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Abstract
The successes of contextual word embeddings learned by training large-scale language models, while remarkable, have mostly
occurred for languages where significant amounts of raw texts are available and where annotated data in downstream tasks have a
relatively regular spelling. Conversely, it is not yet completely clear if these models are also well suited for lesser-resourced and
more irregular languages. We study the case of Old French, which is in the interesting position of having relatively limited amount
of available raw text, but enough annotated resources to assess the relevance of contextual word embedding models for downstream
NLP tasks. In particular, we use POS-tagging and dependency parsing to evaluate the quality of such models in a large array of
configurations, including models trained from scratch from small amounts of raw text and models pre-trained on other languages
but fine-tuned on Medieval French data.
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1. Introduction
There is a growing interest in digital humanities for
automatic processing and annotation of historical texts.
In this work, we study how to take advantage of current
NLP models of the BERT family to advance the state
of the art in processing historical languages, taking Old
French (9th-13th century French) as a use case.
Old French is one of the historical languages for which we
have the largest amount of syntactically annotated data,
and we expect that our results on these language states
may be generalised and used as a source of inspiration
for researchers currently developing annotated resources
for other historical languages.
Using contextual word embeddings as input representa-
tions has brought clear gains in performances for most of
the NLP tasks for which they have been used. However,
this hasmostly been attested in languageswhere sufficient
(raw) linguistic data is available. For less-resourced lan-
guages, the most common approach has been to leverage
multilingual models such as mBERT (Devlin et al. 2019)
Historical languages are typical cases where available
linguistic data is limited, with no chance of acquiring new
texts. They are also not normalized by spelling and insti-
tutional conventions and tend to be more heterogeneous
than contemporary lesser-resourced languages.
Old French is a particularly interesting language for this
kind of study, since relatively to its limited amount of
available raw text, its volume of annotated linguistic
data is quite high, due to the existence of the SRCMF
dependency treebank (Prévost and Stein 2013) and

its latest incarnation in the Universal Dependency
project (Nivre et al. 2020), which boasts around 17.7 K
sentences1 for around 171 K words.
Another interesting property of Old French is its proxim-
ity to a well-resourced language, namely contemporary
French, for which monolingual contextual embeddings
models exist and have been shown to be relevant for
dependency parsing (Le et al. 2020; Martin et al. 2020).
Last, but certainly not least, the design of an accurate syn-
tactic parser for Old French would be a very valuable tool
for computer-assisted linguistic studies. Indeed, studying
the historical variation of syntax in a language that lacks
both native speakers and centralized standard variants can
be very challenging, due to the prohibitive cost of manual
annotation. Automatic syntactic annotations, either as a
“silver-standard” truth or as a bootstrapping step towards
manual annotation, can drastically reduce that cost.
In this work, exploiting this currently unique situation
of Old French among lesser-resourced and historical
languages, we use dependency parsing and POS-tagging
of Old French as probes of the relevance of contextual
embeddings in a context of high heterogeneity and
relative scarcity of data. More precisely, we consider
several neural language models, some of which trained or
fine-tuned on a new corpus of raw Old and Middle French
texts, and use their internal representations of words as in-
puts to train taggers and parsers on the SRCMF treebank.
The resulting tagging and parsing scores then serve

1Putting it in the second place of all French language
treebanks in number of sentences.
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as an evaluation of the quality and usefulness of these
representations. We claim the following contributions:

• We provide empirical evidence that contextual
embeddings are relevant for historical language
processing, even when no data is available beyond
the treebank used to train a parser.

• We provide a comparative study of several strate-
gies for obtaining such contextual embeddings.
Specifically, we compare cases where raw data is
available in the target language and cases where
existing contextual embeddings are available for the
contemporary counterpart of a historical language.

• We release two publicly available resources for
Old French: BERTrade23, a set of contextual
word embedding models ; and a state-of-the-art
POS-tagging and dependency parsing model4.

The paper is organized as follows. Section 2 provides an
overview of related work that aims at taking advantage of
the BERT family of language models in scenarios where
the amount of data is limited. In Section 3 we provide
a description of the dataset we gathered to conduct
our experiments, and finally we report experiments in
Section 4 involving reusing BERT from other languages
and training BERT models on Old French.

