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Homogeneous non-split superstrings of odd dimension 4

Mikhail Bashkin

Abstract. Let L be the holomorphic line bundle of degree k € Z on the projective line. Here,

the tuples (k1kaksks) for which there does not exists homogeneous non-split supermanifolds
CP,1€|14k2k3k4 associated with the vector bundle L_j, & L_j, ® L_;, ® L_j, are classified.

For many types of the remaining tuples, there are listed cocycles that determine homoge-
neous non-split supermanifolds.

Proofs follow the lines indicated in the paper Bunegina V.A., Onishchik A.L., Homoge-
neous supermanifolds associated with the complex projective line. J. Math. Sci. V. 82 (1996)

3503-3527.

1 Introduction

In this paper, I summarize the results of classification (up to a diffeomorphism) of homogeneous
complex (more precisely, almost complex, see [9]*, since the vanishing of the Nijenhuis tensor is
never required) supermanifolds M := (M, O), where M = CP! and dim M = 1|n. (Comments
with starred references are added by the editor of this Special Volume. D.L.)

For the case where M is split, the classification is known, see [10]: the non-diffeomorphic
supermanifolds are in one-to-one correspondence with n-tuples of non-negative integers.

If M is non-split, the classification is considerably more complicated and reduces to compu-
tation of cohomology of split homogeneous supermanifolds with coefficients in the tangent sheaf.

For n = 2 and 3, V. A. Bunegina and A.L. Onishchik completely investigated the case, see
[10], [11].

For n = 4, see below (summary of the results of [1] — [4], [6], [7]). For the method of the proof,
see [10], [11].

2 Results

As is known, any holomorphic bundle E over CP' can be uniquely decomposed into a direct
sum of line bundles: Grothendieck’s theorem, see [15]*. (For interesting applications of Linear
Superalgebra (with elements of category theory) to the description of vector bundles over projective
spaces, see the review [8]*. For the latest results on non-splitness of supermanifolds whose retract
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is the Grassmann manifold, see [24]*, [25]*, [26]*.) Let Lj be the holomorphic line bundle of
degree k € Z.
Consider a holomorphic bundle

E= L—k:1 S L_k2 5>, L—k3 ) L_k4, where kl > k’g Z k3 > k’4 Z 0.

If M is homogeneous, then the k; must be non-negative, see [10].
Let CP,kaQ rsk, designate the split supermanifold determined by E.
Let us cover CP* by two affine charts Uy and U, with local coordinates 2 and y = %, respectively.
Then, the transition functions on CP,1€‘14,€2 ksky 10 Uo N Uy are of the form
y =z,
n =a kg for i=1,...,4,

where & and 7; are basis sections of E over Uy and Uy, respectively.

Let M be a compact complex manifold. We will sometimes need general statements about the
m|n-dimensional supermanifold M = (M, O). Let Z C O be the subsheaf of ideals generated by
the subsheaf Q7. Consider the filtration of O by powers of Z:

O=2°>T>7*°> .. 01" >I"" =0.

The graded sheaf grO = @o<i<,, gr;O with gr,0 := I'/Z"! defines the split supermanifold
(M, grO) called the retract of (M, Q). Let Ty := @_1<p<a(Tgr), denote the graded tangent sheaf
of the split supermanifold (M, O,,). Consider the subsheaf

Aut(g)Ogr = eXp(<7-gr)2 S (7;1“)4)

of the sheaf Aut Og. Thanks to a theorem due to Green ([14]), the set of supermanifolds with
a given retract (M, O,) is isomorphic to the set of orbits of the group Aut E in H'(M, Aut(2)Oy;).

In what follows we often assume that H°(M, (7Tg)2) = 0. This is needed for existence of a
bijection (see [21, Section 3.2 pp.23-37])

HY (M, Aut 2Oy, +— H' (M, (Tar)2) ® H' (M, (Tar)a)-

2.1. Statement ([7]). For n < 5, let H(M,(Tg)2) = 0 and let there be given subspaces
Q2p C ZN4U, (Tgr)2p), where p = 1,2, such that every cohomology class in H'(M, (Tg)2p) con-
tains precisely one cocycle in Q)ap.

