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Abstract

Abstract Boolean networks are a mathematical model which has been widely used since decades
in the context of biological regulation networks qualitative modelling. They consist in collections
of entities, each having two possible local states (1 – active, and 0 – inactive), which interact with
each other over discrete time. The simplicity of their setting together with their high abstraction
level are especially convenient to focus on foundations of information transmission in genetic
regulation, and on mathematical explanation and prediction of phenomenological observations.
This chapter aims to present the Boolean modelling framework, by developing its theoretical
bases and emphasising its usefulness for capturing biological regulation phenomena. But it goes
beyond that by covering their ability to capture the information transmission and its consequences
depending on the ways the entities update their local state over time.

Keywords: Boolean modelling, Boolean networks, updating modes, dynamics and complexity.

1 Introduction

The term bioinformatics was originally introduced by Hesper and Hogeweg and defined as “the study
of informatic processes in biotic systems” [74, 77, 76]. Whilst bioinformatics raised in the 1970’s, we did
not have to wait for the appearing of the term to witness studies on biological information processes. Let
us simply take a look at the beginning of modern computer science and its development in the first half
of the 20th century. Admittedly, the science of computation has its roots in the purely theoretical works
in the domain of discrete mathematics by Herbrand and Gödel on recursive functions, by [25, 26] on λ-
calculus, and by [86, 87] at the frontiers of both. Nevertheless, early major progresses in this discipline
have been made thanks to inspirations from natural phenomenology. The first example is undoubtedly
Turing machines. In his seminal papers, Turing built a mechanical comprehension of computation
by means of successive deconstructions of the human calculation process [143]. Another classical and
in no way less important family of examples, in particular in the context of biological modelling, is
automata networks. Automata networks were introduced distinctly in the 1940’s by McCulloch and
Pitts with artificial neural networks, and by von Neumann with cellular automata [89, 144]. In both
of these works, the idea was twofold:

• to abstract the logical structure of life and thus obtain more inclined mathematical models to
capture natural phenomena;

• to understand the computational power of these abstractions.
The way to achieve that is rather “simple”: it consists in designing networks of entities (called au-
tomata) which influence each other over time. As suggested by the information and computability
theories, those entities evolve locally inside a finite set, and time is discrete.
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Just as biology inspired and keeps inspiring computer science (DNA computing and molecular
programming), computer science and discrete mathematics, through the automata network model,
have become central in qualitative modelling in molecular biology since the end of the 1960’s. Indeed,
automata networks provide an appropriate setting to model the structural and dynamical features
of biological complex systems at the level of the cell such as gene or protein networks. Besides, the
understanding of regulation processes is a key problem that biology cannot solve by itself. It is a
fundamental observation made in parallel by Kauffman and Thomas [81, 80, 139] in the framework of
genetic regulation, with the support of Delbrück’s works emphasising analogies between differentiated
cellular types and attractors of network theoretical models [40]. The experimental nature of the
common techniques in biology cannot address the whole problem since they are conceived to deal
with specific matters. In other terms, experimentations are not adapted for this problem. Their
repetition allows to acquire sharp knowledge on biological elements (subject to human interpretation,
observation mistakes, statistical biases...) but, for complexity reasons notably, they prevent from
putting this knowledge in perspective and have hindsight enough to comprehend the causalities and
the effect of combinations of regulations. Kauffman and Thomas early mentioned that biology needs
to rest on more theoretical sciences to develop more general and systematic approaches of the living
underlying issues. Kauffman made explicit in 1971 “the urgent need for theories about the ways in
which integrated genetic control systems might function” [82]. Thomas wrote in 1973: “the mere
description of a situation as it is seen at a given state of research has often become heavy and tedious,
requiring long sentences which are easily ambiguous or misleading. I have felt for some years an
increasing necessity for a formalisation of the concepts in the field” [139]. Following these lines, both
of them introduced first models of gene regulation networks by using a peculiar restriction of automata
networks, Boolean networks, i.e. automata networks in which elements can be either active or inactive,
so that they are in fact a generalisation of McCulloch & Pitts’ neural networks. This choice comes from
the idealisation consisting in ignoring the activities of mRNAs and proteins. Informally, a Boolean
network can be viewed as a directed graph composed of Boolean automata (taking values in the
set t0, 1u) that influence each other through local Boolean functions which govern their evolution over
time. Despite this abstraction which can be considered simplistic, Boolean networks have very relevant
characteristics discussed further in the chapter which make this mathematical model the most used
and impacting in the framework of regulation network modelling to this day.

Whilst Kauffman and Thomas worked intrinsically on the same mathematical objects, their ap-
proaches were not equivalent. The main differences lie in network structures and the ways automata
update their local state over time. When Kauffman chose to formalise gene regulation through an
approach inheriting from statistical mechanics with randomly constructed regular graphs whose nodes
represent genes which update their state synchronously, Thomas used an approach closer to combi-
natorics and theoretical computer science with general graphs whose nodes evolve in a totally non-
deterministic asynchronous manner, arguing the absence of genetic synchronicity. Of course, further
studies based on these seminal works have relaxed the hypotheses mentioned above. On the one hand,
works on Kauffman’s model called random Boolean networks have re-examined the assumptions of reg-
ular graph structures and synchronicity. Probabilistic asynchronicity was notably considered [73, 60],
as it has been widely made in the context of cellular automata [54]. On the other hand, the asyn-
chronicity of Thomas’ model has been questioned. Some studies focused on variations reinforcing it
by adding delays [84, 142, 3], other ones relaxed it by allowing synchronous events [103]. However,
whatever the choices made about synchronicity, a fundamental point is that Boolean networks have
been and keep being widely used in the framework of biological modelling, for formal analysis and
prediction purposes. Examples of this are the modelling of the control of cellular differentiation pro-
cesses of T cells [92, 98, 1] and blood cells [31], the modelling of cancer development [30] and drug
resistance [147], the sharp understanding of the floral morphogenesis of Arabidopsis thaliana [93, 94],
and the analysis of the dynamics of the genetic control of budding yeast Saccharomyces cerevisiae [83],
fission yeast [38], and Candida albicans yeast [146], to name but a few.

More generally, this issue about (a)synchronicity and the chosen method to compute the new local
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states of automata in Boolean networks has very strong relations with the concept of discrete time (and
qualitative modelling), and is thus fundamental, on at least three grounds. First, from the biological
standpoint, the passage of time and its consequences are certainly a major issue at the different scales
of the living. For instance, if we consider genetic regulations, the question of how gene expressions
occur over time is central. Some elements have recently been proposed in the research undertaken
on chromatin dynamics [17, 90] but they are only preliminary and do not allow to pinpoint a fine
spectrum of biologically plausible updates. Second, from the mathematical standpoint, understanding
the consequences of choosing this or that specific updating mode, and the sensitivities of a network
to this choice, is one of the fundamental current issues in the field, following in the discrete world
some lines given by René Thom in his essay on structural stability [136]. Third, in a modelling
framework, from the theoretical computer science point of view, the non-countable infinite number of
possible updating ways and their consequences on the dynamics of Boolean networks, along with the
underlying intrinsic exponential complexity between static and dynamical views of the latter, require
sampling relevant updating modes, and understanding (even predicting) their impact.

As we will emphasise in this chapter, the updating mode is a crucial part of the dynamical mod-
elling, and consequently of the validation of models. In the scope of biology, the validation of a
Boolean model has multiple facets. On the one hand, Boolean networks can serve as conceptual and
phenomenological models: they can demonstrate sufficient or necessary mechanisms leading to com-
plex emergent dynamical properties, inspired by the observation of natural systems, e.g. the emergence
of patterns, rhythms, resilience. The validation of such models builds primarily on the justification
of the different parameters, including the updating mode, and how they can relate to the current
knowledge and hypotheses on the biological system. On the other hand, Boolean networks are also
employed as “mechanistic” models of biological systems: the automata model the activity of identified
biological entities, which can be directly or indirectly measured in laboratory. Boolean networks then
describe the logic of activation and inactivation of biological entities over time. In many such appli-
cations, such as to gene regulatory networks, the Boolean modelling of the dynamics of gene activity
is viewed as a simplification of a quantitative system, making the assumption of non-linear influences
and abstracting away influence thresholds based on copy-number or concentration of the transcrip-
tion factors. The validation of these models then relies on their capability to reproduce observed
behaviours. Such a modelling approach can be qualified as “top-down”, with a direct specification of
an abstract model to derive predictions on a concrete quantitative system, in opposition to “bottom-
up” abstractions. Bottom-up abstractions typically start from a precise quantitative model and derive
mathematically abstractions of it, which formally ensure that some properties will be preserved in the
abstract model [34, 53, 2]. However, in practice, the knowledge of the system is often insufficient to
build such a precise quantitative model, even putting aside its parameterisation. It turns out that the
Boolean network modelling framework fits with the current granularity of the knowledge of biological
processes. Moreover, modellers often take advantage of the abstraction level of Boolean networks to
account for automata relating to different biological concepts: for instance mixing automata modelling
activity of genes, of proteins, and more abstract concepts such as phenotypes. The fact that they
enable transforming static information on known and putative influences into a dynamical in silico
model which can be easily simulated is probably one of the reasons for their current growing adoption
in theoretical and experimental biology research groups.

In summary, since the seminal works of Kauffman and Thomas, Boolean networks have been
widely employed, and certainly are the most used model in biological regulation network modelling as
a matter of fact. Nevertheless, most of the works which have followed their lines have been conducted
principally in the direction of applications. There currently exists a deep gap between the applicative
and fundamental aspects of Boolean networks in favour of applications. As a consequence, the intrinsic
properties of Boolean networks, such as the way that information is transmitted along the entities, the
ability to produce this or that global dynamical behaviour depending on local interactions, are still not
well understood. Of course, results have already been obtained but they are far from being sufficient.
In some sense, this lack of fundamental knowledge tends to limit the innovating power of applications.
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It can be explained by the fact that, at present, as soon as a question is addressed from the application
standpoint, scientists provide ad hoc solutions to them, which prevents to develop a unified, federative
and general framework. This actually is paradoxical because without more theoretical fundamental
knowledge, applications cannot evolve deeply and become more impacting. In light of this, keeping
in mind what Kauffman and Thomas said (see above), we made the choice in this chapter to address
biological modelling and more precisely gene regulation network modelling with a rather theoretical
but illustrated standpoint, through the prism of updating modes and dynamics.

To this end, this chapter outline is as follows:
• After a short briefing on general notations, Section 2 presents the Boolean network framework

and gives the main definitions and notations specific to it.
• Section 3 puts the emphasis on some relevant case studies from the literature in biological mod-

elling which show some important features of Boolean modelling.
• Section 4 focuses on deep fundamental known results on Boolean networks coming from dis-

crete mathematics and computer science which establish very important links with qualitative
knowledge on genetic regulations.

• Finally, Section 5 concludes this chapter with a discussion about time, and current research
directions and links to software tools for analysing Boolean networks with the different updating
modes presented here.

General notations and definitions

The Boolean domain t0, 1u is denoted by B. Given a finite set S (resp. a vector V ), |S| (resp. |V |)
denotes its cardinality (resp. its dimension). The set t1, . . . , nu is denoted by JnK. The empty set tu
is denoted by H. The empty vector pq is denoted by

#»∅. Given two vectors V “ p1, 2q and V 1 “ p2, 3q,
their concatenation is denoted by V } V 1 “ p1, 2, 2, 3q. Given two Boolean vectors x, y P Bn, the set of
their components having a different value is denoted by ∆px, yq “ ti P JnK | xi ‰ yiu. Given a Boolean

vector x P Bn and i P JnK, xi is the Boolean vector identical to x except on the i-th component which

is inverted, i.e. ∆px, xiq “ tiu. This naturally extends to the subsets of JnK. Formally, we also use, for
any x “ px1, . . . , xnq P Bn:

• @W “W 1Ztiu Ď JnK, xW “ pxiq
W
1

“ pxW
1

q
i
, where Z represents the union of two disjoint sets,

i.e. A “ B Z C ðñ A “ B Y C and B X C “ H;

• x “ xJnK “ p x1, . . . , xnq, with  a “ 1´ a.
Notice that a Boolean vector x “ px1, . . . , xnq P Bn is sometimes written as the binary word x “
x1 . . . xn for the sake of clarity in some contexts (notably in the figures).

Given a directed graph G “ pV,Eq and two vertices i and j of V , the set V ´piq “ tj | pj, iq P Eu
(resp. V `piq “ tj | pi, jq P Eu) denotes the in-neighbourhood (resp the out-neighbourhood) of i. A path
is a finite or infinite series of edges which joins a sequence of vertices. Consider the relation of being
strongly connected of such a graph as the fact that there is a path between every ordered pair of its
vertices. This relation is an equivalence relation and the induced subgraphs by its equivalence classes
are the strongly connected components of G. A strongly connected component is said to be terminal
if and only if there is no path from it to another strongly connected component.

The classical Boolean operators used in this chapter are:  denotes the unary negation operator
(not) such that  a “ 0 if and only if a “ 1 and vice versa; _ denotes the binary disjunction operator
(or) such that a _ b “ 1 if and only if at least one of the operands equals 1; ^ denotes the binary
conjunction operator (and) such that a^b “ 1 if and only if both the operands equal 1; and Y denotes
the binary exclusive disjunction operator (xor) such that a Y b “ pa ^  bq _ p a ^ bq, i.e. either a
equals 1 or b equals 1.
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2 The Boolean network framework

This section aims to present the mathematical and computational model of Boolean networks. After
a discussion on the motivations for choosing such a framework in the context of modelling, we put
the emphasis on classical formal definitions related to these networks, their updating modes and their
dynamics.

2.1 On the simplicity of Boolean networks

From a general standpoint, automata networks can be used to model any real system which satisfies
the following three properties:

• it is a real system made up of distinct entities which interact with each other;

• each entity is characterised by a variable quantity, that is precisely intended to be expressed
formally in terms of states of automata in the model;

• the events undergone by the real system, just like the mechanisms which are responsible for
them, are not directly and fully observable with certainty: only the consequences of these events,
namely completely accomplished changes, are.

These three properties impose very few restrictions on the set of systems which can be modelled by
automata networks. These theoretical objects are therefore generic models for a very large variety of
real systems.

Let us come back to the “variable quantity” of entities mentioned in the second point above. To be
translated in terms of automaton states, it calls for a formalisation. This consists in choosing whether
what interests us in the variation of this quantity is of Boolean, discrete or continuous nature. As an
illustration, consider the example of genetic regulations and choose the action of a gene as the so-called
“variable quantity”:

• If, in the action of this gene, what interests us is its expression or non-expression, then we fall
directly into the Boolean case.

• If what interests us are the different ways in which the gene acts on other elements of the system,
then we can match a state to each of them. We then fall into the discrete case which can be
encoded in Boolean (an automaton state k can simply be encoded by log2pkq automata).

• Finally, if we measure the action of the gene through the concentration of proteins it produces,
then we fall into the continuous case. This concentration is usually presented as a sigmoidal
function. To deal with this case, three common methods exist. The first one is to stay in a
continuous formalism. The second one consists in approximating the sigmoid by cutting it into
intervals to which states are made to correspond so as to fall back into the discrete formalism.
The third one consists in considering the extremal concentrations of the sigmoid so as to fall in
the Boolean case.

This shows that we can give different statuses to the Boolean framework depending on whether we see
it as a direct modelling of reality or as an approximation or an encoding of an intrinsically continuous
or discrete modelling. Note that the direct Boolean modelling is consistent with the choice to focus
on the state changes of the automata rather than on their states themselves. As an illustration, if we
compare automata to internal combustion engines, the interest is more in the fact that an engine, taken
separately, goes from the “off” state to the “on” state and vice versa than on the quantity of electricity
supplied by the battery to start it or on that released by the spark plugs to cause the explosion and
initiate movement. Under this assumption, the Boolean abstraction is necessary and sufficient. In
addition, the discourse of biologists is generally imbued with syntactic elements of propositional logic
and it is not uncommon to hear sentences such as: “in the absence of repressor α, gene β is expressed”
or further “if the products of genes α and β form a complex, the latter promotes the expression of
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gene γ whereas these genes tend to inhibit its expression when they are in monomeric form.” This
again agrees with a direct modelling of reality in Boolean formalism.

In addition, Boolean networks derive other interesting benefits from their simplicity. In particular,
they provide a framework with clearly defined contours, ideal for tackling fundamental problems around
the modelling of complex interacting systems. Some of these problems are presented in this chapter.
Given the variety of their nature, ranging from structural sensitivity analyses to dynamical behaviour
characterisations, and the current state of our knowledge, such problems could not currently benefit
from significantly more elaborate frameworks. This would inevitably lead to diluting the primary
questions and de-structuring the problems posed by drawing attention to ancillary questions induced
by the set of parameters to be considered and not intrinsically included in the initial problem. For these
questions, on the contrary, Boolean networks offer just what is needed and facilitate the manipulation
of a minimal concept of causality, which is rooted in the notion of state change. Their merit therefore
lies in the reliability of the information they potentially provide, and the simplicity of their setting
(see below) associated with their ability to capture most of the heterogeneities and intricacies carried
by the modelled systems.

2.2 Boolean network specification

A Boolean network of dimension n is specified by a function f : Bn Ñ Bn mapping Boolean vectors of
dimension n to Boolean vectors of dimension n. For every i P JnK, fi : Bn Ñ B is the i-th component
of this function, that we call the local function of automaton i. Classically, the 2n Boolean vectors of
Bn are called the configurations of the Boolean network. A configuration denoted by x can be also
viewed as a one-to-one function from JnK to B. With this notation, we say that xi is the local state,
abbreviated by state in the sequel, of automaton i.

