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Supermanifolds corresponding to the trivial vector bundle over
torus

Mikhail Bashkin

Abstract. All supermanifolds whose retract 7" is determined by the trivial bundle of rank
n over the torus 7™ are O-homogeneous if and only if 7" is homogeneous.

1 Preliminaries

1.1 Split and non-split supermanifolds The ground field is C.

A complex supermanifold of dimension m|n is a Z/2-graded ringed space of the form M :=
(M, O), where M is a topological space and O is a sheaf of associative commutative superalgebras
with unit on M, which is locally isomorphic to a superdomain in C™". For details, see [M], [03],
[BGLS*]. A superdomain in C™" is a pair (U, Az(&1,...,&)), where U is an open subset of C™,
and F is the sheaf of holomorphic functions on C™. The coordinates zy,...,x,, in U C C™ and
generators &1, . . ., &, of the Grassmann algebra are identified with some sections of the sheaf O|y.
They are called local coordinates even and odd, respectively.

Let (M, F) be a complex manifold and & be a locally free analytic sheaf on it, i.e., £ is a sheaf
of holomorphic sections of some holomorphic vector bundle E — M. Then, (M, Oy), where
Oy = N£&, is a complex supermanifold. A supermanifold is called split if it is isomorphic to
a supermanifold of this form and is called non-split otherwise.

Let us show that every supermanifold is a deformation of a split supermanifold. Consider the
subsheaf of ideals J = (Oz), generated by odd elements. Denote F := O/J. Then, M,q = (M, F)
is a complex manifold. It is called the odd reduction of (M, ©) and hereafter is often denoted by M.
The powers of J determine the following filtration:

O=J">27'>27*>--->J""=0. (1)
The associated sheaf of graded algebras
grO = @ gr,0, where gr,0=J%/J"",
0<p<n
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is an analytic sheaf on the reduction M,q. Actually, gr O ~ A€, where £ = gr, O is locally free
sheaf. Clearly, (M,grO) = (M, Oy,) is a split supermanifold of the same dimension as (M, O).
We call it the retract of the supermanifold (M, Q). Obviously, a given supermanifold is split if
and only if it is isomorphic to its retract.

Let 7, : J? — gr,O be the canonical projection. Then, there is the exact sequence of sheaves

0— J" — TP 5 gr,0 — 0. (2)

A supermanifold (M, O) is split if and only if there exists an isomorphism of superalgebra sheaves
h:grO — O, whose restriction h, : gr,0 — J? splits the sequence (2), i.e., satisfies the condition
mp 0 h, = id. In general, this splitting exists in a neighborhood of any point in M. It can be given
by means of local coordinates.

1.2 The tangent sheaf For an arbitrary supermanifold (M, Q) denote by T := Der O its
tangent sheaf (or the sheaf of vector fields). It is the sheaf of derivations (over C) of the structure
sheaf O. Note that the tangent sheaf is a sheaf of Z/2-graded left O-modules, and also a sheaf
of Lie superalgebras. The sections of the tangent sheaf are called holomorphic vector fields on
(M, ). They form the Lie superalgebra v(M, O) of vector fields on (M, O).

Note that the filtration (1) determines the filtration of the tangent sheaf

T=T-)2Toy2  DTw D Tn1) =0, (3)

where

Ty ={veT [v(0)C I’ v(J)C T}, p>0.
Since (M, Oy ) is split, its tangent sheaf 7y, is a Z-graded sheaf of Lie superalgebras

%r: @ (7—gr)p7

~1<p<n

where

(Tar)p := DeryOge = {v € Ty | v((Ogr)g) C (Ogr)grpy q € Z}

This grading is compatible with the Z/2-grading. The Lie superalgebra v(M, O,,) of vector fields
is a graded algebra with the Z-grading compatible with the Z/2-grading.