Then, every cohomology class in H'(M, Aut(yOy:) can be represented by a unique cocycle of
the form z = exp(u® + u*), where u*> € Qy and u* € Q4.

Hereafter, the expression “(M, ) is determined by the cocycle u? + u*” means that (M, O)
actually corresponds to the cocycle z = exp(u? + ut).

In [10, Prop. 12], there is given a description of the algebra End E. Let us reformulate this
Proposition in terms more convenient for us here. Any endomorphism a € End E can be considered
as an endomorphism of the sheaf £ of F-modules. In Uy, we have

a(/fl): Z ajifj fOI'?;:L...,n,

1<j<n
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where A = (a;;) is a matrix with elements aj; € F(Up). The matrix A completely determines the
endomorphism a, and a € Aut E if and only if A is invertible.

The following statement is needed in the classification of homogeneous non-split supermanifolds
up to a diffeomorphism.

2.2. Statement ([7]). The matriz A = (a;;) over F(Uy) corresponds to some a € EndE if and

only if
0 Zf ki < k?j,
;5 =
! is a polynomial of degree < k; — k; if k; > k.
First, consider the tuples (k,k,2,0) for k > 2. Let v(CP', O,) be the Lie superalgebra of
vector fields on (CIP’}C‘,?QO. Theorem 14 in [6] implies the following

2.3. Lemma. For a basis of H'(CP', (Tg.),), where ¢ = 1,2,4, we can take (the classes of) the

following cocycles defining CP,?,?QO.

1)(]:1 for k = 2

o7 E1€00;,,  @T1€1€40,, @ '€2£10¢,, @ '€2£40¢,, @ '€3£10¢,,
7163640, 161620, @ '€1€30¢,, @ 1€2830¢,
xT"€1620¢,, o "€1€30¢,, x "€2639¢, forr=1,2,3

for k =3
271 e3€40,, @1€3610¢,, @ '€1€30¢,, @ T€1€30¢, (r=1,2,3,4), =z '€2839,
T "€2€30g, (r=1,2,3,4), a7 "€1620¢, (r=1,2,3), a7 "€1€20¢, (r =1,2,3,4,5),
761850, (3=2,3,4, v =1,2), 27 "€28;0¢; (1 =1,3,4, v =1,2);
for k > 4
17’1§3543§4» e 1¢3€10¢,, 1715153%2, @ "81830g, (r=1,... k4 1),
v "81820g5 (r=1,...,2k—3), = "£2830¢, =@ "&2839¢, (r=1,...,k+1),
T E1628g, (r=1,...,2k—1), o778, (i=1,2, j=1,...,k—3),
eTT618650e; (1=2,3,4, r=1,...,k—1), 277809, (=12, r=1,...,k—3),
T TE2€0¢; (1=1,3,4, r=1,...,k—1);
2)g=2
for k = 2
e 1616200, @7 T6162850¢; (1 =3,4, 1 =1,2,3), «'€164€20¢,, o7 '62£4610,,
e 1618300, 276163850, (1 =2,4, 1 =1,2,3), «'€384€10¢,, =7 '62£3840,,
o 628300, @ T6abs;0¢; (1 =1,4, 1 =1,2,3), x '€1€s8a0e,, =7 '£162€40gg,
7 "€1€2830¢, (r=1,2,3,4,5);
for k =3
e E16200 (r=1,2,3), @ 7616280, (j=3,4, r=1,2,3,4,5), = '63£4610¢,,
@TTE1E30 (r=1,2), @ T616s€;0¢; (1=2,4, r=1,2,3,4), o 6263840,
@260, (r=1,2), @ Téabs€50¢; (1 =14, r=1,2,3,4), o 613640,
zT"E1€2830¢, (r=1,...,7), €7 "€1€4850¢; (1=2,3, v =1,2),
T "€162640¢, (1 =1,2,3), @7 "€284850¢; (5 =1,3, r=1,2);
for k > 4
7l E3€4610¢ @ E2€3840¢ 27 1E1€3640¢,,
761620y (r=1,...,2k = 3), T €1€2850:; (=34, r=1,...,2k - 1),
27 "€1€30, (r=1,...,k—1), T T€1€3850¢; (G =24, r=1,...,k+1),
z €630, (r=1,...,k—1), T "€28360¢; (=14, r=1,....k+1),
76162830, (r=1,...,2k+1), 7761628405 (r=1,...,2k—3),
2761640, (r=1,...,k—3), 6184850, (=23, r=1,...,k—1),
2z "€2640, (r=1,...,k—3), 8284650, (G =13, r=1,....k—1);

