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Introduction

There is a growing interest in digital humanities for automatic processing and annotation of historical texts. In this work, we study how to take advantage of current NLP models of the BERT family to advance the state of the art in processing historical languages, taking Old French (9th-13th century French) as a use case. Old French is one of the historical languages for which we have the largest amount of syntactically annotated data, and we expect that our results on these language states may be generalised and used as a source of inspiration for researchers currently developing annotated resources for other historical languages. Using contextual word embeddings as input representations has brought clear gains in performances for most of the NLP tasks for which they have been used. However, this has mostly been attested in languages where sufficient (raw) linguistic data is available. For less-resourced languages, the most common approach has been to leverage multilingual models such as mBERT [START_REF] Devlin | BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[END_REF] Historical languages are typical cases where available linguistic data is limited, with no chance of acquiring new texts. They are also not normalized by spelling and institutional conventions and tend to be more heterogeneous than contemporary lesser-resourced languages. Old French is a particularly interesting language for this kind of study, since relatively to its limited amount of available raw text, its volume of annotated linguistic data is quite high, due to the existence of the SRCMF dependency treebank (Prévost and Stein 2013) and its latest incarnation in the Universal Dependency project [START_REF] Nivre | Universal Dependencies v2: An Evergrowing Multilingual Treebank Collection[END_REF], which boasts around 17.7 K sentences1 for around 171 K words. Another interesting property of Old French is its proximity to a well-resourced language, namely contemporary French, for which monolingual contextual embeddings models exist and have been shown to be relevant for dependency parsing [START_REF] Le | FlauBERT: Unsupervised Language Model Pre-training for French. English[END_REF][START_REF] Martin | CamemBERT: a Tasty French Language Model[END_REF]. Last, but certainly not least, the design of an accurate syntactic parser for Old French would be a very valuable tool for computer-assisted linguistic studies. Indeed, studying the historical variation of syntax in a language that lacks both native speakers and centralized standard variants can be very challenging, due to the prohibitive cost of manual annotation. Automatic syntactic annotations, either as a "silver-standard" truth or as a bootstrapping step towards manual annotation, can drastically reduce that cost. In this work, exploiting this currently unique situation of Old French among lesser-resourced and historical languages, we use dependency parsing and POS-tagging of Old French as probes of the relevance of contextual embeddings in a context of high heterogeneity and relative scarcity of data. More precisely, we consider several neural language models, some of which trained or fine-tuned on a new corpus of raw Old and Middle French texts, and use their internal representations of words as inputs to train taggers and parsers on the SRCMF treebank. The resulting tagging and parsing scores then serve as an evaluation of the quality and usefulness of these representations. We claim the following contributions:

• We provide empirical evidence that contextual embeddings are relevant for historical language processing, even when no data is available beyond the treebank used to train a parser.

• We provide a comparative study of several strategies for obtaining such contextual embeddings. Specifically, we compare cases where raw data is available in the target language and cases where existing contextual embeddings are available for the contemporary counterpart of a historical language.

• We release two publicly available resources for Old French: BERTrade 23 , a set of contextual word embedding models ; and a state-of-the-art POS-tagging and dependency parsing model4 .

The paper is organized as follows. Section 2 provides an overview of related work that aims at taking advantage of the BERT family of language models in scenarios where the amount of data is limited. In Section 3 we provide a description of the dataset we gathered to conduct our experiments, and finally we report experiments in Section 4 involving reusing BERT from other languages and training BERT models on Old French.

