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We show that the derivatives of the Sinkhorn-Knopp algorithm, or iterative proportional fitting procedure, converge towards the derivatives of the entropic regularization of the optimal transport problem with a locally uniform linear convergence rate.

Fig. 1: Illustration of the linear convergence of the regularized transport plan P k (θ) (2.5) of Sinkhorn-Knopp (SK θ ) and its derivatives dP k dθ (θ) towards the derivative of the entropic optimal transport problem (OT θ ).

1. Introduction. The optimal transport (OT) problem plays an increasing role in optimization and machine learning [START_REF] Peyré | Computational optimal transport[END_REF]. In particular, entropic regularization of OT has gained a lot of attraction by the existence of a simple and efficient algorithm introduced in [START_REF] Sinkhorn | Diagonal equivalence to matrices with prescribed row and column sums[END_REF], also known as matrix scaling or iterative proportional fitting procedure in the stochastic literature, see [START_REF] Ruschendorf | Convergence of the Iterative Proportional Fitting Procedure[END_REF]. It is known that Sinkhorn-Knopp iterates converge linearly, with an explicit rate computable from the cost matrix, to the solution of entropic OT since the work of [START_REF] Franklin | On the scaling of multidimensional matrices[END_REF] introducing the use of the Hilbert metric.

1.1. Differentiation of the Sinkhorn-Knopp algorithm. Among the different properties of Sinkhorn-Knopp, a striking one is its differentiability with respect to the inputs.

Differentiating the iterates of the Sinkhorn-Knopp algorithm is a common routine in machine learning. It was first used by [START_REF] Adams | Ranking via sinkhorn propagation[END_REF] for ranking with linear objective function. They proposed to use backpropagation through Sinkhorn-Knopp iterates with respect to the cost matrix, without discussion of the convergence of the Jacobian. It was later used for different applications, such as computation of Wasserstein barycenters casted as an optimization problem [START_REF] Bonneel | Wasserstein barycentric coordinates: Histogram regression using optimal transport[END_REF], where backpropagation is performed with respect to the weight vector, for training generative models involving an OT loss as in [START_REF] Hashimoto | Learning population-level diffusions with generative rnns[END_REF][START_REF] Genevay | Learning generative models with sinkhorn divergences[END_REF], definition of differentiable sorting procedures [START_REF] Cuturi | Differentiable ranking and sorting using optimal transport[END_REF] or solving cluster assignments problems [START_REF] Caron | Unsupervised learning of visual features by contrasting cluster assignments[END_REF]. Popular libraries such as POT [START_REF] Flamary | Pot: Python optimal transport[END_REF] or OTT [START_REF] Cuturi | Optimal transport tools (ott): A jax toolbox for all things wasserstein[END_REF] for computational optimal transport implement the backpropagation of Sinkhorn-Knopp. To mitigate the memory footprint required by backprogation, an alternative is to use implicit differentiation as discussed first by [START_REF] Luise | Differential properties of sinkhorn approximation for learning with wasserstein distance[END_REF] for computing the derivatives of Sinkhorn divergences. This approach was later used in [START_REF] Cuturi | Supervised quantile normalization for low-rank matrix approximation[END_REF][START_REF] Eisenberger | A unified framework for implicit sinkhorn differentiation[END_REF]. To the best of our knowledge, even though some these works justify the correctness of using automatic differentiation for a given iterate, they do not consider the issue of the convergence of the derivatives computed by automatic differentiation.

1.2. Convergence of algorithmic differentiation. The issue of the convergence of the derivatives of an algorithm was considered in the automatic differentiation community. The linear convergence of derivatives was studied in [START_REF] Gilbert | Automatic differentiation and iterative processes[END_REF][START_REF] Griewank | Derivative convergence for iterative equation solvers[END_REF] for piggyback recursion and in [START_REF] Christianson | Reverse accumulation and attractive fixed points[END_REF]Theorem 2.3] for backpropagation. More recently, convergence of the derivatives of gradient descent [START_REF] Mehmood | Automatic differentiation of some first-order methods in parametric optimization[END_REF][START_REF] Lorraine | Optimizing millions of hyperparameters by implicit differentiation[END_REF], the Heavy-ball [START_REF] Mehmood | Automatic differentiation of some first-order methods in parametric optimization[END_REF] method or nonsmooth fixed point methods [START_REF] Bolte | Automatic differentiation of nonsmooth iterative algorithms[END_REF] were analyzed. All these analysis require explicitly, or implicitly, that the (generalized) Jacobians are strict contractions, i.e., Lipschitz continuous with a constant strictly lesser than 1. Unfortunately, the derivatives of Sinkhorn-Knopp do not enjoy this property.

1.3. Contribution. We prove (Theorem 3.3) that the derivatives of the iterates of Sinkhorn-Knopp algorithm converge towards the derivative of the entropic regularization of optimal transport, with an explicit expression of the derivative and with a locally uniform linear convergence rate, provided that all functions entering problem definition are twice continuously differentiable.

1.4. Organization. Our paper is organized as follows. Section 2 introduces the parameterized entropic regularized optimal transport problem with the Sinkhorn-Knopp algorithm and recalls linear convergence properties. In Section 3, we state our main result stating the convergence of the derivatives of Sinkhorn-Knopp towards the derivatives of the regularized optimal transport with a locally uniform linear convergence rate. Section 4 provides the proof of our result. Section 5 contains important intermediate results toward a linear rate for the convergence. Section 6 establishes miscellaneous lemmas that are used in the main proof.

1.5. Notations. The set of positive reals is denoted R >0 , of nonnegative reals R ≥0 and of nonzero reals R ̸ =0 . The simplex ∆ n-1 is the set of vectors of R n ≥0 summing to 1

∆ n-1 = x ∈ R n : n i=1 x i = 1 and x i ≥ 0, ∀i ∈ {1, . . . , n} .
The identity matrix (of arbitrary size) is denoted by I. For two vectors x ∈ R n , y ∈ R n ̸ =0 , the entry-wise (Hadamard) division x y is defined as x y i = x i /y i , and the product x ⊙ y is defined as (x ⊙ y) i = x i y i , for all i ∈ {1, . . . , n}. The 1-vector 1 n ∈ R n is the vector only composed of 1's. When the context is clear, and to lighten the notations, 1

x for x ∈ R ̸ =0 should be understood as 1n

x . Given a function f : R → R, we extend its domain as f : R p → R p by applying it entrywise, that is for

x ∈ R n , f (x) i = f (x i ), for all i ∈ {1, . . . , n}. Given l ∈ N >0 and a continuously differentiable function F : R p → R n1ו••×n l , we denote by dF dθ (θ) ∈ R n1ו••×n l ×p its Jacobian matrix (or tensor) at θ ∈ R p , i.e., dF dθ (θ) i1,••• ,i l ,j = lim h→0 F i1,••• ,i l (θ + he j ) -F i1,••• ,i l (θ) h ,
where (e j ) j=1,...,n is the canonical basis of R n . Given a differentiable function F :

R n × R p → R m , we denote by J F (x, θ) the total derivative at (x, θ) ∈ R n × R p , that is J F (x, θ) = ∂F (•,θ) ∂x (x) ∂F (x,•) ∂θ (θ) ,
where ∂F (•,θ) ∂x (x) and ∂F (x,•) ∂θ (θ) are the partial derivatives of F . 2. Entropic optimal transport and Sinkhorn-Knopp algorithm.