$_r£1£2£3£48x (7” = 1, ceey 2k — 1)

Consider the exact sequence (see [10])

0 = EndE — v(CP', 0y)y 2 sl,(C) — 0. (1)
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The subalgebra a C v(CP', O,,), splits the sequence (1) if 3 is an isomorphism with sl,(C)
or, equivalently, 0(CP', O, )y = EndE @ a is a direct sum of Lie algebras. In [10], it was shown
that the supermanifold with retract (CP', Og;) is even-homogeneous if and only if a subalgebra a
splitting (1) can be lifted to it.

If this is the case, we will say that the (CP', Q) is even-homogeneous relative a. Then, there
exist only the following (up to an automorphism in Aut E) splitting subalgebras a; ~ sl(C) (see
[10]) for the supermanifold CP,i',j‘QO (spanned by e, f, and h = e, f])
for k =2
a . e= 81, f= —Ian —2x (51851 + 52852 + 53853) ;
az: €= 62851 + 83:7 f= 51852 - xzax — 2z (51851 + 52852 + 53853) 3
as: €= 63852 + 52861 + a’ra

f = 2606, + 2610, — %0, — 22 (§10¢, + &0¢, + &30g,) ;
for k Z 3and V = kflagl + k:§28§2 + 253853
a: e=0,, f=—2%0, — 2V,
ay . €= 52851 + ax, f= 51052 — [L’an —xV.
Designate by H'(CP, (Tgr))® the set of a-invariants.

2.4. Lemma ([1]). Let n =4, ky > ky > k3 > ky > 0 and H°(CP', (T )2) = {0}. Then,
1) HY(CP', (Tg)2)® # {0} if and only if (ky, ko, ks, k) is one of the following

3,3,1,0), (4,4,1,0)
(3’3’271)7 (5737271
,0)k>2, (K+3,k,2,2

, (4,4,3,0),

)y (B+ 1,k 1,1)k>1,

Vk>2, (k+1,k,2,2)k>0,
1)k237 (k’,k’,?),l)kzg,,
470)k247 (k,k’,4,0)k24,

w

; 7272)19227 (k+ 7k7371)k237 <k+17k737
+ 3a ka 47 0)/6247 (k + 27 k) 47 O)k247 (k + 1a ka
o+ ks + ks — 2, ko, k3, ka)gy>1-

2) HY(CP', (Tg)a)® # {0} if and only if (ki, ko, k3, k) = (1,1,1,1).
2.5. Lemma. For a basis of H(CP', (Tg)2)% we can take (the classes of) the following cocycles

for the supermanifold CPi',j;O.
for k =2
1)i=1:

T E16200 + 277 (£162830g, + £162640g,) , T 616aE20s,, T 6264610k,
TT11€30, + 172 (61636008, + £163840k,) s 1T 6384610k, 1T 6160840,
17160830, + 172 (62838108, + £2838408,) , 1161638408, 1T 62€384 0, ;