Related work

Since the introduction of contextualized word representations [START_REF] Peters | Deep Contextualized Word Representations[END_REF][START_REF] Akbik | Contextual String Embeddings for Sequence Labeling[END_REF][START_REF] Devlin | BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[END_REF]) and the many improvements proposed for them in the consumption of computational resources [START_REF] Clark | ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators[END_REF], in the amount of data required to fine-tune them [START_REF] Raffel | Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer[END_REF], and more recently in the length of the contextual window [START_REF] Xiong | Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention[END_REF]; there have also been important advancements from a digital humanities point of view on unsupervised domain adaptation (Ramponi and Plank 2020). In this case, one specializes a language model to a particular domain with unlabeled data in order to improve performance in downstream tasks. This can be achieved by pre-training the models from scratch with specialized data [START_REF] Beltagy | SciB-ERT: A Pretrained Language Model for Scientific Text[END_REF] or by continuing the training of a general model with a new corpus [START_REF] Lee | BioBERT: a pre-trained biomedical language representation model for biomedical text mining[END_REF][START_REF] Peng | Transfer Learning in Biomedical Natural Language Processing: An Evaluation of BERT and ELMo on Ten Benchmarking Datasets[END_REF]. This last method has already been successfully implemented in the context of historical languages, in particular [START_REF] Han | Unsupervised Domain Adaptation of Contextualized Embeddings for Sequence Labeling[END_REF] showed that one can successfully adapt the original BERT [START_REF] Devlin | BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[END_REF] to Early Modern English by continuing the pre-training on historical raw texts. In a multilingual context, transformer-based models such as mBERT have been adapted to low-resource languages and evaluated in dependency parsing and POS-tagging, showing promising results [START_REF] Camps | Parsing with Multilingual BERT, a Small Corpus, and a Small Treebank[END_REF][START_REF] Muller | When Being Unseen from mBERT is just the Beginning: Handling New Languages With Multilingual Language Models[END_REF][START_REF] Gururangan | Don't Stop Pretraining: Adapt Language Models to Domains and Tasks[END_REF][START_REF] Wang | Extending Multilingual BERT to Low-Resource Languages[END_REF]). However, this multilingual approach has also been criticized for favoring monolingual pre-training even when data is scarce [START_REF] Virtanen | Multilingual is not enough: BERT for Finnish[END_REF][START_REF] Ortiz Suárez | A Monolingual Approach to Contextualized Word Embeddings for Mid-Resource Languages[END_REF]. Indeed, even when only small pre-training corpora are available, BERT-like models have also been successfully pre-trained, resulting in well-performing models [START_REF] Micheli | On the importance of pre-training data volume for compact language models[END_REF]. Furthermore, compact BERT-like models have also been studied [START_REF] Turc | Well-Read Students Learn Better: On the Importance of Pre-training Compact Models[END_REF] and might prove useful in data constrained conditions, such as monolingual pre-training of contextualized word representation for low-resource languages.

Regarding corpora for historical languages, very few of them have manually annotated syntactical resources for their medieval states. English has three such treebanks (University of Oxford 2001; [START_REF] Kroch | The Penn-Helsinki Parsed Corpus of Middle English[END_REF][START_REF] Traugott | Coding the York-Toronto-Helsinki Parsed Corpus of Old English Prose to investigate the syntax-pragmatics interface[END_REF] for Old and Middle English. The TOROT treebank for Old Church Slavonic, Old East Slavonic and Middle Russian is another large resource (Berdicevskis and Eckhoff 2020). There is a treebank for Medieval Latin as well, the Index Thomisticus Treebank [START_REF] Passarotti | The Project of the Index Thomisticus Treebank[END_REF]). To our knowledge, the last large treebank containing medieval texts is IcePaHC for Icelandic [START_REF] Rögnvaldsson | The Icelandic Parsed Historical Corpus (IcePaHC)[END_REF]. Some other corpora were annotated automatically in order to reduce the cost of annotation. For example, [START_REF] Rocio | Automated creation of a medieval portuguese partial treebank[END_REF] adapted a parsing pipeline for contemporary Portuguese and Lee and Kong (2016) used a previously annotated treebank [START_REF] Lee | A dependency treebank of classical Chinese poems[END_REF] to parse a larger medieval Chinese corpus. Concerning contemporary regional Romance languages, [START_REF] Miletic | Building a Universal Dependencies Treebank for Occitan. English[END_REF] also used a smaller treebank to generate new annotations, and concluded that using similar languages to train a model does not improve parsing. Although there are many resources for Latin, and some for Ancient Greek, we do not include them here, because they do not face the same challenges as medieval states of language, in particular the high level of spelling variability. Lastly, concerning dependency parsing and POS-tagging of Old French in particular, the works of [START_REF] Guibon | Parsing Poorly Standardized Language Dependency on Old French[END_REF] and [START_REF] Stein | Parsing Heterogeneous Corpora with a Rich Dependency Grammar[END_REF] and Stein (2016) 