2. Related work
Since the introduction of contextualized word represen-
tations (Peters et al. 2018; Akbik et al. 2018; Devlin et al.
2019) and the many improvements proposed for them in
the consumption of computational resources (Clark et al.
2020), in the amount of data required to fine-tune them
(Raffel et al. 2020), and more recently in the length of the
contextual window (Xiong et al. 2021); there have also
been important advancements from a digital humanities
point of view on unsupervised domain adaptation (Ram-
poni and Plank 2020). In this case, one specializes a lan-
guage model to a particular domain with unlabeled data
in order to improve performance in downstream tasks.
This can be achieved by pre-training the models from
scratch with specialized data (Beltagy et al. 2019) or by
continuing the training of a general model with a new cor-
pus (Lee et al. 2019; Peng et al. 2019). This last method
has already been successfully implemented in the context
of historical languages, in particular Han and Eisenstein
(2019) showed that one can successfully adapt the orig-
inal BERT (Devlin et al. 2019) to Early Modern English
by continuing the pre-training on historical raw texts.
In a multilingual context, transformer-based models such
as mBERT have been adapted to low-resource languages
and evaluated in dependency parsing and POS-tagging,

2https://doi.org/10.5281/zenodo.6461220
3Bertrade de Laon, also known as Berthe au Grand Pied

was the mother of Charlemagne.
4https://github.com/hopsparser/hopsparser/

blob/main/docs/models.md#srcmf-ud

showing promising results (Chau et al. 2020; Muller
et al. 2020; Gururangan et al. 2020; Z. Wang et al. 2020).
However, this multilingual approach has also been
criticized for favoring monolingual pre-training even
when data is scarce (Virtanen et al. 2019; Ortiz Suárez
et al. 2020). Indeed, even when only small pre-training
corpora are available, BERT-like models have also been
successfully pre-trained, resulting in well-performing
models (Micheli et al. 2020). Furthermore, compact
BERT-like models have also been studied (Turc et al.
2019) and might prove useful in data constrained condi-
tions, such as monolingual pre-training of contextualized
word representation for low-resource languages.
Regarding corpora for historical languages, very few of
them have manually annotated syntactical resources for
their medieval states. English has three such treebanks
(University of Oxford 2001; Kroch et al. 2000; Traugott
and Pintzuk 2008) for Old and Middle English. The
TOROT treebank for Old Church Slavonic, Old East
Slavonic and Middle Russian is another large resource
(Berdicevskis and Eckhoff 2020). There is a treebank for
Medieval Latin as well, the Index Thomisticus Treebank
(Passarotti 2019). To our knowledge, the last large tree-
bank containing medieval texts is IcePaHC for Icelandic
(Rögnvaldsson et al. 2012). Some other corpora were an-
notated automatically in order to reduce the cost of anno-
tation. For example, Rocio et al. (2003) adapted a parsing
pipeline for contemporary Portuguese and Lee and Kong
(2016) used a previously annotated treebank (Lee and
Kong 2012) to parse a larger medieval Chinese corpus.
Concerning contemporary regional Romance languages,
Miletic et al. (2020) also used a smaller treebank to gen-
erate new annotations, and concluded that using similar
languages to train a model does not improve parsing. Al-
though there are many resources for Latin, and some for
Ancient Greek, we do not include them here, because they
do not face the same challenges as medieval states of lan-
guage, in particular the high level of spelling variability.
Lastly, concerning dependency parsing and POS-tagging
of Old French in particular, the works of Guibon et al.
(2014) and Stein (2014) and Stein (2016) are noteworthy.
However, they use very different approaches to the one
used in this paper and evaluate on previous versions
of SRCMF, with incompatible annotation choices and
slightly different texts. For the UD version of SRCMF,
the most notable work is that of the winner of the CoNLL
2018 Shared Task (Zeman et al. 2018), UDPipe 2.0
(Straka 2018), which was later enhanced by including
contextualized word embeddings (Straka et al. 2019).