2.1. Entropic regularization. We consider a parametric formulation of the entropic OT1 . The entropic regularization of optimal transport associated to the parameterized marginals a : R p → ∆ n-1 ∩ R n >0 and b : R p → ∆ n-1 ∩ R m >0 of level ϵ : R p → R >0 for the parameterized cost matrix C : R p → R n×m reads for θ ∈ R p (OT θ ) P (θ) = arg min

P ∈U (θ) L(P, θ) def. = ⟨P, C(θ)⟩ -ϵ(θ) Ent(P ),
where ⟨P, P ′ ⟩ = i,j P i,j P ′ i,j , U (θ) is the set of admissible couplings (also called transportation polytope)

U (θ) def. = {P ∈ R n×m ≥0 : P 1 m = a(θ) and P ⊤ 1 n = b(θ)},
and Ent is the entropic regularization2 of the coupling matrix P defined as

Ent(P ) def. = - n i=1 m j=1 P i,j (log(P i,j ) -1) ,
where P i,j log(P i,j ) = 0 if P i,j = 0, by continuous extension. Note that L θ = L(•, θ) defined in (OT θ ) is ϵ(θ)-strongly convex, hence (OT θ ) has a unique minimizer3 P (θ) ∈ R n×m >0 . We will assume that all functions entering problem definition are twice continuously differentiable.

2.2.

Sinkhorn-Knopp algorithm. The Sinkhorn-Knopp algorithm is built upon the fact [30, Theorem 1] that the unique solution P (θ) of (OT θ ) has the form for all i ∈ {1, . . . , n} and j ∈ {1, . . . , m}

(2.1) P (θ) i,j = u i (θ)K i,j (θ)v j (θ) where K i,j (θ) = exp - C i,j (θ) ϵ(θ) > 0,
for positive numbers u i (θ), v j (θ), i = 1, . . . , n, and j = 1, . . . , m. The goal is thus to find positive vectors u(θ

) ∈ R n >0 and v(θ) ∈ R m >0 , such that diag(u(θ))K(θ)diag(v(θ))1 m = a(θ) and diag(v(θ))K(θ) T diag(u(θ))1 n = b(θ). (2.2) 
In its most elementary formulation, the Sinkhorn-Knopp algorithm, also called matrix scaling problem algorithm, has the following alternating updates,

(2.3) u k+1 (θ) = a(θ) K(θ)v k (θ) and v k+1 (θ) = b(θ) K(θ) T u k+1 (θ)
,

starting from a couple (u 0 (θ), v 0 (θ)) ∈ R n >0 × R m >0
, see [START_REF] Thornton | Rethinking initialization of the sinkhorn algorithm[END_REF] for a discussion on initializations strategies. Even though in practice it is not necessary to evaluate it at each iteration, one can use (2.1) to form a current guess at iteration k as diag(u k (θ))K(θ)diag(v k (θ)).

2.3.

Reduced formulation of Sinkhorn-Knopp. We will analyse an equivalent version of (2.3) by considering a single iterate u and performing the change of variable x = log(u). Given an initilization x 0 (θ) ∈ R n , this results in rewriting (2.3) as the recursion in the "log-domain"

x k+1 (θ) = F (x k (θ), θ) (SK θ )
where

F (x, θ) def. = log(a(θ)) -log K(θ) b(θ) K(θ) T e x .
Note that this formulation is close to the dual formulation of (OT θ ) as explained in [START_REF] Peyré | Computational optimal transport[END_REF]Remark 4.22], but we will not need duality results along this paper. We will work under the following standing assumption Assumption 2.1 (Data are continuously differentiable). Let Ω ⊆ R p be a connected open set. The data in problem (OT θ ), i.e., C :

Ω → R n×m , a : Ω → ∆ n-1 ∩R n >0 , b : Ω → ∆ m-1 ∩ R n >0 , ϵ : Ω → R >0
, and initialization x 0 : Ω → R n , are all twice continuously differentiable functions on Ω.

It is possible to get back to the scaling factors u k (θ) and v k (θ) from the reduced variable x k (θ) as

u k (θ) = e x k (θ) and v k (θ) = b(θ) K(θ) T e x k (θ) .
Using the relationship (2.1), the optimal coupling matrix can be approximated as

P (x, θ) = diag(e x )K(θ)diag b(θ) K(θ) T e x , (2.4) 
and we construct transport plan estimates associated to each iterate, for all k ∈ N,

(2.5) P k (θ) = P (x k (θ), θ).
It is known that P k (θ) converges linearly [START_REF] Franklin | On the scaling of multidimensional matrices[END_REF] to the optimal transport plan P (θ) for (OT θ ). The next paragraph is dedicated to study the linear convergence of the reduced variable x k (θ).

2.4. Linear convergence of the centered reduced iterates. It is known that u k (θ) converges to a limit ū(θ), with a linear rate in the Hilbert metric [START_REF] Franklin | On the scaling of multidimensional matrices[END_REF], see also [START_REF] Peyré | Computational optimal transport[END_REF]Theorem 4.2], whereas we are concerned with the convergence of the reduced iterates in the "log-domain". In order to study the convergence of (x k ) k∈N , let us introduce the linear map L center which associates to x its centered version:

(2.6) L center :      R n → R n x → x - 1 n n i=1 x i 1 n .
To analyze the convergence rate of Sinkhorn-Knopp algorithm, it is standard to use the Hilbert projective metric [START_REF] Birkhoff | Extensions of jentzsch's theorem[END_REF] defined on R n >0 as

d H (u, u ′ ) = ∥ log(u) -log(u ′ )∥ var ,
where ∥x∥ var is the variation seminorm of x ∈ R n defined as (2.7) ∥x∥ var = max i=1,...,n

x imin i=1,...,n

x i .

The next lemma shows the (local) linear convergence in ℓ 2 norm of the centered reduced variable L center (x k (θ)).

Lemma 2.2 (Local linear convergence of L center (x k (θ))). The centered reduced variable L center (x k (θ)) converges linearly, locally uniformly, to L center (x(θ)), i.e., there exists c : Ω → R >0 and ρ : Ω → (0, 1) continuous such that all k ∈ N and θ ∈ Ω,

∥L center (x k (θ)) -L center (x(θ))∥ ≤ c(θ)ρ(θ) k . Furthermore, θ → L center (x(θ)) is continuous on Ω.
Proof. We combine the linear convergence result on u k (θ) of [START_REF] Franklin | On the scaling of multidimensional matrices[END_REF] with Lemma 6.3, following the suggestion of [START_REF] Peyré | Computational optimal transport[END_REF]Remark 4.12].

We clarify below how to combine these arguments. We first show that the linear convergence of u k (θ) is such that for all θ ∈ Ω there exists c(θ) > 0 and ρ(θ) ∈ (0, 1) such that for all k ∈ N

d H (u k (θ), ū(θ)) ≤ c(θ)ρ(θ) k ,
and the mapping c and ρ are continuous. Indeed, [START_REF] Franklin | On the scaling of multidimensional matrices[END_REF]Theorem 4] ensures that for all k ∈ N,

d H (u k (θ), ū(θ)) + d H (v k (θ), v(θ)) ≤ κ 2 (K(θ)) k 1 -κ 2 (K(θ)) (d H (u 0 (θ), ū(θ)) + d H (v 0 (θ), v(θ))),
where κ(K) is the contraction ratio defined for

K ∈ R n×m >0 as κ(K) = ϑ(K) 1/2 -1 ϑ(K) 1/2 + 1 < 1 and ϑ(K) = max i,j,k,l K i,k K j,l K j,k K i,l .
Remark that P k and P (θ) enjoy the relation

P k = diag u k (θ) ū(θ) P (θ)diag v k (θ) v(θ) and d H ( u k (θ) ū(θ) , 1 n ) = d H (u k (θ), ū(θ)). Using [26, Theorem 4.2], we deduce that d H (u k (θ), ū(θ)) ≤ κ 2 (K(θ)) k (1 -κ 2 (K(θ))) 2 d H (P (x 0 (θ), θ)1 m , a) + d H (P (x 0 (θ), θ) T 1 n , b) , = c(θ) √ n ρ(θ) k , where c(θ) = √ nκ 2 (θ) d H (P (x 0 (θ), θ)1 m , a(θ)) + d H (P (x 0 (θ), θ) T 1 n , b(θ)) (1 -κ 2 (K(θ))) 2 , ρ(θ) = κ 2 (θ).
Since for all θ, K(θ) > 0 and K is continuous, we have that θ → κ 2 (θ) is continuous, and since θ → x 0 (θ) is assumed to be continuous on Ω, θ → d H (P (x 0 (θ), θ) is also continuous. Thus, c(θ) and ρ(θ) depend continuously on the initial condition x 0 and problem data (a, b, K, ϵ) which are all continuous functions of θ. Therefore the linear convergence is actually locally uniform in θ.

