three-sigma rule, i.e. about 68% of the displacements will be less than σ pixels,
while 28% will be comprised in [σ, 2σ], and 4% will fall in [2σ, 3σ], which offers a
more intuitive control than Random Displacement Fields.

Fig. 6 shows examples of deformations based on control points on a regular grid
using a cubic spline (GBD order-3, or GBD-3) interpolation, including the parameter
values proposed in the U-Net paper [15], scaled to our patch size, which gives n = 3
and σ = 5. The parameter values proposed in the U-Net paper result in very moderate
distortions, which leads us to consider stronger deformations. The other examples use
n = 5 with σ ranging from 5 to 20, yielding increasing distortions.

Fig. 3 and 4 of the Supplemental material show the behavior of random grid-based
deformations with TPS (order-2) and cubic (order-3) interpolation, respectively, with
varying values of n and σ, for an image size N = 256. Almost no difference is ob-
served between TPS and cubic interpolation. It can be seen that foldover starts to occur
with increasing probability among random deformation fields when σ ≈ 10 for n = 3
(d ≈ 85), and σ > 5 for n = 5 (d ≈ 51) and n = 10 (d ≈ 26). A simple way to
drastically limit foldover would be to consider d/2 as an upper bound for σ. However,
this approach excludes some foldover-free deformations that may contribute to the data
augmentation. For example, approximately 30% of the deformations with n = 3 and
σ = 50 are foldover-free (Fig. 3 and 4 of the Supplemental material). In our study on
the performance of data augmentation for the glomeruli segmentation task, we examine
the impact of foldover-free deformations vs. deformations containing foldover.

Unstructured control points. Applying deformations based on unstructured control
points requires to place source control points C′ at appropriate locations in the input
image. Instead of positioning them at random positions, we propose to perform a
content-aware choice, and utilize detected cell nuclei centers. We describe the method
in the following subsection.

3.3.3. Cell nuclei-based deformations
In this section, we describe our novel deformation method based on detected cell

nuclei centers and MLS-ARAP deformations. The motivation is that the appearance of
cell nuclei centers is almost invariant across WSI patches. That is, they are assumed
to be rigid parts in the content of the patches, and our goal is to preserve their shape
through a MLS-ARAP interpolation. We proceed in three steps, given a WSI patch to
be deformed:
1. We detect cell nuclei centers in the patch, that become the source control points C′

(this step has to be done only once for a given patch).
2. We compute displacement vectors at source control points to obtain the target con-

trol points C.
3. We interpolate the displacement vectors {

−−→
c′ici}

K
i=1 between source and target control

points to get output pixel locations P.

13



(a) (b) (c)

(d) (e) (f)

Figure 7: Example of CNB-MVN-MLS deformation applied to a WSI patch containing a single glomerulus,
for K = 310 and σ = 12; (a): Input WSI patch; (b): Detected cell nuclei; (c): Cell nuclei displacements; (d):
Deformed image; (e): Deformation applied to a checkerboard; (f): HSV color-coded flow field.

We use the method described in [48] for cell nuclei detection in WSI patches, although
any other method could be used. Since cell nuclei are irregularly spaced, moving con-
trol points independently is prone to foldover. Instead, we obtain the displacement vec-
tors of control points by sampling a multivariate Normal distribution N(0,Σ), where
Σ is a covariance matrix of size K × K that takes account of the distances between
detected cell nuclei centers. More precisely, we define the entries of Σ as follows:

Σi, j = σ exp
−∥c′ic′j∥√

2N

 (8)

for i, j ∈ [1,K], where σ represents a scaling factor that controls the maximum am-
plitude of the deformations. Since cell nuclei are spread over the whole image in each
patch, we use the size of the image diagonal

√
2N to normalize the distances. The user-

controlled parameters therefore only consist in the scaling coefficient σ. We call this
method CNB-MVN-MLS for short (Cell Nuclei Based, Multivariate Normal, MLS-
ARAP). Having a single parameter is advantageous over the other considered methods
for the purpose of parameter estimation. A result obtained with this method is shown
in Fig. 7, where K = 310, and σ = 12. In our patches, the number of detected nuclei
cell centers in a single WSI patch varies between 250 and 320. Additional results are
presented in Fig. 8. It can be seen that the obtained deformations are richer than defor-
mations produced with RDF or grid-based deformations: they incorporate low and high
frequencies, which is a consequence of both the spatial correlation of control points and
the rigidity constraint. Distortions have a behavior that is similar to the other examined
deformation models (see Supplemental material Fig. 5 for foldover and distance/angle
preservation plots).
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σ = 12 σ = 12 σ = 15 σ = 15