3. Data
This section describes the raw corpus of Medieval
French we gathered in order to train unsupervised
language models for Old French. To our knowledge, it
is one of the largest such dataset gathered for Medieval
French, although it remains quite small (55 MiB in total)
relatively to the corpora usually used for pre-training
contextual embeddings models.

https://doi.org/10.5281/zenodo.6461220
https://github.com/hopsparser/hopsparser/blob/main/docs/models.md#srcmf-ud
https://github.com/hopsparser/hopsparser/blob/main/docs/models.md#srcmf-ud


Figure 1: Oïl languages

Medieval French covers both Old French (9th-13th c.)
and Middle French (14th-15th c.). These stages are
linguistically close, and both precede the adoption of
spelling norms. Middle French is more regular than Old
French in some respects such as word order (Marchello-
Nizia et al. 2020) and less in others such as NP structure
and pronouns system (Marchello-Nizia 1979). Medieval
French covers a set of Oïl Romance languages spoken
in the kingdom of France between the 9th and the 15th
century (fig. 1). There are around twenty such languages.
Older texts are close to Late Latin, and verse is prevalent
until the end of the 13th century. Old French has a
relatively free word order. Until the mid-11th century,
the prevalent order is Subject-Object-Verb (SOV), which
is then gradually supplanted by SVO, which is the default
order in contemporary French. Unlike most languages
with free word order, the functions of verbal arguments
are not always given away by morphological clues, the
already simplistic case system of Old French disappears
progressively through the covered period.
There are also many cases of syntactic ambiguity. For
example, in the following quote from Lancelot,5 (verse
5436), both “la dame” and “Lancelot” could be the
subject or the object of “Vit” and only the context enables
the reader to understand that “la dame” is the subject.

Dolant
Mournful

et
and

pansif
meditative

Lancelot
Lancelot

Vit
saw

la
the

dame
lady

‘The lady saw that Lancelot was mournful and
meditative.’

5In the edition from Pierre Kunstmann, from the online
Base de français médiéval: http://catalog.bfm-corpus.
org/CharretteKu.

Word order is also relatively free within constituents. For
example, a noun modifier can be on the left or on the right
of its governor, and it is not necessarily preceded by a
preposition. In contemporary French, it can only appear
on the right, and it is found without a preposition only in
some cases like named entities. Because of the general
free word order and the absence of punctuation in our
treebank, this adds up to the ambiguity of the analysis.
In each of the following examples from the SRCMF
corpus, the noun following roi (“king”) has a different
analysis: head of roi, modifier, argument of the same
verb or a different one, with no explicit marking:

Fus tu donc pus a la roi cort
Were you then no more at the king court

nmod
det

case

“Then were you not at the king’s court anymore?”
(Beroul Tristan)

la fille au riche roi pescheor
the daughter of the rich king fisher

flat

“the daughter of the rich Fisher King” (Queste del Saint
Graal)

De Guenelun atent li reis nuveles
From Ganelon waits the king news

nsubj

obj

“The king waits for news from Ganelon.” (Chanson de
Roland)

Biax sire fet li rois escu vos envoiera Diex
Dear Sir says the king shield you send-FUT God

nsubj
obj

“Dear Sir, says the king, God will send you a shield.”
(Queste del Saint Graal)

Furthermore, overt subjects are not mandatory, and are
often dropped in texts written in verse until the 12th
century, after which the presence of subjects increases
through time. These phenomena are particularly preva-
lent in verse, where metric and rhyming constraints often
lead to more contrived syntactic forms than in prose.
Another source of ambiguity is the variety of spellings,
due to the lack of spelling standard. For example, the
word moult (transl. a lot (of), very), emblematic of this
period, is initially an adjective, and it is progressively
grammaticalized, becoming an adverb. Several forms
appear at the same time, some with a declension, some
without, and the radical does not have a fixed spelling:
molt(e)(s), molz, mult(e)(s), mul(t)z, mou(l)t…
We chose to include a few texts from the early Middle
French period (14th-15th c.) in this raw corpus, which
brings a valuable complement of the prose documents

http://catalog.bfm-corpus.org/CharretteKu
http://catalog.bfm-corpus.org/CharretteKu


Corpus Size (MiB) Size (Mwords)

BFM (Guillot-Barbance et al. 2017) 20.7 3.91
AND (Rothwell and Trotter 2005) 17.2 3.25
NCA (Stein et al. 2006) 9.7 2.05
Chartes Douai (Gleßgen 2003) 3.1 0.56
OpenMedFr (Wrisley 2018) 1.7 0.33
Geste (Camps et al. 2016) 1.5 0.32
MCVF (Martineau 2008) 1.4 0.26
Chartes Aube (van Reenen et al. 2006) 0.2 0.04

