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. Computed velocity profiles match experimental ones when the Reynolds number is varied, showing at the same time the relevance of the procedure and the validity of the double averaged Navier-Stokes model across the different rough regimes.

Introduction

For many industrial applications, assessing the roughness effects on walls is a mandatory requirement. Predictions are commonly performed using RANS solvers employing the equivalent sand grain approach. Models [START_REF] Knopp | A new extension for k -ω turbulence models to account for wall roughness[END_REF][START_REF] Aupoix | Extensions of the Spalart-Allmaras turbulence model to account for wall roughness[END_REF][START_REF] Hellsten | Extension of the k -ω shear-stress transport turbulence model for rough-wall flows[END_REF] derived from this approach result in an artificial increase of the eddy viscosity in the near wall region, overpredicting wall transfer. Several major limitations constrain this approach. First, the equivalent sand grain concept relies on a biunivocal relation, independent of the Reynolds number, between the induced roughness effect on the friction and the sand grain height k s that is limited to the fully rough regime [START_REF] Nikuradse | Laws of flows in rough pipes[END_REF]. This relation does not apply to the transitional regime. Models can still be used in the transitional regime but then the equivalent sand grain height may depend on the Reynolds number which is not desirable. Second, the non-universality of the correlations from which k s is defined constitutes the most troublesome limitation. Studies [START_REF] Musker | Universal roughness functions for naturally-occuring surfaces[END_REF][START_REF] Sigal | New correlation of roughness density effect on the turbulent boundary layer[END_REF][START_REF] Van Rij | Analysis and experiments on three-dimensional, irregular surface roughness[END_REF][START_REF] Schultz | Turbulent boundary layers on a systematically varied rough wall[END_REF][START_REF] Forooghi | Toward a universal roughness correlation[END_REF] investigated the relation between a randomly distributed rough surface and the equivalent sand grain height with a certain degree of success, without actually being able to find out the requested universality. Recently, reviews by Chung et al. [START_REF] Chung | Predicting the drag of rough surfaces[END_REF] and by Kadivar et al. [START_REF] Kadivar | A review on turbulent flow over rough surfaces: Fundamentals and theories[END_REF] discussed the influence of to-pographical properties on the equivalent sand grain height and the non-universality of existing correlations, respectively. It follows from all these works finally that a priori computations relying on the equivalent sand grain approach can be unreliable, particularly in the transitional regime, which ultimately limits the range of applicability of this method. Another route to account for roughness effects was drawn by Schlichting [START_REF] Schlichting | Experimental investigation of the problem of surface roughness[END_REF] almost a century ago, but was only followed much later by Robertson [START_REF] Robertson | Surface resistance as a function of the concentration and size of roughness elements[END_REF], Finson et al. [START_REF] Finson | A Reynolds stress model for boundary layer transition with application to rough surfaces[END_REF][START_REF] Finson | A model for rough wall turbulent heating and skin friction[END_REF] and Christoph et al. [START_REF] Christoph | Predictions of rough-wall skin friction and heat transfer[END_REF][START_REF] Christoph | Numerical simulation of flow over rough surfaces, including effects of shock waves[END_REF]. Invoking the homogeneization principle [START_REF] Schlichting | Experimental investigation of the problem of surface roughness[END_REF][START_REF] Whitaker | Flows in porous media I: A theoretical derivation of Darcy's law[END_REF] of the surface, the roughness is represented by a blockage factor in the Navier-Stokes equations together with source terms, in particular to reproduce the induced drag effects. The rough surface is then reduced to a repeatable pattern comprised of an elementary roughness pattern and longitudinal and transverse spacings. This approach was generally refered as the Discrete Element Method (DEM). It is commonly admitted that the standard formulation is attributed to Taylor et al. [START_REF] Taylor | Prediction of turbulent rough-wall skin friction using a discrete element approach[END_REF]. Many other contributors [START_REF] Hosni | Measurements and calculations of fluid dynamic characteristics of rough-wall turbulent boundary layer flows[END_REF][START_REF] Mcclain | The importance of the mean elevation in predicting skin friction for flow over closely packed surface roughness[END_REF][START_REF] Stripf | Modeling of rough-wall boundary layer transition and heat transfer on turbine airfoils[END_REF][START_REF] Hanson | Validation of the discrete element roughness method for predicting heat transfer on rough surfaces[END_REF] improved the approach, until recent developments [START_REF] Aupoix | Revisiting the discrete element method for predictions of flows over rough surfaces[END_REF] showed that a more consistent formalism can be used to revisit the DEM. The use of the volume averaging technique [START_REF] Whitaker | Flows in porous media I: A theoretical derivation of Darcy's law[END_REF][START_REF] Whitaker | The forchheimer equation: A theoretical development[END_REF] on the RANS equations leads to a set of equations similar to those derived by Taylor et al. [START_REF] Taylor | Prediction of turbulent rough-wall skin friction using a discrete element approach[END_REF] from budgets on a control volume. The resulting equations set will here be referred to as the DANS equations (Double Averaged Navier-Stokes) while some authors prefer the accronyms VANS (Volume) or PANS (Plane).