(a)

(b)

(c)

(d)

Figure 8: Additional examples of CNB-MVN-MLS deformations applied to a WSI patch containing a single
glomerulus, for K = 310 and two values of σ; (a): Cell nuclei displacements; (b): Deformed image; (c):
Deformation applied to a checkerboard; (d): HSV color-coded flow field.

4. Evaluation protocol and implementation

In this section, we present our training protocol, followed by the details of our
implementation.

4.1. Evaluation protocol

Glomeruli segmentation is formulated as a two classes problem where each pixel
of a WSI patch receives a label glomeruli, or a label tissue. Below we detail the dataset
used to train the U-Net segmentation model, as well as our baseline and approach to
assess the impact of random spatial deformations as an augmentation technique.

Dataset. The input to the U-Net are patches sampled from WSIs, such that each patch
may either contain a complete glomerulus, or up to three partial glomeruli, or no
glomeruli (i.e., tissue). We have at our disposal several WSIs from different patients,
acquired with the same sampling resolution (0.506 µm/pixel), and distributed between
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Patches Train (total) Validation (total) Test (total)
Glomeruli 20 (660) 10 (589) 100 (1 091)
No glomeruli 20 (4 620) 10 (4 123) 100 (7 637)

Table 3: Number of patches used in each dataset. The number in parentheses is the total number of patches
available in the original dataset.

training, validation and test, from which we extract 512×512 patches with and without
glomeruli. The composition of this dataset is summarized in Table 3. We select ran-
domly 40 patches from the training base, 20 patches from the validation base and 100
patches from the test base, half with glomeruli and the other half without glomeruli
(Table 3). We purposely choose a small number of examples for this experiment in
order to make it easier to highlight the differences in the results. From each patch, we
randomly extract 5 crops of size 256 × 256. Those new patches are the ones presented
to the U-Net. The test set remains the same for all subsequent experiments.

Baseline. Our baseline is composed of all the 90° rotations and flips we can apply to
an image. Since the sampling resolution is the same for all patches, we did not include
global scaling in our baseline. The observed objects are at the same scale in all images,
even if their sizes can differ. These local variations in size are simulated in a more
faithful way by spatial deformations.

Application of deformations. To assess the impact of using random spatial deforma-
tions as augmentation techniques on segmentation results using a U-Net, we propose
a protocol that aims to provide a fair comparison of the different deformation models.
To do so, we have to make sure that the parameter values used for each model are,
as far as possible, close to optimal parameter values. We use a meta-learning scheme
akin to RandAugment [40]. For each model we consider the (one or two) parameter(s)
described in section 3, for which we hand-select a few values. Those values are chosen
to cover different cases, with varying distortion amounts. However, due to the com-
putational cost of meta-learning (a single training takes approximately two hours on
an NVidia P100), we do not search for the exact set of optimal parameter values, but
rather aim to find a good range of parameter values, and highlight the influence of the
characteristics of the deformations. We performed 5 training for each set of parameter
values in a grid-search manner, and averaged the results. The selected parameter values
for the chosen deformation models are summarized below.

• RDF (σ, α)
– σ = {5, 10, 20}
– α = {100, 200, 400, 800}

• GBD order-2 (n, σ)
– n = {3, 5, 10}
– σ = {5, 10, 20, 50}

• GBD order-3 (n, σ)
– n = {3, 5, 10}
– σ = {5, 10, 20, 50}

• CNB-MVN-MLS (σ)
– σ = {5, 10, 15, 30, 100}

The augmentations are computed offline before training, which means that the
training time is the same for all methods. For a given deformation method and a given
set of parameter values, we apply 10 deformations to each training image. Each of
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those 10 deformations is randomly sampled, meaning that we sample 2000 flow fields
for each set of parameter values and each deformation model. To the training and vali-
dation sets, we then apply our baseline, thus multiplying the training dataset size by 7
(14,000 images in total for the training set).