To conclude the proof, we need to remark that the Hilbert projective metric on u corresponds to the variation seminorm after the change of variable x = log(u) so that for all k ∈ N and all θ ∈ Ω,

∥x k (θ) -x(θ)∥ var = d H (u k (θ), ū(θ)),
and Lemma 6.3 provides

∥L center (x k (θ)) -L center (x(θ))∥ ∞ ≤ ∥x k (θ) -x(θ)∥ var ,
Using the fact that ∥x∥ 2 ≤ √ n∥x∥ ∞ for all x ∈ R p , we obtained the claimed result.

Regarding the continuity, let θ 0 ∈ Ω, for all θ ∈ Ω and all k ∈ N, we have

d H (ū(θ), ū(θ 0 )) ≤ d H (ū(θ), u k (θ)) + d H (u k (θ), u k (θ 0 )) + d H (u k (θ 0 ), ū(θ 0 )) ≤ c(θ)ρ(θ) k + c(θ 0 )ρ(θ 0 ) k + d H (u k (θ), u k (θ 0 )).
We may choose k such that the first two terms are as small as desired uniformly for θ in a neighborhood of θ 0 . The last term is continuous in θ and evaluates to 0 for θ = θ 0 so that reducing the neighborhood if necessary allows to choose it as small as desired, which proves continuity.

Note that Lemma 2.2 does not imply the linear convergence of (x k (θ)) k∈N . As we will see later in Lemma 4.4, this is not an issue to our objective -proving the convergence of the derivatives of (SK θ ) -because derivatives of the algorithm enjoy a directional invariance which makes them equal when evaluated at x k (θ) or L center (x k (θ)) .

3. Derivatives of Sinkhorn-Knopp algorithm and their convergence.

3.1. Derivatives of the transport plan. Remark that for all (x, θ) ∈ R n × Ω, P (x, θ) is an n × m matrix. Hence, P (x, •) is a map from R p to R n×m and P (•, θ) is a map from R n to R n×m . Thus, we identify its partial derivatives with third-order tensors:

∂P (x(θ), θ) ∂x ∈ R n×m×n , ∂P (x(θ), θ) ∂θ ∈ R n×m×p . (3.1)
Left multiplication by these derivatives is considered as follows, for arguments of compatible size: for any c ∈ R n , ∂P (x(θ),θ) ∂x c ∈ R n×m and for any M ∈ R n×q , for some q ∈ N, ∂P (x(θ),θ) ∂x M ∈ R n×m×q , both operations being compatible with the usual identification of vectors as single rows in R n×1 . This multiplication is assumed to be compatible with the rules of differential calculus, for example, if v : R p → R n >0 is C 1 , then we have the identity, for any θ ∈ R p ,

∂ ∂θ P (v(θ), θ) = ∂P (v(θ), θ) ∂x dv(θ) dθ + ∂P (x(θ), θ) ∂θ ∈ R n×m×p . (3.2)
The operation is also invariant with order of products, if M = uv T , then

∂P (x(θ), θ) ∂x M = ∂P (x(θ), θ) ∂x uv T = ∂P (x(θ), θ) ∂x u v T .
3.2. Spectral pseudo-inverse. In order to explicitly describe the derivative of P (θ), we will use the following notion of pseudo-inverse of a diagonalizable matrix. Definition 3.1 (Spectral pseudo-inverse [START_REF] Scroggs | An alternate definition of a pseudoinverse of a matrix[END_REF][START_REF] Ben-Israel | Generalized inverses: theory and applications[END_REF]). Given a diagonalizable matrix

M ∈ R n×n , let M = QDQ -1 be a diagonalization, where Q ∈ R n×n is invertible and D ∈ R n×n is diagonal. The spectral pseudo-inverse of M is given by M ♯ = QD † Q -1
where † denotes Moore-Penrose pseudo-inverse.

The Moore-Penrose D † pseudo-inverse of a diagonal matrix D ∈ R n×n is given by (D † ) ii = (D ii ) -1 if (D ii ) ̸ = 0 and 0 otherwise. The key property of the spectral pseudo-inverse is that it preserves the eigenspaces of M , contrary to the more standard Moore-Penrose pseudo-inverse which preserve eigenspaces only in special cases such as symmetric matrices.

Lemma 3.2 (Eigenspaces presevation of spectral pseudo-inverse [START_REF] Scroggs | An alternate definition of a pseudoinverse of a matrix[END_REF]). Let M ∈ R n×n a diagonalizable matrix. Then, M and M ♯ have the same kernel and the remaining eigenspaces are the same with inverse eigenvalues.

Note that this definition and result are defined even for non-diagonalizable matrices in [START_REF] Scroggs | An alternate definition of a pseudoinverse of a matrix[END_REF] using its Jordan reduced form, but for the sake of our results, we only need this property for diagonalizable matrices.

Main result.

Our contribution is the following.

Theorem 3.3 (The derivatives of Sinkhorn-Knopp converge). Under Assumption 2.1, let x(θ) the limit of Sinkhorn-Knopp iterations (SK θ ) initialized by x 0 (θ) for all θ ∈ Ω.

Then, the optimal coupling matrix P is continuously differentiable and its deriv-

ative d P (θ)
dθ ∈ R n×m×p is given by

d P (θ) dθ = ∂P (x(θ), θ) ∂x (I -A(θ)) ♯ B(θ) + ∂P (x(θ), θ) ∂θ
where A(θ), B(θ) are the components of the total derivative of F at (x(θ), θ), i.e.,

[A(θ) B(θ)] = J F (x(θ), θ), F (resp. P ) is defined in (SK θ ) (resp. (2.4)), and partial derivatives of P are described in Section 3.1. Here ♯ denotes the spectral pseudo-inverse of a diagonalizable matrix (Definition 3.1). Furthermore, P k is continuously differentiable for all k and the sequence of derivatives dP k dθ converges at a linear rate, locally uniformly in θ. In particular, for all θ ∈ Ω,

lim k→+∞ dP k dθ (θ) = d P dθ (θ).
Remark 3.4 (Relation to previous works). The differentiability of the Sinkhorn-Knopp iterations is an elementary and well-known fact, used for example in [START_REF] Adams | Ranking via sinkhorn propagation[END_REF], the new contribution here being that the derivatives converge toward the derivative of entropic regularization (OT θ ). Using an alternative formulation (in the context of implicit differentiation), [START_REF] Eisenberger | A unified framework for implicit sinkhorn differentiation[END_REF] proves the differentiability of the entropic regularization of OT (first part of Theorem 3.3), and obtained an alternative expression of the derivative. They do not however prove the convergence of the derivatives, that is the main concern of our work and the expression for the derivative in Theorem 3.3 was not mentioned in previous literature, to our knowledge.

If F was a strict contraction mapping, applying [18, Proposition 1] would be sufficient to conclude and obtain the same expression as in Theorem 3.3 with an inverse instead of the spectral pseudo-inverse. This is unfortunately not the case, and a more refined analysis is necessary to obtain the convergence. The main intuition behind this analysis is that Sinkhorn iterations are equivariant with respect to scaling of u = exp(x), and the optimal solution P in (2.4) is invariant with respect to the same scaling. In terms of derivative, it produces a lack of invertibility of ∂F (x,θ) ∂x but the corresponding direction does not depend on (x, θ), and precisely lies in the kernel of ∂P (x,θ) ∂x for all (x, θ). This "alignment" allows to maintain an overall convergence of derivatives. Section 4 is dedicated to prove this intuition rigorously.