The derivation of the DANS equations is thorougly discussed by Aupoix [START_REF] Aupoix | Revisiting the discrete element method for predictions of flows over rough surfaces[END_REF]. In the present context, the Reynolds average is taken as the ensemble average, as usual, and the volume average is made on a zero-thickness volume and reduces to a surface average in a wall-parallel plane over an area S. In the following, we nevertheless use the term volume average to refer to the technique described by Whitaker [START_REF] Whitaker | Flows in porous media I: A theoretical derivation of Darcy's law[END_REF][START_REF] Whitaker | The forchheimer equation: A theoretical development[END_REF]. The intrinsic volume average of any quantity q is then given by q f = 1 S f Sf qds, where S f is the part of S occupied by the flow.

The difficulty then lies in the closure relations that must be employed to solve the equations set. Efforts must first be concentrated on the drag term induced by the blockage factor that represents the ratio of the fluid volume to the total volume. Chedevergne and Forooghi [START_REF] Chedevergne | On the importance of the drag coefficient modelling in the double averaged navier-stokes equations for prediction of the roughness effects[END_REF] proved that the standard closure [START_REF] Taylor | Prediction of turbulent rough-wall skin friction using a discrete element approach[END_REF] for the drag coefficient must be revised and proposed a new drag formulation that fits a large set of DNS data. The drag closure relation found by Kuwata and Kawagushi also proved to behave properly on the same DNS dataset. Chedevergne [START_REF] Chedevergne | A double-averaged navier-stokes k -ω turbulence model for wall flows over rough surfaces with heat transfer[END_REF] proposed a k -ω SST [START_REF] Menter | Two-equation eddy-viscosity turbulence models for engineering applications[END_REF] formulation, containing additional source terms to account for roughness effects on turbulence in the roughness sublayer. Moreover, in a boundary layer context, the dispersive shear stress arising from the use of volume averaging was also modeled. The model [START_REF] Chedevergne | A double-averaged navier-stokes k -ω turbulence model for wall flows over rough surfaces with heat transfer[END_REF] was successfully tested on a series of academic/artificial rough configurations previously computed using DNS. One of the main advantages of the DANS/DEM approach is that, unlike the equivalent sand grain approach, the model is applicable to all the roughness regimes while only requiring simple geometrical inputs. Chedevergne [START_REF] Chedevergne | A double-averaged navier-stokes k -ω turbulence model for wall flows over rough surfaces with heat transfer[END_REF] introduced the notion of Representative Elementary Roughness (RER) to reconcile the DANS equations and the Discrete Element Method. Only two geometrical parameters are required to fully characterize the RER of a given roughness geometry. These two parameters are the blockage factor β and the diameter d of the RER, called elementary diameter hereafter. For randomly distributed real rough surfaces, there is no procedure to rigorously define β and d. Examples of ways to determine β and d in a general case can be found in the study of Finson [19] from profilometer traces of configurations by Hill [START_REF] Hill | Measurements of surface roughness effects on the heat transfer to slender cones at Mach 10[END_REF] and Holden [START_REF] Holden | Experimental studies of surface roughness, entropy swallowing and boundary layer transition effects on the skin friction and heat transfer distribution in high speed flows[END_REF] or in the work by Kuwata and Kawagushi [START_REF] Kuwata | Direct numerical simulation of turbulence over resolved and modeled rough walls with irregularly distributed roughness[END_REF]. Additionally, the model proposed by Chedevergne [START_REF] Chedevergne | A double-averaged navier-stokes k -ω turbulence model for wall flows over rough surfaces with heat transfer[END_REF] requires further validation. In particular, since only DNS data were used for validation so far, investigated Reynolds numbers were quite low and higher Reynolds number configurations must be studied. In this paper, two high Reynolds number boundary layer configurations will be analyzed to build a general procedure that allows to define the input parameters of the present DANS/DEM model. First, the DANS/DEM model will be summarized along with the closure relations by Chedevergne [START_REF] Chedevergne | A double-averaged navier-stokes k -ω turbulence model for wall flows over rough surfaces with heat transfer[END_REF]. Then, a methodology for rigorously defining the RER will be presented, and applied to two rough surfaces, used in experimental configurations. The last part of this paper will be devoted to a discussion around the results obtained with the model [START_REF] Chedevergne | A double-averaged navier-stokes k -ω turbulence model for wall flows over rough surfaces with heat transfer[END_REF] using the input parameters given by this methodology.

DANS equations and DEM approach

The volume averaged RANS equations

The DANS equations are derived from the RANS equations by the use of a volume averaging. Details on the derivation of these equations can be found in the work of Whitaker [START_REF] Whitaker | Flows in porous media I: A theoretical derivation of Darcy's law[END_REF][START_REF] Whitaker | The forchheimer equation: A theoretical development[END_REF], Aupoix [START_REF] Aupoix | Revisiting the discrete element method for predictions of flows over rough surfaces[END_REF] or Kuwata et al. [START_REF] Kuwata | An extension of the second moment closure model for turbulent flows over macro rough walls[END_REF]. In the following and will denote the mean and fluctuating quantities obtained with the Reynolds averaging, while for the intrinsic volume averaging f and ˜ will be used. Considering an incompressible fluid, the continuity and momentum equations then read:

∂ βu i f ∂x i = 0 ∂ u i f ∂t + u j f ∂ u i f ∂x j = - 1 ρ ∂ p f ∂x i + 1 β ∂ ∂x j ν ∂β u i f ∂x j - 1 β ∂ ∂x j β u i u j f + β ũi ũj - ν β ∂β ∂x j ∂ u i f ∂x j -F di (1 
) where β is the blockage factor, u i the velocity component in the direction x i , ρ the density, ν the kinematic viscosity and p the pressure. The drag force F di is defined by:

F di = 1 S f Ifs p ρ n i ds - Ifs ν ∂ ũi ∂x k n k ds = (1 -β) 2 πd C d u k f u k f u i f = f d u i f ( 2 
)
where the terms on the right hand side are the roughness-induced pressure and viscous contributions, respectively. The dimensionless coefficient C d is the drag coefficient associated with the representative elementary roughness characterized by β and d and detailed in the next section 2.2. We also introduce the function f d representing a frequency related to the drag force. The ratio of the pressure drag to the viscous drag increases when moving from transitionally rough regime to the fully rough regime. In the latter regime, the pressure is the dominant contribution of the total drag.