Since we have a low number of repetitions (5 trainings per experiment), we use
the Wilcoxon–Mann–Whitney statistical test [49, 50] to give an indication on whether
or not we can consider two experiments as equivalent w.r.t their average Dice scores
(see Appendix B for p-values).

4.2. Implementation

We implemented the U-Net in Python using TensorFlow 2, as described in the origi-
nal paper [15] with only one convolution layer per stage, using transposed convolutions
for upsampling, and cross entropy loss, which is a standard choice for stable training
(see e.g. [51] for a review of loss functions). The contracting path is composed of 6
convolutional layers and the expanding path of 5 convolutional layers, with 64 filters
in the first layer. The number of filters doubles at each stage, with a maximum of 512.
We use the Adam optimizer [52] with a 4.10−6 learning rate.

The deformation models described in Section 3 were also implemented in Python.
For Random Displacement Fields and Grid-Based Deformations, we use the Tensor-
Flow Addons Image module, that runs on the GPU. We implemented the deformation
models as CPU code for CNB-MVN-MLS deformations, although they could be im-
plemented on the GPU either. The time required to sample a flow field and deform a
256×256 image for CNB-MVN-MLS deformations with our CPU codes is about 1.5 s,
whereas RDF and GDB take 60 ms per image. Similar performance (60 ms per image)
would be expected for for CNB-MVN-MLS deformations running on the GPU.

We make our code publicly available through a GitHub repository2. We provide
the complete framework for evaluating the impact of the deformation models that we
considered as augmentations for any 2D image segmentation task based on a U-Net.

5. Experiments and results

We first analyze the segmentation performance w.r.t. augmentation with spatial
deformations as described in the protocol presented in the previous section. Then we
study the influence of geometric distortions on the obtained performance results.

5.1. Segmentation results

We ran each training for 30 epochs. When using a larger number of epochs, we
have verified experimentally that the validation loss was increasing for each training.
We kept the trained segmentation model with the lowest validation loss. At test time,
we evaluated the model on four metrics: Dice score (or F1-score), precision, recall and
specificity. All are averaged over 5 repetitions. We recall the formulas of those metrics:

2https://github.com/ASTex-ICube/spatial_deformations_aug
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σ
α 100 200 400 800

5 0.7586 ± 0.0233 0.7275 ± 0.0387 0.5342 ± 0.0399 0.4807 ± 0.0448
10 0.7250 ± 0.0523 0.7748 ± 0.0184 0.7892 ± 0.0370 0.7787 ± 0.0175
20 0.6653 ± 0.0519 0.7367 ± 0.0481 0.7729 ± 0.0292 0.7859 ± 0.0256

σ
α 2400 5000

40 0.7554 ± 0.0292 0.6899 ± 0.0223

(a) Average Dice score w.r.t. to the RDF parameter values

n
σ 5 10 20 50

3 0.7884 ± 0.0224 0.8176 ± 0.0383 0.8434 ± 0.0181 0.8502 ± 0.0158
5 0.8014 ± 0.0116 0.8320 ± 0.0243 0.8541 ± 0.0125 0.7888 ± 0.0351
10 0.8028 ± 0.0202 0.8402 ± 0.0317 0.7648 ± 0.0321 0.7171 ± 0.0473

(b) Average Dice score w.r.t. to the GBD-2 parameter val-
ues

n
σ 5 10 20 50

3 0.7688 ± 0.0135 0.8177 ± 0.0184 0.8593 ± 0.0162 0.8510 ± 0.0139
5 0.7931 ± 0.0207 0.8407 ± 0.0344 0.8114 ± 0.0319 0.7381 ± 0.0542
10 0.8113 ± 0.0311 0.8448 ± 0.0165 0.7506 ± 0.0328 0.7011 ± 0.0197

(c) Average Dice score w.r.t. to the GBD-3 parameter values

σ 5 10 15 30 100
0.8212 ± 0.0116 0.8501 ± 0.0121 0.8525 ± 0.0182 0.8337 ± 0.0161 0.70417 ± 0.0298

(d) Average Dice score w.r.t. to the CNB-MVN-MLS pa-
rameter values

Table 4: U-Net glomeruli segmentation performance considering the average Dice score for the parameter
values of the deformation models considered in the paper.