Data

This section describes the raw corpus of Medieval French we gathered in order to train unsupervised language models for Old French. To our knowledge, it is one of the largest such dataset gathered for Medieval French, although it remains quite small (55 MiB in total) relatively to the corpora usually used for pre-training contextual embeddings models. Older texts are close to Late Latin, and verse is prevalent until the end of the 13th century. Old French has a relatively free word order. Until the mid-11th century, the prevalent order is Subject-Object-Verb (SOV), which is then gradually supplanted by SVO, which is the default order in contemporary French. Unlike most languages with free word order, the functions of verbal arguments are not always given away by morphological clues, the already simplistic case system of Old French disappears progressively through the covered period.

There are also many cases of syntactic ambiguity. For example, in the following quote from Lancelot,5 (verse 5436), both "la dame" and "Lancelot" could be the subject or the object of "Vit" and only the context enables the reader to understand that "la dame" is the subject. Word order is also relatively free within constituents. For example, a noun modifier can be on the left or on the right of its governor, and it is not necessarily preceded by a preposition. In contemporary French, it can only appear on the right, and it is found without a preposition only in some cases like named entities. Because of the general free word order and the absence of punctuation in our treebank, this adds up to the ambiguity of the analysis.

Dolant

In each of the following examples from the SRCMF corpus, the noun following roi ("king") has a different analysis: head of roi, modifier, argument of the same verb or a different one, with no explicit marking:

Fus tu donc pus a la roi cort

Were you then no more at the king court Furthermore, overt subjects are not mandatory, and are often dropped in texts written in verse until the 12th century, after which the presence of subjects increases through time. These phenomena are particularly prevalent in verse, where metric and rhyming constraints often lead to more contrived syntactic forms than in prose.

Another source of ambiguity is the variety of spellings, due to the lack of spelling standard. For example, the word moult (transl. a lot (of), very), emblematic of this period, is initially an adjective, and it is progressively grammaticalized, becoming an adverb. Several forms appear at the same time, some with a declension, some [START_REF] Rothwell | Anglo-Normand Dictionary[END_REF] 17.2 3.25 NCA [START_REF] Stein | Nouveau Corpus d[END_REF] 9.7 2.05 Chartes Douai [START_REF] Gleßgen | L'élaboration philologique et l'étude lexicologique des Plus anciens documents linguistiques de la France à l'aide de l'informatique[END_REF] 3.1 0.56 OpenMedFr [START_REF] Wrisley | The Open Medieval French Initiative[END_REF] 1.7 0.33 Geste [START_REF] Camps | Parsing with Multilingual BERT, a Small Corpus, and a Small Treebank[END_REF] 1.5 0.32 MCVF [START_REF] Martineau | Un corpus pour l'analyse de la variation et du changement linguistique[END_REF] 1 Medieval French has many factors of variation: language evolution, dialects, domains, forms of text (verse or prose) and lack of standard. Our dataset gives us a representation of Medieval French that is as accurate and diversified as possible, given the limited amount of material that survived to these days. The detailed instructions to replicate this dataset are described in the Appendix. No particular processing is done on the original documents.

In order to get a sound evaluation of the contextual embeddings trained with this dataset, we filter out the documents that are also present in the SRCMF treebank used for evaluation purposes in section 4 6 . The resulting corpus is quite heterogeneous: legal texts and verse literature are in the majority, whereas other domains, such as historical and didactic texts, are under-represented, as can be seen in fig. 2.

Experiments

We evaluate a set of alternative word representations on Old French, using their usefulness for POS-tagging and dependency parsing as a downstream evaluation. To that end, we train and evaluate a parser/tagger using the annotated treebank of Old French (SRCMF, Prévost and Stein ( 2013)) as provided by the 2.7 version of the UD dataset [START_REF] Zeman | Universal Dependencies 2[END_REF]) as a reference treebank.