Closure relations

The drag coefficient C d model is based on the experiments of Žukauskas [START_REF] Zukauskas | Heat transfer from tubes in crossflow[END_REF] on pressure losses in channel with banks of tubes. The longitudinal and transverse coordinates of the channel are respectively x and z with the corresponding velocity components u and w, respectively. y will denote the wall-normal coordinate. It results from this analysis [START_REF] Chedevergne | On the importance of the drag coefficient modelling in the double averaged navier-stokes equations for prediction of the roughness effects[END_REF] that the pressure loss is proportional to a function ξ which only depends on a Reynolds number Re 0 = u 0 d t ν based on the tube diameter d t and with u 0 a characteristic flow velocity. Consequently, only roughness with circular cross-sections1 is considered for the drag model and the blockage factor is related to the elementary diameter d through:

β = 1 - πd 2 4L x L z (3) 
L x and L z are the corresponding spacings between roughness elements/tubes. The drag coefficient C d can be taken as:

C d = 1.5 (αβ) 2 ξ (4)
α is a function characterizing the transverse spacing between roughness elements/tubes. The function ξ is fitted on Žukauskas results:

log ξ = (0.58f -0.86) log Re 0 + 1.82 -1.1f Re 0 ≤ 116883 ξ = 0.2 Re 0 ≥ 116883 (5) 
where the blending function f is:

f = 0 Re 0 ≤ 60 f = 1 - 60 Re 0 60 ≤ Re 0 ≤ 200 f = 1 - 1 Re 0 10 0,4 + Re 0 10000 2,78 200 ≤ Re 0 ≤ 116883 (6) 
For each cross-section of the roughness with local diameter d, the tube diameter d t in the Žukauskas expriments is set to d to compute the Reynolds number Re 0 and the characteristic velocity u 0 is taken as the local mean velocity β u f . The drag coefficient C d is given by relation (4) where ξ is evaluated from Re 0 . Relation (4) constitutes the key point of the DANS/DEM approach. It was validated against a series of DNS data [START_REF] Chedevergne | On the importance of the drag coefficient modelling in the double averaged navier-stokes equations for prediction of the roughness effects[END_REF] and compared with the model developed by Kuwata and Kawagushi [START_REF] Kuwata | Direct numerical simulation of turbulence over resolved and modeled rough walls with irregularly distributed roughness[END_REF].

To close the system (1), the Reynolds stress tensor -u i u j f and the dipersive stress tensor -ũi ũj must be modeled. These two terms come from the application of Reynolds and volume averages on the nonlinear convective term of the momentum equations [START_REF] Chedevergne | A double-averaged navier-stokes k -ω turbulence model for wall flows over rough surfaces with heat transfer[END_REF]. The dispersive stress represents the transport of momentum by spatial variations in the plane parallel to the wall. The k -ω SST turbulence model of Menter [START_REF] Menter | Two-equation eddy-viscosity turbulence models for engineering applications[END_REF] was modified to include the effects of the roughness in the vicinity of the wall. Source terms [START_REF] Chedevergne | A double-averaged navier-stokes k -ω turbulence model for wall flows over rough surfaces with heat transfer[END_REF] were added to the k and ω equations by analogy with eq. ( 2) and by invoking dimensional considerations. Thereby, we write:

F k = f k k ; f k = c k f d F ω = f ω ω ; f ω = c ω1 + c ω2 1 -ϕ ϕ 1 + c ω3 exp -1 1 -β m f d (7) 
with c k = 2, c ω1 = 2.7, c ω1 = 0.1 and c ω1 = 30. The effective element slope ϕ and the mean blockage β m were found to be the most influential geometrical parameters on the turbulent properties within the roughness sublayer. Considering Prandtl's boundary layer hypothesis [START_REF] Prandtl | Über ?ussigkeitsbewegungen bei sehr kleiner reibung[END_REF], where y designates the wall normal direction and v the corresponding velocity component, the Reynolds shear stress is then deduced from:

-u v f = ν t ∂ u f ∂y ν t = a 1 k max a 1 ω, F 2 ∂ u f ∂y (8) 
The generalization of this model to the 3D DANS equations is straightforward using the Boussinesq hypothesis for the Reynolds stresses. The closure relation for the dispersive shear stress comes from considerations on time and length scales for fluctuations ũ and ṽ. This model is therefore restricted to boundary layer assumptions and can not directly be employed in the DANS system [START_REF] Chedevergne | A double-averaged navier-stokes k -ω turbulence model for wall flows over rough surfaces with heat transfer[END_REF].