The local functions may only depend on a subset of automata of the network, and these depen-
dencies may even be monotone. This information can be summarised by a directed and signed graph,
called the influence graph (often called interaction graph in the literature), pV,Eq with its vertices
V “ JnK and edges E Ď JnKˆ t`,´uˆ JnK. Whenever pi,`, jq P E, we say that i is an activator of j;
whenever pi,´, jq P E, i is an inhibitor of j. An influence graph is simple if there is at most one edge
from one vertex to another, i.e. there is no pi, jq P JnK2 with tpi,`, jq, pi,´, jqu Ď E. An influence
graph pJnK, Eq is compatible with an influence graph pJnK, E1q whenever E Ď E1.

The influence graph of f has a positive (resp. negative) edge from i to j if and only if one can
assign a state to each automaton other than i so that the local function of j becomes equal (resp.
different) to the state of i. It is formally denoted by G f “ pJnK, Ef q where

• pi,`, jq P Ef if and only if there exists x, y P Bn with ∆px, yq “ tiu and xi “ 0 such that
fjpxq “ 0 and fjpyq “ 1;

• pi,´, jq P Ef if and only if there exists x, y P Bn with ∆px, yq “ tiu and xi “ 0 such that
fjpxq “ 1 and fjpyq “ 0.

By forgetting the signs on the edges, a weaker way to relate the local functions to the edges of the
influence graph is given by the following formula:

@i P JnK, Dx P Bn, fjpxq ‰ fjpx
iq ðñ pi, jq P Ef .

Such a relation implies notably that G f is minimal, i.e. any of its edges is supposed to represent an
effective influence based on essential Boolean variables [36]. In other terms, given f and a configuration
x P Bn, the set of edges of G f which operate an influence on x equals Ef pxq “ tpi, s P t`,´u, jq |

fjpxq ‰ fjpx
iqu.

A Boolean network f is locally monotone if and only if its influence graph G f is simple. In such a
case, for each local function fj , for each i so that pi,`, jq P Ef , the sole change of state of automaton
i from 0 to 1 cannot cause fj to switch from 1 to 0; for each i so that pi,´, jq P Ef , the sole change
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fpxq “

¨

˝

f1pxq “  x3

f2pxq “ x2 ^ px1 _ x3q

f3pxq “  x1

˛

‚

gpxq “

¨

˝

g1pxq “ x1 _ x2 _ x3

g2pxq “ x3 ^ px1 Y x2q

g3pxq “  x1 _ x2 _ x3

˛

‚

1

2 3

` ´

`

´

`

1

2 3

`

´
`

´´

`

´

´

´

`
´

(a) (b)

Figure 1: The two Boolean networks presented in Example 1: (a) Boolean network f and its associated
influence graph G f ; (b) Boolean network g and its associated influence graph G g.

of state of automaton i from 0 to 1 cannot cause fj to switch from 0 to 1. In other words, the local
functions fj are monotone according to a component-wise ordering of Boolean vectors which depends
on j, where activators are ordered increasingly (ď), and inhibitors decreasingly (ě). Remark that f
is monotone only if it is locally monotone. Formally, a Boolean network f is locally monotone if and
only if, @j P V , @i P V ´pjq, fj either satisfies:

@x P Bn, xi “ 0 ùñ fjpxq ď fjpx
iq, and thus pi,`, jq P Ef ,

or
@x P Bn, xi “ 0 ùñ fjpxq ě fjpx

iq, and thus pi,´, jq P Ef .

Example 1. Let us consider the two following distinct Boolean networks f and g of dimension n “ 3
defined so that they respect the minimality constraint of their influence graph:

fpxq “

¨

˝

f1pxq “  x3

f2pxq “ x2 ^ px1 _ x3q

f3pxq “  x1

˛

‚ and gpxq “

¨

˝

g1pxq “ x1 _ x2 _ x3

g2pxq “ x3 ^ px1 Y x2q

g3pxq “  x1 _ x2 _ x3

˛

‚

Given these Boolean networks, it is easy to construct their associated influence graphs G f “ pJ3K, Ef q
and G g “ pJ3K, Egq. The general idea is to look at every local function fi, written in conjunctive or
dijunctive normal form. If there is a literal xj (resp. its negation  xj) in its definition, with j P JnK,
then pj,`, iq P Ef (resp. pj,´, iq P Ef ). Consider Boolean network f . By local function f1, we
deduce that automaton 1 of f is influenced negatively by automaton 3; definition of f2 shows that
automaton 2 is influenced positively by automata 1 and 3, and itself; for automaton 3, we deduce
that it is influenced negatively by automaton 1. Now, for Boolean network g, we have: by local
function g1, automaton 1 is influenced positively by itself and negatively by the others; by expanding
the xor operator, g2 can be rewritten into g2pxq “ x3 ^ ppx1 ^ x2q _ p x1 ^ x2qq, which shows that
automaton 2 is influenced positively by automaton 3, and both positively and negatively by automaton
1 and itself. This leads to obtain G f and G g depicted in Figure 1. From local function definitions as
well as influence graph constructions, it appears that f is locally monotone, which is not the case for
g. Indeed, function g2 has a xor operator which is non-monotone, which leads G g not to be simple;
indeed, tp1,´, 2q, p1,`, 2q, p2,´, 2q, p2,`, 2qu Ď Eg.
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2.3 Boolean network dynamics

A dynamical system describes the temporal evolution of the set of its configurations, being Bn in the
case of Boolean networks. A Boolean network f can lead to several distinct ways of computing the
possible evolutions of a configuration x P Bn, depending on how the latter gets updated according
to fpxq. Thus, specifying this updating mode is a compulsory part of Boolean network analysis and
modelling which asks for introducing several concepts.

2.3.1 Updates

In a configuration, events update the state of one or more automata. Suppose that x P Bn is the
current configuration of a network f of dimension n whose influence graph is G f “ pJnK, Ef q. We say
that automaton i P JnK is updated if its state xi becomes fipxq. If fipxq “ xi, then the update of i is not
effective in x. Such a local event (even ineffective) leads to what is called an update of configuration
at the global level which is described by the updating function φi : Bn Ñ Bn of automaton i such that:

@x P Bn, φipxq “ px0, . . . , xi´1, fipxq, xi`1, . . . , xnq.

Do not confuse fipxq, φipxq and fpxqi. The first notation refers to the state of automaton i after
the execution of its local function on x, the second one refers to the configuration obtained after the
execution of the updating function φi on x, and the third one refers to the state of automaton i after
the execution of (global) function f on x.

More generally, the updating function extends to subsets of JnK. Notice that, abusing notations
here for the sake of clarity, we have φipxq “ φtiupxq. Formally, given W Ď JnK, the updating function
φW : Bn Ñ Bn represents the configuration change caused by the update of all the automata belonging
to W , and is such that:

@x P Bn,@i P JnK, φW pxqi “

#

fipxq if i PW ,

xi otherwise.

As an illustration, consider the network f defined in Figure 1 and let us focus on four distinct
updates on its configurations. The first update is ineffective and consists in changing nothing. The
second update changes the state of automaton 1 by application of φ1, the third one changes the
states of both automata 2 and 3 by application of φt2,3u, and the fourth one changes the state of
every automaton by application of φJnK. Notice that applying φJnK to a configuration is equivalent to
applying directly f on this configuration. Table 1 presents the results of these updates.

Until now, we have defined the classical framework of updates, in which updates correspond to
executions of one or more local functions simultaneously. We will see later (when we introduce the
most permissive updating mode) that we can extend this framework and thus consider more complex
ways of updating a Boolean network.

2.3.2 Transitions and trajectories

Informally speaking, a transition is a couple px, yq P Bn ˆ Bn which represents the change of config-
uration x into configuration y operated by a series of events (possibly composed of only one event).
The transitions which come from a unique update are said to be elementary. Conversely, those which
come from a series of several updates are said to be non-elementary.

More formally, given a Boolean network f , an elementary transition px, yq P Bn ˆ Bn of f corre-
sponds to the update in x of any subset W ‰ H Ď JnK of automata, i.e such that y “ φW pxq. By

convention, we denote them by x ÝÑf y or x
W
ÝÑf y. There exist two kinds of elementary transitions:

the asynchronous transitions are such that W ‰ H Ĺ JnK; the synchronous transitions are such that
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Table 1: Configurations, local functions (pfiqiPJ3K) and four updating functions (φH, φ1, φt2,3u, and

φJ3K) of Boolean network f presented in Example 1 and depicted in Figure 1.a.

x “ px1, x2, x3qf1pxqf2pxqf3pxq φHpxq φ1pxq φt2,3upxqφJ3Kpxq ” fpxq

p0, 0, 0q 1 0 1 p0, 0, 0qp1, 0, 0q p0, 0, 1q p1, 0, 1q

p0, 0, 1q 0 0 1 p0, 0, 1qp0, 0, 1q p0, 0, 1q p0, 0, 1q

p0, 1, 0q 1 0 1 p0, 1, 0qp1, 1, 0q p0, 0, 1q p1, 0, 1q

p0, 1, 1q 0 1 1 p0, 1, 1qp0, 1, 1q p0, 1, 1q p0, 1, 1q

p1, 0, 0q 1 0 0 p1, 0, 0qp1, 0, 0q p1, 0, 0q p1, 0, 0q

p1, 0, 1q 0 0 0 p1, 0, 1qp0, 0, 1q p1, 0, 0q p0, 0, 0q

p1, 1, 0q 1 1 0 p1, 1, 0qp1, 1, 0q p1, 1, 0q p1, 1, 0q

p1, 1, 1q 0 1 0 p1, 1, 1qp0, 1, 1q p1, 1, 0q p0, 1, 0q

W “ JnK. The reflexive and transitive closure of ÝÑf is denoted by ÝÑ˚
f and is defined as: given two

configurations x, y P Bn, x ÝÑ˚
f if and only if there exists a series of transitions which changes x into y.

Consider now the non-elementary transitions of the form px, yq P Bn ˆ Bn of f denoted by x ÝÑ˚
f

y. They correspond to series of several elementary transitions such that: x ÝÑ˚
f y ðñ Dp ě

2, Dx1, . . . , xp´1 P Bn, x ÝÑf x
1 ÝÑf . . . ÝÑf x

p´1 ÝÑf y. In other terms, any non-elementary transition
x ÝÑf y is a vector of sets pWkq1ďkďp such that y “ φWp

˝ ¨ ¨ ¨ ˝ φW1
pxq, and can be represented by

x
W1,...,Wp
ÝÝÝÝÝÝÑf y.

Trajectories are vectors of (elementary or not) transitions ppx0, x1q, px1, x2q, . . . , pxp´1, xpqq such
that x0 ÝÑf x

1 ÝÑf x
2 ÝÑf . . . ÝÑf x

p´1 ÝÑf x
p.

Let us illustrate theoretically these definitions and notations by the following trajectory of an
arbitrary Boolean network f of dimension n ě 3, given i, j P JnK and W1 “ t1, . . . , tn2 uu,W2 “

trn2 s, . . . , nu Ĺ JnK:

x0 JnK
ÝÝÑf

`

x1 “ fpx0q
˘ W1,W2
ÝÝÝÝÑf

`

x2 “ φW2 ˝ φW1px
1q
˘ ti,ju
ÝÝÝÑf

`

x3 “ φti,jupx
2q
˘

.

This trajectory is composed of three transitions among which:

• two are elementary: x0 JnK
ÝÝÑf x

1 is a synchronous transition and x2 ti,ju
ÝÝÝÑf x

3 is an asynchronous
one;

• one is non-elementary, x1 W1,W2
ÝÝÝÝÑf x

2, and could be decomposed into x1 W1
ÝÝÑf y

W2
ÝÝÑf x

2, namely
a series of two elementary transitions.

Now, for the sake of clarity, consider configuration p1, 1, 1q of Boolean network f defined in Figure 1.
We know that W1 “ t1, . . . , t

n
2 uu “ t1u and W2 “ tr

n
2 s, . . . , nu “ t2, 3u; suppose that i “ 1 and j “ 3.

With Table 1, it is easy to compute the previous trajectory on it:

x0 “ p1, 1, 1q
JnK
ÝÝÑf x1 “ p0, 1, 0q

W1,W2
ÝÝÝÝÑf x2 “ p1, 1, 0q

t1,3u
ÝÝÝÑf x3 “ p1, 1, 0q.

2.3.3 Updating mode and transition graph

A dynamical system associated with a Boolean network f is the combination of f with an updating
mode. In other words, the dynamics of f depends on the chosen way to proceed with automata updates,
from which of course the trajectories to be considered depend. From a general standpoint, the updating
modes define restrictions on the set of imaginable updates (and thus of the set of underlying transitions)
allowed in the set of configurations of a network. Thus, given a Boolean network, choosing an updating
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mode gives formally a framework to the study of its dynamics. Here, we provide the main definitions
related to Boolean network dynamics by paying particular attention to updating modes and transition
graphs. Observe that, given f of dimension n and an updating mode µ, the dynamical system pf, µq
defines a binary transition relation between configurations of Bn denoted by ÝÑpf,µq Ď Bn ˆ Bn.

Main concepts related to dynamical systems Let pf, µq be the dynamical system associated with
Boolean network f of dimension n and updating mode µ. This dynamical system can be represented
by a directed graph D pf,µq “ pBn,ÝÑpf,µqq, where ÝÑpf,µq represents the set of realisable transitions.
This graph is usually called the transition graph of pf, µq. Now, as for transitions above, we can
define the reflexive and transitive closure of relation ÝÑpf,µq, denoted by ÝÑ˚

pf,µq as follows: given two

configurations x, y P Bn, we have x ÝÑ˚
pf,µq y if and only if there exists a path from x to y in D pf,µq.

Configuration x P Bn is said to be transient if there exists a configuration y such that px, yq P ÝÑ˚
pf,µq

and py, xq R ÝÑ˚
pf,µq. Configurations which are not transient are called limit configurations. Because n

is finite, these configurations induce the terminal strongly connected components of D , called the limit
sets of pf, µq. If there exists at least one trajectory from a transient configuration to a limit set, then
this limit set is called an attractor of pf, µq [33, 95]. The basin of attraction of an attractor A of pf, µq,
denoted by BpAq, is the sub-graph of D pf,µq induced by the set of transient configurations x such that,
for any limit configuration y belonging to A, px, yq P ÝÑ˚

pf,µq. A limit set of cardinal 1, i.e. composed

of a unique limit configuration x which only admits px, xq P ÝÑpf,µq as possible outgoing transitions,
is called a fixed point (or stable configuration) of pf, µq. A limit set of cardinal greater than 1, i.e.
composed of configurations which can reach each other without reaching the others, is called a limit
cycle (or sustained oscillation) of pf, µq.

Now that the main general concepts on dynamical systems are clarified, some classical updating
modes are going to be defined. Let us start by specifying that, considering Boolean networks as
mathematical objects evolving over discrete time, it is common to denote by xt (resp. xti) an image
(or the image, depending on the context) of configuration x “ x0 (resp. the state of the automaton
i P JnK) at step (of time) t P N. It is essential to understand that it is impossible to present all
updating modes, simply because of a combinatorial argument. If we consider a Boolean network f of
dimension n and only the deterministic updating modes based on updates, such as those which have
been formally presented until now, the most general way to define an updating mode is as an infinite
vector of subsets of JnK. From this, with Cantor’s diagonal argument, it is easy to derive that the set
of such deterministic updating modes is an uncountable set. Therefore, in order to avoid confusions
and misleadings, our following presentation separates voluntarily deterministic updating modes from
non-deterministic ones. Deterministic updating modes are such that each configuration has a unique
image, i.e. given a configuration, only one outgoing transition is possible. Non-deterministic updating
modes are such that each configuration may admit several images, i.e. given a configuration, distinct
outgoing transitions are possible.

2.3.4 Deterministic updating modes

Block-sequential updating modes Since the works of Robert [121, 122], the community working
on Boolean networks, and more generally on automata networks, has paid particular attention to a
specific family of deterministic and periodic updating modes, classically called block-sequential updating
modes in the literature [41, 44, 9, 65] and introduced as series-parallel updating modes by Robert.
Informally, given a Boolean network f of dimension n, the idea of such modes is to partition automata
of JnK into disjoint blocks (or subsets), and to make automata of one block execute their updating
functions synchronously (or in parallel) while blocks are iterated in series and periodically. Let E be
an arbitrary finite set. A vector E1 composed of subsets of E is an ordered partition of E if all the
elements of E1 are non-empty, pairwise disjoint and if their union equals E. Such an updating mode
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µ “ bs admissible for Boolean network f of dimension n is defined as an ordered partition pW1, . . . ,Wpq

of JnK, with p ď |JnK|.

Definition 1. Let f be a Boolean network of dimension n and bs “ pW1, . . . ,Wpq an ordered partition
of JnK. Dynamical system pf, bsq is defined by the transition graph D pf,bsq “ pBn,ÝÑpf,bsqĎ Bn ˆ Bnq
where:

@x, y P Bn, x ÝÑpf,bsq y ðñ y “ φWp
˝ ¨ ¨ ¨ ˝ φW1

pxq.

The transitions operated in such dynamical systems are non-elementary, except in one case, when
bs “ JnK, i.e. when all the transitions are synchronous. This latter case is certainly the most classical
from the theoretical standpoint, because the underlying dynamical system pf, pJnKqq is directly defined
by f such that for every x P Bn, its image is φpxq “ fpxq. This is called the synchronous, or
parallel updating mode. Notice also that the number of possible block-sequential updating modes is
exponential in the number of automata n, as it is given by the Fubini number whose recurrence formula
is: #bspnq “

řn´1
i“0

`

n
i

˘

#bspiq, with #bsp0q “ 1.