• Dice score = 2 × Precision×Recall
Precision+Recall

• Precision = |True positives|
|True positives|+|False positives|

• Recall = |True positives|
|True positives|+|False negatives|

• Specificity = |True negatives|
|True negatives|+|False positives|

For simplicity, we will focus only on the average Dice score, but the results for all
metrics can be found in the Supplementary material. We present the average Dice score
for all deformation models in Table 4. We highlight in red the best score, and in blue
the scores that are equivalent to the best one w.r.t. the Wilcoxon test. Note that there
can be a difference of up to 0.06 in average Dice score for two equivalent experiments
in the sense of the Wilcoxon test, meaning we cannot consider the sets of parameter
values corresponding to these experiments as interchangeable. However, the Wilcoxon
test gives us an interval where we can safely assume the best parameter values are w.r.t.
the chosen value ranges, thus potentially helping us refine the grid search. In particular,
in order to provide the best bounds possible, we tried to have non-equivalent parameter
values (i.e. values not highlighted) at the extremities of each line with the best average
Dice score. This is the reason why we conducted some additional experiments w.r.t.
the ranges of values defined in the protocol. We also give the average Dice score when
only the baseline (i.e. no deformation) is used for data augmentation: 0.6231± 0.0401.
It should be noticed that there may be multiple local maxima in the landscape of the
average Dice scores. The chosen ranges of parameter values determine some maxima
that are not guaranteed to be absolute.

When focusing on a single deformation model at a time, the impact of the parameter
values clearly appears. For example, in the case of the RDF method, some parameter
values are detrimental, such as σ = 20 and α = 50, while others can boost the average
Dice score from 0.62 to more than 0.75. All the selected parameter values for the
GBD-3 method improve the results, the values corresponding to the highest average
Dice score being n = 3 and σ = 20.

We summarize below the best average Dice scores for each deformation model
and corresponding parameter values, obtained from the sample values described in
Section 4.1:
• Baseline: 0.6231 ± 0.0401
• RDF (σ = 10, α = 400): 0.7892 ± 0.0370
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• GBD order-2 (n = 5, σ = 20): 0.8541 ± 0.0125
• GBD order-3 (n = 3, σ = 20): 0.8593 ± 0.0162
• CNB-MVN-MLS (σ = 15): 0.8525 ± 0.0182

The best average Dice scores are obtained with the GBD with order-3 interpolation
method, but we note that aside from the RDF method, all results are close. Consid-
ering the variance and the small number of repetitions, we can state that all methods
(aside RDF) are equivalent in performance. This is corroborated by the Wilcoxon test,
that we also applied to the best average dice scores obtained with the different deforma-
tion models. Note that this does not mean that the RDF method is necessary inferior:
we could not find parameter values that provide the same performance as the other
methods, which indicates that they either do not exist or are more difficult to find. This
corroborates the observation made in Section 3 that the RDF model is more difficult to
control than the other deformation models. We also note that the change of the interpo-
lation method from order-2 to order-3 for GBD does not provide a noticeable change
in the average Dice score (0.005 gap).

The CNB-MVN-MLS model perfoms on par with the other models, but with a
single parameter to control, which significantly reduces the computational complexity
of finding a best parameter value.

This leads us to the conclusion that changing methods is not the most decisive
factor and that an optimization of the parameter values is crucial to obtain the best
segmentation results. Since the maximum reported average Dice scores are close from
one deformation model to the other, we can also state that the obtained values are
close to a global maximum with good confidence. The observed similar performance
of the different deformation models is consistent with the fact that they all rely on the
sampling of a filtered white noise, as detailed in 3. A significant advantage of the
CNB-MVN-MLS model lies in its control through a single parameter.

For more completeness, we made a complementary experiment mixing deforma-
tions with several parameter values. We first examined picking the parameter values of
the GBD order-3 method at random. We fixed n = 3 and uniformly sampled σ among
the values 10, 20 and 50, for each of the 2000 transformations we apply in the protocol.
We obtain an average Dice score of 0.8116 ± 0.0287, the same as for (n = 3, σ = 10).
Thus mixing the parameter values does not seem to provide additional diversity and
seems to hold the performance to the lowest score among the scores corresponding to
single parameter values.