Our parser/tagger probe uses Dozat and Manning (2018)'s neural graph parser made as reimplemented by [START_REF] Le | FlauBERT: Unsupervised Language Model Pre-training for French. English[END_REF] and [START_REF] Grobol | Analyse en dépendances du français avec des plongements contextual-isés[END_REF], using the same hyperparameters. Word representations are obtained by concatenating subword embeddings, averaged over transformer layers together with character embeddings and non contextualized word embeddings. This representation is similar to those used by [START_REF] Straka | Evaluating Contextualized Embeddings on 54 Languages in POS Tagging, Lemmatization and Dependency Parsing[END_REF] and [START_REF] Ling | Finding Function in Form: Compositional Character Models for Open Vocabulary Word Representation[END_REF]. In all of our experiments, the contextual embeddings are fine-tuned while training the parser. Unlike the recent CoNLL challenges settings, we assume gold tokenization, since the syntactic annotations we target provide a reference word-based segmentation. Using a predicted one could only add noise to our experiments. Furthermore, for most European languages using a Latin script-including Old and Middle French-, word segmentation is acceptably approximated by simple typographic tokenization. The remaining of this section presents our experimental results, sorted by nature of required data. We report UPOS POS-tagging scores as well as unlabeled and labeled attachment scores for dependency parsing (respectively UAS and LAS), as given by the CoNLL-2018 scorer, computed on the development set of SRCMF to avoid overfitting the architecture and transfer learning procedure to the test set. Results on the test set are provided only for the dev-best models to allow us to compare our results to the state of the art.

Due to the number of costly experiments, 7 the results are reported on single runs. The results should therefore be interpreted only with respects to the broad trends: small score differences between competing settings should be taken with care.

Baselines

Embeddings We first compare a baseline where contextual embeddings are not used at all (Vanilla) with two settings using models with no preexisting knowledge of Old French: Random-base, a randomly initialized model using the same architecture and model size as RoBERTa-base [START_REF] Liu | RoBERTa: A Robustly Optimized BERT Pretraining Approach[END_REF]) and finBERT [START_REF] Virtanen | Multilingual is not enough: BERT for Finnish[END_REF], a contextual embedding model from Finnish, a Uralic language that is unrelated to Old French. These baselines are meant to check that the gain in performances observed when using models with some (possibly indirect) knowledge of Old French are linked to this knowledge and not simply due to an increase in the number of trainable parameters (for the random baseline) or to a weight distribution induced by training on a language modeling task that would be universally good for all languages (for the finBERT baseline, which can thus be seen as a different kind of weight initialization).

Table 2 shows the results obtained in these configurations, which show that using a model with random weights, even fine-tuned for these tasks, does not bring any improvement, and is in fact even worse than using no contextual embeddings at all. In contrast, using a model that has been pretrained for language modeling-even for an unrelated language-brings some modest improvements. This suggests that pretraining gives a structure to this kind of model that makes it suitable for fine-tuning on the downstream task, but the impact of this gain is clearly-and predictably-very limited compared to what can be expected for representations that have been trained on relevant linguistic data.

With related contextual embeddings

When a low-resource language is close to a well-resourced one, it is possible to leverage models designed for the latter. For Old French, contemporary French is an obvious candidate and two contextual embeddings models are available: FlauBERT [START_REF] Le | FlauBERT: Unsupervised Language Model Pre-training for French. English[END_REF] and CamemBERT [START_REF] Martin | CamemBERT: a Tasty French Language Model[END_REF]. Furthermore, mBERT [START_REF] Devlin | BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[END_REF]), a model trained on a multilingual corpus which does not include Old French (possibly apart from some fragments in its contemporary French training data), has been shown to be suitable for many languages, and in particular for Indo-European and Romance languages [START_REF] Straka | Evaluating Contextualized Embeddings on 54 Languages in POS Tagging, Lemmatization and Dependency Parsing[END_REF][START_REF] Muller | When Being Unseen from mBERT is just the Beginning: Handling New Languages With Multilingual Language Models[END_REF]. We report in table 3 the results obtained when using these language models directly, without additional fine-tuning involving Old French data. As expected, these results show significant improvements over the baselines, confirming that using contextual embeddings for a related language works better than both randomly initialized embeddings and embeddings pretrained for an unrelated language-even after fine-tuning. More surprisingly, the best results here are obtained with mBERT. This could mean that mBERT benefits from having been pretrained for a wider range of languages, including in particular other Romance languages that share with Old French some features, lost in contemporary French: for instance null subjects.