The necessity of extending this first attempt to a more general tensorial form is questionable since the dispersive stresses only act in the roughness sublayer where the boundary layer hypothesis can be reasonably applied. The resulting relation for the dispersive shear stress is:

-ũṽ = F disp ν t ∂ √ k ∂y (9) 
F disp is a damping function, limiting the range of action of relation [START_REF] Musker | Universal roughness functions for naturally-occuring surfaces[END_REF] above the roughness top k r :

F disp = e - y k r -1 (10) 
It is reminded that the contributions of the dispersive shear stress on the drag level [START_REF] Toussaint | Analysis of the different sources of stress acting in fully rough turbulent flows over geometrical roughness elements[END_REF] is generally of the order of a few percent and is ignored in most DEM models [START_REF] Taylor | Prediction of turbulent rough-wall skin friction using a discrete element approach[END_REF][START_REF] Stripf | Modeling of rough-wall boundary layer transition and heat transfer on turbine airfoils[END_REF][START_REF] Hanson | Validation of the discrete element roughness method for predicting heat transfer on rough surfaces[END_REF][START_REF] Kuwata | An extension of the second moment closure model for turbulent flows over macro rough walls[END_REF]. Nevertheless, it is desirable to be able to account for the dispersive stresses since in some configurations their contribution can be significant, in particular at low Reynolds number.

The whole model, including all the closures, was tested [START_REF] Chedevergne | A double-averaged navier-stokes k -ω turbulence model for wall flows over rough surfaces with heat transfer[END_REF] against a large dataset of DNS configurations with various rouhgness shapes. Computed results were in excellent agreement with DNS data all across the inner region of the boundary layer, highlighting the excellent behaviors of the different closures in the roughness wakes. However, the DNS dataset was essentially composed of academic rough configurations and was limited to friction Reynolds numbers of 600 at most.

RER

The notion of Representative Elementary Roughness was introduced by Chedevergne [START_REF] Chedevergne | A double-averaged navier-stokes k -ω turbulence model for wall flows over rough surfaces with heat transfer[END_REF] to reconcile the DANS equations and the Discrete Element Method. Any rough surface is reduced to a RER described by the four parameters β, d, L x and L z . Practically, since the drag coefficient model is deduced from staggered configurations in Žukauskas' experiments, L x is set equal to L z . The latter can be computed from the relation (3), and thus the RER is fully described by the two parameters β and d.

The following section details the procedure adopted to extract the distributions of β and d from scanned surfaces on two concrete configurations.

Experimental configurations

In order to achieve the desired objectives, the configurations must fulfill several conditions. First, the Reynolds number must be sufficiently high. Second, the rough surface must be realistic and well-documented, i.e. the surface topography must be perfectly known. Therefore, configurations for which 3D scans of the surface exist, were sought. Two experiments were found suitable to these specifications. Experiments of Squire et al. [START_REF] Squire | Comparison of turbulent boundary layers over smooth and rough surfaces up to high reynolds numbers[END_REF] were made in the large facility called High Reynolds Number Boundary Layer Wind Tunnel (HRNBLWT) at the University of Melbourne. The floor of the wind tunnel working section was covered with a single sandpaper sheet, except on the floating drag balance. An optical profilometer was used to quantify the surface parameters of the sandpaper over a 25.4 mm × 25.4 mm sample. It is important to check that the resolution is sufficient to capture all the scales of roughness that significantly contribute to the drag, i.e. those larger than the viscous sublayer. Roughness with scales below 3 -5 wall units do not impact velocity profiles, similar to the hydrodynamically-smooth regime. The vertical resolution is submicronic [START_REF] Squire | Comparison of turbulent boundary layers over smooth and rough surfaces up to high reynolds numbers[END_REF] and the sampling in the (x, z) plane is 14.1 × 14.1 µm 2 . The vertical accuracy allows to capture surface elevations lower than a wall unit for all cases (see table 2). In the wall parallel plane the minimal roughness scale ranges between 0.26 and 1.15 wall units, depending on the Reynolds number of the studied configuration. All the significant roughness scales are therefore captured in the sample. A large number of velocity profiles were acquired at several longitudinal locations and for several upstream velocities. In the present study, six profiles were selected. They were obtained at the same location but for different upstream conditions, allowing to illustrate the effects of the Reynolds number on a given rough surface. The second configuration [START_REF] Croner | Industrial use of equivalent sand grain height models for roughness modelling in turbomachinery[END_REF] analyzed for this study was measured at ONERA on a rough surface that was 3D printed using a SLM method (Selective Laser Melting) with metallic powders. The surface is representative of roughness commonly found in the context of turbomachinery but magnified to comply with the wind tunnel operating conditions and the targeted Reynolds number. The final plate is about 1 m long and measurements were acquired 90 cm after the leading edge of the rough plate. An optical profilometer was used to characterize the surface. Scanned samples are limited to 40 mm × 40 mm and, given the mean roughness height, 4 samples were measured to increase the statistical convergence of the analysis. A photograph of the rough surface is shown on figure 1. For each of the four samples, the vertical resolution is 10 µm and the resolution in the wall parallel plane is 30.2 × 30.2 µm 2 . In wall units, the vertical resolution is less than 1 while in the (x, z) plane the resolution is 3.1 at the Reynolds number considered in the experiment. Hereinfater, we will refer to the surface of the sandpaper used by Squire et al. [START_REF] Squire | Comparison of turbulent boundary layers over smooth and rough surfaces up to high reynolds numbers[END_REF] as "rough surface A" while the four scanned samples of the 3D printed surface tested at ONERA will be called "rough surface B#n", with n ∈ {1, 2, 3, 4}. We also define "rough surface B" whose properties are the mean properties of the four samples. Some characteristics of the samples are gathered in table 1. The roughness height k r is the distance between the base of the roughness and its top and is often noted k z . k a and k q are the average and rms roughness heights while S k and K u are the associated skewness and Kurtosis values. The effective slope ES and the generalized Sigal-Danberg parameter Λ s used by Van Rij [START_REF] Van Rij | Analysis and experiments on three-dimensional, irregular surface roughness[END_REF] are given in each of the two main directions x and z of the scanned samples. Calculations of the different parameters in table 1 are made following Thakkar et al. [START_REF] Thakkar | Surface correlations of hydrodynamic drag for transitionally rough engineering surfaces[END_REF]. Differences of properties between directions raise the question of the isotropy assumption. It is desirable that the surface topography is isotropic to avoid dependence on the streamwise direction of the flow, which may not be known. Here, for rough surface A, the small variations of ES and Λ between the two directions validate the hypothesis of isotropy of the roughness distribution. This is less obvious for the four samples on rough surface B where the relative variations are more important. However, the variations have only a very small impact on the computational results and, therefore, the isotropy assumption is valid for this surface. For computations, mean values of ES and Λ s are used.