Remark 3.5 (Limitations of our result). Despite the generality of Theorem 3.3, we would like to point out two limitations:

1. We do not have any guarantees for the convergence of the derivatives of the iterates x k (θ), k ∈ N. Said otherwise, we have guarantees for the derivatives of the optimal transport plan P k , not for the derivatives of the scaling factors u k , v k , or the derivatives of the reduced variable x k . 2. Inspecting the proof of Theorem 3.3, the linear convergence factor is a (ρ)

1 2
where ρ is an upper bound on both the linear convergence factor of the iterates (Lemma 2.2) and the second largest eigenvalue of ∂F ∂x at the solution, call it λ. Classical discrete dynamical system arguments (see [START_REF] Peyré | Computational optimal transport[END_REF]Remark 4.15] on local linear convergence) suggest that the linear convergence factor of the iterates is asymptotically of order λ. Taking this into consideration, our proof suggest an asymptotic linear convergence factor of the order √ λ for the derivatives, a factor strictly greater than that of the sequence. This discrepancy is a consequence of Lemma 5.2 which we use for simplicity of the presentation which requires a non-asymptotic analysis to ensure uniformity in θ. However, removing uniformity, this could be improved to obtain pointwise an asymptotic linear convergence factor arbitrarily close to λ using Lemma 6.4 instead, combined with arguments outlined in [START_REF] Peyré | Computational optimal transport[END_REF]Remark 4.15], see also Remark 3.8. Remark 3.6 (Application to automatic differentiation of Sinkhorn-Knopp). Given k ∈ N and θ ∈ R p , forward automatic differentiation [START_REF] Wengert | A simple automatic derivative evaluation program[END_REF] allows to evaluate Ṗk = dP k (θ) dθ θ ∈ R n×m , e.g., Jacobian-Vector Products (JVP), just by implementing (SK θ ) in a dedicated framework. Similarly, given wk ∈ R n×m , the reverse mode of automatic differentiation [START_REF] Linnainmaa | Taylor expansion of the accumulated rounding error[END_REF], also called backpropagation, computes θT k = wT k dP k (θ) dθ ∈ R p , e.g., a Vector-Jacobian Product (VJP). Using a similar argument as in [START_REF] Bolte | Automatic differentiation of nonsmooth iterative algorithms[END_REF], it is possible, thanks to Theorem 3.3, to prove the convergence of these quantities. Note that in practice, the object of interest is not necessarly P k by itself, but its composition by another function, e.g., ⟨C(θ), P k (θ)⟩ to compute the primal Sinkhorn divergence, ⟨C(θ), P k (θ)⟩ -Ent(P k (θ)) to compute the OT loss, a sum of similar terms when dealing with Wasserstein barycenters [START_REF] Agueh | Barycenters in the wasserstein space[END_REF], or any function L(P k (θ)) where L : R n×m → R k is a continuously differentiable function. Applying our result (Theorem 3.3) and the chain rule leads to the same convergence of automatic differentiation for such quantities. evaluated numerically by algorithmic differentiation, but one could get closed form expressions in simple cases. For example choosing θ = a, we have

∂F (x, θ) ∂a = diag 1 a .
Similarly, setting θ = b, we have

∂F (x, θ) ∂b = -diag 1 K b K T e x Kdiag 1 K T e x .
One could also compute derivatives with respect to the cost matrix C or ϵ, but the corresponding expressions become more complicated, and the use of automatic differentiation alleviates this difficulty in practice.

Remark 3.8 (Numerical illustration). Figures 1 and2 illustrate a simple example where C is an Euclidean cost matrix between two point clouds X, Y in R 2 of size n X = 100 and n Y = 50. The starting point cloud X follows a uniform law in the square [-1/2, 1/2] and the target Y a uniform law on a circle inscribed in the square. The marginals are two uniform histograms a = 1 n /n and b = 1 m /m. Sinkhorn-Knopp algorithm (SK θ ) is automatically differentiated with the Python library jax [START_REF] Bradbury | JAX: composable transformations of Python+NumPy programs[END_REF] with respect to the parameter ϵ, and we record the median of 10 trials for ϵ = 10 -3 , 10 -2 , 10 -1 . The blue filled area represents the first and last deciles. We run the algorithm for a high number of iterations N it and display both

P k (ϵ) -P (ϵ)
and

dP k dϵ (ϵ) - d P dϵ (ϵ) .
Note we assume here that P Nit (ϵ) (resp.

dP N it dϵ (ϵ)) is close enough the optimal solution P (ϵ) (resp. d P dϵ (ϵ)) such that it is a good proxy. In particular, we ran (SK θ ) up to machine precision. We observe that the number of iterations required to gain an order of precision is roughly inversely proportional to ϵ, as predicted by [START_REF] Peyré | Computational optimal transport[END_REF]Remark 4.15], and we observe the same asymptotic rate for both iterates and their derivatives as described in Remark 4.2.

4. Proof of Theorem 3.3. Before diving into the proof, we are going to provide important spectral properties of the Jacobians of the algorithm and transport plan (Section 4.1), then introduce a proxy G for the Jacobian of F that is a contraction mapping in contrast of dF dx (Section 4.2) and finally rewrite (3.2) thanks to G (Section 4.3).

4.1. Eigendecomposition of the transport plan and Jacobian. The following lemma provides important properties of the Jacobians of P and F as a function of x. Here θ is fixed and we look at properties of the derivative with respect to x, hence the dependency in θ does not appear. Lemma 4.1 (Expression of the Jacobian of F (x)). Let x ∈ R n .

1. We have dP (x) dx 1 n = 0 n×m , where the product is described in Section 3.1.

The Jacobian

dF (x) dx of F reads dF (x) dx = diag 1 K b K T e x Kdiag b (K T e x ) 2 K T diag (e x )
= diag e F (x) diag 1 a ⊙ e x P (x)diag

1 b P T (x).
Proof.

1. We note that P (x+λ1 n ) = P (x) for all λ ∈ R so that (P (x+λ1 n )-P (x))/λ = λ dP (x) dx 1 n + o(λ) = 0. This implies that dP (x) dx 1 n = 0. 2. The first expression is a direct computation observing that if f : R n → R n is an entry-wise function, then J f (x) = diag(f ′ (x)) where f ′ is again applied entry-wise. Indeed, we have for x ∈ R n , de x dx = diag(e x ), which in turns gives

dK T e x dx = K T diag(e x ). Then, we obtain the derivatives of the ratio

d b K T e x dx (x) = -diag b (K T e x ) 2 K T diag(e x ).
Similarly, since K is a linear operator,

d K b K T e x dx (x) = -Kdiag b (K T e x ) 2 K T diag(e x ).
Finally, since d log(g(x)) dx = dg(x) dx ⊙ 1 g(x) , for a differentiable g : R n → R n , we obtain that

dF (x) dx = diag 1 K b K T e x Kdiag b (K T e x ) 2 K T diag (e x ) .
The second expression uses the definition of P in (2.4). Observe that

(4.1) diag b (K T e x ) 2 K T diag (e x ) = diag 1 K T e x P T (x),
and (using the fact that diagonal matrices commute) We have the following result on the eigenvalues and eigenvectors of dF dx . Lemma 4.3 (Eigendecomposition of dF dx ). For any x, dF (x) dx is diagonalisable on R. 1 is an eigenvalue with multiplicity 1 and the other eigenvalue have modulus strictly smaller than 1. Furthermore, one has the following eigenvectors:

(4.2) diag(e F (x) ) = diag 1 K b K T e x
dF (x) dx 1 n = 1 n dF (x) dx T a ⊙ e x e F (x) = a ⊙ e x e F (x)
Proof. Fix x ∈ R n and let

S = diag 1 K b K T e x , M = Kdiag b (K T e x ) 2
K T , and T = diag (e x ) .