As an illustration, consider Boolean network f of dimension 3 defined in Figure 1. Since it is
composed of 3 automata, it admits thirteen distinct block-sequential updating modes. If we compute
the thirteen underlying dynamical systems, it appears that six amongst them are different. Their
respective transition graphs are depicted in Figure 2. Let us focus now on D pf,pt1,3u,t2uqq pictured on
the up right corner of that figure. We can see that dynamical system pf, pt1, 3u, t2uqq has five different
limit sets, four fixed points (001ý, 011ý, 100ý, and 110ý) which are not attractors, and one limit
cycle of length 2 (000 Õ 101) which is an attractor whose basin of attraction is t010, 111u. The whole
figure shows another interesting feature: the fixed points are preserved, whatever the block-sequential
updating mode, which is not the case for the limit cycle. We will formally speak of this feature in
Section 4.1.

Block-sequential updating modes are definitely relevant from the mathematical standpoint. Their
study has emphasised strong properties about the convergence of dynamical systems towards limit
sets [122, 64], about their influence on these limit sets [9, 52, 67, 8, 10], and we are still far from
having elucidated each of their underlying dynamical consequences. They also have brought interesting
knowledge in the framework of genetic regulation network modelling [93, 11, 42, 124]. Nevertheless,
the fact they are defined by means of ordered partitions of the set of automata is a strong constraint.
First, they are periodic. This is a quite convenient mathematical restriction since it allows to leave
the uncountable universe of deterministic updating modes and enter into a countable one as soon as
period p P N is determined and finite. Second, they make every automaton update its state exactly
once during an updating period. The fact that every automaton updates its state at least once during
a period is actually a good property, because what would be the point of an automaton which never
updates its state? Last but not least, the fact that it does only once per period prevents from observing
peculiar phenomena. For instance, given a network, this makes it impossible for one of its subnetworks
to act with its own clock, distinct from that of the rest of the network. Considering such biological
phenomenology asks for conceiving more expressive and more relaxed deterministic updating modes
in the framework of Boolean networks. Notice that more expressive deterministic periodic updating
modes have never been studied in depth per se, even if they are evoked in [65, 47].

Block-parallel updating modes A natural way to design new deterministic, periodic updating
modes rests on the property above which says that each automaton needs to update its state at least
once during a period. This leads to focus on periodic updating modes of arbitrary period p P N
defined as infinite periodic vectors pW1, . . . ,Wp,W1, . . . ,Wp, . . . q such that @i P t1, . . . , pu,Wi Ď JnK
and

Ťp
i“1Wi “ JnK. For the sake of clarity, such updating modes are usually denoted by means of

finite vectors such as pWiqiPN{pN. From now on, given a dynamical system pf, µq, let us distinguish

time steps from elementary time steps. There is one time step between configuration x P JnK and
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D pf,pJ3Kqq ” D pf,pt2u,t1,3uqq

000 001

010 011

100 101

110 111

D pf,pt1,2u,t3uqq ” D pf,pt2u,t1u,t3uqq

000 001

010 011

100 101

110 111

D pf,pt1,3u,t2uqq

000 001

010 011

100 101

110 111

D pf,pt2,3u,t1uqq ” D pf,pt2u,t3u,t1uqq

000 001

010 011

100 101

110 111

D pf,pt1ut2,3uqq ” D pf,pt1u,t2u,t3uqq

” D pf,pt1u,t3u,t2uqq

000 001

010 011

100 101

110 111

D pf,pt3u,t1,2uqq ” D pf,pt3u,t1u,t2uqq

” D pf,pt3u,t2u,t1uqq

000 001

010 011

100 101

110 111

Figure 2: The 6 possible distinct block-sequential dynamics of Boolean network f defined in Figure 1
represented by their associated transition graphs D pf,bsq, where bs is amongst the 13 possible ordered
partitions of J3K.

another y P JnK if x ÝÑpf,µq y. If this transition is non-elementary, as explained above, it can be
decomposed into elementary ones and we say that there are p elementary time steps between x and
y if x ÝÑpf,µq y ðñ x “ x0 ÝÑφW1

x1 ÝÑφW2
. . . ÝÑφWp´1

xp´1 ÝÑφWp
xp “ y. These periodic

updating modes are called fair periodic updating modes because for any elementary time step t P N,
there exists k P t1, . . . , pu such that every automaton of JnK is updated in the elementary time interval
rt; t ` ks. Nevertheless, whilst the set of fair updating modes is indeed countable, it is too much
big to hope studying it in depth. Indeed, for a network of dimension n and given a period p, let us
argue that it is greater than the number of coverings of dimension p of JnK, which means greater than
řn
k“0p´1qk

`

n
k

˘`

2n´k
´1

p

˘

[32], because of the order on subsets and the subset repetition availability.

To constrain this set of possible periodic updating modes, consider the dual of the set of block-
sequential updating modes, that is the set of block-parallel updating modes. Informally, the idea
of such modes is to partition automata of JnK into disjoint blocks, and to make automata of one
block execute their updating functions sequentially while blocks are iterated in parallel. Formally, a
partitioned order of JnK is a set tSku1ďkďs, with 1 ď s ď |JnK|, such that:

• @k P t1, . . . , su, Sk ‰
#»∅ is a vector of automata of JnK without repetitions;

• @i P JnK, i P Sk ùñ @` P t1, . . . , suztku, i R S`;
• }sk“1Sk covers JnK.

From this, we derive that a block-parallel updating mode µ “ bp admissible for a Boolean network f
of dimension n is a partitioned order tS1, . . . , Ssu of JnK, with s ď |JnK|. Notice that the number of
partitioned orders of a set equals that of its ordered partitions.

Proposition 1. Given a Boolean network f of dimension n, block-parallel updating modes admissible
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Figure 3: Insight of the rewriting of block-parallel updating mode bp “ tp2, 5, 6q, p5, 1q, p3qu into a
classical periodic updating mode form. This corresponds to the elementary time diagram of updating
function executions. Two periods are pictured, the first one entirely, the second one partially. In the
first period, the rectangles filled in light gray come from a reading in columns of the diagram and
represent the subsets W` of three automata evolving in parallel. In the second period, the rectangles
filled in gray come from a reading in row of the diagram and represent the sub-vectors Sk of automata
evolving sequentially.

for f are fair periodic updating modes.

Proof. Given f and n, any block-parallel updating mode defined as a partitioned order tSku1ďkďs of
JnK can be rewritten into a periodic vector pW`q1ď`ďp, with period p “ lcmp|Sk|1ďkďsq, of subsets of
JnK of cardinal s, such that:

@` P t1, . . . pu, W` “ ti P JnK | Dk, Dj P t1, . . . , |Sk|u, Dm P N, pSkqj “ i and ` “ j `m|Sk|u.

Let us denote this rewriting by the non injective function rw such that rwptSku1ďkďsq “ pW`q1ď`ďp,
and let us denote its right inverse by rw-1

bp. The construction of rw implies notably that @i P JnK, D` P
t1, . . . , pu, i PW`.

Definition 2. Let f be a Boolean network of dimension n and bp “ tS1, . . . , Ssu a partitioned order
of JnK. Dynamical system pf, bpq is defined by the transition graph D pf,bpq “ pBn,ÝÑpf,bpqP Bn ˆ Bnq
such that:

@x, y P Bn, x ÝÑpf,bpq y ðñ y “ φWp ˝ ¨ ¨ ¨ ˝ φW1pxq,

where pW`q1ď`ďp “ rwpbpq and p “ lcmp|Sk|1ďkďsq.

As a first illustration, consider a Boolean network f of dimension 6 and the block-parallel up-
dating mode bp “ tp2, 4, 6q, p5, 1q, p3qu. One can derive from the latter that automata 2, 4, and 6
are updated every three elementary time steps, automata 5 and 1 every two elementary time steps,
and automaton 2 at each elementary time step. More precisely, automaton 2 (resp. 4 and 6) is up-
dated at each elementary time step t P N such that t ” 0 mod 3 (resp. t ” 1 mod 3, and t ” 2
mod 3), automaton 5 (resp. 1) is updated at each elementary time step t P N such that t ” 0
mod 2 (resp. t ” 1 mod 2). This corresponds exactly to the following periodic updating mode:
pt2, 3, 5u, t1, 3, 4u, t3, 5, 6u, t1, 2, 3u, t3, 4, 5u, t1, 3, 6uq “ rwpbpq. An insight of this rewriting is given in
Figure 3. Now, given a configuration x “ px1, x2, x3, x4, x5, x6q, its global updating according to bp
gives the following transition:

x0 “ px1, x2, x3, x4, x5, x6q ÝÑpf,bpq x
1 “ φt1,3,6u ˝ φt3,4,5u ˝ φt1,2,3u ˝ φt3,5,6u ˝ φt1,3,4u ˝ φt2,3,5upx

0q.

As a second illustration, consider again Boolean network f of dimension 3 given in Figure 1. There
exist thirteen block-parallel updating modes admissible for it. Seven underlying dynamical systems
are different which are depicted in Figure 4. Notice that five of them correspond to dynamical systems
emerging from block-sequential updating modes given in Figure 2. What is interesting at this stage is
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D pf,tp1q,p2q,p3quq

000 001

010 011

100 101

110 111

D pf,tp1q,p2,3quqq ” D pf,tp2q,p1,3quq

” D pf,tp2,1,3quq

000 001

010 011

100 101

110 111

D pf,tp1q,p3,2quq

000 001

010 011

100 101

110 111

D pf,tp2q,p3,1quq ” D pf,tp3q,p2,1quq

” D pf,tp2,3,1quq

000 001

010 011

100 101

110 111

D pf,tp3q,p1,2quq

000 001

010 011

100 101

110 111

D pf,tp3,1,2quq ” D pf,tp3,2,1quq

000 001

010 011

100 101

110 111

D pf,tp1,2,3quq ” D pf,tp1,3,2quq

000 001

010 011

100 101

110 111

Figure 4: The 7 possible distinct block-parallel dynamics of Boolean network f defined in Figure 1 rep-
resented by their associated transition graphs D pf,bpq, where bp is amongst the 13 possible partitioned
orders of J3K.

that two of them are not: the one in the up right frame, and the one in the middle central frame. This
shows that block-parallel updating modes can lead to dynamical systems not observable by means of
block-sequential updating modes.

Let us denote the set of block-parallel updating modes defined on JnK viewed as periodic modes by
trwpbppJnKqqu, and the set of block-parallel updating modes defined on JnK by tbspJnKqu. The following
properties hold:

• |trwpbppJnKqqu| ď |tbspJnKqu|. The number of partitioned orders is upper-bounded by the number
of ordered partitions since rewritting function rw is not injective. Indeed, for n ě 4, there exist
specific partitioned orders in which subvectors of automata lead to the same rewriting into vector
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of automata subsets. For instance, rwptp1, 2q, p3, 4quq “ rwptp1, 4q, p3, 2quq “ pt1, 3u, t2, 4uq;
• @n ě 3, trwpbppJnKqqu ‰ tbspJnKqu, since updating repetitions in a period are allowed by block-

parallel updating modes. Considering Boolean networks (and a fortiori automata networks), a
consequence of this is that, given a network f , the set of its underlying block-parallel dynamical
systems is not necessarily the set of its underlying block-sequential dynamical systems.

• trwpbppJnKqqu X tbspJnKqu ‰ H. Indeed, the parallel and the n! sequential updating modes, as
well as other specific modes, are both block-parallel and block-sequential updating modes.

• If bp is a partitioned order tSku1ďkďs such that @k, ` P t1, . . . , su, |Sk| “ |S`| “ c, then rwpbpq is a
block-sequential updating mode whose subset cardinals equal s and whose period is c. Conversely,
if bs is an ordered partition pWkq1ďkďp such that @k, ` P t1, . . . , pu, |Wk| “ |W`| “ c, then
rw-1

bppbsq is a block-parallel updating mode of cardinal c whose sub-vector dimensions equal p. In
other terms, rw is a bijection for such block-parallel and block-sequential updating modes sets
and rw-1

bp is the (two-sided) inverse of rw in this case.
These properties are interesting per se since they emphasise that the block-parallel and block-sequential
families of periodic updating modes are different whilst they share some properties. However, it would
be of better interest to have families of updating modes which integrate both of them. To this end,
let us introduce a generalisation of block-parallel updating modes.

Towards local-clocks updating modes

Block-parallel generalisation The general idea here consists in restarting from block-parallel
updating modes and to extend them by allowing automata of distinct blocks to synchronise their
updatings, thanks to the concept of waiting delay. To this end, consider the set JnK Y t0u, where
element 0 is a fictitious automaton with no local function which will serve as a kind of waiting delay.
Formally, a partitioned order of JnK with delay is a set tSku1ďkďs, with 1 ď s ď n, for which the
following properties hold:

• @k P t1, . . . , su, Sk ‰
#»∅ is a vector of automata of JnK Y t0u without repetitions of elements of

JnK, and such that Di P JnK, i P Sk;
• @i P JnK, i P Sk ùñ @` P t1, . . . , suztku, i R S`;
• }sk“1Sk covers JnK;
From this, we derive that a general block-parallel updating mode µ “ gbp admissible for a Boolean

network f of dimension n is a partitioned order tS1, . . . , Ssu of JnK with delay, with s ď n.
This leads to the following proposition whose proof is similar to that of Proposition 1. In this case,

however, the left inverse of rw is distinct from rw-1
bp since it needs to generate 0s in sub-vectors, and is

denoted by rw-1
gbp.

Proposition 2. Given a Boolean network f of dimension n, general block-parallel updating modes
admissible for f are fair periodic updating modes.

Definition 3. Let f be a Boolean network of dimension n and gbp “ tS1, . . . , Ssu a partitioned order of
JnK with delay. Dynamical system pf, gbpq is defined by the transition graph D pf,gbpq “ pBn,ÝÑpf,gbpqĎ

Bn ˆ Bnq such that:

@x, y P Bn, x ÝÑpf,lcq y ðñ y “ φWp
˝ ¨ ¨ ¨ ˝ φW1

pxq,

where pW`q1ď`ďp “ rwpgbpq and p “ lcmp|Sk|1ďkďsq.

As a first illustration, consider a Boolean network f of dimension 4 and the general block-parallel
updating mode gbp “ tp1, 0q, p0, 2, 0q, p3q, p0, 4qu. One can derive from it that automaton 1 (resp. 2,
3, and 4) executes its updating function at elementary time step t “ 0 (resp. t “ 1, t “ 0, and t “ 2),
and then every two (resp. three, one, two) elementary time steps. This corresponds exactly to the
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Figure 5: Insight of the rewriting of general block-parallel updating mode gbp “

tp1, 0q, p0, 2, 0q, p3q, p0, 4qu into a classical periodic updating mode form. This corresponds to the el-
ementary time diagram of updating functions executions. Two periods are pictured, the first one
entirely, the second one partially. In the first period, the rectangles filled in light gray come from
a reading in columns of the diagram and represent the subsets W` of automata of J4K evolving in
parallel. In the second period, the rectangles filled in gray come from a reading in row of the diagram
and represent the sub-vectors Sk of automata evolving sequentially.

following periodic updating mode: pt1, 3u, t2, 3, 4u, t1, 3u, t3, 4u, t1, 2, 3u, t3, 4uq. In other words, we
have:

rwpgbpq “ pt1, 3u, t2, 3, 4u, t1, 3u, t3, 4u, t1, 2, 3u, t3, 4uq,

and rw-1
gbp

`

pt1, 3u, t2, 3, 4u, t1, 3u, t3, 4u, t1, 2, 3u, t3, 4uq
˘

“ gbp .

An insight of this rewriting is presented in Figure 5.

As a second illustration, consider once again Boolean network f of dimension 3 given in Figure 1,
and the three following general block-parallel updating modes admissible for it:

• gbp1 “ tp1, 0q, p2q, p3, 0, 0qu is an updating mode of period 6 which makes automaton 1 (resp. 2,
and 3) update its state at each two (resp. one, and three) elementary time steps from t “ 0;

• gbp2 “ tp1, 0, 2q, p3, 0qu is an updating mode of period 6 which makes automaton 1 (resp. 2, and
3) update its state at each three (resp. three, and two) elementary time steps from t “ 0 (resp.
t “ 2, and t “ 0);

• gbp3 “ tp1, 2q, p3, 0qu is an updating mode of period 2 which makes automata 1 and 3 update
their states at each two elementary time steps from t “ 0, and automaton 2 update its state at
each two elementary time steps from t “ 1.

Their associated dynamical systems are depicted in Figure 6. First, remark that D pf,tp1,0q,p2q,p3,0,0quq “

D pf,pt1,2,3u,t2u,t1,2u,t2,3u,t1,2u,t2uqq is neither a block-sequential updating mode nor a block-parallel one.
This emphasises that general block-parallel updating modes can generate dynamics which are not
observable thanks to block-sequential and block-parallel updating modes. Second, remark that
D pf,tp1,0,2q,p3,0quqq “ D pf,pt1,3u,H,t2,3u,t1u,t3u,t2uqqq equals D pf,tp3q,p1,2quqq “ D pf,pt1,3u,t1,2uqqq. This em-
phasises two distinct relevant features:

• The periodical form of a general block-parallel updating mode can be partially composed of
empty subsets which correspond to elementary time steps where nothing happens. In this ex-
ample, considering configuration x “ px1, x2, x3q, its global updating according to gbp2 gives the
following transition:

x0 “ px1, x2, x3q ÝÑpf,gbp2q
φt2u ˝ φt3u ˝ φt1u ˝ φt2,3u ˝ φH ˝ φt1,3u

ðñ x0 “ px1, x2, x3q ÝÑpf,µq φt2u ˝ φt3u ˝ φt1u ˝ φt2,3u ˝ φt1,3u.

• general block-parallel updating modes which are not block-parallel can generate the same dy-
namics directly observable thanks to block-parallel updating modes. Notice that it is also the
case for block-sequential updating modes.