Since F C O, the tangent sheaf 7, is a Z-graded analytic sheaf on M. This sheaf is locally
free (see [O3]), and hence it is the sheaf of holomorphic sections of a Z-graded holomorphic vector
bundle ST over M (the supertangent bundle).

1.3 Sheaves of automorphisms and the classification theorem Let (M, O) be an complex
supermanifold. Denote by Aut(M, Q) the group of automorphisms of (M, Q). By definition,
F € Aut(M,0) is a pair (f, ), where f : M — M belongs to group Bih M of biholomorphic
transformations of the manifold M and ¢ is an automorphism of the superalgebra sheaf O over f.
Denote by Aut O the sheaf of automorphisms of the structure sheaf O (mapping every stalk O,,
where z € M, onto itself). Moreover, for any F' = (f,¢) € Aut(M,O) the map Int F' : a —
poaop !isan automorphism of the group sheaf Aut O. Hence, we get the action Int of the
group Aut(M, O) on Aut O by automorphisms. The subsheaf

Aut0 ={a € AutO | a(f)— f € T? feO} (4)
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is invariant under this action.

Let E be a holomorphic vector bundle over (M, F) and AutE the group of its automor-
phisms. Clearly, any element of this group gives rise to an automorphism of the split supermani-
fold (M, Oy, ) corresponding to E which preserves the Z-grading of the structure sheaf. Hence, we
can identify Aut E with a subgroup of Aut(M, O, ), consisting of automorphisms that preserve
the Z-grading. So the Aut(M, O, )-sheaves Aut Oy, and Aut 2Oy, are also Aut E-sheaves.

1.3.1. Theorem ([G]). Any supermanifold (M,O) corresponds to an element of the set of 1-
cohomology H'(M, Aut 2Oy, ). This correspondence gives rise to a bijection between the isomor-
phism classes of supermanifolds satisfying the above condition, and the orbits of the group Aut E
on H' (M, Aut(9)Oy,) under the natural Aut E-action.

Let us describe the correspondence mentioned in Theorem 1.3.1. Let (M, O) be a supermanifold
with retract (M, Oy, ). Then, we can choose an open cover 4 = (U;);e; of M such that there exist
isomorphisms h; : Ogl|y, = Oly,, where i € I, with conditions m, o (h;), = id on (Og),|v,
(see (2)). Setting z;; = hi'h;, we get a l-cocycle z = (2;5) € Z' (U, Aut(9yOy). Its class ¢ €
HY(M, Aut()Oy,) does not depend on the choice of h; and corresponds to (M, O).

1.4 A non-abelian complex Recall the construction of a non-abelian complex (see [O3], [O2])
which allows to express H*(M, Aut2)O,) in terms of differential forms. Let ®79 be the sheaf of
smooth differential (p, q)-forms on M. First, we construct the Dolbeault—Serre resolution of the
sheaf O, :

P = @ (/I;p7q> P4 = PO ® (Ogr)ps

p,q20
Ap@u) = (p)@u for any ¢ € "9 u € (O ),.

Then, regarding ® as a sheaf of graded superalgebras with respect to the total degree p + ¢, we
get a sheaf of graded Lie superalgebras T = Der ®. The sheaf T has the derivation D = adg of
degree 1 (and of bidegree (0,1)). Denote

S={ueT|uf)=uldf) =0 for any f € F}.

This is a subsheaf of bigraded subalgebras, and D(S) C S. As it was shown in [O3], the subsheaf
Spq 18 naturally identified with the sheaf %7 ® (7y), of (0,¢)-forms with values in the vector
bundle ST,, and D : S,, — S, 411 goes over to the operator d : ¢ ® v — Jp ® v, where ¢ € %9
and v € (Tg)p. Hence, the sequence