2)i=2: x7'616840e;
3)i=3: 27116840, 22736162830, + 721636208, + 17 E0E361 0k,
2073616840¢, + 126163840, + 1716083840k, ;

for k=3 and k> 5

1) i=1: 2768610, v7'6163640g,, =7 '€263640%,;
2)i=2: x_1§1§3§43§2, m_1£2§3£43§1;

for k=4
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1)i=1
213646106, 7161638408, 11640, + 20726184600k, + 126164830,
716085840, 7160840, + 207206461 0g, + 172608430, ;
2) i =2: x '&3840¢,, 1 1€283840k,.
Proof follows from Theorem 15 in [7]. O

The proof of the following Lemma is similar.
2.6. Lemma. H'(CP', (Tg)4)* = {0} for any splitting subalgebra a and supermanifold CP}J,?QO.

Let Ay : Aut(9)Ogr — (Tg)2 be a sheaf homomorphism which to any germ of the automor-
phism a assigns the 2-component of loga in (Tg )2 @ (Tar)4-

Denote by H'(CP', Aut(9)Oy;)® the set of classes that determine supermanifolds even-homogeneous
relative a.

2.7. Proposition. If a splits the sequence (1), then A} bijectively maps Hl(CPl,Aut(g)(’)gr)“ to
H'(CP', (Tg)2)"

Proof follows from Statement 2.1 and Lemma 2.6. n

Using the lifting condition of the vector field on non-split supermanifold described in [20], and
Lemma 2.6, we deduce that any supermanifold 0-homogeneous relative a is determined by cocycles
u? such that the class [u?] is a-invariant and [u?, u?] = 0. Since [u?,u?] = 0 is true for all cocycles
in Lemma 2.5, the following Theorem holds.

2.8. Theorem. For any splitting subalgebra a, the even-homogeneous relative a supermanifolds
are determined by the cocycles listed in Lemma 2.5.

Thus, all even-homogeneous relative a non-split supermanifolds with retract CP;';QO are de-
scribed for any k > 2.

Let us find out if any of these even-homogeneous relative a non-split supermanifolds are ho-
mogeneous. For this we use the following Proposition analogous to Proposition 15 in [10]:

2.9. Proposition. Under conditions of Proposition 2.7, let (CP', O) be even-homogeneous rela-
tive a; for one of 1 = 1,2, 3.

If i = 1, then (CP*, ©) is homogeneous if and only if the vector fields Oc;, where j =1,...,4
can be lifted to (CP*, O);.

If i = 2, then (CP', O) is homogeneous if and only if the vector fields O¢;, where j = 1,3,4,
can be lifted to (CP', O).

If i = 3, then (CP', ) is homogeneous if and only if the vector fields O¢, and Og, can be lifted
to (CP*, 0).

Proposition 2.9 applied to the cocycles of Lemma 2.5 implies the classification (Theorems
2.10-2.20). For other 4-tuples, homogeneous non-split supermanifolds do not exist.

2.10. Theorem. There does not exists homogeneous non-split supermanifolds with retract CP,IJ,?QO

for any k > 2.

2.11. Theorem. For the following tuples (kikoksky), there does not exists homogeneous non-split

. 14
supermanifolds C77,€|1k2,§3,64 )
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(1,1,1,0), (3,3,1,0), (4,4,1,0), (4,4,3,0), (6,4,3,0), (5,4,3,0), (k+2,k,4,0)>4,
(37 37 2a ]-)7 (57 37 25 ]-)a (k + 37 k7 47 0)k247 (k + 37 k:7 37 1)k3237 (k + 17 k:v 47 0)k247
(k; + 17 ka 37 1)k237 (k + 17 ka 2a O)k>27 (k> k? 47 0)](?24’ (ka ka 3, 1)k23-

2.12. Theorem. For every of the following tuples (kikaksky), there exists one homogeneous non-

split supermanifold with retract CP,1J14,€2 ksky Which can be represented, up to an isomorphism, by (the
classes of) the following cocycles.