Total 55.3 10.53

Table 1: Data sources for the raw corpus used for model pretraining, with sizes in bytes and number of words. Due
to the nature of the documents, mixing prose, verse, titles, annotations… estimating a number of sentence would be
error-prone and can be abstracted over, given that the models trained here do not depend on strict sentence boundaries.

that are lacking for Old French, while staying close
enough to late Old French, the boundary between the
two epochs being somewhat fuzzy. These texts precede
the adoption of norms established by editors after the
invention of Gutenberg’s printing press. Middle French
is more regular than Old French in some respects such
as word order (Marchello-Nizia et al. 2020) and less
in others such as NP structure and pronouns system
(Marchello-Nizia 1979), but they share most of their
lexicon and for these relatively early texts, the syntax is
not too different from that of late Old French texts.

0 5 10 15

Literature

Religious

Didactic

Historical

Legal

13.33

4.35

4.35

0.69

0

2.35

4.43

3.04

8.36

15.71

Datasize (MiB)

Prose
Verse

Figure 2: Distribution of form and domain, gathered
from documents metadata and manual annotation.

Medieval French has many factors of variation: language
evolution, dialects, domains, forms of text (verse or
prose) and lack of standard. Our dataset gives us a
representation of Medieval French that is as accurate and
diversified as possible, given the limited amount of mate-
rial that survived to these days. The detailed instructions
to replicate this dataset are described in the Appendix. No
particular processing is done on the original documents.
In order to get a sound evaluation of the contextual
embeddings trained with this dataset, we filter out
the documents that are also present in the SRCMF

treebank used for evaluation purposes in section 46.
The resulting corpus is quite heterogeneous: legal
texts and verse literature are in the majority, whereas
other domains, such as historical and didactic texts, are
under-represented, as can be seen in fig. 2.

4. Experiments
We evaluate a set of alternative word representations
on Old French, using their usefulness for POS-tagging
and dependency parsing as a downstream evaluation. To
that end, we train and evaluate a parser/tagger using the
annotated treebank of Old French (SRCMF, Prévost and
Stein (2013)) as provided by the 2.7 version of the UD
dataset (Zeman et al. 2020) as a reference treebank.
Our parser/tagger probe uses Dozat and Manning
(2018)’s neural graph parser made as reimplemented
by Le et al. (2020) and Grobol and Crabbé (2021),
using the same hyperparameters. Word representations
are obtained by concatenating subword embeddings,
averaged over transformer layers together with character
embeddings and non contextualized word embeddings.
This representation is similar to those used by Straka
et al. (2019) and Ling et al. (2015). In all of our
experiments, the contextual embeddings are fine-tuned
while training the parser. Unlike the recent CoNLL
challenges settings, we assume gold tokenization, since
the syntactic annotations we target provide a reference
word-based segmentation. Using a predicted one could
only add noise to our experiments. Furthermore, for most
European languages using a Latin script—including Old
and Middle French—, word segmentation is acceptably
approximated by simple typographic tokenization.
The remaining of this section presents our experimental
results, sorted by nature of required data. We report
UPOS POS-tagging scores as well as unlabeled and
labeled attachment scores for dependency parsing (re-
spectively UAS and LAS), as given by the CoNLL-2018

6As noted by Gururangan et al. (2020), pre-training on
task specific data provides an additional boost, that would
muddle our results, since our objective here is not so much task
optimization as embeddings benchmarking.



scorer, computed on the development set of SRCMF to
avoid overfitting the architecture and transfer learning
procedure to the test set. Results on the test set are
provided only for the dev-best models to allow us to
compare our results to the state of the art.
Due to the number of costly experiments,7 the results are
reported on single runs. The results should therefore be
interpreted only with respects to the broad trends: small
score differences between competing settings should be
taken with care.

4.1. Baselines

Embeddings UPOS UAS LAS

Vanilla 93.51 87.60 81.54
Random-base 93.17 86.97 80.71
finBERT 94.44 88.44 82.47

Table 2: Results on SRCMF dev — no additional data.