16



D pf,tp1,0q,p2q,p3,0,0quq

000 001

010 011

100 101

110 111

D pf,tp1,0,2q,p3,0quqq

000 001

010 011

100 101

110 111

D pf,tp1,2q,p3,0quq

000 001

010 011

100 101

110 111

Figure 6: Three possible distinct general block-parallel dynamics of Boolean network f defined in
Figure 1 represented by their associated transition graphs.

Third, remark that gbp3 “ tp1, 2q, p3, 0qu is a block-sequential updating mode by definition since
rwpgbp3q “ pt1, 3u, t2uq. Actually, the general block-parallel updating modes of equal sub-vectors
dimensions are either block-sequential updating modes or updating modes whose underlying dynamics
equals a block-sequential dynamics (they can have empty subsets in their periodical form).

Local-clocks Actually, the three previous classes of periodic updating modes “by blocks” are
particular sub-classes of local clocks updating modes [119, 120].

The general idea underlying the local clocks updating modes rests on a local view, i.e. at the level
of the automata of a network, not at the level of the network, of the scheduling of the updates over
time. More formally, considering the time scale decomposed according to elementary transitions, given
a Boolean network f of dimension n and a periodic updating mode µ, we say that µ is a local clocks
updating mode if and only if, for each automaton i P JnK, there exist a local period pi and an initial
shift ρi P t0, . . . ,mu such that updating function φi is executed at each time step ti P N such that, for
all k P N, ti “ ρi ` kpi.

In other terms, each automaton has its own initial shift at which it enters in its own local updating
period. From this, it is easy to see that block-sequential and (general) block-parallel updating modes
respect this property. Indeed, for block-sequential ones of period p, all the automata execute their
updating functions once per period, and thus, all have an updating period equal to p. Moreover, each
automaton is initially shifted of a number of time steps equal to the number minus 1 of the subset it
belongs to in the ordered partition. For (general) block-parallel ones, the local updating period of each
i is the cardinal of the sub-vector it belongs to, and its initial shift corresponds to its position minus
1 in the sub-vector. Proposition 3 below derives directly from the definition of local clocks updating
modes and Proposition 2.

Proposition 3. Given a Boolean network f of dimension n, local clocks updating modes admissible
for f are fair periodic updating modes.

Nevertheless, it is important to notice that local clocks updating modes can lead to elementary
dynamics which cannot be captured by the previous ones. This comes from the initial shifts which can
force an updating transitory phase before entering into an updating periodic phase. As a consequence,
they cannot be directly taken into account in general block-parallel updating modes since the latter do
not allow any transitory phase. Indeed, by definition, any initial local shift generated by putting 0s at
the beginning of sub-vectors of the partitioned order leads to increase the corresponding local period.
As an illustration, consider any Boolean network f composed of 3 automata and the following local
clocks updating mode defined by means of the two following vectors: ρ “ p3, 1, 0q and p “ p2, 3, 2q, the
initial local shift vector and the local period vector respectively (see Figure 7). This updating mode
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Figure 7: Elementary time diagram of updating functions executions under local clocks updating
mode lc “ pρ “ p3, 1, 0q, p “ p2, 3, 2qq. The transitory phase and two periods are pictured, the first one
entirely, the second one partially. In the first (resp. second) period, the rectangles filled in light gray
(resp. gray) give the periodical reading (resp. the general block-parallel view) of the periodic phase of
the updating mode.

generates a transitory phase of 3 time steps which cannot be interpreted in the framework of general
block-parallel updating modes, and a periodic phase of periods of length 6 which can be. Indeed, the
mode tp1, 0q, p0, 2, 0q, p0, 3qu ” pt1u, t2, 3u, t1u, t3u, t1, 2u, t3uq produces it. More generally, it can be
observed that, when there exists at least one initial local shift greater than 1, local clocks updating
modes induce a transitory phase of maxiPJnKpρiq ´ 1 time steps which cannot be captured by general
block-parallel updating modes.

Updating modes induced by Boolean networks with memory All the periodic updating
modes discussed above, and more generally all the periodic updating modes leading to define dynamical
systems whose transitions are the results of a global transition function which is a composition of
updating functions, have a particularity with respect to Boolean networks and their possible dynamics.
They are in some sense context free. Indeed, given a Boolean network f of dimension n and such an
updating mode µ, configurations of Bn, and thus automata of JnK, evolve over time according to
the schedule determined by µ, without taking into account anything else. The underlying dynamical
systems are consequently memoryless. To go even further on deterministic updating modes, one could
consider updating modes accounting for some context. The literature on Boolean networks recently
put the emphasis on such modes through the gene protein Boolean networks model, introduced by
Graudenzi and Serra [69, 70, 71]. The general initial idea of their work rests on:

• considering bipartite Boolean networks with two kinds of automata: a half of them models genes,
the other half models their associated one-to-one proteins;

• considering that each protein has its own decay time which defines the number of time steps
during which it remains present in the cell after having been produced by the punctual expression
of its associated gene.

Without entering into the details of this formalism, the study presented in [63] shows that this new
model of genetic regulation networks can be viewed as Boolean networks with memory, i.e. Boolean
networks with an added delay vector so that an activated automaton remains activated during at
least a number of time steps equal to its own delay. Formally, a Boolean network with memory f of
dimension n is defined as a Boolean network f and a delay vector d P Nn.

Definition 4. Let f be a Boolean network of dimension n and d “ pd1, . . . , dnq P pNzt0uqn be a
delay vector. The set of its configurations is defined as Xpf,dq “ tpx, δq P Bn ˆ Nn | @i P JnK, δi P
t0, . . . , diu, xi “ 0 ðñ δi “ 0 and xi “ 1 ðñ δi P t1, . . . , diuu. Dynamical system ppf, dq, pq
is defined by the transition graph D ppf,dq,pq, where p represents the parallel updating mode such that
p “ pJnKq, made of transitions based on updating function φ‹ : Xpf,dq Ñ Xpf,dq depending on the delays
such that:

@px, δq, py, δ1q P Xpf,dq, px, δq ÝÑppf,dq,pq py, δ
1q ðñ py, δ1q “ φ‹JnKpx, δq,
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Figure 8: (a) Dynamics of Boolean network f with memory d “ p2, 1, 1q represented by its deterministic
transition table on delay configurations and the associated transition graph Dδ

ppf,dq,pq; (b) Projection
of the dynamics of pf, dq on the underlying Boolean configurations, for any time step t in N, and its
associated transition graph Dx

ppf,dq,pq.

where:
@i P JnK, φ‹JnKpx, δqi “ pyi, δ

1
iq,

with

δ1i “

$

’

&

’

%

0 if fipxq “ 0 and δi “ 0,

δi ´ 1 if fipxq “ 0 and δi ą 0,

di if fipxq “ 1,

and

yi “

#

1 if δ1i ě 1,

fipxq if δ1i “ 0.

The previous definition shows that, whilst Boolean networks with memory evolve globally according
to the parallel updating mode, automata desynchronisation is made possible locally thanks to the delays
whose evolution depends on the local context. In other terms, Boolean networks with memory are
Boolean networks whose global dynamics depend on the local context of their automata at each time
step. Nevertheless, notice that when d “ p1, . . . , 1q, the dynamics of Boolean network with firing
memory pf, dq is nothing else but D pf,pq.
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Let us take once more Boolean network f of dimension 3 defined in Figure 1 as an example to
illustrate peculiarities and intricacies of the contextual updating modes at stake in Boolean networks
with memory. To this end, let us combine f with delay vector d “ p2, 1, 1q. For convenience and the
sake of clarity, let us add a notation based on the specification of the set of configurations of pf, dq:
rather than considering configurations in Xpf,dq which decouple Boolean configurations of f from their
possible associated delay configurations of Nn, let us consider only the latter. So, for instance, delay
configuration δ “ p2, 0, 1q corresponds actually to configuration px “ p1, 0, 1q, d “ p2, 0, 1qq of pf, dq.
From this, let us abuse notation and consider that the updating function φ‹JnK maps the set of delay
configurations to itself. Figure 8.a depicts the deterministic dynamics of this Boolean network with
memory pf, dq.

However, an interesting point is that, when the deterministic dynamics is projected on the Boolean
configurations of f by getting rid of local delays, then the obtained transition graph is not determin-
istic anymore, as pictured in Figure 8.b. Indeed, for instance, configuration p1, 1, 1q can reach both
configurations p0, 1, 0q and p1, 1, 0q. So, generally speaking, in some sense, working on an arbitrary
Boolean network with memory pf, dq of dimension n by considering the projection of its dynamics on
its partial configurations of Bn may involve considering the dynamics of f evolving according to a
specific non-deterministic updating mode.

2.3.5 Non-deterministic updating modes

Asynchronous updating modes The updating modes defined in the previous section enables
specifying which automata should get updated simultaneously, possibly in a given sequence. The
asynchronous updating mode considers any combination of automata to be updated simultaneously:
it corresponds to the non-empty elementary transitions introduced in Section 2.3.2.

Definition 5. Let f be a Boolean network of dimension n. Dynamical system pf, aq is defined by the
transition graph D pf,aq “ pBn,ÝÑpf,aqĎ Bn ˆ Bnq where:

@x, y P Bn, x ÝÑpf,aq y ðñ DW Ď JnK,W ‰ H, y “ φW pxq.

The obtained dynamics are then non-deterministic. Remark that whenever k automata can change
of state (k “ |∆px, fpxqq|) then, 2k´1 transitions from x are generated by the asynchronous updating
mode.

From a modelling standpoint, the asynchronous updating mode aims at accounting for state changes
which occur at different speed and whenever it is not possible to determine local clocks, due for instance
to insufficient knowledge on the system, or to an intrinsic stochasticity of the system. As we will detail
later in this section, whereas the asynchronous updating mode captures all different time scales of
state changes in Boolean automata, it is no longer complete when considering Boolean networks as
abstraction of quantitative systems.

Interestingly, this asynchronous updating mode has been barely considered so far when modelling
biological systems with Boolean networks (where it is usually referred to as the general asynchronous
updating mode). Indeed, in the modelling framework of René Thomas, one and only automaton can
be updated in a transition, leading to the so-called fully asynchronous updating mode (usually referred
to as asynchronous in the biological systems modelling community). Nevertheless, some applications
consider updating modes that mix parallel and fully asynchronous transitions, thus giving (particular)
trajectories of the asynchronous updating mode [55, 37].

Definition 6. Let f be a Boolean network of dimension n. Dynamical system pf, faq is defined by the
transition graph D pf,faq “ pBn,ÝÑpf,faqĎ Bn ˆ Bnq where:

@x, y P Bn, x ÝÑpf,faq y ðñ Di P JnK, y “ φipxq.
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Figure 9: Asynchronous (left) and fully asynchronous (right) dynamics of Boolean network f defined
in Figure 1 represented by their associated transition graphs D pf,aq and D pf,faq. Non-loop transitions
of the parallel updating mode are drawn in bold.

In [140], Thomas justifies this modelling choice in the scope of gene regulatory networks with respect
to practical observations on the delays for state changes of genes: “There is absolutely no reason why
the time delays (...) should be equal. As a matter of fact, they are often very unequal. (...) This leads
us to a fully asynchronous description, in which all the time delays are different in the absence of an
accidental coincidence”. Another practical advantage of the fully asynchronous updating mode is that
there are at most n transitions from a same configuration, simplifying greatly the representation of
their dynamics.

Figure 9 pictures the asynchronous and fully asynchronous dynamics of Boolean network f from
Example 1.

Non-deterministic updates The updating modes considered so far correspond to the application
and composition of elementary deterministic updates of configurations φ : Bn Ñ Bn. As we have seen
above, deterministic updates can generate non-deterministic updating modes, by allowing different
updates to be applied on a same configuration. The main exception is the case of Boolean networks
with memory, where the dynamics has been defined at the end of Section 2.3.4 as the projection
of a discrete parallel dynamics. Other updating modes have been defined in the literature which
cannot be expressed as the application nor the composition of elementary updates, such as the Interval
updating mode [24, 23] and the most permissive updating mode [109]. Indeed, these latter can generate
transitions which are neither elementary nor non-elementary transitions.

In [110], we introduced an extension towards non-deterministic updates, with a unifying framework
for expressing complex updating modes, including those mentioned above. Non-deterministic updates
are functions mapping sets of configurations, i.e. of the form Φ : 2B

n

Ñ 2B
n

. We define Φ as a map
from sets of configurations to sets of configurations for enabling iterations and compositions of non-
deterministic updates. Nevertheless, we assume that for any X Ď Bn, ΦpXq “

Ť

xPX Φptxuq: one can
define Φ only from all singleton configuration sets. This restriction ensures that, for any X Ď Bn, each
configuration in the image set y P ΦpXq can be computed from a singleton set txu for some x P Bn.
In the following, we call such updates set updates.

Starting from a singleton configuration set txu, the iteration of set updates delineates the domains
of configurations the system can evolve to. Thus, set updates naturally define transition relations
between configurations:

Definition 7. Given a set update function Φ for Boolean networks of dimension n, the generated
transition relation is given by ϕ : p2B

n

Ñ 2B
n

q Ñ 2B
n
ˆBn

with ϕpΦq “ tpx, yq | x P Bn, y P Φptxuqu.

In contrast with deterministic updates, non-deterministic updating modes can be characterised
directly by set updates. Indeed, non-deterministic updating modes allow “superposing” alternative
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updates to generate different transitions from a single configuration x, although each of them is com-
puted with a deterministic update. An example of this is one update φ where φpxq “ y and another
update φ1 where φ1pxq “ y1 ‰ y. Now, let us imagine an updating mode superposing two set updates,
Φ and Φ1 where, for some configurations x P Bn, ΦptxuqzΦ1ptxuq ‰ H. One can then build a single
set update Φ˚ such that Φ˚pXq “ ΦpXq Y Φ1pXq. It results that ϕpΦ˚q “ ϕpΦq Y ϕpΦ1q, thus the
updating mode can be assimilated to Φ˚. Remark that limit sets of the generated dynamics ϕpΦq can
be characterised as the Ď-smallest sets of configurations X Ď Bn such that ΦpXq “ X.

As a first illustration of set updates and how they can characterise updating modes, consider the
following set update for Boolean networks of dimension n:

ΦapXq “ tφW pxq | x P X,H ‰W Ď JnKu.

This set update generates exactly all the non-empty elementary transitions: ϕpΦaq “ Ña. Thus, Φa

characterises the asynchronous updating mode.
Similarly, let us now consider the following set update:

ΦfapXq “ tφipxq | x P X, i P JnKu.

Remark that ϕpΦfaq “ Ñfa, i.e. Φfa characterises the fully asynchronous updating mode.

Context-dependent updating modes Set updates enable specifying elementary updates which
may depend on the state of automata in a given configuration. As an illustration, we show here an
explicit characterisation of the Boolean dynamics of Boolean networks with memory mentioned in the
previous section.

Recall from Definition 4 that a Boolean network with memory f of dimension n is parameterised
with a delay vector d P Nn. Its configurations are the couples of binary and discrete configurations
Xpf,dq such that each automaton i having state 0 in the binary part has state 0 in the discrete part, and
each automaton i having state 1 in the binary part has a state between 1 and di in the discrete part.
First, let us define as mempxq the set of all memory configurations which can be associated with binary
configuration x P Bn, and conversely, let us denote by binpδq the binary configuration corresponding
to memory configuration δ P Nn. Formally:

@x P Bn, mempxq “ tδ P Nn | xi “ 0 ðñ δi “ 0, xi “ 1 ðñ δi P JdiKu,
@i P JnK, binpδqi “ mintδi, 1u,

@x P Bn,@δ P mempxq, binpδq “ x.

It appears that Xpf,dq “ tpbinpδq, δq | δ P Nn,@i P JnK, δi P t0, . . . , diuu. Thus one can reformulate
the original definition by considering the deterministic parallel update of memory configurations δ P Nn,
and replacing x with binpδq: an automaton i P JnK is set to state di whenever its local function fi is
evaluated to 1 on the corresponding binary configuration binpδq; otherwise, its state is decreased by
one, unless it is already 0. In particular, one can define the deterministic memory update φ˚d : Nn Ñ Nn
such that, for each i P JnK,

φ˚d pδqi “

$

’

&

’

%

0 if fipbinpδqq “ 0 and δi “ 0,

δi ´ 1 if fipbinpδqq “ 0 and δi ě 0,

di if fipbinpδqq “ 1.

Let us now extend the above definitions to sets:
• @X Ď Bn, MEMpXq “

Ť

xPX mempxq;
• @D Ď Nn, BINpDq “ tbinpδq | δ P Du; and
• @D Ď Nn, Φ˚d pDq “ tφ

˚
d pδq | δ P Du.
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The memory set update can then be defined for any set of configurations X Ď Bn by first generating
the set of corresponding memory configurations, then applying the deterministic update on them, and
finally converting them back to binary configurations:

ΦdpXq “ BIN ˝ Φ˚d ˝ MEMpXq.

With this formulation, one can see that the memory updating mode, being the projection of
configurations of Boolean networks with memory on their binary part, leads to non-deterministic
dynamics. Indeed, whenever a configuration gets mapped to several possible memory configurations,
and whenever for two of these configurations δ and δ1, there is an automaton i P JnK where φdpδqi “ 0
and φdpδ

1qi ě 1. This can occur if and only if di ě 2, xi “ 1, and fipxq “ 0. Thus, the memory updating
mode of Boolean networks can equivalently be parameterised by a set of automata d̄ “ ti P JnK | di ě 2u
and defined as the following set update:

Φd̄pXq “
 

φW pxq | x P X,W Ď JnK,W Ě ti P JnK | i R d̄ or fipxq “ 1u
(

.

Remark that this definition no longer relies on delay configurations in Nn. Overall, the memory
updating mode of Boolean networks can be understood as a particular set of elementary transitions
which depends on the configurations: the state changes from 1 to 0 of automata in d̄ are applied
asynchronously, whereas the other state changes are applied in parallel.