0— Ty — 8o 28y 2., (5)

where ¢ is a natural inclusion, is identified with the Dolbeault—Serre resolution of 7Tg,.. Set S, , 1=
I'(M,S,,) and S := €, ;50 Sp,q- Then, the bigraded Lie superalgebras H*(M,T) and H (S, D)
are isomorphic.
The desired non-abelian complex is the non-linear complex associated to the differential bi-
graded Lie superalgebra (S, D). More precisely, denote by F> the sheaf of differentiable complex-
valued functions on M. Consider the sheaves Og; := F> @ Oy, and the group

PAut(y)Og = {a € Aut O —u € @ Kk € Og b

k>2
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The non-abelian complex is the triple K = (K°, K', K?), where

K° = PAutp 037, K?:= @SQk;g for ¢=1,2,

gr
k>1
with the coboundary operators §; : K* — K" for i = 0, 1, given by

So(a) = 0 —ada~! for any a € K°,
61(u) = Du— Lu,u) = —L{u— 9,u— 9] for any u € K.

The gauge action p of K on K is given by
pla)(u) = a(u—0)a '+ 0 forany a € K° u € K"

Define Z'(K) := {u € K' | §ju = 0} and H'(K) := Z'(K)/p. In [03], it is proved that there is
an isomorphism of pointed sets

JI Hl(K) — Hl(M, Aut(Q)Ogr).

To describe this isomorphism, take a cocycle w € Z'(K(;)) and an open cover 4 = (U;) on
M such that w = do(a;), where a; € I'(U;, Aut(2yO0g7). Then, we get the Cech cocycle z =
(2ij) € ZY (U, Aut(2)Oy,), where z;; = a; 'a;. We have pu(w) = ¢, where ¢ € H'(M, Aut (9O ) and
w € H'(K) are the cohomology classes of the cocycles w and z, respectively.

Note that the group Aut E acts on the complex K and on H'(K) in a natural way.

Using eq. (5), we can also construct a fine resolution of the tangent sheaf of any supermanifold
with retract (M, O, ). Consider the supermanifold (M, O) with retract (M, Oy,) that corresponds
to the cohomology classes w and ¢ of cocycles w € Z'(K) and z = (z;;), as above. Twisting eq. (5)
by z, we get the fine resolution

1 i oIntz D, oIntz D
0— T —= 87— 8 — ... (6)
Here any v € T is a family v = (v'), where v* € T'(U;, Tg:) and o' = z;; 007 0 z;;' in U; N Uj;. In
the same way we express the sections of the sheaves Si?;z.
The correspondence (v*) = (h; o v’ o h; ') gives an isomorphism 7,** ~ T, and the correspon-
dence (v') — (a; 0 v' 0 a; ") gives an isomorphism S™* ~ S, , for p > 0. Then, eq. (6) gives the
following fine resolution of 7 = Der O:

0—T 580281 2 ... (7)
where D” := D — ad,, = adz_,. Considering global sections, we get a complex (S,W) for

calculating cohomology with values in the sheaf T .

We give an explicit expression of 7. As we have seen in Subsection 1.3, the cocycle z =
(2i;) € Z'(8h, Aut(2)Oy) of the cover 4l can be represented in the form z; = h; 'h;. But it can
also be represented in the form z;; = a;'a;. Then, in U; N U; we have h;'h; = a;'a;, and
0= ah;' = ajhj’1 is an injective homomorphism O — Og. It follows that 7 : 7 = Der O — S,
is expressed by the formula v — gvo 1.

1.4.1. Theorem. The mapping T : v s ovo~*

H*(M,T) onto H*(S,D"). -
In particular, we get the isomorphism 7 : o(M, Q) — Ker D" C S0

is an isomorphism of the graded Lie superalgebra
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1.5 An application of the Hodge theory Suppose that M is compact. Then, we can develop
the standard Hodge theory in the complex (S, D) regarding it as the complex of (0, *)-forms with
values in the bundle ST, see [O3]. Endow M and E with smooth Hermitian metrics and consider
the corresponding Hermitian metric on ST. Denote by D " the operator conjugate to D and by
O := [D, D "] the Beltrami-Laplace operator. Their bidegrees are (0, —1) and (0, 0), respectively.
Then, we have the orthogonal decomposition