The matrices S and T are diagonal with positive entries and M is symmetric such that SM T = dF (x) dx . Setting A = (T S -1 ) 1/2 , we have, using the fact that diagonal matrix commute

ASM T A -1 = T 1 2 S -1 2 SM T S 1 2 T -1 2 = T 1 2 S 1 2 M S 1 2 T 1 2 ,
and therefore A dF (x) dx A -1 is real symmetric, hence diagonalisable with real eigenvalues. As a consequence, dF (x) dx being similar to A dF (x) dx A -1 it has the same property. It is an easy calculation to check that dF (x) dx 1 n = 1 n . Indeed, T 1 n = e x , and since diag(y)x = y ⊙ x for x, y ∈ R n , we have that M e x = K b K T e x and then SK b K T e x = 1 n . Multiplicity of the eigenvalue 1 as well as properties of the remaining eigenvalue is a consequence of Perron-Frobenius theorem [21, Theorem 8.2.8 and Theorem 8.3.4] applied to the stochastic matrix dF (x) dx . Let us prove the last identity. We have

e F (x) = a K b K T e x , P (x)1 m = diag(e x )K b K T e x = a ⊙ e x e F (x) , P (x) T 1 n = b K T e x ⊙ K T e x = b, from which we deduce dF (x) dx T a ⊙ e x e F (x) = P (x)diag 1 b P T (x)diag e F (x) (a ⊙ e x )
a ⊙ e x e F (x)

= P (x)diag 1 b P T (x)1 n = P (x)1 m = a ⊙ e x e F (x) .
This concludes the proof.

Reduced partial Jacobian of

F . For any (x, θ) ∈ R n × R p , we set α(x, θ) = 1 T n a(θ) ⊙ e x e F (x,θ) v(x, θ) = 1 α(x, θ) a(θ) ⊙ e x e F (x,θ) . (4.4)
For any x, θ consider furthermore the block decomposition of the total derivative of F , [A(x, θ) B(x, θ)] = J F (x, θ) and set

G(x, θ) = A(x, θ) -1 n v(x, θ) T . (4.5)
We call G the reduced partial Jacobian of F . From Lemma 4.3, we have that 1 n is an eigenvector of A(x, θ) and v(x, θ) is an eigenvector of A(x, θ) T , both with eigenvalue 1, which has multiplicity 1, with 1 T n v(x, θ) = 1. Therefore Lemma 6.1 ensures that the matrix G(x, θ) is diagonalisable in the same basis as A(x, θ) with the same eigenvalues, except eigenvalue 1 which is set to 0, and therefore its spectral radius is strictly less than 1. Later in the proof, we will study a recursion involving A (which is not a contraction), and we will use an equivalent recurrence involving G (which is a contraction). By Assumption 2.1, the functions J F , P, A, B, G are continuously differentiable on R n × Ω.

The following lemma shows that J F and G are invariant by the centering operation L center , and more generally by translation of λ1 n . Lemma 4.4 (Invariance by centering). For all λ ∈ R, x ∈ R n , and θ ∈ Ω, we have,

F (x + λ1 n , θ) = F (x, θ) + λ1 n , J F (x + λ1 n , θ) = J F (x, θ), v(x + λ1 n , θ) = v(x, θ), G(x + λ1 n , θ) = G(x, θ).
In particular, J F (L center (x), θ) = J F (x, θ) and G(L center (x), θ) = G(x, θ) where L center is the centering operator introduced in Lemma 2.2.

Proof. We have for λ ∈ R and x ∈ R n ,

F (x + λ1 n , θ) = log(a(θ)) -log K(θ) b(θ) K(θ) T e x+λ1n = log(a(θ)) -log K(θ) b(θ) e λ K(θ) T e x = log(a(θ)) -log e -λ K(θ) b(θ) K(θ) T e x = log(a(θ)) + λ1 n -log K(θ) b(θ) K(θ) T e x = F (x, θ) + λ1 n , which implies for all λ ∈ R, J F (x + λ1 n , θ) = J F (x, θ). Observe now that a(θ) ⊙ e x+λ1n e F (x+λ1n,θ) = a(θ) ⊙ e λ e x e F (x,θ)+λ1n = a(θ) ⊙ e λ e x e λ e F (x,θ) = a(θ) ⊙ e x e F (x,θ) .
Thus, α(x + λ1 n , θ) = α(x, θ) and in turn, we get that v(x + λ1 n , θ) = v(x, θ).

To conclude, we have

G(x + λ1 n , θ) = A(x + λ1 n , θ) -1 n v(x + λ1 n , θ) T = A(x, θ) -1 n v(x, θ) T = G(x, θ),
following the fact that J F (x + λ1 n , θ) = J F (x, θ), and in particular A(x + λ1 n , θ) = A(x, θ).

Preliminary computation.

We start with some computation and notations before providing the proof arguments. Setting for all k ∈ N, and

θ ∈ R p , [A k (θ) B k (θ)] = J F (x k (θ), θ) we have the piggyback recursion dx k+1 (θ) dθ = A k (θ) dx k (θ) dθ + B k (θ), (4.6)
We have for all k and θ, using (3.2) for the total derivative of P ,

dP k+1 (θ) dθ = ∂P (x k+1 (θ), θ) ∂x dx k+1 (θ) dθ + ∂P (x k+1 (θ), θ) ∂θ = ∂P (x k+1 (θ), θ) ∂x A k (θ) dx k (θ) dθ + B k (θ) + ∂P (x k+1 (θ), θ) ∂θ . (4.7)
For all θ and all k ∈ N, we have

A k (θ) = A(x k (θ), θ), we set G k (θ) = G(x k (θ), θ) = A k (θ) -1 n v(x k (θ), θ) T ,
where G is defined in (4.5) and v is defined in (4.4). From Lemma 6.1, the matrix G k (θ) is diagonalisable in the same basis as A k (θ) with the same eigenvalues except eigenvalue 1 which is set to 0 and therefore its spectral radius is strictly less than 1.

From Lemma 4.1, we have ∂P (x,θ) ∂x 1 n = 0 n×m for all (x, θ) and therefore

∂P (x, θ) ∂x G k (θ) = ∂P (x, θ) ∂x A k (θ) - ∂P (x, θ) ∂x 1 n v(x k (θ), θ) T = ∂P (x, θ) ∂x A k (θ).
Plugging this in (4.7), we obtain

dP k+1 (θ) dθ = ∂P (x k+1 , θ) ∂x A k (θ) dx k dθ + B k (θ) + ∂P (x k+1 , θ) ∂θ = ∂P (x k+1 , θ) ∂x G k (θ) dx k dθ + B k (θ) + ∂P (x k+1 , θ) ∂θ .
This allows to rewrite the iterations equivalently, with D 0 = dx0 dθ , for all k ≥ 0 and θ, using the product rule for partial derivatives of P defined in Section 3.1,

dP k (θ) dθ = ∂P (x k , θ) ∂x D k (θ) + ∂P (x k , θ) ∂θ , D k+1 (θ) = G k (θ)D k (θ) + B k (θ). (4.8)
4.4. Proof of the main result (Theorem 3.3). We are now ready to prove our main result.

Proof of Theorem 3.3.

Step 1: Convergence of A k , G k and B k . For all θ ∈ Ω, from Lemma 2.2, the centered iterates (L center (x k (θ))) k∈N converge with a linear rate to L center (x(θ)) which is locally uniform in θ. Furthermore, using Assumption 2.1, F is twice continuously differentiable jointly in x ∈ R n and θ ∈ Ω and therefore J F and G are continuously differrentiable, and hence locally Lipschitz on R n × Ω.