Beyond elementary and non-elementary updates Boolean networks are often employed as
abstractions of a more detailed concrete model which would account for non-Boolean states, e.g. make
them correspond to concentrations or copy numbers of biological molecules, or speed and delay of state
changes of automata. Here, a Boolean model has the advantage of offering a simplified coarse-grained
view of the concrete dynamics, and requiring much less parameters.

However, then, the question arises of how faithful are Boolean dynamics with respect to the quan-
titative dynamics, from a formal standpoint. It has been recently underlined in [24, 109] that the
elementary and non-elementary transitions of Boolean networks are not complete enough to capture
particular quantitative trajectories. With a fixed logic, and starting from similar configurations, the
quantitative system shows that an automaton can eventually get activated, whereas none of the ele-
mentary and non-elementary dynamics of the Boolean network can reproduce this behaviour.

Thus, recently, several updating modes generating transitions which are neither elementary nor
non-elementary have been introduced, enabling to capture delays in the change of automata states [24,
23, 109, 110]. They result in set updates Φ where, for some Boolean networks of dimension n and for
some configurations x P Bn, there is k P N such that there exists y P Φkptxuq whereas x Ñ˚

e y.
In this chapter, we focus on the most permissive updating mode of Boolean networks. “Permissive”

refers to the transition relation it generates. It has been proven in [109] that the most permissive
updating mode captures all trajectories which can be achieved by any quantitative model in agreement
with the Boolean network specification. We will come back more formally to this notion in Section 3.4.
In [110], we also detail set update formalisation of the Interval updating mode [24, 23] of Boolean
networks which accounts for a specific type of delay in the state updates which generate transitions
being neither elementary nor non-elementary.

Most permissive updating mode Consider the case whenever the state of an automaton i is
used to compute the state of two distinct automata j and k, and assume that i is increasing from 0.
During its increase, there are times when i may be high enough to trigger a state change of j but
not (yet) high enough for k. This can be illustrated on a concrete biological example, the so-called
Incoherent Feed-Forward Loop of type 3 (I3-FFL) [88]: a Boolean network f of dimension 3 with

f1pxq “ 1 f2pxq “ x1 f3pxq “  x1 ^ x2.

Its influence graph Gpfq is as follows:
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Starting from configuration p0, 0, 0q, the asynchronous updating mode predicts only the following
non-reflexive transitions: p0, 0, 0q ÝÑa p1, 0, 0q ÝÑa p1, 1, 0q. However, it has been observed experimen-
tally [125] and in quantitative models [78, 123] that depending on reaction kinetics, one can actually
activate transiently automaton 3. Essentially, the idea is that during the increase of the state of
automaton 1, there is a period of time where automaton 1 is high enough so that automaton 2 can
consider it active, i.e. x1 “ 1, but automaton 3 still considers it inactive, i.e. x1 “ 0. Then, the state
of automaton 2 can increase, and so does the state of automaton 3. Leaving the Boolean network
framework, one could model such a behaviour using 3 ordered states for automaton 1: 0, 1

2 , 1. Then,
automaton 2 can be updated to state 1 whenever x1 ě

1
2 and automaton 3 whenever px1 ă 1q^px2 “ 1q.

In other words, when automaton 1 is mild active, automaton 2 can become active, and then automaton
3 as well... until automaton 1 becomes fully active, inhibiting automaton 3. But, this activation of
automaton 3 cannot be predicted at the Boolean level by combining the deterministic updates defined
so far, whereas the logic encoded by f is correct.

Without introducing any parameter, the most permissive updating mode captures these additional
dynamics by accounting for all possible threshold orderings, and all updates which can happen over a
switch of a Boolean state. In some sense, the most permissive updating mode abstracts both the quan-
titative domain of automata and the duration of state changes. Their original definition [109] is based
on the introduction of pseudo dynamical states, namely increasing and decreasing. An automaton can
change from 0 to increasing whenever it can interpret the state of the other automata so that its local
function is satisfied. Once in increasing state, it can change to the state 1 without any condition, or
to the decreasing state whenever it can interpret the state of other automata so that its local function
is not satisfied. Whenever an automaton is in a dynamical state, the automata can freely interpret its
state as either 0 or 1.

The most permissive updating mode can equivalently be expressed in a more standard way by the
means of composition of set updates [110]. This definition relies on the notion of sub-hypercubes.
A sub-hypercube of dimension n can be specified by a vector h P t0, 1, ˚un where components of the
vectors having value ˚ are free: the vertices of the sub-hypercube are all the binary vectors x P Bn such
that for each dimension i P JnK, either hi “ ˚ or hi “ xi. Thus, if we project a sub-hypercube over the
d dimensions which are free, we obtain the hypercube of dimension d. For instance, the sub-hypercube
for h “ p0, ˚, ˚q has 4 vertices: p0, 0, 0q, p0, 0, 1q, p0, 1, 0q, and p0, 1, 1q.

Given a configuration x, the computation of the next configurations according to the most per-
missive updating mode is done in two stages. A first stage consists in computing all the elemen-
tary updates of a single automaton and then widening the resulting set. The widening is defined
using function ∇ : 2B

n

Ñ 2B
n

which computes the vertices of the smallest sub-hypercube contain-
ing the given set of configurations. For instance, ∇ptp0, 0, 1q, p0, 1, 1quq “ tp0, 0, 1q, p0, 1, 1qu, and
∇ptp0, 0, 1q, p0, 1, 0quq “ tp0, 0, 0q, p0, 0, 1q, p0, 1, 0q, p0, 1, 1qu. Given a set of automata W , the widening
set update ΦW,∇ : 2B

n

Ñ 2B
n

applies this operator on the results of the elementary set update, or equiv-
alently with the fully-asynchronous set update, on the automata of W . This widening is re-iterated
until a fixed point is reached. Then, a narrowing ΛW : 2B

n

Ñ 2B
n

filters the computed configurations
X to retain only those where the states of automata in W can be computed with f from X.

Definition 8. The most permissive set update ΦMP of a Boolean network of dimension n is given by

ΦMPpXq “
ď

WĎJnK

ΛW ˝ ΦωW,∇pXq,
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Figure 10: (left) Asynchronous, and (right) most permissive dynamics reachable from the configuration
p0, 0, 0q for the Boolean network f of the I3-FFL defined page 23. For the sake of readability, loops
are omitted. In the two examples, there are loops on each configuration involved in the displayed
transitions.

where, for any X Ď Bn and any W Ď JnK:

∇pXq “
śn
i“1txi | x P Xu

ΦW,∇pXq “ ∇pX Y tφipxq | x P X, i PW uq,
ΛW pXq “ tx P X | @i PW, Dy P X, xi “ fipyqu,

and where ΦωW,∇pXq denotes the iteration of ΦW,∇ until reaching a fixed point (remark that for any

k P N, ΦkW,∇pXq Ď Φk`1
W,∇pXq Ď Bn).

Example 2. Figure 10 shows the dynamics generated from the configuration 000 by the asynchronous
and most permissive updating mode on the Boolean network of the I3-FFL defined page 23. By
instantiating Definition 8, we obtain:

Φt1,2,3u,∇ptp0, 0, 0quq “ ∇ptp0, 0, 0q, p1, 0, 0quq “ tp0, 0, 0q, p1, 0, 0qu,
Φ2
t1,2,3u,∇ptp0, 0, 0quq “ ∇ptp0, 0, 0q, p1, 0, 0qu Y tp1, 1, 0quq “ tp0, 0, 0q, p1, 0, 0q, p0, 1, 0q, p1, 1, 0qu,

Φ3
t1,2,3u,∇ptp0, 0, 0quq “ ∇ptp0, 0, 0q, p1, 0, 0q, p0, 1, 0q, p1, 1, 0qu Y tp0, 1, 1quq “ Bn,

Λt1,2,3upBnq “ tp1, 0, 0q, p1, 0, 1q, p1, 1, 0q, p1, 1, 1qu.

Thus, p1, 1, 1q P ΦMPptp0, 0, 0quq, whereas p0, 0, 0q Ñ˚
e p1, 1, 1q, i.e. configuration p1, 1, 1q is reachable

from p0, 0, 0q using the most permissive updating mode, whereas there are no elementary (and non-
elementary) paths between these two configurations.

Finally, let us conclude by listing some basic properties of the most permissive updating mode:
1. It preserves the fixed points of f : for any configuration x P Bn, fpxq “ x if and only if ΦMPpxq “
txu.

2. It subsumes elementary transitions: Ñe Ď ϕpΦMPq.
3. Its transition relation is reflexive and transitive: ΦMP “ Φ2

MP.
4. (by 2 and 3) Its transition relation subsumes non-elementary transitions: Ñ˚

e Ď ϕpΦMPq.
5. (by 4 and the example) There exist Boolean networks such that the most permissive transition

relation is strictly larger than non-elementary transitions, i.e. there exist x, y P Bn such that
y P ΦMPptxuq but x Ñ˚

e y.

3 Biological case studies

As discussed in the introduction of this chapter and in Section 2.1, Boolean network features have been
particularly appreciated to apprehend regulation network modelling from both theoretical and applied
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standpoints. As explained, this comes notably from their setting simplicity and their abstraction level
which allow to focus on the natural computations operated by the modelled systems and thus deduce
or predict properties of the latter.

In general, computational models of biological systems are appealing for bringing potential expla-
nations to observed phenomena, and for performing experiments in silico, which may help prioritising
wet lab experiments [51]. Biological processes involve a myriad of features, such as the shape of cells,
the shape of molecules, their location, their movement, the way they interact, they way they fold, etc.
Thus, to be manageable and keep some interpretability of the results, a model of a biological process
is first a harsh selection of the biological features. A model which is able to reproduce an observed
phenomenon thus supports an hypothesis according to which the selected features and the granular-
ity of their representation are sufficient to explain the phenomenon. With this perspective, Boolean
networks offer a very high abstraction of the system, focusing on the structure of the causal influences
between the components of the network, and without considering explicitly quantitative features such
as the chronological time and quantities of molecules. The Boolean network setting specifies the logic
of automata state changes, whereas the updating mode specifies the logic of the orchestration of state
changes over time, potentially abstracting features related to time and quantities. Moreover, because
of their discrete and finite nature, one can obtain an exhaustive assessment of their trajectories and
limit sets which are very often theoretical representatives of real observable physiological characteris-
tics. This provides a powerful tool to formally demonstrate that some behaviours are impossible to
reproduce with a given Boolean network and updating mode.

In this section, we summarise a selection of case studies for which the updating mode plays a central
role:

• the robustness of predictions of limit sets and trajectories leading to them when varying the up-
dating mode with the modelling of the floral morphogenesis of Arabidopsis thaliana (Section 3.1);

• the definition of custom updating modes to reflect time constraints and accurately reproduce
sequences of state changes within the cell cycle (Section 3.2) and for biological rhythms synchro-
nisation (Section 3.3); and

• the formal analysis of the absence of trajectories whenever the Boolean network is considered as
an abstraction of a quantitative system, by relying on the most permissive updating mode and
illustrated on an incoherent feed-forward loop system (Section 3.4).

3.1 Floral morphogenesis of Arabidopsis thaliana

The floral development of Arabidopsis thaliana is among the model organisms the most studied in
vegetal biology since the early 1900s, and the first plant whose nuclear genome was sequenced [134].

The first model based on Boolean networks introduced in the literature for the genetic network of
the floral development of this plant comes from [93]. It is based on a threshold Boolean network, namely
a Boolean network whose local functions are threshold functions, composed of 12 automata, each one
corresponding to a particular gene or gene complex acting on the control of the floral morphogenesis.
In this seminal paper, the dynamics of this network is studied according to a specific block-sequential
updating mode. This mode was chosen arguing its pertinence according to the activation time of the
genes in the flowering and the flower morphogenesis processes. One year later, together with Thieffry,
the same authors transformed this model into a classical Boolean network, i.e. with no threshold local
functions, and used the method developed by [140] to study its fully asynchronous dynamics [94].

These two distinct choices, for both the mathematical model at stake and the updating mode,
led the authors to highlight that the underlying dynamical systems converge towards six fixed points.
More interestingly, among these six fixed points, four correspond to the four floral organs of the
Arabidopsis thaliana: sepals, petals, carpels and stamens; the two remaining fixed points correspond
to (i) inflorescence cells of the plant which do not belong to its flowers, and to (ii) an expression
pattern never observed in wild-type plants until now which could be produced experimentally.
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These works emphasised that qualitative modelling with Boolean networks is helpful, in the sense
that their limit sets may capture real biological structures, such as organs, tissues or cellular types, as
evoked by [40]. However, from a more theoretical standpoint, further work need to be done to achieve
a deep understanding of the network itself. [42], basing themselves on the initial threshold Boolean
network model, wanted to understand the network in depth. First, they highlighted that there exist
updating modes, e.g. the parallel updating mode, for which the underlying dynamical systems admit
not only the former fixed points but also limit cycles. Then, an analysis of the local functions led
them to construct a simplified / compressed network with the same asymptotic dynamics, and to show
that the asymptotic richness depends mainly on five genes which are parts of 2 distinct symmetric
strongly connected components which can actually be considered as the dynamical complexity engines
of the network. This actually explained the possible existence of limit cycles, by applying a result
of [66]. The natural question then was: now we can state the phenomenological sense of the six fixed
points, what is the biological likeliness of the limit cycles? The answer to this question was given by
the asynchronous dynamics, i.e. all the possible elementary transitions, of the model which highlights
their unlikeliness, by showing that the probabilities to enter and stay into an asymptotic oscillation is
very weak. Eventually, these previous results were complemented and refined in 2020 by an analysis
of the dynamics of this network when modelled by a Boolean network with memory [63].

Finally, we can notice that after two decades, the scientific community eventually gets a sharp
understanding of this simple network modelling the floral development of Arabidopsis thaliana from
both theoretical and applied standpoints, thanks notably to a particular attention paid to updating
modes. This highlights the importance of considering a consistent updating mode depending on the
question addressed, and that any updating mode may be a priori relevant.

3.2 Cell cycle

Together with the modelling of cell differentiation and reprogramming processes which occupy a vast
part of Boolean network models in biology, the modelling of cellular rhythms and oscillators is another
prominent application of Boolean networks. In such systems, we expect that the sustained oscillatory
behaviours are captured by the Boolean network as non-singleton limit sets. The system is usually
assumed to be in a configuration of this limit set.

One of the most studied biological oscillator is the cell cycle. The cell cycle refers to the successive
divisions of a cell, which goes through a specific and well characterised sequence of events, including
the duplication of its genome (so-called S phase, for Synthesis) and its mitosis (M phase). Boolean
network models of cell cycles usually focus on reproducing accurately this sequence of events which can
be observed by the activity of specific proteins, as well as its control and coupling with other biological
processes.

The cell cycle involves numerous genes and proteins and is a tightly regulated process. It is also
expected that the chronological time, notably related to the speed of different interactions, plays a
crucial role in this regulation. With this latter consideration, an accurate modelling using Boolean
networks seems challenging.

The Boolean model of [55] is a nice demonstration of how updating modes enable abstracting
time adequately and obtain a realistic dynamical model. Their model gathers well-known influences
between key regulators of the cell cycle, which have been extensively studied with quantitative models.
These regulators involve different types of proteins (including cyclins, transcription factors, complexes,
inhibitors), the activity of some of them being well known markers for the different phases. In total,
the model comprises 10 automata.

In their study, Fauré first compared the limit cycles obtained with the parallel and fully asyn-
chronous updating modes when the input automaton of the network (CycD) is activated. The parallel
updating mode leads to one limit cycle between 7 configurations, which matches with available data
and previous quantitative models. However, many state changes are compressed into a single transi-
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tion, making difficult a finer analysis on the possible sequences of events during the cell cycle. The
fully asynchronous updating mode then enables results in a single limit cycle of 112 configurations
which contains well detailed descriptions of the sequences of events of the cell cycle. However, the
limit cycle contains many spurious trajectories, notably with shortcuts avoiding key checkpoints of the
cell cycle. In order to refine the Boolean dynamics, the authors proposed a custom updating mode
which can be seen related to the Memory Boolean networks and block-sequential updating modes
studied in this chapter. The main principle is to group the state changes of automata into different
priority classes, and further split these priority classes into automata which are updated according to
the fully-asynchronous updating mode and other ones which are updated with the parallel updating
mode. The priority classes allow treating more accurately the fast and slow biological processes. These
classes are then refined further by identifying state changes which are controlled by the same regulatory
process, and thus should happen simultaneously. The obtained dynamics consists then in a selection
of elementary transitions which depend on the state changes of automata. In the scope of the cell cycle
model, this translates into the prediction of a limit cycle of 18 configurations with a finer description
of sequences of cell cycle events, and for which the different trajectories cannot be discriminated with
the current knowledge of the biological process.

3.3 Vegetal and animal zeitgebers

Despite the fundamental role of updating modes discussed so far in this section related to biological
case studies, whatever they are block-sequential, fully asynchronous, or even asynchronous, and the
large spectrum of questions they can help us answer, it turns out that they do not necessarily own the
relevant properties to capture some biological phenomenological intricacies. Indeed, whilst they allow
in some sense to modulate the internal clocks of a regulation process modelled by a network, they do
it by considering the network as a whole, with no distinction between its own components.

In [47], the authors focused on Zeitgebers. Zeitgebers are classically defined in biology and medecine
as exogenous cues which synchronise endogenous biological rhythms. In the framework of genetic
regulation network modelling, considering Zeitgebers as sorts of timers of genetic or physiological origin,
somehow external to the very functional components of the network, they highlight that the latter
cannot be modelled by means of the until now classically studied updating modes mentioned above,
for the reasons evoked. Among the best known examples of a Zeitgeber here, namely a subnetwork
having its own clock which synchronises the dynamics of the whole network which contains it, is
certainly the role played by genes PER and TIM which work together to control the circadian rhythm
of Drosophila melanogaster [72, 126, 62].