S=HeDS®&D 'S, (8)
where H = Ker [ is the bigraded subspace of harmonic elements. Moreover,
id=H+0G=H+DD G+D DG,
where H is the projection onto H in eq. (8) and G is the Green operator. It is well known that
H,, ~ H"(S,D) ~ H'(M, (T,),) for any p.q> 0. 9)
Consider now the nonlinear complex K. Denote

Hq) = @ Hap 1,

p>1

Li:=KerD NK', K:=ZY(K)N L,
and define also the subset Ko C K consisting of the u such that

u— %b "Glu,u] = Hu. (10)

1.5.1. Theorem ([O3]). We have K C Ko C Ly. The mapping H : Ko — Hyy is a bijection
and maps K onto the connected algebraic subset V. C Hpy ~ @ HY(M, (Tg)ap) given by the
p>1

equation

where ¢ : Hiyy — Ly 1s inverse to H.
The natural mapping K — H'(K) ~ H*(M, Aut(5)O,,) is onto.

The set K is an analogue of the Kuranishi family of complex structures on a compact manifold.
By Theorem 1.5.1 we can see that this family cuts every cohomology class, and hence it can be
used for classification of supermanifolds with retract (M, Og,).

1.6 Actions on supermanifolds Let (M, Q) be an arbitrary supermanifold. An action of
a (real or complex) Lie group G on (M, Q) is a homomorphism ¥ : G — Aut(M, Q). For any
g € G we have U(g) = (f(g9),%(g)), where f : g — f(g) € Bih M is an (analytic) action of the
group G on the complex manifold M and (g) is an automorphism of the sheaf O over f(g).

Let E be a holomorphic vector bundle over a complex manifold M and G a Lie group. Suppose
that E has a structure of the G-bundle, i.e., a homomorphism ® : G — Aut E satisfying the natural
conditions of analiticity is given. Using the inclusion Aut E C Aut(M,O), we may consider ®
as an action on the split supermanifold (M, O,,) corresponding to the bundle E. This action is
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Z-graded, i.e., all p(g), where g € G, preserve the Z-grading of the structure sheaf. Conversely,
any Z-graded action of the group G on (M, O,,) extends an action on the vector bundle E.

Let again (M,O) be an arbitrary complex supermanifold, (M, Oy,) its retract and E the
corresponding vector bundle.

If FF=(fv)e€ Aut(M,O), then the automorphism 1 of O over f preserves a filtration (1),
and hence determines an automorphism ¢ of the Z-graded sheaf O, over f. Here, ¢ is uniquely
determined by the relation m, o9 = ¢ om, on J?.

Define F' = (f,¢) € Aut(M,Oy,) for every F = (f,¢) € Aut(M,0). Thus. we get a ho-
momorphism Aut(M,O) — Aut(M,E). It follows that any action ¥ : G — Aut(M, O) induces
a Z-graded action ® : G — Aut(M, Oy, ). In this case, we say that the action ® lifts to the action
U on (M, O).

There is the following lifting criterion:

1.6.1. Theorem ([O02]). Let G be a compact Lie group and suppose an analytic Z-graded action
U of G on a split supermanifold (M, Og,) be given. Let (M, O) be the supermanifold corresponding
to a given class ¢ € H'(M, Aut(2)Oq.) by Theorem 1.3.1. Then, the following conditions are
equivalent:

(i) the action ¥ lifts to (M, O);

(ii) the class ¢ contains a G-invariant cocycle z € Z' (L, Aut(2)Og,) where Lk is an open G-cover
of M;

(iii) the class uy;'(¢) € HY(K) (see Theorem 1.3.1) contains a G-invariant cocycle.