We remark that for all θ, using Lemma 4.4

G k (θ) = G(x k (θ), θ) = G(L center (x k (θ)), θ),
so that, as k → ∞, G k (θ) converges with a locally uniform linear rate to G(θ) := G(L center (x(θ)), θ) = G(x(θ), θ). Similarly B k (θ) converges with a locally uniform linear rate to B(θ) := B(x(θ), θ) and A k (θ) converges with a locally uniform linear rate to A(θ) := A(x(θ), θ). Note that by Lemma 2.2, the map θ → L center (x(θ)) is continuous, so that A, G and B are continuous functions of θ.

For any θ, G(θ) is diagonalizable with spectral radius strictly less than 1, the recursion on D k (θ) should converge with a locally uniformly linear rate in θ. This assertion is a consequence of the following lemma which explicit the constants appearing in the linear rate for the matrix recursion. Lemma 4.5 (Explicit rate for linear convergence). Let ρ < 1 and Ḡ ∈ R n×n be diagonalisable on R, with spectral radius smaller than ρ and and Q an invertible matrix which rows are made of an eigenbasis of Ḡ. Let B ∈ R n×m . Let (G k ) k∈N and (B k ) k∈N be sequences of matrices such that there exists a constant c 1 > 0 such that for all k ∈ N,

∥G k -Ḡ∥ op ≤ c 1 ρ k+1 , (4.9) ∥B k -B∥ ≤ c 1 ρ k+1 . (4.10)
Then, for the recursion

D k+1 = G k D k + B k , setting D = (I -Ḡ) -1 B, there exists a continuous function const : R 5 ≥0 ×(0, 1) → R ≥0 such that for all k ∈ N, ∥D k -D∥ ≤ ρ k 2 const(∥Q∥ op , ∥Q -1 ∥ op , c 1 , ∥D 0 ∥, ∥ B∥, ρ).
Step 2: Convergence of D k . Let us explicit how Lemma 4.5 allows to prove convergence of (D k (θ)) k∈N . Start with a fixed θ ∈ Ω, we first drop the dependency in θ for clarity. We have from Remark 4.2

A = diag 1 a P diag 1 b P T .
Setting S = diag 1 √ a , we have that

S -1 AS = diag 1 √ a P diag 1 b P T diag 1 √ a ,
which is symmetric. Therefore, there is an orthogonal matrix U ( and diagonal matrix E such that

S -1 AS = U EU T ,
and

A = SU EU T S -1 = SU E(SU ) -1 . Set Q = SU , we have by submultiplicativity of ∥ • ∥ op ∥Q∥ op ≤ ∥U ∥ op ∥S∥ op = ∥S∥ op = 1 √ a ∞ .
Similarly ∥Q -1 ∥ op = ∥ √ a∥ ∞ . From Lemma 6.1, Q diagonalizes both A and G.

Getting back the dependency in θ, we fix θ 0 ∈ Ω, and set for all θ ∈ Ω D : θ → (I -G(θ)) -1 B(θ),

ρ : θ → max{ρ(θ), ∥Q(θ) -1 G(θ)Q(θ)∥ op } < 1,
where ρ(θ) < 1 is given in Lemma 2.2 and ∥Q(θ) -1 G(θ)Q(θ)∥ op is the largest eigenvalue, in absolute value, of G(θ), which is smaller than 1 and continuous with respect to θ. In particular, ρ is continuous. Fix a compact set V ⊂ Ω which contains θ 0 in its interior and a compact set W ⊂ R n which contains L center (x k (θ)) for all k ∈ N and θ ∈ V (this exists thanks to Lemma 2.2). We set c 1 : Ω → R ≥0 such that c 1 = Lc/ρ where c : Ω → R ≥0 is the constant in Lemma 2.2 and L is a Lipschitz constant of J F and G on W × V (recall that they are continuously differentiable). Using Lemma 4.4, we have for all θ ∈ V and k ∈ N,

∥J F (x k (θ), θ) -J F (x(θ), θ)∥ = ∥J F (L center (x k (θ)), θ) -J F (L center (x(θ)), θ)∥ ≤ c 1 (θ)ρ(θ) k+1 , and 
∥G(x k (θ), θ) -G(x(θ), θ)∥ = ∥G(L center (x k (θ)), θ) -G(L center (x(θ)), θ)∥ ≤ c 1 (θ)ρ(θ) k+1 .
The largest eigenvalue of G(θ) is at most ρ(θ) so that Lemma 4.5 applies, and we have for all k ∈ N and all θ ∈ V ,

∥D k (θ) -D(θ)∥ ≤ ρ(θ) k 2 const 1 a(θ) ∞ , a (θ) 
∞ , c 1 (θ), dx 0 (θ) dθ , ∥B(θ)∥, ρ(θ) ,
where const : R 5 ≥0 ×(0, 1) is continuous. All terms in the right hand side are continuous functions of θ and can be uniformly bounded on V , so that D k (θ) → D(θ) = (I -G(θ)) -1 B(θ) at a locally uniform linear convergence rate.

Step 3: Convergence of the derivatives of Sinkhorn-Knopp towards the derivatives of entropic regularization. From Lemma 4.5 the limit of (D k (θ 0 )) k∈N is of the form

D(θ 0 ) = (I -G(θ 0 )) -1 B(θ 0 ) [A(θ 0 ) B(θ 0 )] = J F (x(θ 0 ), θ 0 ).
Recall that for any λ ∈ R, and any x, θ, P (x + λ1 n , θ) = P (x + λ1 n , θ) so that J P (x + λ1 n , θ) = J P (x + λ1 n , θ). Therefore expression (4.8) is equivalently rewritten as

dP k (θ) dθ = ∂P (L center (x k ), θ) ∂x D k (θ) + ∂P (L center (x k ), θ) ∂θ , (4.11) 
We Note that P k (θ) converges pointwise towards P (θ) = P (x(θ), θ) which is a solution to problem (OT θ ). By local uniform convergence of derivatives and the fact that P k are continuously differentiable, thanks to Lemma 6.2, we have that P is continuously differentiable and

lim k→∞ dP k (θ) dθ = d P (θ) dθ .
Step 4: Expression of the derivative. Finally, by construction of G in (4.5) and thanks to Lemma 6.1, we have for all x, θ, that I -A(x, θ) and I -G(x, θ) have the same eigenspaces all eigenvalues being nonzero except the one generated by 1 n for which corresponds to eigenvalue 0 for I -A(x, θ) and 1 for I -G(x, θ). Therefore, we have (I -G(x, θ))) -1 = (I -A(x, θ)) ♯ + 1 n v(x, θ) T , where v(x, θ) is the normalized eigenvector of A(θ) T associated to eigenvalue 1 (see (4.4)). Recall that ♯ denotes the spectral pseudo-inverse for diagonalisable matrices (Definition 3.1). From Lemma 4.1, we have dP (x,θ) dx 1 n = 0 for all (x, θ), therefore for all θ ∈ Ω,

∂P (x(θ), θ) ∂x D(θ) = ∂P (x(θ), θ) ∂x (I -G(x(θ), θ)) -1 B(θ), = ∂P (x(θ), θ) ∂x ((I -A(θ)) ♯ + 1 n v(x, θ) T )B(θ) = ∂P (x(θ), θ) ∂x (I -A(θ)) ♯ B(θ).
We have therefore that

d P (θ) dθ = ∂P (x(θ), θ) ∂x (I -A(θ)) ♯ B(θ) + ∂P (x(θ), θ) ∂θ , [A(θ) B(θ)] = J F (x(θ), θ),
which concludes the proof. 

z k+1 ≤ (1 + α k )z k + β k .
Then for all k ∈ N,

z k ≤ exp +∞ i=0 α i   z 0 + +∞ j=0 β j   Proof. For all k ∈ N, set w k = z k +∞ i=k (1 + α i ) + +∞ i=k β i +∞ j=i+1 (1 + α j ).
Remark that using concavity of logarithm

+∞ i=0 (1 + α i ) ≤ exp +∞ i=0 α i , so that w k is well defined. Remark also that w k ≥ z k for all k.
The sequence (w k ) k∈N is decreasing, indeed, we have for all k ∈ N,

w k+1 = z k+1 +∞ i=k+1 (1 + α i ) + +∞ i=k+1 β i +∞ j=i+1 (1 + α j ) ≤ ((1 + α k )z k + β k ) +∞ i=k+1 (1 + α i ) + +∞ i=k+1 β i +∞ j=i+1 (1 + α j ) = z k +∞ i=k (1 + α i ) + +∞ i=k β i +∞ j=i+1 (1 + α j ) = w k .
Therefore, for all k ∈ N,

z k ≤ w k ≤ w 0 = v 0 +∞ i=0 (1 + α i ) + +∞ i=0 β i +∞ j=i+1 (1 + α j ) ≤ +∞ i=0 (1 + α i ) v 0 + +∞ i=0 β i ≤ exp +∞ i=0 α i v 0 + +∞ i=0 β i ,
and the result follows.