We first compare a baseline where contextual embed-
dings are not used at all (Vanilla) with two settings using
models with no preexisting knowledge of Old French:
Random-base, a randomly initialized model using the
same architecture and model size as RoBERTa-base
(Liu et al. 2019) and finBERT (Virtanen et al. 2019),
a contextual embedding model from Finnish, a Uralic
language that is unrelated to Old French. These baselines
are meant to check that the gain in performances
observed when using models with some (possibly
indirect) knowledge of Old French are linked to this
knowledge and not simply due to an increase in the
number of trainable parameters (for the random baseline)
or to a weight distribution induced by training on a
language modeling task that would be universally good
for all languages (for the finBERT baseline, which can
thus be seen as a different kind of weight initialization).
Table 2 shows the results obtained in these configurations,
which show that using a model with random weights,
even fine-tuned for these tasks, does not bring any
improvement, and is in fact even worse than using no
contextual embeddings at all. In contrast, using a model
that has been pretrained for language modeling—even
for an unrelated language—brings some modest
improvements. This suggests that pretraining gives a
structure to this kind of model that makes it suitable
for fine-tuning on the downstream task, but the impact
of this gain is clearly—and predictably—very limited
compared to what can be expected for representations
that have been trained on relevant linguistic data.

4.2. With related contextual embeddings
Whena low-resource language isclose toawell-resourced
one, it ispossible to leveragemodelsdesignedfor the latter.
ForOldFrench, contemporaryFrench is anobviouscandi-
date and two contextual embeddings models are available:

7See the Appendix for elements on the carbon footprint of
our experiments.

Base model UPOS UAS LAS

FlauBERT 95.70 90.43 85.45
CamemBERT 95.86 91.15 86.31
mBERT 96.06 91.52 86.83

Table 3: Results on SRCMF dev — monolingual models.

FlauBERT (Le et al. 2020) and CamemBERT (Martin
et al. 2020). Furthermore, mBERT (Devlin et al. 2019),
a model trained on a multilingual corpus which does
not include Old French (possibly apart from some frag-
ments in its contemporary French training data), has been
shown to be suitable for many languages, and in partic-
ular for Indo-European and Romance languages (Straka
et al. 2019; Muller et al. 2020). We report in table 3 the re-
sults obtained when using these language models directly,
without additional fine-tuning involving Old French data.
As expected, these results show significant improvements
over the baselines, confirming that using contextual
embeddings for a related language works better than
both randomly initialized embeddings and embeddings
pretrained for an unrelated language—even after
fine-tuning. More surprisingly, the best results here are
obtained with mBERT. This could mean that mBERT
benefits from having been pretrained for a wider range
of languages, including in particular other Romance
languages that share with Old French some features, lost
in contemporary French: for instance null subjects.

4.3. With raw linguistic data
We now try to take advantage of the raw Medieval French
data described in section 3. To that end, we explore two
strategies: training a model from scratch and refining
existing models by “post-training” them—running a few
more training epochs on the Medieval French raw data.
In the “from scratch” strategy, we first train a BBPE sub-
word tokenizer (C. Wang et al. 2020) on our raw corpus,
then train a RoBERTa (Liu et al. 2019) masked language
model. Taking inspiration fromMicheli et al. (2020), who
worked in a setting close to ours: a small and noisy pre-
training corpus used to create a model from scratch, we
used a RoBERTa architecture. As reported in table 4, we
tested several parametrizations of the architecture also in-
spired by Turc et al. (2019). Out of these alternatives, the
“BERTrade-petit” configuration was the most successful
and this is the one we keep for the following experiments.
For the “post-training” strategy, we continue the training
of the pre-trained models used in sections 4.1 and 4.2,
for 12 epochs on our raw corpus. We used the same
RoBERTa masked language modeling task, using the
same parameters as Z. Wang et al. (2020) (but without
vocabulary modifications), resulting in the BERTrade-X
models, where X is the name of the base model.
The results of these experiments are reported in Table 5.
Comparing these to our results of section 4.2 shows
that training a model from scratch, even on such
limited amounts of data, yields a better model than a



Name Layers Embeddings Heads UPOS UAS LAS

BERTrade-tiny 2 128 2 94.03 88.66 82.79
BERTrade-small 4 512 8 96.53 86.30 87.49
BERTrade-petit 12 256 4 97.14 91.90 89.18
BERTrade-medium 8 512 8 96.62 91.92 87.60
BERTrade-base 12 768 12 96.74 92.37 88.42