Now we give definitions of homogeneous and 0-homogeneous supermanifolds. Let (M, Q) be
a complex supermanifold. For any x € M we can define the tangent space T,(M, Q) := (m,/m2)*,
where m, is the maximal ideal of the local superalgebra O,.

There is a natural even linear mapping ev, : v(M, Q) — T, (M, O). Namely, every v € v(M, O)
determines a linear mapping m, — O, with v(m?) C m,, and hence a linear mapping

mx/mi — O, /m, =C,

i.e., an element ev,(v) € (m,/m2)*.

The subalgebra g C v(M, ) is called transitive if ev, : g — T,(M,O) is surjective for all
r € M and if ev, : g5 — T.(M,O)5 = T,(M) is surjective for all x € M, then it is called 0-
transitive. A supermanifold (M, Q) is called homogeneous (0-homogeneous) if there is a transitive
(0-transitive) subalgebra g C v(M, Q) of finite dimension. In the case when M is a compact we
can replace g by v(M, Q).

1.6.2. Theorem ([OP]). If a supermanifold (M,QO) is homogeneous (0-homogeneous), then
(M, gr O) is homogeneous (0-homogeneous).

2 Supermanifolds associated with the complex torus

2.1 Complex tori Let I' € C™ be a discrete subgroup of rank 2m. Then, the manifold T" =
C™ /T is a complex torus of dimension m. Note that T is a compact complex commutative Lie
group. There is a local coordinate system in a neighborhood of any point of the manifold T
formed by the standard coordinates zq, ..., 2, in C™. Let us denote these coordinates on T" also
by z;...,zn. The differential forms dzy,...,dz, are defined on T globally, since they are not
changed if we add a complex number to the variable. Using duality between differential forms and
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vector fields, we get the vector fields 0,,, ..., 0., which are defined globally, too. The tangent and
the cotangent bundles over 1" are trivial, and dz;, 0,, are basis sections of these vector bundles.

2.1.1. Proposition ([GH]). Let M be a compact Kihler manifold. A form a € T'(M,®%) is
harmonic if and only if o is an antiholomorphic form, i.e., da = 0.

It is well known that 7' = C™/I" is a compact Kéhler manifold with flat metrics induced by
Hermitian metrics in C™ (see [GH]). We can represent any o € T'(M, ®%9) in a form

a= Z iy..iy(2,2)dZ;, ... dZ;,, (11)
1<i1<...<ig<m
where a;,. ;,(2,%) are smooth global defined functions, z = (21,...,2p), Z = (Z1,...,%m). Since
any antiholomorphic function on 7" is constant, we have

2.1.2. Proposition. A form o € T'(M,®%9) is harmonic if and only if
a = Z iy ..i,dZ; - .. dZ;,, where a4, € C.

1<i1 <...<ig<m
A form on T is called T-invariant if it is invariant under the action of the group 7T on itself
by translations.

2.1.3. Proposition. The spaces of harmonic and T-invariant (0,q)-forms on T coincide.

Proof. Clearly, the forms dz;, ...dz;, are T-invariant. It follows that the form (11) is T-invariant
if and only if a;,.. 5, € C. Then, we apply Proposition 2.1.2. O

2.2 Supermanifolds corresponding to the trivial bundle over the complex torus Let
E =T x C" be a trivial holomorphic vector bundle of rank n over T" and &1, . . ., &, be the standard
basis of C*. Denote by T™" = (T, O,,) the split supermanifold corresponding to the bundle E.
The structure sheaf O, has the form F® A(1, ..., &,). The local coordinates z1, ..., 2, on T are
even coordinates on T™", and &, ..., &, are odd ones.