The following lemma specify Lemma 5.1 when α k and β k are geometric sequences.

Lemma 5.2 (Application of Gladyshev's convergence to geometric sequences). Let ρ ∈ (0, 1), c > 0, and (δ k ) k∈N be a positive sequence such that for all k ∈ N,

δ k+1 ≤ (ρ + cρ k+1 )δ k + cρ k+1 . (5.1)
Then, (δ k ) k∈N is a geometric sequence: for all k ∈ N,

δ k ≤ ρ k 2 exp c √ ρ 1 -ρ δ 0 + c √ ρ 1 - √ ρ ,
Proof. Dividing (5.1) on both sides by cρ (k+1)/2 , we have for all k ∈ N,

δ k+1 cρ k+1 2 ≤ δ k cρ k-1 2 + δ k cρ k 2 cρ k+1 cρ k 2 cρ k+1 2 + ρ k+1 2 = √ ρδ k cρ k 2 + δ k cρ k 2 cρ k+ 1 2 + ρ k+1 2 ≤ δ k cρ k 2 (1 + cρ k+ 1 2 ) + ρ k+1 2 .
Setting for all k ∈ N,

z k = δ k cρ k 2 , α k = cρ k+ 1 2 , and β k = ρ k+1 2 ,
we may apply Lemma 5.1 to obtain the result. Note that

+∞ i=0 α i = c √ ρ 1-ρ and +∞ i=0 β i = √ ρ 1- √ ρ , so that for all k ∈ N δ k cρ k 2 = z k ≤ exp +∞ i=0 α i   z 0 + +∞ j=0 β j   = exp c √ ρ 1 -ρ δ 0 c + √ ρ 1 - √ ρ ,
which is the desired result.

Lemma 5.3 (Reduced perturbated convergence). Let ρ < 1 and Ḡ ∈ R n×n have operator norm smaller than ρ and B ∈ R n×m . Let (G k ) k∈N and (B k ) k∈N be a sequence of matrices such that there exists a constant c 0 > 0 such that for all k ∈ N,

∥G k -Ḡ∥ op ≤ c 0 ρ k+1 , ∥B k -B∥ ≤ c 0 ρ k+1 .
Then for the recursion

D k+1 = G k D k + B k , setting D = (I -Ḡ) -1 B, we have ∥D k -D∥ ≤ ρ k 2 exp c 0 √ ρ 1 + ∥ B∥ (1 -ρ) 2 ∥D 0 ∥ + ∥ B∥ 1 -ρ + c 0 √ ρ(1 + ∥B∥) (1 - √ ρ) 2 .
Proof. Note that Ḡ is invertible and it follows that the potential limit is D = (I -Ḡ) -1 B, as it is a fixed point of the limiting recursion, D = Ḡ D + B. We rewrite the recursion as follows

D k+1 -D = G k D k + B k -Ḡ D - B = G k (D k -D) + (G k -Ḡ) D + B k -B.
Setting for all k ∈ N, δ k = ∥D k -D∥, using the fact that ∥ • ∥ op is subordinate to ∥ • ∥, we have the recursion,

δ k+1 ≤ ∥G k (D k -D)∥ + ∥(G k -Ḡ) D∥ + ∥B k -B∥ ≤ ∥G k ∥ op ∥(D k -D)∥ + ∥(G k -Ḡ)∥ op ∥ D∥ + ∥B k -B∥ ≤ (ρ + c 0 ρ k+1 )δ k + c 0 ρ k+1 (∥ D∥ + 1). Note that ∥ D∥ = ∥(I -Ḡ) -1 B∥ ≤ ∥(I -Ḡ) -1 ∥ op ∥ B∥ ≤ ∥ B∥ 1-ρ . Since c 0 ≤ c 0 1 + ∥ B∥ 1 -ρ and c 0 1 + ∥ B∥ 1 -ρ ≤ c 0 1 + ∥ B∥ 1 -ρ , we apply Lemma 5.2 with c = c 0 1+∥ B∥ 1-ρ and use the fact that 1 1-ρ ≤ 1 1- √ ρ and ∥D 0 -D∥ ≤ ∥D 0 ∥ + ∥ B∥ 1-ρ .
Proof of Lemma 4.5. Note that Ḡ is invertible and it follows that the potential limit is D = (I -Ḡ) -1 B, which satisfy D = Ā D + B. Since Ḡ is diagonalisable in the basis given by Q, there is a diagonal matrix E such that Ḡ = QEQ -1 . We rewrite equivalently the recursion as follows

Q -1 D k+1 = Q -1 G k QQ -1 D k + Q -1 B k , and setting Dk = Q -1 D k , Gk = Q -1 G k Q and Bk = Q -1 B k for all k ∈ N, this reduces to Dk+1 = Gk Dk + Bk .
When k → ∞, we have Gk → E, which has operator norm at most ρ and Bk → Q -1 B. Set D the fixed point of the limiting recursion for Dk ,

D = (I -E) -1 Q -1 B = Q -1 Q(I -E) -1 Q -1 B = Q -1 (I -QEQ -1 ) -1 B = Q -1 D.
Furthermore for all k ∈ N, we have the following bounds

∥ Gk -E∥ op = ∥Q -1 (G k -Ḡ)Q∥ op ≤ ∥Q -1 ∥ op ∥(G k -Ḡ)∥ op ∥Q∥ op (∥ • ∥op is submultiplicative) ≤ c 1 ∥Q -1 ∥ op ∥Q∥ op ρ k+1 (by hypothesis (4.9)) ∥ Bk -Q -1 B∥ = ∥Q -1 (B k -B)∥ ≤ ∥Q -1 ∥ op ∥B k -B∥ (∥ • ∥op is subordinate to ∥ • ∥) ≤ c 1 ∥Q -1 ∥ op ρ k+1 , (by hypothesis (4.10)) ∥Q -1 B∥ = ∥Q -1 ∥ op ∥ B∥ ∥ D0 ∥ = ∥Q -1 ∥ op ∥D 0 ∥.
We apply Lemma 5.3 with

c 0 = c 1 ∥Q -1 ∥ op (1 + ∥Q∥ op ), which gives for all k ∈ N, ∥D k -D∥ = ∥Q( Dk -D)∥ ≤ ∥Q∥ op ∥ Dk -D∥ ≤ ρ k 2 ∥Q∥ op exp c 1 ∥Q -1 ∥ op (1 + ∥Q∥ op ) √ ρ 1 + ∥Q -1 ∥ op ∥ B∥ (1 -ρ) 2 × ∥Q -1 ∥ op ∥D 0 ∥ + ∥ B∥ 1 -ρ + c 1 (1 + ∥Q∥ op ) √ ρ(1 + ∥ B∥) (1 - √ ρ) 2 ,
which is the desired result 6. Additional lemmas. In the following, we prove some technical, but important, lemmas used in the main proof. Lemma 6.1 (Reduced eigenspace). Let A ∈ R n×n be diagonalisable. Let u be such that Au = u and v such that A T v = v, and assume that eigenvalue 1 is simple, and that uv T = 1. Then à := Auv T and A have the same eigenspaces with the same eigenvalues, except eigenvalue 1 for A which is set to 0 for Ã.