(27 27 17 O) 1‘71515453853;

(2,2,2,1) r 1650,

(37 27 2? O) 255_16153890 + 3m_2£2£3£18515

(47 37 27 1) 5(3_15253548&;

(k+1,k,1, 1)1 716364610

(k‘ + 3, k?, 2, 2)k22 2I71§3§48x -+ (k’ + 3)2?72535461851 + kx*253§4§20§2;
(k‘ + 1, k‘, 2, 2)k>2 2.17_15354833 + (k? + 1).213_2535451851 + kx_2§3§4§20§2;
(k7k7272>k24 $_1€3€481-

2.13. Theorem. ]f k’4 7é 07 then f07" (]{72 + ]{53 + ]{34 - 2, ]{32, k?g, k4)k321 diﬁer@nt from (k, l{i, 1, 1)k21;
there exists one homogeneous non-split supermanifold which can be represented, up to an isomor-
phism, by the (class of) cocycle

$71§2§3§43§1-
1)4

2.14. Theorem. There exist two homogeneous non-split supermanifolds with retract CPoyyy,
which can be represented, up to an isomorphism, by (the classes of) the following cocycles.

7161620, + 17261608306, + 1726162840k,
7161620, + 17261658308, + 17261626406, + 171 E3640,+
27263846106, + 17 2E364620, .-

2.15. Theorem. There exist two homogenous non-split supermanifolds with retract CP;';QQ, which
can be represented, up to an isomorphism, by (the classes of) the cocycles

716630, + $_2§2§3§13§1 + 96—25253543547
207282838106, + 1726264610¢, + 171636461 O, -

2.16. Theorem. There exist three homogeneous non-split supermanifolds with retract CP;‘;E,
which can be represented, up to an isomorphism, by (the classes of) the following cocycles.

1713840, 1261830, + 27162830k,

1713840, + 17261630, + 2715830,
2.17. Theorem. There exist five homogeneous non-split supermanifolds with retract CP;',?H,
where k > 2, which can be represented, up to an isomorphism, by (the classes of) the follow-
ing cocycles.

271E384810¢,, T E1E3840e,, T ME3E0E1 0k, + 1 1 E3EuER 0, ,
T E1E3840k, + 1T E2E3840k,, T E3E0E1 O, + 1T E1E3E40k, + 2T ERESEL O, -
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2.18. Theorem. There exist eight homogeneous non-split supermanifolds with retract C772111,
which can be represented, up to an isomorphism, by (the classes of) the following cocycles.

16063610, 176063640, v €340 O,

716063610, + 0716063840k, 116063610k, + 21 E364E0 0k,
T 6083840, + 1716360610k, 1T E36u&1 Ok, + 2T €640 Dk,
17160656106, + 171 €264830e, + 171 E364E20;,.-

2.19. Theorem. There exist nine homogeneous non-split supermanifolds with retract CPQQH,
which can be represented, up to an isomorphism, by (the classes of) the following cocycles.

7580610, 116083640,

72663610, — 071 62646010g,, 17162636406, + 17 TE1E5E4 0,

271658461 0¢, + 1716063840k, + 2716163640k,

27 26083610¢, — 716084610, + 17138460 O,

27260636108, — 7160646106, + 1716063640k,

1726585810, — 1716084610k, + 17162836406, + 116163840,

2726583810, — 7160846108, + 171 E38461 06, +
1716583408, + 2716183640, -

2.20. Theorem ([5]). There exist four homogeneous non-split superstrings and one 1-parameter

family of homogeneous non-split superstrings with retract CP}lﬁl, which can be represented, up to
an isomorphism, by (the classes of) the following cocycles.

T 6083840¢,, 1716083840, — 1716163840k,

2716083640, — 1716163640, 4+ 116162840,

176083840, — 7 6163840, + 1716160640, — 1716160830k,

t(x 16263840, — 2716165840k, + 116160840k, — 161608308, )+
+$71§1§2§3§4a$, where t e (CX.

Acknowledgements. Thanks are due to A. Onishchik for his help and to D. Leites for his
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