However, using threshold Boolean networks both as a genetic network model and as a neuro-
physiologic network model, [47] showed that some deterministic and periodic updating modes belonging
to the local clocks family, namely the block-parallel updating modes, are good candidates to capture
synchronisation phenomena, in the sense that they are expressive enough, which is essential for the
biological modelling standpoint, without being too expressive, which is important for the mathemat-
ical and computational standpoint in order to stay away from a combinatorial explosion argument.
More precisely, they emphasised schematic models taking into account the existence of specific genetic
regulation subnetworks acting as Zeitgebers in two distinct contexts:

• the genetic control of plant growth — they proposed a model of vegetal growth by considering
the regulatory relations between the circadian clocks genes CCA1 and TOC1 and abstract genes
associated with auxin flows corresponding to the localised expressions of auxin [135, 35, 16]. In
this model, the subnetwork composed of CCA1 and TOC1 plays a timer role which synchronises
the regulation of the other component acting as the functional auxin part of the network serving
the plant growth, thanks to a specific block-parallel updating mode. The dynamical role of this
timer is to produce a regular scheme of growth, which seems to coincide pretty much with the
quasi-perfect morphogenesis of plants like Araucaria araucana.
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• the cardio-respiratory pace — they proposed a model of the clock governing the cardio-respiratory
regulation at the neuro-physiological level. Four components are considered which are derived
from [15, 49, 96, 43]: inspiratory and expiratory neurons which play the role of a timer syn-
chronising the sinoatrial node and the baroreceptor of the heart. Together with an adapted
block-parallel updating mode, the underlying network behaves in two phases as it can be ob-
served in nature. Nevertheless, even if the timer modelling seems to comply with the biological
assumptions and observations, it is not exactly the case of the cardiac activity modelling, which
paves the way to further refinements.

3.4 Abstraction of quantitative models

In many applications, the Boolean modelling of biological systems abstracts both the quantitative time
of the interactions and the quantitative state of the interacting automata. This is notably the case
when we consider gene regulatory networks, where the activation of a gene is generally assumed to
depend on a sufficient amount of transcription factors. Whereas this dependency is often assumed to
be non-linear and modelled as a threshold function, it is nevertheless a quantitative process. Indeed,
differences of thresholds between the different gene activations may play an important role in several
biological processes. The Boolean abstraction may also hinder the validation of the model with respect
to observations of the biological system. The current experimental observations mostly rely on counting
the population of different molecules either cell-per-cell (single-cell measurement technologies), or in a
mixture of cells. Actually, the activity of genes is often linked to the amount of their transcripts, and
is thus a quantitative feature. A qualitative interpretation of such data then relies again on delineating
thresholds to determine the Boolean state of automata.

As illustrated by the previous case studies, the updating mode of Boolean networks are effectively
employed to model features related to the time or speed of different Boolean processes. In these
case studies, the updating modes actually select specific elementary paths of the Boolean network
dynamics, avoiding predicting spurious transitions. In a way, they assume that the asynchronous
dynamics (generating elementary transitions) gives a boundary on the admissible paths, or equivalently
on the admissible non-elementary transitions: if there is no elementary path from a configuration x to
a configuration y, then, none of the updating modes considered in the above case studies can generate
transitions which would connect these two configurations.

Given the abstraction level imposed by Boolean networks for modelling biological systems, one
may wonder whether the assumption that the elementary and non-elementary transitions capture its
state changes holds in general, i.e. if there exist cases of systems for which the asynchronous Boolean
network misses transitions. The answer to this question heavily depends on the type of systems we
want to model. In this section, we focus on quantitative systems, such as multivalued networks [141]
or ordinary differential equations [61, 39]. From a formal standpoint, this question relates to the
correctness of the abstract interpretation of a quantitative system by a Boolean network.

The incoherent feed-forward loop system I3-FFL developed page 23 is a simple counter-example
showing the incompleteness of elementary and non-elementary transitions of Boolean networks. As
discussed above, several quantitative models and experimental studies show that the output automaton
of the system can be transiently activated from the configuration where all automata are inactive.
However, the asynchronous dynamics shows no such paths. From a model validation perspective, this
is critical, as the Boolean network would likely be considered as incoherent with the data, whereas
the logic it encodes is correct. And indeed, the observed behaviour can be recovered using the most
permissive updating mode without any additional parameter.

[109] have demonstrated that the most permissive updating mode leads to a complete and minimal
abstraction of state changes of any quantitative model being a refinement of the Boolean network. In
other words, if there is no path between two configurations in the most permissive dynamics, then no
quantitative refinement of the model can create this path. The definition of a refinement is obviously
key. Let us first give a general definition of a quantitative model: a quantitative model F can be
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defined as a function mapping discrete or continuous configurations to the derivative of the state of
automata. Then, F is a refinement of f if and only if the derivative of automaton i is strictly positive
(resp. negative) in a given quantitative configuration z only if there is a binarisation z̃ of z so that
fipz̃q “ 1 (resp. 0). The binarisation has to map the quantitative 0 to the Boolean 0, and the maximal
quantitative state, e.g. with multivalued networks, to the Boolean 1; otherwise any Boolean value can
be considered.

One may remark that the updating mode which enables the transition from any configuration to
any other ones verifies the completeness criteria. However, in addition to being non-minimal, such
dynamics would make impossible any interesting prediction from the model. As we mentioned several
times, Boolean networks are employed to model differentiation processes, where the system can have
multiple limit behaviours. Predicting which attractors the system may reach, and how to control
this reachability is a prominent application. However, these predictions rely on the absence of paths
between certain configurations of the Boolean network. Thus, an updating mode generating too many
spurious path between configurations would largely hinder such predictions. [109] have shown on
several case studies that the most permissive updating mode predicts the same reachable attractors
and control as identified in previous studies with the fully asynchronous updating mode. Thus, the most
permissive updating mode brings a formal abstraction of quantitative systems, with strong guarantees
of capturing possible stage changes, while being stringent enough to capture differentiation processes.
Moreover, as we well detail in Section 4.2, the analysis of the most permissive dynamics requires a much
lower computational cost than elementary and non-elementary updating modes, enabling addressing
genome-scale models with several thousands of automata [109].

4 Fundamental knowledge

Beyond their wide use in the context of qualitative modelling of biological networks which has led
to numerous significant advances about genetic regulation, Boolean networks keep being studied per
se from the theoretical (mathematical and computational) standpoint, notably because we are still
far from understanding in depth their underlying properties. For instance, despite real progresses
realised these last two decades, the way that information is transmitted along the automata as well
as the ability to produce this or that global dynamical behaviour depending on local interactions, are
still not well understood. Trying to answer this kind of questions needs to focus on distinct discrete
structures (e.g influence graphs, sets of local functions, transition graphs, updating modes, etc.) and to
relate them by means of methods and tools coming from different areas of mathematics and computer
science like combinatorics, dynamical system theory, algorithms, computational complexity theory,
and computability theory. In this section, in order to give an insight on some relevant fundamental
problems on Boolean networks (and more generally on automata networks), some seminal results
obtained are presented following two research lines: the links between static (syntactic) and dynamical
(semantic) properties of Boolean networks, and the inherent complexity of some classical problems
underlying Boolean network studies.

4.1 Structural properties and attractors

Given an influence graph or a Boolean network, knowing the underlying possible asymptotical dynamics
is a problem which is known to be complex from the computational standpoint (see Section 4.2 below).
Nevertheless, past studies gave very general and important results on the subject. This subsection aims
to present some of these results, while emphasising links with the role of updating modes.

4.1.1 Fixed points stability

The result presented hereafter is certainly the most classical of discrete and finite dynamical systems.
It concerns fixed points and their relative stability depending on updating modes, and holds for any
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kind of finite dynamical system. More precisely, Theorem 1 below states that, considering any Boolean
network f , the parallel fixed points of f are necessarily fixed points of pf, µq, for any updating mode
µ which governs the evolution of f by organizing the executions of associated updating functions over
time.

Theorem 1 (Folklore). Let f : X Ñ X be an automata network whose configurations are elements of
X. Let π be the parallel updating mode. Let FPpfq “ FPpf, πq be the set of fixed points of dynamical
system pf, πq. Then we have, for any µ defining an organisation of updating functions over time:

FPpfq Ď FPpf, µq.

Proof. Consider a Boolean network f of dimension n, and x P Bn a fixed point of pf, πq. Since
x “ px1, . . . , xnq is a fixed point of pf, πq, x1 “ f1pxq (resp. x2 “ f2pxq, . . . , xn “ fnpxq) is a fixed
point of local function f1 (resp. f2, . . . , fn). So, since x is actually a vector composed of the fixed points
of the n local functions, whatever the way an updating mode µ updates states from x, it cannot change
them, by definition. In other words, @W Ď JnK, φW pxq “ x, which is the expected result.

A first remark is that the reciprocal of this theorem does not hold. Indeed, there exists an automata
network f : X Ñ X and pertinent updating mode µ such that FPpf, µq Ę FPpfq. For instance,
consider the Boolean network of dimension 3 defined as fpxq “ pf1pxq “ x3, f2pxq “ x1, f3pxq “ x2q

whose associated influence graph is a cycle of length 3 whose every arc is positively signed. If this
Boolean network evolves according to the parallel updating modes, then it admits two fixed points
such that FPpfq “ tp0, 0, 0q, p1, 1, 1qu. Now, let µ “ pt2, 3u, t1, 3u, t1, 2uq be a pertinent periodic
updating mode. Notice that µ is not a local clocks updating mode. Then, it is easy to compute
the dynamics of pf, µq and to conclude that this dynamical system has four fixed points and is such
that FPpf, µq “ tp0, 0, 0q, p0, 1, 0q, p1, 0, 1q, p1, 1, 1qu. As a consequence, even if playing with updating
modes cannot lead to destroy fixed points according to Theorem 1, it can lead to create fixed points.
Although it has never been addressed in depth, this fixed point generation by updating modes is very
interesting and certainly deserves further analyses.

A second remark is that we could imagine other kinds of updating modes creating transitions
which are not the result of local function executions, like transitions imposed by some kind of external
events / behaviours to the underlying network itself. In that case, there would be no guaranty to
conserve the “canonical” fixed points of f .

4.1.2 Feedback cycles as engines of dynamical complexity

The previous result related to fixed points stability emphasises a strong intrinsic dynamical property of
finite dynamical systems, and thus of Boolean networks. Of course, such a property is very important
and pertinent. However, we have to keep in mind that, in the context of modelling by means of
Boolean networks, in most situations, the inputs of the problems that are to be addressed are either
Boolean networks, i.e. their definitions as collections of local functions, or influence graphs (or even
communication graphs in which the interactions are not necessarily effective). As a consequence, it is
natural to ask for finding / characterising structural properties on these latter objects which induce
relevant properties about their underlying possible dynamical systems.

The literature offers us several results relating structural and dynamical properties of Boolean
networks. Among the most classical ones is the theorem of [121] stating the crucial role of feedback
cycles in the influence graphs of automata networks for them to have a non-trivial dynamics. Theorem 2
below is the adaptation to Boolean networks of the seminal theorem of Robert, and states that the
presence of a feedback cycle in the influence graph of a Boolean network f is a necessary condition for
f to admit several limit sets.

From a purely theoretical standpoint, any updating mode which is mathematically correct is rea-
sonable but, if we consider updates in a context of modelling, some constraints need to be taken in
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account. In this framework, consider the following definition: an updating mode is called reasonable
if its application leads every local function to be executed infinitely often1.

Theorem 2 ([121]). Let f be a Boolean network of dimension n and Gf “ pJnK, Ef q its associated
influence graph. If Gf is acyclic, then for any reasonable updating mode µ, every configuration of
dynamical system pf, µq converges towards a unique attractor y P Bn which is a fixed point.

Proof. If Gf “ pJnK, Ef q is acyclic, then it is a directed acyclic graph (DAG) and, as a consequence,
(i) at least one of its vertices is a source, i.e. a vertex with indegree 0, and (ii) it can be structured
into layers defined recursively such that the layer of depth 0 contains all the sources, and the layer of
depth k contains all the vertices which have at least one in-neighbour belonging to the layer of depth
k ´ 1. Notice that as soon as a vertex i is a source, i has no incoming influence. Thus, the state
of its corresponding automaton does not depend on the state of any automaton in JnK, which means
that its local function is necessarily constant, namely fipxq “ 0 or fipxq “ 1. Moreover, since Gf is a
DAG, it has at least one topological ordering, i.e. a total ordering of its vertices such that for each
arc pi, jq P Ef , i comes before j in the ordering. Let L be the topological ordering of Gf obtained by
applying a variation of the Kahn’s algorithm [79], where the initial set of sources is structured into a
queue where vertices are ordered both increasingly depending on the depths of reachable layers and
lexicographically according to JnK, and reordered similarly when a vertex is removed from the queue.
In other terms, L is the unique topological ordering which takes into account both the layered structure
of Gf and the lexicographical order on JnK. Consider now that L is organised according to the layers
of Gf such that L “ pL0, ..., L`q, where L0 is the restriction of L to the sources of Gf , and Lk is the
restriction of L to the automata whose states only depend on automata which belong to layers between
L0 and Lk´1.

Now, let us consider any initial configuration x P Bn, and time step t0 P N after which all the
automata of L0 have updated their state for the first time. Since the updating mode µ is reasonable,
t0 exists. Since every automaton of L0 is a source in Gf , we have: for all i P L0, xt0i “ fipxq and will
remain fixed, i.e. @tk ě t0 P N, xtki “ 0 or xtki “ 1. Consider now time step t1 ą t0 after which all the
automata of L1 have updated their state for the first time. Again, for the same reason, t1 exists. By
definition, these automata only depend on automata of L0, whose states are fixed since t1 ą t0. As a
result, from time step t1, the state of every automaton of L1 will remain fixed because it has updated
its state by executing its local function whose variables are fixed. From this, by an induction on the
layer depth of L and by applying the same reasoning on every pLkq2ěkě`, there exists time step t`
after which the states of all automata of JnK remain fixed. Let x1 “ f t`pxq P Bn. Since x1 is the image
of any configuration after t` time steps, it is the unique fixed point of pf, µq.

Despite the apparent simplicity of its statement and of its proof which can easily be extended to
finite dynamical systems, Theorem 2 is certainly one of the most important theorems of dynamical
system theory. (Remark that generalisations of it can be found in [128, 118].) Indeed, it emphasises
that feedback cycles are actually sorts of fundamental engines to create asymptotic diversity. To go
beyond, it is a formalisation and a concretisation of the key principle of cybernetics [145], the circular
causality.

4.1.3 About signed feedback cycles

The previous result of [121] and its extensions highlight the major role played by feedback cycles on
the asymptotic behavioural complexity of Boolean networks. At the same period, Thomas mentioned
the importance of distinguishing cycles according to their nature.

1All the updating modes discussed in this chapter are reasonable. Notice that, obviously, the best example of a
non-pertinent updating mode is pHq which does not update any state. Any Boolean network evolving according to this
updating mode admits 2n fixed points because each of its configurations is stable by definition.
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Let C “ pJnK, Eq be a (signed) cycle of length n, where E Ď JnK ˆ t´,`u ˆ JnK. With no loss of
generality, consider that the arcs of C are ordered according to the lexicographical order on JnK such
that E “ tp1, 2q, p2, 3q, . . . , pn, 1qu. Now, let us consider that C is the influence graph of a Boolean
network f defined on JnK and rename it as Cf . Obviously, since Cf is a cycle, the arity of every local
function of f equals 1, so that:

@i P JnKzt1u, fipxq “

#

 xi´1

xi´1

and f1pxq “

#

 xn

xn
.

The definition below discriminates Boolean network cycles depending on the signs of their arcs.

Definition 9. Let Cf “ pJnK, Ef q be a cycle which represents the influence graph of a Boolean network
f . Cf is said to be a positive cycle (resp. a negative cycle) if the number of negative arcs which compose
it is even (resp. odd).

Let us give an insight to understand the trajectory of a Boolean cycle configuration of dimension n:
consider one automaton of the Boolean cycle as special in the sense that it is the unique observation
point from which an observer can see the evolution of the dynamics of the cycle, and denote this
automaton by i P JnK; now, imagine that at time step t P N, the state of i is xti “ b, and imagine that
the cycle evolves according to the parallel updating mode. Then, information b will travel along the
cycle as follows: at time step t`1, b (resp.  b) becomes the state of automaton i`1, except of course
in the case where i “ n in which b becomes the state of automaton 1, if arc pi, i ` 1q (or if arc pn, 1q
when relevant) is positive (resp. negative); at each following time step, the information keeps traveling
along the cycle, until time step t` n is reached. At this time step, if the observer evaluates the state
of i, then:

xt`ni “

#

b if the cycle is positive

 b if the cycle is negative
.

Indeed, only a negative cycle can negate the initial information after one complete round, thanks to
the odd number of its negative arcs.

At the beginning of the 1980s, Thomas proposed two general rules related to these two types of
cycles [137]:

1. The presence of a positive cycle in the influence graph of a dynamical system is necessary for
this system to have several fixed points.

2. The presence of a negative cycle in the influence graph of a dynamical system is necessary for
this system to have a limit cycle.

These two rules led to numerous studies aiming to prove their validity in different contexts. In
particular, they gave rise to several theorems in both discrete and continuous settings. Whilst they
are not the purpose of this chapter, we invite the readers to see [130, 68, 28, 131, 132] which deal with
these theorems in the continuous case.