The mean roughness heights k r of rough surfaces B#n are larger than that of rough surface A. Despite the larger scan areas for rough surface B#n, the higher values of the mean roughness height limit the number of rough patterns in each sample, which explain the need for multiple samples to improve statistical convergence. The latter has an important role in the determination of the RER since the whole surface is supposed to have the same properties as the scanned samples. In a general manner, the sample size should capture the largest roughness scales. In the (x, z) plane these can be large, especially if the effective slope of the roughness is small. In all cases, the sample size acts as a low-pass filter on the roughness scales. Here, for rough surfaces A and B, we can estimate the average roughness size in the (x, z) plane from the roughness height k r and the effective slope ES. For the rough surface A, the sample contains about 140 average roughness elements. For the rough surface B, we can estimate that each of the four samples contains about 70 rough elements. For each . is also visible in figure 3b, supporting the idea that several samples are required to ensure a good representation for rough surface B.

Rough surface characterization: blockage factor and elementary diameter

The RER can be entirely defined by the profiles along the wall normal direction y of β and d. The methodology to extract β(y) and d(y) is somewhat similar to that used by Finson [START_REF] Finson | Effect of surface roughness character on turbulent boundary layer heating[END_REF] or Kuwata and Kawagushi [START_REF] Kuwata | Direct numerical simulation of turbulence over resolved and modeled rough walls with irregularly distributed roughness[END_REF]. The different steps are described below for a given rough surface. First, the issue of the location of the reference coordinate level must be addressed. Experimentally, this issue is addresses by the introduction of a wall correction parameter in the law of the wall [START_REF] Perry | Rough wall turbulent boundary layers[END_REF][START_REF] Jackson | On the displacement height in the logarithmic velocity profile[END_REF]. Here, we chose to consider the reference coordinate level as the lower registered altitude. This choice does not have a great influence on the results. In an analog manner, the considered roughness height k r of the RER is then given by the distance from the reference level to the maximal elevation of the surface. For all altitude y ∈ [0, k r ], the plane cross-section of the elevation map is extracted. The resulting image is binarized and simple image processing ( c Matlab2019b) are performed to extract the area occupied by the roughness and the length of the wetted perimeter, i.e. the sum of contour lengths of the rough areas. Examples of such images are provided for rough surfaces A and B#1. The blockage factor is then computed as the ratio of the fluid-occupied area (white area) S w over the total surface S t , or equivalently

β(y) = 1 - S b S t
with S b is the roughness-occupied area (black area). A similar result can be derived from the cumulative distribution function of the surface elevation.

The elementary diameter d(y) is deduced from the wetted perimeter P using the definition of the hydraulic diameter, d(y) = 4S b P .

For the examples of rough surfaces A and B#1, the wetted perimeter is computed as the total length of the lines in the figures 4c and 4d, respectively. For rough surface B, the blockage factor β(y) and the elementary diameter d(y) are obtained from averaging across the four samples. The process is applied for all altitudes y and figure 5 presents the obtained profiles for rough surfaces A and B. During computations, fitting functions of curves of figures 5a and 5b are employed to gain flexibility regarding the numerical schemes. The spacings L x and L z of the RER are deduced from relation (3) with the assumption L x = L z in compliance with the use of function ξ (4) obtained for staggered arrangements and a ratio L x L z = 1. This definition of L z (or L x ), which varies with y, may seem odd since we normally expect the spacings to be constant over the height of the rough pattern. There is in fact no physical or mathematical constraint that prevents the spacings between the rough patterns from being variable with respect to y. The size of the RER is then not constant, which does not allow an easy representation of its geometry. The geometry of the RER is a succession of slices with varying sizes, independent of each other. This choice of procedure simply ensures the joint conservation of the blockage factor and the wetted perimeter. It is justified by the fact that all the source terms representing roughness effects in the DANS model, and partly driven by the RER geometry, do not take into account the diffusion process in the wall normal direction y. All the source terms are directly related to C d (4). The definition of C d from Žukauskas experiments [START_REF] Chedevergne | On the importance of the drag coefficient modelling in the double averaged navier-stokes equations for prediction of the roughness effects[END_REF] implies that there is no dependence between its values for difference altitudes. Therefore, it does not matter that L x and L z depend on y.