Table 4: Results on SRCMF dev — Performances of different model sizes when training from scratch

Base model UPOS UAS LAS

BERTrade-petit 97.14 92.95 89.18

BERTrade-finBERT 96.28 92.12 87.92
BERTrade-mBERT 96.95 93.33 89.60
BERTrade-CamemBERT 97.16 93.75 90.06
BERTrade-FlauBERT 96.94 93.75 90.07

Table 5: Results on SRCMF dev — using raw data.

simple task-specific fine-tuning of mBERT. However,
post-training mBERT yields even better results, and the
best ones are obtained by post-training the models for
contemporary French.

Model UPOS UAS LAS

Straka et al. (2019) 96.26 91.83 86.75

mBERT 96.19 92.03 87.52
BERTrade-petit 96.60 92.20 87.95
BERTrade-mBERT 97.11 93.86 90.37
BERTrade-FlauBERT 97.15 93.96 90.57
BERTrade-CamemBERT 97.29 94.36 90.90

Table 6: Results on SRCMF test

4.4. Putting it all together
Finally, in table 6, we compare the performances of our
models on the test set of SRCMF with those obtained by
Straka et al. (2019), with similar methods. The difference
between the models is that we fine-tune the word
embeddings, while Straka et al. (2019) keep them frozen.
Our mBERT baseline, which is the closest to their
configuration, shows that even without any additional
data, task-specific fine-tuning already brings significant
improvements, while our models refined using our raw
corpus of Medieval French bring further improvements,
leading to state-of-the-art results that are consistent with
their results on the development set.

5. Conclusion
In this work, we have shown that building a monolingual
contextual word embeddings model for Medieval French
is possible even with limited and heterogeneous linguistic
data and that it can bring significant performance gains in
parsing and POS-tagging. To that end, the best strategy

seems to be post-training a contextual word embedding
model for contemporary French on raw Medieval
French documents. We have not directly addressed the
internal heterogeneity issue in both our pretraining and
fine-tuning data, relying instead on the versatility of the
representation models we considered to bypass it, but
it seems a promising perspective for future work—for in-
stance by using finer-grained post-training, concentrating
on specific linguistic sub-periods or genres.
For historical languages in general, this suggests that
language-specific fine-tuning is more efficient when
applied to a model pre-trained for their contemporary
counterpart than when applied to a multilingual model.
While this study is not currently easy to replicate for other
languages due to the lack of annotated data for a suitable
downstream task, it suggests that the considerable
amount of work required to gather even a small amount
of raw texts in the target language is a sound investment,
given the significant improvements it can bring to
contextual word representations. Beyond historical
languages, these findings could also help for processing
minority dialectal variants and contact languages of
well-resourced languages, and we leave for future work
the exploration of these generalizations.
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A. Collecting the Data
The following data can be downloaded directly from
their website:

• Chartes de l’Aube:
https://sites.google.com/site/achimstein/
research/resources
Extract raw text from XML files: <body>, then <s>,
then <word>.

• Geste:
https://github.com/Jean-Baptiste-Camps/
Geste
Raw text is available under /txt/norm/.

• OpenMedFr:
https://github.com/OpenMedFr/texts
Remove the header of each file (until *** START),
its last line (*** END), paragraph breaks (#|) and
folios or pages numbers.

Special permissions are required to access and use these
sources:

• AND:
https://anglo-norman.net/project-members

• BFM:
http://bfm.ens-lyon.fr/spip.php?article19
Raw text is available.

• Chartes Douai:
https://www.rose.uzh.ch/docling

• MCVF: http://www.voies.uottawa.ca

• NCA:
https://sites.google.com/site/achimstein/
research/resources
Extract raw text from the XML files: <body> then
<txm:form>.

B. Details on the Models
B.1. Models Trained From Scratch

These are trained for 32 epochs in a masked language
modeling task using the same parameters as RoBERTa
(Liu et al. 2019) but a smaller batch size of 256 samples8,
which amounts to a magnitude of 1×105 steps. We also
use a smaller vocabulary size (8192) than other works,
in line with the observations of Ding et al. (2019) that
learning large vocabularies on small corpora defeats
the purpose of sub-word tokenization. Using a larger
vocabulary size of 5×104 (like FlauBERT) also did not
seem to bring any improvements in our preliminary
experiments and made pre-training more expensive.