Consider the tangent sheaf 7T, = Der Og,. This sheaf is free over F, or, equivalently, the
bundle ST is trivial, and the basis of its sections is

62'1 o .@kﬁzj, gil ce fl'kagl, where

1<n<...<y<n, j=1,....m, l=1,...,n. (12)

Hence, the elements of S, , have the form

a= Y ( a2, 8,0+ Y b’“’j;fjl(z,z)gjl...gijagj)dzil...dziq,

11<...<ig J1<...<Jp J1<...<Jp+1
i=1,....m Jj=1,...,n
1,01, ,z R — .
where a7 *(2,Z) and bj 0 (2,%) are smooth globally defined functions on 7. Thus, from

PI"OpOSlthD 2 1.2 we get
2.2.1. Proposition. The form o € S, ; is harmonic if and only if

o = (X e g0+ Y U 600 )d5, .z, (13)

11<...<iq J1<.. <jp J1<.<Jp+1
i=1,....m j=1,..n

% Zl7 Jq ]’le 7,Lq
where a; .y b]h i € C.
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2.2.1a. Corollary. If o, € H, then [, 5] € H.

Assigning to every cohomology class from H?(M, (T ),) the correspondent harmonic form from
H, , (see (9)), we get an isomorphism of graded Lie superalgebras H (M, T,,) onto the subalgebra
HcCS.

Since §j, ... §;,0:, and &, ..., O, are T-invariant, from Proposition 2.1.3 we get

2.2.2. Proposition. Any harmonic form from S is T-invariant, and the other way round.

2.2.3. Theorem. We have Ky = H(;y and
KZV:{UJEH(;[) | [w,w] :O}.
Proof. Take w € Ky and denote h = Hw. We write h = Y hog, and w = ) wqg, where

k>1 k>1
hor € Hag 1, wor € Sor1. From (10) we get the following equations:

Wy = h27
Wg — %D*G[wz,wz] = hy,

Wok — %E*G Z [w257w2(kz—s)] = hag,

1<s<k—1

We prove that wyr, = hox by induction on k. For k = 1 this follows from the first equation.
Suppose that wy; = ho; for 1 < ¢ < k — 1. By Corollary 2.2.1a we see that

n = Z [w257 w2(kfs)] € H.

1<s<k—1

Since D" and G commute and D “h/ = 0, we get wop = hoy.
So we have proved that w = h € H(;). By Theorem 3, Ko = H(y), and ¢ = id. Therefore,
K=V ={weHqy|[w,w=0}. O

2.3 Lie superalgebras of vector fields on supermanifolds with retract 7" Consider
holomorphic vector fields on the split supermanifold 77". Clearly, any v € Up(Tm|") is a linear
combination of the fields

§jp o 65,0, for i < ... <jpyandi=1,...,m,
iy oo &Gy Og; for j1 < ... < jpprand j=1,...,n (see (12))

with holomorphic coefficients. Since any holomorphic function on 7" is constant,

V= Z Z a;l ----- jpgjl x ‘gjpgzi + Z Z b;l ~~~~~ J'p+1§j1 o 'fjp‘*‘l@gj’ (14)

1<i<m ji<...<Jp 1<j<n j1<...<Jp+1
; :
where aj, .. by . € C. Since

o(T™") = H, o = {v € S, | Dv =0},

we see that (14) is a special case of the formula (13).
By Theorem 1.5.1, any supermanifold with retract 7™™ can be described by a form from the
Kuranishi family K. By Theorem 2.2.3, K = V consists of harmonic elements.
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2.3.1. Theorem. Let (T,0) be a supermanifold with retract T™"™ given by an element w € V.
Then, the mapping T from (1.7) determines an isomorphism

0(T,0) — {v € S, | Dv=[w,v] =0} = {v € v, (T™") | [w,v] =0}

Proof. We can write w = wy + wy + ..., where wqy, € Hoy 1. Let v € S, and Dv = [w,v]. Then,
v =1v_1+v+ v+ ..., where v; € S;p. The equation Dv = [w,v] gives the finite system of
equations:

E'Ufl = 0,

EUO = O,

Duy = [wg, v-4],

DUQ = W2, Uo], (15)

Let us prove that Dv, = 0 for k = —1,0, ..., by induction on k. For k = —1,0 this follows
from the first and the second equations of (15). Suppose that Dv_; = ... = Dv;_; = 0. Then,
using system (15), we see that Duvy, is a sum of commutators of the fields v_y,...,vx_p with the
forms wy;. Since wy € Hy; 1, Corollary 2.2.1a shows that Dy, € H, ;. Hence Dy, = 0.