Eliminating non-influential areas

At this stage, a last issue must be solved to complete the definition of the RER. Not all areas of the rough surfaces considered participate in the increase in momentum transfer. In the present cases, thanks to the monotonicity of the β and d functions (see figures 5a and 5b), we can define a threshold position y t below which the momentum transfer is negligible. The determination of y t depends on several physical constraints imposed on the RER. First, although the spacings L x and L z may vary with y, L x and L z must remain greater than d for each altitude y, as in figure 1 of [START_REF] Chedevergne | A double-averaged navier-stokes k -ω turbulence model for wall flows over rough surfaces with heat transfer[END_REF], to comply to the conditions of the experiments of Žukauskas. Given the definition of β (3), the blockage factor is then bounded by 1-π 4 ≈ 0.2146. The corresponding threshold value y b is then deduced from β(y b ) = β b . Below y = y b , the blockage factor for the RER cannot be defined. The region below y b corresponds to the part of the original rough surface where roughness overlapping and shielding effects are such that the momentum transfer due to roughness is negligible. The second constraint for the determination of y t is related to the definition of C d . The model for C d is derived from Žukauskas database [START_REF] Zukauskas | Heat transfer from tubes in crossflow[END_REF] involving cylindrical obstacles perpendicularly immersed in a parallel flow. For each wall-parallel cross-section of a given rough surface, only roughness effects induced by an obstacle can be represented. Separation areas trapped between walls without eddy shedding into the upper flow that may exist in the bottom part of a rough surface can not be accounted for with this model. It is assumed that the contribution of these areas to momentum transfer is then negligible. As a consequence, the model must impose the streamwise velocity is zero in these areas. McClain [START_REF] Mcclain | The importance of the mean elevation in predicting skin friction for flow over closely packed surface roughness[END_REF][START_REF] Mcclain | Predicting skin friction and heat transfer for turbulent flow over real gas turbine surface roughness using the discrete element method[END_REF] used the mean elevation, computed as the 'melt down' height, to set the reference surface where the no-slip condition is applied, therefore neglecting all contributions below. Here, we assume that for configuration where the blockage factor is monotonically increasing function, the vortices remained trapped as long as the wetted perimeter is growing. The wetted perimeters for rough surface A and B are displayed in figure 6a. We define the threshold y p as the location where the perimeters P are maximum. The maximum perimeter is reached at the mean height, i.e. y p = 0, for rough surface A whereas for rough surface B this maximum is shifted down. This is consistent with the normal distribution of surface elevations observed for rough surface A in figure 3a.

The distribution is symmetrical about the mean height forcing the perimeter to change slope. Figure 2a can be flipped and its data changed accordingly without changing the statistical properties, peaks becoming holes and reciprocally. This is untrue for samples B#n where asymmetries are observed. For rough surface B, P is found to reach its maximum around y p = -0.35 mm. Examples of roughness profiles in planes z = z for rough surfaces A and B#4 are shown in figure 6b. The elevation distributions below y = y p are supposed to be of negligible influence. To sum up, below the threshold y t = max (y b , y p ) momentum transfer is negligible and the DANS model should not account for these zones where β or C d , or both, can not be evaluated. However, these criteria for defining y t are not sufficient for rough surfaces B#n. Due to its high geometric complexity, the original rough surface has areas above y t where momentum transfer is still negligible. There are extensive roughness areas that cover a large part of the surface of the samples and prevent the fluid from flowing. The procedure consisting of reducing the roughness-occupied area to a single roughness with a circular cross-section does not account for these occurrences. An example is given on figure 7 for rough surface B#1. Cross-section y = 0 of figure 4d, i.e. y > max (y b , y p ), is considered. The red elongated contour covers almost the entire sample in the x direction. The blockage effect induced by this obstacle disappear once we reduce all the roughness-occupied area to a single circular shape. To isolate these singular patterns, a metric can be defined to compare the identified shapes to a circle. A limit value must then be arbitrarily set for this metric. Instead, a simpler solution is to check the existence of enclosed fluid areas inside solid contours. Hereafter, these fluid areas are called inclusions. As shown in figure 7a, blue contours (inclusions) appear inside the red contours. By counting the inclusions, weighted by their respective areas, one can easily identify the prevalence of these very large roughness areas that do not participate in transfer. The area occupied by all the inclusions in a constant y-plane is denoted S i and the ratio S i to S b , the total solid-occupied surface, is displayed in figure 7b. In the four samples, the area occupied by the inclusions remains large for y > y p but rapidly decreases toward zero beyond. From the mean curve corresponding to the rough surface B, the area of the inclusions is less than 1% of S b for y > 0.2 mm and is less than 0.1% for y > 0.4 mm. We choose to take y i = 0.2 mm as the threshold value. For y i in the interval [0.2, 0.4] mm the results of the computations with the DANS model are little impacted, with less than 10% deviation on the roughness function ∆u + (table 3). We note that for the rough surface A, the ratio S i S b is zero at y = 0 mm and we found y i = y p = 0 mm. For rough surface A, the symmetrical distribution of the surface elevation makes y p and y i be located at the mean height y. Once again, this is untrue for rough surface B and, interestingly, both threshold y p and y i can be found by plotting the derivative of the blockage factor β. In figure 8, two local maxima are observed at y = y p andy = y i in the evolution of ∂β ∂y .