With raw linguistic data

We now try to take advantage of the raw Medieval French data described in section 3. To that end, we explore two strategies: training a model from scratch and refining existing models by "post-training" them-running a few more training epochs on the Medieval French raw data. In the "from scratch" strategy, we first train a BBPE subword tokenizer (C. [START_REF] Wang | Neural Machine Translation with Byte-Level Subwords[END_REF]) on our raw corpus, then train a RoBERTa [START_REF] Liu | RoBERTa: A Robustly Optimized BERT Pretraining Approach[END_REF]) masked language model. Taking inspiration from [START_REF] Micheli | On the importance of pre-training data volume for compact language models[END_REF], who worked in a setting close to ours: a small and noisy pretraining corpus used to create a model from scratch, we used a RoBERTa architecture. As reported in table 4, we tested several parametrizations of the architecture also inspired by [START_REF] Turc | Well-Read Students Learn Better: On the Importance of Pre-training Compact Models[END_REF]. Out of these alternatives, the "BERTrade-petit" configuration was the most successful and this is the one we keep for the following experiments.

For the "post-training" strategy, we continue the training of the pre-trained models used in sections 4.1 and 4.2, for 12 epochs on our raw corpus. We used the same RoBERTa masked language modeling task, using the same parameters as Z. 

Putting it all together

Finally, in table 6, we compare the performances of our models on the test set of SRCMF with those obtained by [START_REF] Straka | Evaluating Contextualized Embeddings on 54 Languages in POS Tagging, Lemmatization and Dependency Parsing[END_REF], with similar methods. The difference between the models is that we fine-tune the word embeddings, while [START_REF] Straka | Evaluating Contextualized Embeddings on 54 Languages in POS Tagging, Lemmatization and Dependency Parsing[END_REF] keep them frozen. Our mBERT baseline, which is the closest to their configuration, shows that even without any additional data, task-specific fine-tuning already brings significant improvements, while our models refined using our raw corpus of Medieval French bring further improvements, leading to state-of-the-art results that are consistent with their results on the development set.

Conclusion

In this work, we have shown that building a monolingual contextual word embeddings model for Medieval French is possible even with limited and heterogeneous linguistic data and that it can bring significant performance gains in parsing and POS-tagging. To that end, the best strategy seems to be post-training a contextual word embedding model for contemporary French on raw Medieval French documents. We have not directly addressed the internal heterogeneity issue in both our pretraining and fine-tuning data, relying instead on the versatility of the representation models we considered to bypass it, but it seems a promising perspective for future work-for instance by using finer-grained post-training, concentrating on specific linguistic sub-periods or genres. For historical languages in general, this suggests that language-specific fine-tuning is more efficient when applied to a model pre-trained for their contemporary counterpart than when applied to a multilingual model. While this study is not currently easy to replicate for other languages due to the lack of annotated data for a suitable downstream task, it suggests that the considerable amount of work required to gather even a small amount of raw texts in the target language is a sound investment, given the significant improvements it can bring to contextual word representations. Beyond historical languages, these findings could also help for processing minority dialectal variants and contact languages of well-resourced languages, and we leave for future work the exploration of these generalizations.
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 1 Figure 1: Oïl languages

'

  The lady saw that Lancelot was mournful and meditative.'

  you not at the king's court anymore?" (Beroul Tristan) la fille au riche roi pescheor the daughter of the rich king fisher flat "the daughter of the rich Fisher King" (Queste del Saint Graal) De Guenelun atent li reis nuveles From Ganelon waits the king news nsubj obj "The king waits for news from Ganelon." (Chanson de Roland) Biax sire fet li rois escu vos envoiera Diex Dear Sir says the king shield you send-FUT God nsubj obj "Dear Sir, says the king, God will send you a shield." (Queste del Saint Graal)

Figure 2 :

 2 Figure 2: Distribution of form and domain, gathered from documents metadata and manual annotation.

Table 1 :

 1 Data sources for the raw corpus used for model pretraining, with sizes in bytes and number of words. Due to the nature of the documents, mixing prose, verse, titles, annotations… estimating a number of sentence would be error-prone and can be abstracted over, given that the models trained here do not depend on strict sentence boundaries.