5.2. Impact of distortions

When looking at the deformed images, we observe that deformations with moderate
distorsions, which are often used to keep the examples ”realistic”, perform lesser than
deformations involving stronger distortions that may look unrealistic. As presented in
Section 3, deformations with a high amount of distortions implies a lesser preserva-
tion of distances and angles in the result images. Varying the angles have important
consequences on the shapes, which leads to better generalizability (or robustness) of
the segmentation model. As one could expect, deformations provoking foldover re-
sult in a degradation of the segmentation performance as the foldover rate increases.
However, deformations containing moderate foldover can still yield better performance
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than the baseline. As an example, GBD-3 deformations with n = 3 and σ = 5 induce
very limited distortion, and lead to +0.15 in average Dice score in comparison with the
baseline. With the same model, deformations with n = 3 and σ = 50 yield a higher
amount of distortion, with 1/3 of deformations containing foldover (see Fig. 3 of the
Supplemental material), and lead to a gain of +0.23. Deformation with n = 10 and
σ = 50 provoke a high foldover rate (more than 40%), yielding a +0.08 amelioration
in average Dice score.

Our interpretation is that foldover creates new patterns that are not found in the
original images, thus introducing variety that may be beneficial for training the U-Net
model. However, if those new patterns are dominant, the original appearance of the
image (especially the topological structure) may be completely lost, yielding to poor
contribution to training, or even degrading the segmentation performance.

5.3. Limitations

Since they are based on the RandAugment strategy [40], our proposed protocol
are computationally expensive. We had to perform 420 trainings, which amounts to
approximately 840 GPU hours on an NVidia Tesla P100 SXM2 with 16 GB RAM.
While our parameter sampling choices and statistical tests yield only bounds on the
best parameter values, estimating tighter bounds or exact best parameter values for
each method would require additional computational resources with this approach. In
particular, more repetitions for each set of parameter values could provide a better
separation between close parameter values, or conversely show that they are equivalent.
We provide our complete evaluation framework to the end of both enabling parameter
values refinement, depending on the available computing power, and evaluating data
augmentation based on spatial deformation for other datasets or applications.

It is worth mentioning that our conclusions cannot be generalized to other dataset
sizes or to other dataset types, i.e. other images. As we know from [40], the size of
the training dataset has an impact on the optimization process of a deep model hy-
perparameters. In order to exhibit a difference between the performance gain enabled
by the deformation models and their parameter values, we used only 20 images with
glomeruli. It helped us show the impact of deformations as an augmentation technique
with a potential gain of more than 0.20 in average Dice score, but at the cost of a rela-
tively high variance across trainings. Thus the low number of images is another factor,
in conjunction with the small number of repetitions, that contributes to the large ranges
obtained for the estimation of best parameter values.

Regarding other dataset types, the impact of the deformation models may be differ-
ent, since changing the images changes the shapes and textures. We did not conducted
experiments with images other than renal WSI patches, but the framework we provide
allows for investigations on any image type and dataset size.

6. Conclusion and future work

In this paper, we evaluated the impact of random spatial deformations used as
augmentation in the case of renal histopathology patches segmentation using a U-Net
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model. We focused our study on spatial deformations based on a multivariate Gaus-
sian random field. We performed a comparative study of state-of-the-art deformation
models based on this approach used in the field of digital histopathology, considering
geometric aspects. We proposed an original content-aware random deformation model
named CNB-MVN-MLS based on the detection and displacement of cell nuclei centers
that involves a single parameter.

We compared the performance offered by these deformation models when used for
augmentation in the considered segmentation task. We used a meta learning scheme
to optimize their parameter values and find appropriate bounds. We found out that
the different models show similar performance (measured in average Dice score) and
that using the good range of parameter values can boost the average Dice score by up to
0.23 on our application. We showed that deformations with relatively strong distortions
yield the best performance increase for segmentation, while previous work only report
the use of deformations with low distortions. Our CNB-MVN-MLS model performs
on par with the other considered deformation models but with only one parameter to
control, improving the performance of best parameter estimation.