A purely geometrical reasoning allowed us to define y p and y i , two threshold locations characterizing the rough surfaces. But, the areas where momentum transfer are negligible are likely to depend on the Reynolds number. Therefore, we implicitly assume that when the Reynolds number is modified the locations of the threshold remain unchanged and the contribution from the area below the maximal location remains negligible. Conversely, this is equivalent to assuming that the contribution of the area above the maximum of the threshold locations is always the dominant contribution. For the latter area, the Reynolds number dependence is included in the drag coefficient model given by eq. ( 4). For rough surface A, the influence of the Reynolds number was studied experimentally, which will enable to test our methodology and its assumptions in section 4. Finally, the entire region of the RER below the threshold y t = max (y b , y p , y i ) is assigned constants values for β and d, as illustrated on figures 5a and 5b. By fixing the elementary diameter d at a high value, the contribution of the drag source term in the momentum equation is kept at a high level and this forces the flow velocity u f to tends to zero below the threshold y t . The second impact of y t in the DANS equations concerns the determination of the mean blockage β m = 1 k r kr 0 βdy. Since β is set constant below y t , β m is directly influenced by the threshold value. The mean blockage β m controls the magnitude of the source term in the ω equation [START_REF] Hellsten | Extension of the k -ω shear-stress transport turbulence model for rough-wall flows[END_REF]. Consequently, the value of y t plays on the dissipation of turbulence and adjusts the level of the turbulent contribution in the momentum equation.

Results and discussion

The wall-similarity hypothesis, suggested by Raupach et al. [START_REF] Raupach | Rough-wall turbulent boundary layers[END_REF] and Townsend [START_REF] Townsend | The structure of turbulent shear flow[END_REF], assumes similarity of the turbulence statistics in the inner and outer regions of boundary layer flows independent of the roughness morphology provided equal values of friction velocity and sufficient inner/outer scale separation [START_REF] Jiménez | Turbulent flows over rough walls[END_REF][START_REF] Flack | Examination of a critical roughness height for outer layer similarity[END_REF]. As a consequence, wall-similarity implies that roughness effects are limited to the roughness sublayer and that only the inner region of the boundary layer is affected by the roughness. Both experimental configurations of section 3.1 match these conditions. For this reason and for the sake of simplicity, a 1D code was developed to solve the dimensionless DANS equations (1) in the inner region of a rough boundary layer. For rough surface A, six cases with varying Reynolds numbers were computed while, for rough surface B, a single case was available. The Reynolds numbers matched the experiment values.

The main flow characteristics are gathered in table 2 for both configurations. Dimen- sionless boundary layer thickness δ + values are notably high, allowing to complete the validation of the DANS model regarding the influence of the Reynolds number, since until now only low Reynolds number DNS configurations were explored with the model. Profiles of β and d presented in figures 5a and 5b were fitted with smooth and differentiable functions and implemented in the code. The mean blockage factor β m entering the source term for the specific dissipation ( 7) is then easily computed. The effective elementary slope ϕ is simply taken as the effective slope ES of the corresponding rough surface. Given the choices made for the RER, the calculation of ϕ from the RER geometry leads to the same result.

In the experiments the determination of the reference coordinate level is not always simple. Squire et al. defined a reference level at the top of the rough surface by covering it with an aluminum flat plate which thickness is known. In addition, the wall correction is taken constant with = 0.37k r . For rough surface B, the reference level is fixed by a flat plate located just upstream from the rough surface. The vertical position of the rough surface is then adjusted to reduce as much as possible the effects of the abrupt change between the flat plate and the rough surface. This adjustment y g was not measured but it can be reasonably estimated to y g = 0.5k r . The value that best fits the DANS results is y g = 0.55k r . The wall correction is deduced from the fitting method allowing to find the friction velocity and detailed in [START_REF] Léon | Aerodynamic and heat transfer effects of distributed hemispherical roughness elements inducing step changes in a turbulent boundary layer[END_REF]. For these experiments, it was found + = 14. Figure 9 shows comparisons of the experimental velocity profiles with the results provided by the DANS model. For rough surface B on figure 9, the small orange area represents the region framed by experimental results considering y g = 0.4k r and y g = 0.7k r . We observe that uncertainty on the location of the reference coordinate level in these experiments does not modify the agreement with the DANS results. The overall agreement between measurements and computations is very satisfactory. More precisely, on figure 9 the evolution of the profiles with the increase of the Reynolds number δ + is well reproduced. A quantification of the roughness function ∆u + for all cases is given in table 3. The key point is that for rough surface A a single surface was used and so these results demonstrate the good behavior of the DANS model with respect to the Reynolds number effect. This corroborates the conclusion drawn by Chedevergne and Forooghi [START_REF] Chedevergne | On the importance of the drag coefficient modelling in the double averaged navier-stokes equations for prediction of the roughness effects[END_REF] on the C d model ( 4) but for higher Reynolds numbers. Furthermore, the assumption that the dominant contribution is always from the area above the threshold location y t and that below it the influence is negligible, regardless of the evolution of the Reynolds number in the range δ + ∈ [3970, 29900], is verified for the rough surface A. Note that from case #1 to case #6, the roughness effects range from the transitionally rough regime to the fully rough regime with k + s values given by Squire et al. [START_REF] Squire | Comparison of turbulent boundary layers over smooth and rough surfaces up to high reynolds numbers[END_REF] in the range [START_REF] Whitaker | Flows in porous media I: A theoretical derivation of Darcy's law[END_REF]150]. For rough surface B, k + s is about 280 and is in the fully rough regime. An interesting comparison can be done with some representative correlations for the equivalent sand grain height. Two different types of correlations can be distinguished: those based on statistical quantities and those based on global geometrical parameters. The well-known correlation of Flack and Schultz [START_REF] Flack | Review of hydraulic roughness scales in the fully rough regime[END_REF], close to that of Boyle and Stripf [START_REF] Boyle | Simplified approach to predicting rough surface transition[END_REF], is representative of those of the first category. Likewise, van Rij [START_REF] Van Rij | Analysis and experiments on three-dimensional, irregular surface roughness[END_REF] correlation, based on Sigal and Danberg [START_REF] Sigal | New correlation of roughness density effect on the turbulent boundary layer[END_REF] parameter Λ s , is the most commonly used correlation of the second type. Expressions of these two correlations are: van Rij :