	.4	0.26

Table 2 :

 2 Results on SRCMF dev -no additional data.

		UPOS UAS LAS
	Vanilla	93.51 87.60 81.54
	Random-base 93.17 86.97 80.71
	finBERT	94.44 88.44 82.47

7

  See the Appendix for elements on the carbon footprint of our experiments.

	Base model UPOS UAS LAS
	FlauBERT	95.70 90.43 85.45
	CamemBERT 95.86 91.15 86.31
	mBERT	96.06 91.52 86.83

Table 3 :

 3 Results on SRCMF dev -monolingual models.

Table 4 :

 4 [START_REF] Wang | Neural Machine Translation with Byte-Level Subwords[END_REF] (but without vocabulary modifications), resulting in the BERTrade-X models, where X is the name of the base model. The results of these experiments are reported in Table5. Comparing these to our results of section 4.2 shows that training a model from scratch, even on such limited amounts of data, yields a better model than a Results on SRCMF dev -Performances of different model sizes when training from scratch

	Name		Layers Embeddings Heads UPOS UAS LAS
	BERTrade-tiny	2	128	2	94.03 88.66 82.79
	BERTrade-small	4	512	8	96.53 86.30 87.49
	BERTrade-petit	12	256	4	97.14 91.90 89.18
	BERTrade-medium	8	512	8	96.62 91.92 87.60
	BERTrade-base	12	768	12	96.74 92.37 88.42
	Base model	UPOS UAS LAS		
	BERTrade-petit	97.14 92.95 89.18		
	BERTrade-finBERT	96.28 92.12 87.92		
	BERTrade-mBERT	96.95 93.33 89.60		
	BERTrade-CamemBERT 97.16 93.75 90.06		
	BERTrade-FlauBERT	96.94 93.75 90.07		

Table 5 :

 5 Results on SRCMF dev -using raw data.

	simple task-specific fine-tuning of mBERT. However,
	post-training mBERT yields even better results, and the
	best ones are obtained by post-training the models for
	contemporary French.	
	Model	UPOS UAS LAS
	Straka et al. (2019)	96.26 91.83 86.75
	mBERT	96.19 92.03 87.52
	BERTrade-petit	96.60 92.20 87.95
	BERTrade-mBERT	97.11 93.86 90.37
	BERTrade-FlauBERT	97.15 93.96 90.57
	BERTrade-CamemBERT 97.29 94.36 90.90

Table 6 :

 6 Results on SRCMF test

Putting it in the second place of all French language treebanks in number of sentences.

https://doi.org/10.5281/zenodo.6461220

Bertrade de Laon, also known as Berthe au Grand Pied was the mother of Charlemagne.

https://github.com/hopsparser/hopsparser/ blob/main/docs/models.md#srcmf-ud

In the edition from Pierre Kunstmann, from the online Base de français médiéval: http://catalog.bfm-corpus. org/CharretteKu.

As noted by[START_REF] Gururangan | Don't Stop Pretraining: Adapt Language Models to Domains and Tasks[END_REF], pre-training on task specific data provides an additional boost, that would muddle our results, since our objective here is not so much task optimization as embeddings benchmarking.
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A. Collecting the Data

The following data can be downloaded directly from their website:

• Chartes de l'Aube: https://sites.google.com/site/achimstein/ research/resources

Extract raw text from XML files: <body>, then <s>, then <word>.

• Geste: https://github.com/Jean-Baptiste-Camps/ Geste Raw text is available under /txt/norm/.