Let us come back now to the discrete case on which our focus is. Notice that the first rule was
proven in more or less general frameworks, see:

• [7, 6] for the parallel Boolean case;
• [113] for the fully asynchronous Boolean case; and
• [117, 115] for the fully asynchronous discrete case.
Following these lines while focusing on the Boolean case, in [103, 127], the authors generalised

the existing results to the asynchronous updating mode. Remind that, given a Boolean network, the
asynchronous updating mode is a non-deterministic mode which authorises every possible transition
inducing subsets of automata of this network, i.e. all the transitions made possible by any deterministic
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updating modes as well as the fully asynchronoous updating mode. This extension to the asynchronous
case is in consequence quite pertinent. Indeed, it induces the validity of the first Thomas’ rule for a
very large set of updating modes (namely an infinite one actually).

Theorem 3 ([103]). Let f be a Boolean network of dimension n, Gf “ pJnK, Ef q its associated influence
graph, and let a be the asynchronous updating mode. If pf, aq has several fixed points, then there is a
positive cycle in Gf .

Idea of the proof. The general idea of the reasoning rests on a proof by contradiction. Indeed,
consider that Gf does not contain any positive cycle. Then, Gf is either acyclic or it admits at least
one negative cycle so that, if it admits several ones, these cannot induce a positive cycle by hypothesis.
Let us admit that Gf is acyclic. In this case, Theorem 2 applies and pf, aq has only one fixed point.
Now, let us consider the other case. Without entering into the details here, the idea of the related
proof is to show that a negative cycle Boolean network can never suppress all the local instabilities, an
automaton i being unstable in a configuration x if and only if fipxq ‰ xi, and a local instability in x
being the number of unstable automata of x. In particular, if a configuration has zero local instability,
then it is a fixed point. Summarising, given any configuration x P Bn, there exists no asynchronous
trajectory x ÝÑ˚

pf,aq y such that y is a fixed point. This can be proven by focusing on the structure of

the transition graph Dpf 1,aq of a cyclic negative Boolean network f 1 of dimension n1. Indeed, Dpf 1,aq is
a layered graph in which each layer contains configurations of equivalent instability level, which allows
to show that a configuration instability can be an odd number between 1 and n1. In other words, this
induces that negative cycles cannot generate fixed points. As a consequence, the presence of a positive
cycle in Gf is necessary for pf, aq to admit several fixed points.

Concerning now the second rule about negative cycles, notice that it has been proven in [116] for the
discrete fully asynchronous case. Whilst we are not going to enter into details here, an interesting fact
concerning this rule is that it has also been generalised to the asynchronous case by [103] and [127].
However, contrary to the first rule developed above, the fact that it holds under the asynchronous
updating mode does not induce that it does for all deterministic modes, because of the very nature of
limit cycles and their high sensitivity to synchronism [67, 46, 105]. Notably, the dynamics in parallel
of any positive cycle of length greater than 1 admits limit cycles.

Thomas’ rules, together with Robert’s theorem, put the highlight on the remarkable role of feedback
cycles. Nevertheless, the results presented until now do not explain in depth the dynamics of positive
and negative cycles per se. That is in particular why studies dedicated to cycles have been led. [112]
proved that, under the fully asynchronous updating mode hypothesis, positive (resp. negative) cycles
of length n admit exactly two fixed points x and x (resp. one limit cycle of length 2n) as attractors.
[46] gave then a complete combinatorial and dynamical characterisation of cycle dynamics in parallel
which extends to every block-sequential updating mode by the main result of [65] that shows that
computing a block-sequential cycle dynamics can be reduced to computing the parallel dynamics of a
smaller cycle of same sign. A synthesis of these results on cycles can be found in [45]. Then, works
focused on cycle tangential intersections to make a first step in the direction of comprehending how
combinations of cycles operate in more complex networks [102, 103, 4].

The previous results succeeded in giving deep knowledge on Boolean cycles and their tangential
intersections. These results suggested also that cycle intersections would be key structural elements
to reduce drastically the degrees of freedom of Boolean networks and their ability to have too many
attractors, which seems not to be likely empirically in biology for instance. Nevertheless, whilst ac-
quiring knowledge (even complete) about these specific patterns forms a mandatory first step before
going further, it is far from being sufficient to comprehend globally those of more complex networks,
possibly composed of numerous intersections of cycles of different kinds. In this framework, the second
part of Hilbert’s XVIth problem [75] asking for the maximal number of limit cycles and their rela-
tive sizes in polynomial vector fields gives rise to addressing problems which are discrete variations
of it: perform deep analyses of the structure of finite Boolean dynamical systems and their asymp-
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totic combinatorics. The question of counting the maximal number of fixed points was addressed
in [12] through the following question: “Given an influence graph G “ pV,Eq, with |V | “ n, what is
maxFPpGq “ maxptcardpFPpG, fqq | f : Bn Ñ Bnuq?”, where maxFPpGq is the maximum number of
fixed points that a Boolean network f admitting G as influence graph can have. For the sake of clarity
here, notice that the input of this problem is not a Boolean network but an influence graph which, by
definition, can admit several distinct Boolean networks. Furthermore, the authors chose the parallel
updating mode as the reference updating mode in their study, resting on the fixed points stability
theorem (see Theorem 1), in order to consider only the very fixed points of f and those which could
be generated by specific modes, as if the latter were some kinds of side effects. They obtain, among
other results, the following theorem.

Theorem 4 ([12]). Let G “ pV,Eq be an influence graph, νpGq be the maximum number of disjoint
cycles of G (also known as its packing number), and τ`pGq be the minimum number of vertices meeting
every positive cycle of G (also known as its positive feedback vertex set). Then:

νpGq ` 1 ď maxFPpGq ď 2τ
`
pGq.

This result paves the way to refinements, in particular of the upper bound. Indeed, here, we can
see that only positive cycles are considered in this latter bound. To refine it, we could for instance
take into account the role of negative cycles, in the sense that [46] showed that their intersections with
positive cycles tends to maintain the convergence towards fixed points, while reducing it. However,
whilst this seems to be a natural and promising research track, the fact remains that obtaining such
refinements will be highly difficult since the impact of negative cycles is still very weakly understood
because of their versatility.

Eventually, remark that similar questions could be tackled about limit cycles. But these limit sets
are peculiar in the sense that, contrary to fixed points which are rather stable depending on updating
modes, limit cycles are very sensitive to updating modes. So, for the sake of generality, such studies
would necessarily ask to be parameterised with updating modes, which obviously adds to the difficulty
of dealing with limit cycles counting. An approach which could lead to make progress on this would
consist for instance in changing the viewing angle, by focusing more on analysing the complexity of
counting through pertinent decision problems.

4.2 Computational complexity

Given a Boolean network f of dimension n and an updating mode µ, we focus on the computational
complexity of determining basic dynamical properties related to fixed points, reachability between
configurations, and limit sets. All these properties reduce to simple graph properties of transition
graph D pf,µq as discussed in Section 2.3.3. However, this graph is of exponential size with n, both
in terms of number of nodes (configurations) and arcs (transitions). Moreover, recall that updating
modes like the asynchronous one can generate an exponential number of out-going transitions from
a single configuration, leading thus to a doubly-exponential number of arcs in the transition graph.
However, this is only an upper bound on the actual complexity of computing the desired dynamical
properties.

In what follows, we give an overview of the complexity of deciding dynamical properties of Boolean
networks. As usual, these properties are expressed as decision problems, i.e. expecting a yes or
no answer. The complexity will be expressed in function of the number of dimensions n, the size
of Boolean network f and additional inputs of the problem, typically configurations, when relevant.
Boolean network f is assumed to be given in a symbolic form, for instance expressed using propositional
logic as done along this chapter (in contrast with a truth table). Moreover, we assume that given a
configuration x, evaluating fpxq is linear in the size of f .

Let us first recall the bases of computational complexity classes [106, 13]: the P class (resp. NP
class, PSPACE class) is formed by the decision problems which can be solved by algorithms running
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in polynomial time (resp. in polynomial time with non- deterministic choices, in polynomial space)
according to the size of its inputs. We know that P Ď NP Ď PSPACE, where “Ď” can be understood
as “simpler”. A problem is harder than another problem if the latter can be “reduced” to the former
(intuitively, it is a particular case of the former problem). In general, different types of reductions
can be considered. In this chapter, we essentially rely on polynomial-time reductions. A problem
is hard for a given complexity class if it is among the hardest problems of this class. A problem is
complete for a given complexity class if it belongs to and is among the hardest problems of this class.
The famous SAT problem of determining if a formula expressed in propositional logic (essentially
Boolean variables and logic connectors) has a satisfying solution is NP-complete. It is not known yet
if NP = PSPACE, but in practice, NP-complete problems are much more tractable than PSPACE-
complete ones, by several orders of magnitude. Hereafter, we also refer to the coNP class, delimiting
the problems for which finding a counter-example is in NP, and to the PNP and coNPcoNP classes,
where AB denotes the problems which can be solved with complexity A assuming problems of class B
can be solved in one instruction (oracle); remark that PP=P and NPP=NP. These complexity classes
belong to the polynomial hierarchy, and are subject to the following properties: NP Ď PNP and
coNP Ď PNP

Ď coNPcoNP
Ď PSPACE.

Together with the details of the complexity results, we also give pointers to software tools which
implement the corresponding dynamical analyses. However, before entering into the details, let us
present one very recent result which is certainly the most general in the framework of automata
networks, and thus of Boolean networks, because it emphasises that all relevant problems we may
want to address in the context of Boolean networks are actually complex. In the 1950’s, [114] showed
that any non-trivial property of the function computed by a Turing machine is undecidable, namely no
algorithm leading to a correct positive or negative answer can be constructed. This result is a major
result in computer science and more precisely in computability theory since it generalises for instance
the undecidability of the halting problem [143]. In [58], among others, the authors suggested a meta-
theorem for automata networks stating that any non-trivial property of the function computed by an
automata network admits a high computational complexity, namely is (co)NP-hard at least. This means
notably that we are currently not able to conceive an efficient algorithm to decide if such properties
are true or false.

4.2.1 Existence of a fixed point

The fixed points are a particular type of limit sets consisting of a single configuration. They form one
of the most basic and important characteristics of Boolean networks. Most modelling studies rely on
the computation of the fixed points to offer a first validation of the model with respect to expected
stable behaviours of the system.

Proposition 4. Given a Boolean network f of dimension n, deciding if there exists x P Bn such that
fpxq “ x is NP-complete.

The belonging of this problem to NP comes directly from the complexity of evaluating fpxq, assumed
to be in polynomial time. The completeness can be proven by reductions from different NP-complete
problems, such as the SAT problem or the PARTITION problem [5, 56, 57].

Notice that the problem is formulated independently of the updating mode: the fixed points con-
sidered here are fixed points of the n-dimensional Boolean function f . By the folklore theorem (Theo-
rem 1), the fixed points of f are fixed points of the dynamical system pf, µq. For many of the defined
updating modes, including parallel, asynchronous, fully asynchronous, block-sequential, block-parallel,
and most permissive, the fixed points of f correspond exactly to the fixed point of the dynamical
system. As pointed out in Section 4.1.1, there exist updating modes which can generate fixed points
which are not fixed points for f . In that case, the complexity of deciding the existence of the fixed
point may be different, and will likely depend on the definition of the updating mode. However, in the
case whenever computing a transition is in polynomial time, we can already settle that it is at most
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in NP. Then, determining the existence of a fixed point being either of f or of the dynamical system
is NP-complete.

Following the link between the influence graph of a Boolean network and its fixed points discussed
in Section 4.1.3, the complexity of deciding the existence of a Boolean network having a fixed given
influence graph and a given minimal number of fixed point has been characterised by [21]. Notably,
deciding whether there exists a Boolean network having a given influence graph and having at least one
fixed point is in P; if having k ě 2 fixed points is NP-complete. The former case comes from the result
that one can build a Boolean network having at least one fixed point if and only if each non-singleton
strongly connected component of the input influence graph contains at least one positive cycle, which
can be decided in polynomial time. The latter result is done by reduction from the 3-SAT problem.

Software tools The resolution of the decision problem of the existence of a fixed point can be
directly encoded as a SAT problem. When a fixed point exists, the resolution of the SAT problem
comes with an instance of configuration x so that fpxq “ x. Then, one can re-iterate with the decision
of the existence of a fixed point different than x, and so on, in order to obtain an explicit listing of
the fixed points of the Boolean network, as implemented in the software Pint [107]. In practice, the
identification of a single fixed point by SAT solving is scalable to networks with several hundreds of
thousands of automata. The number of iterations of SAT solving being linear with the number of fixed
points, the complete and explicit listing of fixed points can only be obtained when there is a limited
number of them; otherwise we usually perform a partial enumeration. Another approach for listing
fixed points relies on data structures such as decision diagrams as done in the software GINsim [101, 99].
There, the set of fixed points is encoded symbolically, and their enumeration is done by enumerating
particular paths within the diagram structure.

4.2.2 Reachability between configurations

The reachability problem consists in deciding whether there exists a trajectory leading from a given
configuration x to a given configuration y with a given updating mode µ. Such properties are employed
to predict future states which may be observed in the future in the modelled system.

Let us first focus on the classical parallel, asynchronous, and fully asynchronous updating modes.
As there is at most 2n configurations to explore, the problem can be solved in a polynomial space:
consider a non-deterministic simulation algorithm which iteratively applies a transition modifying
the current configuration of the network. If there exists a trajectory from x to y, then there is at
least one execution of the algorithm which will encounter the configuration y after at most 2n ´ 1
transitions. Thus, it is sufficient to store the current configuration of the network and a counter which
is incremented after each transition. Considering a binary encoding, this counter requires n bits.
Thus, the non- deterministic simulation algorithm requires a linear space, and is thus in PSPACE.
With the parallel updating mode, the PSPACE-hardness derives by reduction from the reachability
problem in reaction systems, a subclass of synchronous Boolean networks [48]. With fully asynchronous
and asynchronous updating modes, the PSPACE-hardness derives by reduction from the reachability
problem in synchronous Boolean networks. Indeed, similarly to cellular automata [97], one can define
a Boolean network g so that asynchronous and fully asynchronous dynamics give reachability relations
which are equivalent with the synchronous dynamics of f [109].

Proposition 5. Given a Boolean network f of dimension n, an updating mode µ, and two configura-
tions x, y P Bn, deciding if x ÝÑ˚

pf,µq y is PSPACE-complete with µ P tp, fa, au.

Regarding the sequential updating modes, it is interesting to remark that one can encode the parallel
dynamics of a Boolean network f of dimension n as a sequential dynamics of a Boolean network g in at
most polynomial time. One naive approach is to double the number of automata, the first set storing
the next state of each original automaton, and the second set storing its state before the update. The
first set is updated first, and then the second set copies the states of the first set of automata: define
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g with 2n dimensions such that for all x, x1 P Bn, for each i P JnK, gipxx1q “ fipx
1q and gn`ipxx

1q “ xi.
Then, for all x, y P Bn, x ÝÑpf,pq y if and only if xx ÝÑpf,p1,¨¨¨ ,2nqq yy. Note that [22, 19, 20] proposed
a more efficient encoding requiring less than 2n automata. Thus, the reachability problem with the
sequential updating mode is harder than with the parallel updating mode. Because it lies in PSPACE,
it is therefore PSPACE-complete as well. Finally, because the parallel updating mode is a particular
case of the block-sequential and block-parallel, the complexity result applies for these updating modes
as well, and any other generalisation of them.

As demonstrated in [109], the case of the permissive updating mode is quite different. Following
Definition 8, the computation of the configurations succeeding configuration x is done by a two-steps
process repeated for each subset of automata W . First it will compute the smallest sub-hypercube
h which contains x and such that for each dimension i P W , either hi “ ˚ or for each vertex z of
the sub-hypercube, fipzq “ hi “ xi. This computation can be performed by the following algorithm,
where cphq denotes the set of vertices of the sub-hypercube h:

h := x
repeat |W | times

for each i PW such that hi ‰ ˚:

if Dz P cphq such that fipzq ‰ xi:
hi := ˚

The second step consists in filtering the obtained sub-hypercube by removing states of automata
in W which cannot be computed from any vertex of h. From the computation above, these states
correspond to the states of automata of W in x:

for each i PW such that hi “ ˚:

if not (Dz P cphq such that fipzq “ xi):
hi := 1 - xi

Then, y is reachable from x if and only if y is a vertex of such an obtained sub-hypercube, for at
least one subset W .

Let us analyse the complexity of this algorithm. First, with a fixed W , remark that the computation
of h relies on several tests of the form “Dz P cphq : fipzq “ b”, with b P B. This is exactly the SAT
problem. Thus, in the general case, such decisions are NP-complete, and in the case whenever f is
locally monotone (thus fi is monotone), such decisions are in P. Then, given the configuration y, it
is key to remark that there is no need to compute the sub-hypercubes for all the possible subsets
W . Indeed, let us focus on the case whenever for a fixed W , y is not a vertex of the computed sub-
hypercube. Two cases arise: (i) y is not a vertex of the sub-hypercube before the filtering: then, it
is also the case for all the subsets of W ; (ii) y is no longer a vertex of the sub-hypercube after the
filtering: it means that there is a subset D Ď W of automata which have been filtered and such that
@i P D, xi “ yi. Then, y is not a vertex of all the sub-hypercubes computed with W minus a strict
subset of D. Thus, the overall procedure starts with W “ JnK, and repeatedly removes the subset D
until either y is a vertex of the sub-hypercube (and it is thus reachable from x), or is not a vertex of
the sub-hypercube before filtering (and is thus not reachable from x).

Proposition 6. Given a Boolean network f of dimension n, and two configurations x, y P Bn, deciding
if x ÝÑ˚

pf,MPq y is in P if f is locally monotone, otherwise it is in PNP.