In future work, we would like to develop an online protocol, and make a compar-
ison with the proposed offline protocol. By using more images and/or trainings, we
could also lower the variance across training and thus provide better bounds for the
optimal parameters. We also plan to extend the evaluation to alternative pre-trained
network architectures for segmentation like Seg-Net [17] or U-Net with a ResNet34
backbone [20].

Following the direction of work of our content-aware CNB-MVN-MLS random
deformation model, we would like to further develop models with an improved cor-
relation between the displacement vectors and the content of images. Methods based
on physical simulation [42] take account of material and mechanical properties, but
at a greater computational cost for the generation of deformation fields, which would
require to identify a trade-off.
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Appendix A. As-rigid-as-possible MLS deformations

Referring to [47] and 3.3.2, let c̄ and c̄′ denote the weighted centroids of the target
and source control points, computed as c̄ =

∑
k wkck∑

k wk
and c̄′ =

∑
k wkc′k∑

k wk
. The corresponding

transformation function for MLS-ARAP is defined as follows:

D(p) = ∥p − c̄∥
−→
D(p)∥∥∥∥−→D(p)
∥∥∥∥ + c̄′, (A.1)

where
−→
D(p) =

∑
k(c′k − c̄′)Ak with:

Ak = wk

[
ck − c̄

(c′k − c̄′)⊥

] [
p − c̄
−(p − c̄)⊥

]⊤
(A.2)

where ⊥ is an operator on 2D vectors such that [x, y]⊥ = [−y, x].

Appendix B. Wilcoxon-Mann-Whitney statistical test

Considering the Dice scores of two experiments as independent observations from
two distributions X and Y , we test the null hypothesis H0, i.e. the distributions of both
populations are equal. If we note X1, ..., Xn and Y1, ...,Ym the samples drawn from each
distribution, we can define the U-statistic as

U =
n∑

i=1

m∑
j=1

S (Xi,Y j), (B.1)

with

S (X,Y) =


1 if X > Y,
1
2 if Y = X,
0 if X < Y.

(B.2)

With n = m = 5, we can reject the null hypothesis when U ≤ 2 or U ≥ 23 according to
tables in [49]. We give below the associated p-values for every comparison we made.

Appendix B.1. Comparison between deformation models
We present in Table 5 ((a) and (b)) of the Supplemental material the comparison

between the considered deformations models, under two different hypothesis and using
the best set of parameters for each model. Table 5(a) gives the p-values when testing
H0: the baseline Dice score is higher (one-sided test), (b) gives the p-values when
testing H0: the two considered distributions are equal.

Appendix B.2. Comparison between parameter values for each deformation model
Table 5 ((b) to (f)) of the Supplemental material presents the comparison between

the parameter values for the considered deformation models individually, under the
hypothesis that two distributions are equal (two-sided test). A p-value greater then
0.05 means that the two sets of parameter values yield significantly close results.
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[4] N. Dimitriou, O. Arandjelović, P. D. Caie, Deep learning for whole slide im-
age analysis: An overview, Frontiers in Medicine 6 (2019) 264. doi:10.3389/
fmed.2019.00264.

[5] C. L. Srinidhi, O. Ciga, A. L. Martel, Deep neural network models for compu-
tational histopathology: A survey, Medical Image Analysis 67 (2021) 101813.
doi:10.1016/j.media.2020.101813.

[6] C. Wemmert, J. Weber, F. Feuerhake, G. Forestier, Deep learning for histopatho-
logical image analysis, Deep Learning for Biomedical Data Analysis (2021) 153–
169doi:10.1007/978-3-030-71676-9_7.

[7] L. Barisoni, K. J. Lafata, S. M. Hewitt, A. Madabhushi, U. G. J. Balis, Digital
pathology and computational image analysis in nephropathology, Nature Reviews
Nephrology 16 (11) (2020) 669–685. doi:10.1038/s41581-020-0321-6.

[8] C. Shorten, T. M. Khoshgoftaar, A survey on image data augmentation
for deep learning, Journal of Big Data 6 (1) (2019) 60. doi:10.1186/

s40537-019-0197-0.
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