• OpenMedFr: https://github.com/OpenMedFr/texts Remove the header of each file (until *** START), its last line (*** END), paragraph breaks (#|) and folios or pages numbers. Special permissions are required to access and use these sources:

• AND: 

B. Details on the Models

B.1. Models Trained From Scratch

These are trained for 32 epochs in a masked language modeling task using the same parameters as RoBERTa [START_REF] Liu | RoBERTa: A Robustly Optimized BERT Pretraining Approach[END_REF]) but a smaller batch size of 256 samples 8 , which amounts to a magnitude of 1×10 5 steps. We also use a smaller vocabulary size (8192) than other works, in line with the observations of [START_REF] Ding | A Call for Prudent Choice of Subword Merge Operations in Neural Machine Translation[END_REF] that learning large vocabularies on small corpora defeats the purpose of sub-word tokenization. Using a larger vocabulary size of 5×10 4 (like FlauBERT) also did not seem to bring any improvements in our preliminary experiments and made pre-training more expensive.

B.2. Post-training

The pretrained models we used in the post-training settings are those available in the 4.2.0 version of Huggingface Transformers [START_REF] Wolf | Transformers: State-of-the-Art Natural Language Processing[END_REF]) and the exact handles are:

The post-trained models are those with MLM heads, which we did not reset before post-training, so the post-training phase can be seen as a language transfer task for masked language modeling out of which we extract a contextual word embeddings model.

C. Carbon Footprint

In light of recent concerns about the power consumption and carbon footprint of deep learning models (Schwartz 8 Preliminary experiments with larger batch sizes showed no significant improvement to compensate for the heavier computational load. Pre-train: We use a cluster of 4 machines each one having 8 GPU Nvidia Tesla V100 SXM2 32 GiB, 384 GiB of RAM, and two Intel Xeon Gold 6226 processors. One Nvidia Tesla V100 card is rated at around 300 W, 9 while the Xeon Gold 6226 processor is rated at 125 W, 10 . For the DRAM we can use the work of [START_REF] Desrochers | A Validation of DRAM RAPL Power Measurements[END_REF] to estimate the total power draw of 384 GiB of RAM at around 39 W. The total power draw of this setting adds up to around 10 756 W. We train 11 different models in this configuration.

Model Power (W) # Models Duration (h) Consumption (kWh) CO 2 e (kg)

Pre

Post-train:

We use a single machine having 4 GPU Nvidia Tesla V100 SXM2 32 GiB, 192 GiB of RAM and two Intel Xeon Gold 6248 processors. The Xeon Gold 6248 processor is rated at 150 W, 11 , and the DRAM total power draw can be estimated at around 20 W. The total power draw of this setting adds up to around 1520 W. We train 4 different models in this configuration.

Having this information, we can now use the formula proposed by [START_REF] Strubell | Energy and Policy Considerations for Deep Learning in NLP[END_REF] in order to compute the total power required for each setting:

p t = 1.58t(cp c +p r +gp g ) 1000 Where c and g are the number of CPUs and GPUs respectively, p c is the average power draw (in W) from all CPU sockets, p r the average power draw from all DRAM sockets, and p g the average power draw of a single GPU. We estimate the total power consumption by adding GPU, CPU and DRAM consumption, and then multiplying by the Power Usage Effectiveness (PUE), which accounts for the additional energy required to support the compute infrastructure. We use a PUE coefficient of 1.58, the 2018 global average for data centers [START_REF] Strubell | Energy and Policy Considerations for Deep Learning in NLP[END_REF]. In table 7 we report the training times in hours, as well as the total power draw (in Watts) of the system used to train the models. We use this information to compute the 9 Nvidia Tesla V100 specification 10 Intel Xeon Gold 6226 specification 11 Intel Xeon Gold 6248 specification total power consumption of each setting, also reported in table 7. We can further estimate the CO 2 emissions in kilograms of each single model by multiplying the total power consumption by the average CO 2 emissions per kWh in our region which were around 32 g kW -1 h in January 2021, 12 when the models were trained. Thus the total CO 2 emissions in kg for one single model can be computed as:

CO 2 e = 0.032p t All emissions are also reported in table 7.