Software tools For the synchronous, fully asynchronous and asynchronous updating modes, the
verification of reachability properties is usually tackled by generic tools related to the model checking
of discrete and finite dynamical systems: the reachability property being expressed in temporal logics
such as CTL [29]. Tools like GINsim [99] enable exporting Boolean networks to files in suitable formats
for model checkers like NuSMV [27]. The verification of reachability properties can take advantage
of static analysis to reduce the transitions to explore, as offered by the tool Pint [107], enhancing the
scalability of the computation in many cases [108]. The verification of reachability properties using
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the most permissive updating mode is implemented in the tool mpbn [109]. In practice, due to the
differences in complexity, the verification of reachability properties using asynchronous updating modes
scales up to networks with around one hundred automata; using the most permissive updating mode,
it scales up in the order of hundreds of thousands of automata [111].

4.2.3 Limit configurations

The limit configurations and reachable limit configurations are among the most analysed dynamical
properties of Boolean networks when modelling biological systems. Limit configurations generalise
fixed points by taking into account non-singleton limit sets. Combined with reachability analysis, they
delineate the possible long-term behaviours of the network from a given initial configuration.

In this section, we focus on the following decision problem: Given a configuration, does it belong
to a limit set of the Boolean network with given updating mode? The advantage of such a formulation
is that the size of the input is independent of that of the limit set. Furthermore, it makes a direct link
with the problem of identification and enumeration of the limit sets. Moreover, we do not explicitly
address the reachability of the limit configurations from a given initial configuration. However, this
comes naturally by combining with the decision problem discussed in the previous section.

How can we determine that a configuration x is a limit configuration? This problem is actually tied
to the reachability problem: x is a limit configuration if and only if it is reachable from any configuration
y reachable from x (with the updating mode µ). Equivalently, x is not a limit configuration if and
only if there exists a configuration y reachable from x but x is not reachable from y. Using the
same reasoning as for reachability, one can deduce that this problem is in coNPSPACE “ PSPACE
for the parallel, fully asynchronous, and asynchronous updating modes. As for the reachability, the
completeness can be derived by reduction from the same problem in synchronous reaction systems
demonstrated to be PSPACE-complete in [48]. Then, using the reduction of synchronous Boolean
networks to fully asynchronous and asynchronous updating modes, we obtain that the decision problem
of limit configurations is PSPACE-complete.

Proposition 7. Given a Boolean network f of dimension n and a configuration x P Bn, deciding if x
belongs to a limit set of f with updating mode µ P tp, fa, au is PSPACE-complete.

With the exact same arguments as for the reachability problem, this complexity also applies to the
sequential updating modes and any generalisation of them.

The case of the most permissive updating mode is again much more specific [109]. Indeed, it appears
that limit sets of the most permissive dynamics have a particular shape: they always correspond to
particular sub-hypercubes, namely to the smallest sub-hypercubes which are closed by f , also known
as minimal trap spaces [85]. A sub-hypercube h is closed by f if and only if for each of its vertices x,
fpxq is also a vertex of the hypercube. Fixed points are a particular case of minimal trap spaces where
the sub-hypercubes have dimension 0 (all the automata have a fixed state). This property comes from
the fact that whenever two configurations lying a diagonal are reachable from each others with the
most permissive updating mode, then so are the adjacent vertices. In other words, and without loss
of generality, let us consider that configurations x “ a00b and y “ a11b, where a and b are binary
vectors, are reachable from each others. This implies that there exists a set of automata W such that
x and y belong to the sub-hypercube h computed according to the previous section from x or y, or
equivalently, belong to ΛW ˝ ΦωW,∇ptxuq “ ΛW ˝ ΦωW,∇ptyuq, following the notations of Definition 8.
Thus, because of the sub-hypercube structure, both a01b and a10b belong to h, and are thus reachable
from x and y, and conversely. This is illustrated by Figure 11.

Proposition 8. A Ď Bn is a limit set of f with the most permissive updating mode if and only if A
forms a minimal sub-hypercube closed by f .

Thus, determining if a configuration x belongs to a limit set with the most permissive updating
mode boils down to determining the existence of a minimal sub-hypercube h which contains x and
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Figure 11: Illustration of the property of limit sets with the most permissive updating mode, where
boxed configurations belong to a same limit set: whenever two configurations belong to the same limit
set, so do all the configurations of the smallest sub-hybercube which contains both of them.

is closed by f . Consider IS-NOT-CLOSED(f, h) the problem of deciding if the sub-hypercube h is
not closed by f : it is equivalent to deciding if there exists an automaton i P JnK with hi ‰ ˚ and
a vertex z of h such that fipzq ‰ hi, which is NP-complete in general, and P whenever f is locally
monotone. Then, the complementary problem IS-CLOSED(f, h) is in coNP in the general case and in
P in the locally monotone case. Now, consider IS-NOT-MINIMAL(f, h) the problem of deciding if the
sub-hypercube h closed by f is not minimal : it can be solved by deciding wherever there exists a sub-
hypercube h1 which is strictly included in h and which is closed by f , which is at most NPIS-CLOSED.
Thus, the complementary problem IS-MINIMAL(f, h) is in coNPIS-CLOSED, i.e. coNPcoNP “ ΠP

2 in
the general case and coNP in the locally monotone case.

Theorem 5. Given a Boolean network f of dimension n and a configuration x P Bn, deciding if x
is a limit configuration of f with the most permissive updating mode is in coNP whenever f is locally
monotone, and in ΠP

2 otherwise.

Software tools Similarly to the analysis of fixed points, the software tools usually focus on the
enumeration of the limit sets of a given Boolean network and a given updating mode. The case of
the parallel and fully asynchronous updating modes is implemented in several software tools such as
BoolSim [59] (parallel and fully asynchronous), BNS [50] (parallel), and Cabean [133] (fully asyn-
chronous). They rely either on SAT solving (BNS) or on symbolic representations of the reachable
configurations with decision diagrams. To tackle the potential combinatorial explosion of the number
of configurations within a limit set, the methods output them as unions of sub-hypercubes. This repre-
sentation comes quite directly when using decision diagrams, for instance. In practice, the scalability
is roughly similar to the reachability analysis, i.e. in the order of the hundred of automata. In the
case of the most permissive updating mode, because the configurations of the limit sets correspond
to specific sub-hypercubes, their identification can be reduced to the subset-minimal solutions of an
Answer-set programming problem [14] as done by the tool mpbn [109]. In practice, this approach
can be applied to networks with several hundreds of thousands of components, at least for a partial
enumeration of their limit sets when there are too many of them for an explicit enumeration [111].

5 Conclusion

Updating modes and time In this chapter, we have developed some elements related to Boolean
networks and their use as models of biological complex systems, in particular as models of genetic reg-
ulation networks. More precisely, our purpose has been focused on the updating modes, by underlining
that Boolean network dynamics strongly depend on the manner automata execute their local func-
tions. If we consider these updating modes as means of representation of the relations that automata
maintain with time, countless questions about the nature and consideration of time raise. These ques-
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tions are obviously relevant in mathematics and computer science (notice that one main problematic
in this discipline concerns synchronism and asynchronism), but they are all the more pertinent in the
context of theoretical biology, insofar as the answers that we could bring in this context would possibly
increase knowledge of the way time flows at different scales of living organisms.

When a real interacting system S is modelled by a Boolean network, or by an automata network
f by extension, we generally consider that every state of S can be associated to one (or more)
configuration(s) of f , up to a specific encoding. Moreover, we classically think of these systems as
collections of entities which interact with each other over time. As a consequence, the very concept
of a transition from a configuration x to a configuration y in the dynamics of f implicitly integrates
a notion of time which places x before y, which leads us to make an association between a trajectory
and the intuitive concept of temporal flow. But what can be the semantics of a transition actually?
In this paragraph, we propose three distinct visions, and are aware of the non-exhaustiveness of the
latter.

Modelling durations When we study automata networks and the dynamical systems they can
model, we associate them with transition graphs which are either deterministic, or non-deterministic.
In this latter case, they can be either non-stochastic or stochastic, i.e. complemented with a measure
of probability in order to weight each of their transitions. In the general case, such systems induce a
time domain which is either continuous or discrete (in this chapter, the time domain is N). In this
framework, a natural abstraction consists in seeing the trajectories as the temporal flow. However,
the coherence with physical time would imply that the discrete transitions embed the concept of
duration and represent all the same duration. This corresponds precisely to a real time discretisation.
However, whenever an automata network is considered as a model of a real system, this vision can be
perceived as unrealistic. This is why some studies increase the concept of transition by adding that of
duration, so that the transitions can be associated with distinct durations. They are then labelled by
the amount of time they are supposed to last or, more precisely, by the duration of the event(s) that
they are supposed to represent [138, 18, 129]. In addition to the questions presented in the following
paragraphs, this choice of modelling the duration of a temporal flow raises specific theoretical questions,
including: how long does a network take to reach an asymptotic behaviour in the best case, in the
worst case or on average?; what is the probability that the network passes asymptotically by this or
that configuration?...

However, integrating this concept of chronometric time (through durations) within a fundamentally
discrete formalism raises a problem extremely difficult to solve. In particular, in [104], the authors
emphasised how this problem leads naturally, almost necessarily, to prefer a continuous framework. In
order to avoid this problem, and thus not to give the discrete framework more capacities that it has
while retaining its intrinsic advantages, the following paragraphs shows that we can choose to model
time differently.

Modelling precedence A second way of conceiving time with discrete dynamical systems con-
sists in no longer considering the trajectories as witnesses of the durations of a temporal flow but as
representatives of a relation of precedence. They are then nothing else but sequences of events without
duration. In this case, if transitions x ÝÑ˚ y and x1 ÝÑ˚ y1 are both achievable at the same time, then,
this vision makes it possible to give meaning that x ÝÑ˚ y may last longer than x1 ÝÑ˚ y1, under certain
conditions, and conversely that x1 ÝÑ˚ y1 may last longer than x ÝÑ˚ y, under other conditions.

Thus, the different behaviours of an automata network can occur at different time scales without
new information being specified to distinguish them. The modelled time then deviates a little from
the notion of real time to become a logical time, which requires less of knowledge on the transitions
between states of the modelled real system. The transitions and trajectories are then only sequences of
events which follow each others without integrating any notion of duration. More precisely, a transition
x ÝÑ y does not hold information about the real process it models but only expresses the result of a
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possible observation of the system at a certain time step returning that the system is in state y,
knowing that the previous observation of the system returned the state x. As a result, the time that
transitions and trajectories take cannot be measured, only the number of events, and their succession
can be. This is the classical approach of time which is considered when we work on deterministic or
non-deterministic discrete dynamical systems. Typical questions highlighting this conception of time
are the following [91]: how many steps does a network take to reach limit sets?, is such behaviour
always observed after such event?...

Modelling causality Another view we can have of time relates to the causality between events,
where the notion of duration of transitions is replaced by a relation of causes and consequences.
Causality essentially refers to the fact that an event can only be triggered once a particular condition
is met, and triggering an event may preempt other concurrent events. This modelling aims at revealing
a fine grained dependency structure between transitions and events. Then, precedence becomes an
emerging property, as causal relations rule which events must appear before others, which events
can never appear after others, and which sets of events can be interleaved freely. Causal modelling
focuses on the minimal conditions for triggering a certain event or observe a given behaviour, which
relates to determining the prime implications for transitions. Questions related to this context are
typically about the existence or accessibility properties: is this transition possible?, is a configuration
that checks such properties reachable?... as well as for the control: which modification of the model is
sufficient to make a transition possible or impossible? Notice that, in this context, the transition graph
hinders important parts of this information, as it forgets the local functions which generated it. The
concurrency theory offers conceptual tools, including event structures for reasoning efficiently on the
causality between events, that can be naturally applied to Boolean networks with their deterministic
and non-deterministic updating modes [23].

Towards an updating mode hierarchy Echoing with different modelling hypotheses and specifica-
tions of time, we presented along this chapter a large range of updating modes for Boolean networks.
In this chapter, we endeavoured to define them with a unifying mathematical framework of deter-
ministic and non-deterministic updates. The relationship between the different updating modes is a
fundamental question which aims at bringing a structure between these numerous dynamics. Let us
say that an updating mode µ is (weakly) simulated by an updating mode µ1, noted µ ĺ µ1, if and only
if, for any Boolean network f and any pair px, yq of its configurations, if there exists a path from x to
y in the dynamics generated by µ, then there exists a path from x to y in the dynamics generated by
µ1. Formally:

µ ĺ µ1 ðñ @f,@x,@y, x ÝÑ˚
pf,µq y ùñ x ÝÑ˚

pf,µ1q y.

A class of updating modes C is then weakly simulated by a class of updating modes C 1, if for any
updating mode of the former class, there exists an updating mode of the latter class which weakly
simulates it:

C ĺ C 1 ðñ @µ P C, Dµ1 P C 1, µ ĺ µ1.

The obtained hierarchy is depicted in Figure 12.

Software tools In the past twenty years numerous software tools for modelling and analysing
dynamics of Boolean networks have been developed. The CoLoMoTo interactive notebook [100] pro-
vides a distribution of many of these tools promoting their accessibility and the writing and publishing
of reproducible computational analysis of Boolean networks. Based on this software environment,
we designed interactive notebooks for reproducing the examples given in this chapter with the dif-
ferent updating modes. They are available at https://github.com/pauleve/updating-modes-notebooks
(archived at https://doi.org/10.5281/zenodo.5260025), and can be easily executed and re-used for
analysing different Boolean networks and implement custom updating modes.
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Figure 12: Weak simulation relation between the classes of updating modes mentioned in this chapter
with any fixed Boolean network.

Opening on intrinsic simulations The hierarchy presented in Figure 12 shows the relations be-
tween the paths generated by the different updating modes on any fixed Boolean network. Another
direction is to consider simulation relations between the dynamical systems, i.e. Boolean networks
coupled with an updating mode.

A perspective of the work presented in this chapter may focus on simulations of Boolean networks
evolving with non-deterministic updates by Boolean networks evolving with deterministic updates. A
first natural way is by following a classical determinisation of the dynamics. Indeed, one can encode any
set of configurations in Bn as one configuration in B2n

. Let us consider such an encoding c : 2B
n

Ñ B2n

where, for all x P Bn, cpXqx “ 1 if x P X, otherwise cpXqx “ 0 (we slightly abuse notations here,
by specifying a vector index by its binary representation). Now, it is clear that for any set update
Φ : 2B

n

Ñ 2B
n

of a Boolean network f of dimension n, one can define a Boolean network g such that
for all sets of configurations X Ď Bn, gpcpXqq “ cpΦpXqq. This encoding is complete in the sense
that any transition generated by Φ is simulated in pg, pq. But these simulations are nothing else but
a brute-force encoding in which we get rid of the transition relation by increasing exponentially the
state space. Moreover, with this deterministic encoding, the structure of the transition relation of
pf, µ “ Φq is lost, which makes much more difficult characterising dynamical features of pf, µq such as
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its limit sets for instance.
Actually, a fundamental matter here lies in the concept of simulation at stake: we are interested

in intrinsic simulations which go far beyond the classical concepts of encoding or simulation. Indeed,
intrinsic simulations aim at conserving dynamical structures in addition to operated computations.
So, one of the first questions to answer would consist in defining formally different kinds of intrinsic
simulations. Nevertheless, firstly, consider the following intrinsic simulation: a dynamical system pf, µq
simulates another pg, µ1q if D pg,µ1q is a subgraph of D pf,µq. With this rather simple definition, it is

direct to state that, with a and d the asynchronous and memory updating modes respectively, for
any Boolean network f , pf, aq simulates pf, dq. Some natural questions related to Boolean networks
updated with memory are the following:

• Are there Boolean networks whose dynamics obtained according to d remains deterministic,
whatever d?

• If so, what are their properties and what are the equivalent deterministic updating modes?

To go further, consider the most permissive updating mode. It is direct that pf, µq does not simulate
pf,MPq, except for very particular f . Let us now consider a more general intrinsic simulation: a
dynamical system pf, µq simulates another pg, µ1q if D pg,µ1q is a graph obtained from D pf,µq thanks to
edge deletions, and vertex shortcuts. A lot of promising questions arise from this, in particular related
to d and MP updating modes, among which for instance:

• Let per be a deterministic periodic updating mode. How can pf, dq be simulated by pg, perq? The
answer is known for per “ p [63], but it seems pertinent to find a generalisation to deterministic
periodic updating modes, and even more general deterministic updating modes.

• Intuitively, any pf,MPq might be simulated by pg, aq, where f and g are Boolean networks and
the dimension of g is greater than that of f . But how many automata need to be added to g
depending on the dimension of f?

All answers, even partial or negative, will bring a better understanding of updating modes and Boolean
networks, which would lead to pertinent further development in both Boolean network theory and their
application in systems biology.
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basins as gauges of the robustness against boundary conditions in biological complex systems.
PLoS One, 5:e11793, 2010.

[43] Jacques Demongeot, Dan Istrate, Hajer Khlaifi, Lucile Mégret, Carla Taramasco, and René
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elucidate drug resistance mechanisms and predict combinatorial drug treatments in breast cancer.
Cancer Convergence, 1:5, 2017.

53


	Introduction
	The Boolean network framework
	On the simplicity of Boolean networks
	Boolean network specification
	Boolean network dynamics
	Updates
	Transitions and trajectories
	Updating mode and transition graph
	Deterministic updating modes
	Non-deterministic updating modes


	Biological case studies
	Floral morphogenesis of Arabidopsis thaliana
	Cell cycle
	Vegetal and animal zeitgebers
	Abstraction of quantitative models

	Fundamental knowledge
	Structural properties and attractors
	Fixed points stability
	Feedback cycles as engines of dynamical complexity
	About signed feedback cycles

	Computational complexity
	Existence of a fixed point
	Reachability between configurations
	Limit configurations


	Conclusion