Thus, we proved that the kernel of D,, = D — adw in S, coincides with the subalgebra
{v € v, (T™") | [w,v] = 0} C v,(T™"). Now our statement follows from Theorem 1.4.1. O

2.4 Homogeneous supermanifolds with retract 77"

2.4.1. Theorem. Any supermanifold (T, O) with retract T™" is 0-homogeneous. It is homoge-
neous if and only if (T, O) ~ T™",

Proof. Let (T, ) be an arbitrary supermanifold with retract 77", From Theorem 2.2.3 we see
that it is determined by a harmonic form w € V. By Proposition 2.2.2 w is invariant under the
natural action of the group 7. Hence, by Theorem 1.6.1 the action of the group 7" on T™™ lifts to
an action on (T, 0). So (T, ©O) is 0-homogeneous.

From eq. (12) we see that the Lie superalgebra v(7™") is transitive. Then, T™" is homoge-
neous. Let (T, O) be the supermanifold with retract 7™" determined by a cocycle w € V C H.
Let (T, O) be homogeneous. Take a point zq € T, and denote by &, ..., &, the odd local coor-
dinates in the neighborhood U of zy which correspond to the coordinates &1, ..., &, on T™" by
the local spliting hy : Og |y — O|u. Since evy, : (T, O)y — T, (T, O)7 is surjective, then for any
j such that 1 < j < n, there exists a field v; € v(T, O)7 such that v; = 0, + v} in U, where
(V) zg € My Two- We can assume that the neighborhood U = U; is included into the cover (U;)

J
which we used in the description of 7 in Subsection 1.4. As was shown in Subsection 1.4, we have

7(vj) = ai(h; 'O hi)a; " + (aih; yvj(hiai ).
The sheaf S, o = T° = Der Og has a filtration similar to (3):
Ta’ = Ta(-1) © Tarlo) © Tarl) © -+
Since a; € T'(U;, Aut(2)Ogy), we have

ai(hi_laf,ihi>ai_1 = aiaﬁjai_l = aﬁj + uy,
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where u; € I'(Us, Tg(,))- Clearly,
-1 1y _
(ash; " )vi(hia; ) = o

satisfies (vf)z, € M3 (TS )z, Where mg? is the maximal ideal of (Og),,. Hence in U; we have

7(vj) = O + u; + vy,

where (uj + v/)z, € M (T2%)a,- By Theorem 2.3.1 7(v;) € v(T™I")y.

So, if 9; = 7(v;) — O, € b(T™")1, then Ty, € My (Tgr)s,- Therefore, ¥; € @ 0(T™")g 1.
k>0
By Theorem 2.3.1

[w, 0, +0;] =0 for j=1,...,n. (16)

We write w as w = wg + wy + . .., where wg, € Hyy, 1, and prove that wy, =0 for k =1,2,..., by
induction on k.
Considering the component of degree 1 of the left part of formula (16), we see that [ws, 9¢,] = 0.
Hence,
[wa, Og;](2) = O¢;(wa(2,)) =0 forr=1,...,m,
[wa, O, ](&s) = O, (w2(&)) =0 for s =1,...,n.

From (13) we see that wy = 0.

Suppose we have proved that wy = wy = ... = wer_o = 0. Considering the component of
degree 2k — 1 of the left part of the formula (16), we get [wa, J¢,] = 0 for all j = 1,...,n. As
above, we can prove that wy, = 0.

Thus, w = 0. Hence, (T, 0) ~ T™", m
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