Proof. A of the form QDQ -1 for an invertible Q and a diagonal matrix D. Assume that the first diagonal entry of D is 1. Columns of Q form an eigenbasis and we may impose that the first column is u. Rows of Q -1 form an eigenbasis of A T , set v 0 the vector corresponding to the first row. Since 1 is a simple eigenvalue, the corresponding eigenspace has dimension 1 and there exists α ̸ = 0 such that v = αv 0 . We have u T v = 1 by assumption and u T v 0 = 1 because Q -1 Q = I, this shows that α = 1 and therefore v is the first row of Q -1 .

We have v T u = 1 and therefore Ãu = Auu = 0. Let ũ be a different column of Q corresponding to an eigenvector of A associated to eigenvalue d, we have v T ũ = 0 so that Ãũ = Aũ = dũ. This concludes the proof. Lemma 6.2 (Uniform convergence leads to continuous differentiable limit). Let U ⊂ R p be open and (f k ) k∈N be a sequence of continuously differentiable functions from U to R converging pointwise to f : U → R, such that ∇f k converges pointwise, locally uniformly on U . Then f is continuously differentiable on U and ∇ f = lim k→∞ ∇f k .

Proof. Let g = lim k→∞ ∇f k the pointwise limit. By local uniform convergence, g is continuous on U . Fix any x ∈ U and any v ∈ R n and set I a closed interval such that x + tv ∈ U for all t ∈ I and 0 is in the interior of I (such interval exists because U is open). The sequence of univariate functions h k : t → f k (x + tv) is continuously differentiable and satisfy for all k and all t ∈ I h ′ k (t) = ⟨∇f k (x + tv), v⟩ . The derivatives h ′ k converge uniformly on I to ⟨g(x + tv), v⟩ which is continuous in t. Therefore the function h : t → f (x + tv) is continuously differentiable with derivative given by ⟨g(x + tv), v⟩, by uniform convergence of derivatives. Since x ∈ U and v ∈ R n were arbitrary, this implies that f admits continuous partial derivatives and it is therefore continuously differentiable with gradient g. Lemma 6.3 (Centering). For x, x ′ ∈ R n ,

∥L center (x) -L center (x ′ )∥ ∞ ≤ ∥x -x ′ ∥ var ,
where L center is defined in (2.6) and ∥ • ∥ var is defined in (2.7).

Proof. Note that for f ∈ R n and a ∈ R, ∥f + a1 n ∥ var = ∥f ∥ var . Set f = L center (x) -L center (x ′ ), we have 1

T n f = n i=1 f i = 0 so that min i f i ≤ n i=1 f i = 0 ≤ max i f i .
This implies the following ∥f ∥ ∞ = max

i |f i | = max i max{f i , -f i } = max{max i f i , max i -f i } = max{max i f i , -min i f i } ≤ max{max i f i -min i f i , max i f i -min i f i } = ∥f ∥ var . Now f = L center (x) -L center (x ′ ) = x -x ′ + 1 n 1 n n i=1 x ′ i -1 n n i=1
x i , so that ∥f ∥ var = ∥xx ′ ∥ var which concludes the proof. Lemma 6.4. Let ρ ∈ (0, 1), c > 0 and (δ k ) k∈N be a positive sequence such that for all k ∈ N, δ k+1 ≤ (ρ + cρ k+1 )δ k + cρ k+1 . (6.1)

Then, for all k ∈ N, such that k ≥ ρ 1-ρ , we have

δ k ≤ ρ k exp 1 + c 1 -ρ (δ 0 + c(k + 1)) .
Proof. Fix α ∈ (0, 1) to be chosen latter. Dividing (6.1) on both sides by cρ (k+1)/α , we have for all k ∈ N, δ k+1 cρ α(k+1) ≤ δ k cρ αk ρcρ αk cρ α(k+1) + cρ k+1 cρ αk cρ α(k+1) + cρ k+1 cρ α(k+1) = δ k cρ αk ρ 1-α + cρ k+1-α + ρ (k+1) (1-α) ≤ δ k cρ αk 1 + cρ k+1-α + ρ (k+1) (1-α) .

Setting for all k ∈ N, z k = δ k cρ αk , α k = cρ k+1-α , and β k = ρ (k+1)(1-α) , we apply Lemma 5.1 to obtain the result. As (α k ) k∈N and (β k ) k∈N are geometric sequences, we have

+∞ i=0 α i = cρ 1-α 1-ρ ≤ c 1-ρ and +∞ i=0 β i = ρ 1-α 1-ρ 1-α ≤ 1 
1-ρ 1-α , so that for all k ∈ N,

δ k cρ αk = z k ≤ exp +∞ i=0 α i   z 0 + +∞ j=0 β j   = exp c 1 -ρ δ 0 c + 1 1 -ρ 1-α .
Since α was arbitrary, the preceding holds for all k ∈ N and α ∈ (0, 1). Fix k ∈ N such that k > ρ 1-ρ . Setting α = 1 + log 1 + 1 k / log(ρ), since ρ ∈ (0, 1), we have 0 = 1 + log 1 + 1ρ ρ / log(ρ) < α < 1.

We have

ρ αk = ρ k ρ k log((k+1)/k)/ log(ρ) = ρ k 1 + 1 k k ≤ eρ k , and 
1 1 -ρ 1-α = 1 1 -ρ -log(1+1/k)/ log(ρ) = 1 1 -ρ log(k/(k+1))/ log(ρ) = 1 1 -k k+1 = k + 1.
Therefore, for all k ≥ ρ 1-ρ ,

δ k ≤ ρ k exp 1 + c 1 -ρ (δ 0 + c(k + 1)) ,
proving our claim.

Remark 3 . 7 (Fig. 2 :

 372 Fig.2: Illustration of the linear convergence of the regularized transport plan P k (θ) (2.5) of Sinkhorn-Knopp (SK θ ) (first line) and its derivatives dP k dθ (θ) (second line) towards the derivative of the entropic optimal transport problem (OT θ ). Each column corresponds to a specific value of the regularization parameter: (left) ϵ = 10 -3 , (middle) ϵ = 10 -2 , (right) ϵ = 10 -1 .

Remark 4 . 2 .

 42 If x = F (x), at a fixed point solution, the Jacobian expression in Lemma 4.1 can be simplified as follows dF (x)

5 .

 5 Proof of Lemma 4.5. We start with two lemmas on real sequences. The first one is a quantitative version of [27, Lemma 9, Chapter 2]. Lemma 5.1 (Quantitative Gladyshev convergence). Let (α k ) k∈N and (β k ) k∈N be positive summable sequences and (z k ) k∈N be a positive squence such that for all k ∈ N

  have shown locally uniform linear convergence of both D k (θ) and L center (x k (θ)), by Assumption 2.1, equation (4.11) is continuously differentiable, hence it has a locally Lipschitz dependency in L center (x k ), D k and θ, so that as k → ∞ uniformly linearly in a neighborhood of θ 0

	(4.12)	lim k→∞	d dθ	P k (θ) =	∂P (x(θ), θ) ∂x	D(θ) +	∂P (x(θ), θ) ∂θ	.

We recover the standard formulation letting a, b, C, ϵ be constant functions.

Note that one could replace Ent by the Kullback-Leibler mutual entropy KL(P |a(θ) ⊗ b(θ)) without changing the minimizer.

The (strict) positivity follows from assumptions a(θ) > 0 and b(θ) > 0. Indeed, P = a(θ)b(θ) T is feasible for (OT θ ), with strictly positive entries, therefore Slater's qualification condition holds for (OT θ ) and the required form follows from necessary and sufficient KKT conditions for the (attained) optimum, see for example[START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF] Lemma 2] 
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