B.2. Post-training
The pretrained models we used in the post-training
settings are those available in the 4.2.0 version of
Huggingface Transformers (Wolf et al. 2020) and the
exact handles are:

mBERT bert-base-multilingual-cased

flauBERT flaubert/flaubert_base_cased

camemBERT camembert-base

finBERT TurkuNLP/bert-base-finnish-cased-v1

The post-trained models are those with MLM heads,
which we did not reset before post-training, so the
post-training phase can be seen as a language transfer
task for masked language modeling out of which we
extract a contextual word embeddings model.

C. Carbon Footprint
In light of recent concerns about the power consumption
and carbon footprint of deep learning models (Schwartz

8Preliminary experiments with larger batch sizes showed
no significant improvement to compensate for the heavier
computational load.
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Model Power (W) # Models Duration (h) Consumption (kWh) CO2e (kg)

Pre-train 10 756 11 6 11 216.36 358.92
Post-train 1520 4 20 192.13 6.15

Total emissions 365.07

Table 7: Average power draw, number of models trained, training times in hours, mean power consumption including
power usage effectiveness (PUE), and CO2 emissions; for each setting.

et al. 2020; Bender et al. 2021) we report the power con-
sumption and carbon footprint of our main experiments
following the approach of Strubell et al. (2019). Two
different configurations were used in our experiments,
one for pre-training models from scratch (Pre-train)
and another one for continuing the training of existing
models (Post-train).

Pre-train: We use a cluster of 4 machines each
one having 8 GPU Nvidia Tesla V100 SXM2 32 GiB,
384 GiB of RAM, and two Intel Xeon Gold 6226
processors. One Nvidia Tesla V100 card is rated at
around 300 W,9 while the Xeon Gold 6226 processor is
rated at 125 W,10. For the DRAM we can use the work of
Desrochers et al. (2016) to estimate the total power draw
of 384 GiB of RAM at around 39 W. The total power
draw of this setting adds up to around 10 756 W. We
train 11 different models in this configuration.

Post-train: We use a single machine having 4 GPU
Nvidia Tesla V100 SXM2 32 GiB, 192 GiB of RAM and
two Intel Xeon Gold 6248 processors. The Xeon Gold
6248 processor is rated at 150 W,11, and the DRAM total
power draw can be estimated at around 20 W. The total
power draw of this setting adds up to around 1520 W.
We train 4 different models in this configuration.
Having this information, we can now use the formula
proposed by Strubell et al. (2019) in order to compute
the total power required for each setting:

pt=
1.58t(cpc+pr+gpg)

1000

Where c and g are the number of CPUs and GPUs
respectively, pc is the average power draw (in W) from all
CPU sockets, pr the average power draw from all DRAM
sockets, and pg the average power draw of a single GPU.
We estimate the total power consumption by adding GPU,
CPU and DRAM consumption, and then multiplying by
the Power Usage Effectiveness (PUE), which accounts
for the additional energy required to support the compute
infrastructure. We use a PUE coefficient of 1.58, the
2018 global average for data centers (Strubell et al. 2019).
In table 7 we report the training times in hours, as well
as the total power draw (in Watts) of the system used to
train the models. We use this information to compute the

9 Nvidia Tesla V100 specification
10Intel Xeon Gold 6226 specification
11Intel Xeon Gold 6248 specification

total power consumption of each setting, also reported
in table 7.
We can further estimate the CO2 emissions in kilograms
of each single model by multiplying the total power
consumption by the average CO2 emissions per kWh in
our region which were around 32 g kW−1 h in January
2021,12 when themodelswere trained. Thus the totalCO2
emissions in kg for one single model can be computed as:

CO2e=0.032pt

All emissions are also reported in table 7.

12Rte - éCO2mix.

https://www.nvidia.com/en-us/data-center/v100/
https://ark.intel.com/content/www/us/en/ark/products/193957/intel-xeon-gold-6226-processor-19-25m-cache-2-70-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/192446/intel-xeon-gold-6248-processor-27-5m-cache-2-50-ghz.html
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