k s k r = 1.802Λ 0.03038 s , ∀Λ s ∈ [7.842, 28.12] (11) 
Flack & Schultz :

k s = 4.43k q (1 + S k ) 1.37 (12) 
To estimate the roughness function ∆u + from the equivalent sand grain height k s , Nikuradse's relation [START_REF] Nikuradse | Laws of flows in rough pipes[END_REF] or the relation provided by Grigson [START_REF] Grigson | Drag losses of new ships caused by hull finish[END_REF], which reads ∆u + = 1 κ ln 1 + e -3.25κ k + s , can be used. For each of the correlations in eq. ( 11) and [START_REF] Schultz | Turbulent boundary layers on a systematically varied rough wall[END_REF], two values of ∆u + are provided based on either Nikuradse or Grigson relations ∆u + k + s . Table 3 gives an overview of the values of the roughness function found in the experiments, the computations and from the correlations of Flack and 10 for the six cases of the rough surface A. The roughness function estimation error from the various correction decreases with the increase in Reynolds number. It is also noted the influence of the relationship ∆u + k + s (Nikuradse or Grigson), when the values of ∆u + are lower and are in the transitional regime. It is indeed when ∆u + is small and we approach the transitionally rough regime that the Grigson relation deviates from Nikuradse's. The DANS approach presented in this paper follows the set of experimental results within less than 12% of error. The average error is about 4% on the six cases of the configuration studied by Squire et al. . Although not shown here, computations using models based on the equivalent sand grain approach provide poor results in the roughness sublayers with overpredicted velocity profiles, owing to the artificial increase of the eddy viscosity. As for the DANS model, it was shown [START_REF] Chedevergne | A double-averaged navier-stokes k -ω turbulence model for wall flows over rough surfaces with heat transfer[END_REF] to yield accurate velocity profiles, from the wall up to the logarithmic region for k + s up to 280 (∆u + = 10, 84) but at limited friction Reynolds number. Additional validation is required to fully verify the ability of the DANS model to compute accurate velocity profiles in the roughness sublayers at higher Reynolds numbers. 

Conclusion

To go beyond the limits inherent in the equivalent sand grain approach, the Discrete Element Method was recently revisited [START_REF] Chedevergne | A double-averaged navier-stokes k -ω turbulence model for wall flows over rough surfaces with heat transfer[END_REF] through the prism of the Double Averaged Navier-Stokes equations. However, as with any model dedicated to rough walls, issues about the input parameters remain. For models based on the equivalent sand grain concept, the only remaining problem is the determination of k s , which is usually done from empirical correlations such as those of eq. ( 11) and [START_REF] Schultz | Turbulent boundary layers on a systematically varied rough wall[END_REF]. Here, in the DANS model, a more practical solution is adopted. The notion of representative elementary roughness (RER) was introduced. To define it, only two geometrical parameters β and d are necessary. The other parameters (ϕ and β m ) needed for DANS computations can be deduced from the RER. The blockage factor β and the elementary diameter d are functions of the wall-normal coordinate. Image processing tools are used to extract these two parameters from scans of a given rough surface. Both β and d are computed along the wall-normal direction where each transversal slice is independent of the others. Some regions of the RER do not participate in momentum transfer and if left untreated can induce undesirable contributions, especially in the drag term of the DANS model, and ultimately distort the results. To find these regions, we rely on the monotonic behaviors of β and d to define a threshold position y t below which the RER geometry should not be considered. In fact, the value of y t will be taken as the highest of the threshold values obtained from different physical constraints. In addition to a first threshold value y b , stemming from the definition of β, two additional values are obtained by analyzing the wetted perimeter P and the presence of inclusions corresponding to fluid areas enclosed in solid areas. The analysis of the wetted perimeter allows us to separate regions of the RER where the behavior is similar to that of a d-type roughness and those where it is similar to that of a k-type roughness. The portions of the RER that can be likened to d-type roughness must be removed because the C d model of eq. ( 4) was designed to only handle k-type roughness. As for the presence of inclusions, it reflects the existence of rough patterns of large dimensions that make the procedure used to define the elementary diameter d obsolete and must be removed from the definition of the RER. Once the threshold position y t is determined, parameters β and d are set constant below. This forces the flow velocity to tend to zero and adjusts the level of turbulent dissipation through the source term in the ω equation. The procedure allowing the definition of the RER was applied to a couple of experiments employing a sandpaper (rough surface A) and a 3D printed rough surface (rough surface B), respectively. Several cases were tested for various Reynolds numbers. Comparisons between the DANS computations and the measurements demonstrate that the proposed model, associated with the procedure defining the RER, brings a substantial benefit compared to the equivalent sand grain models. The DANS model was previously validated on low-Reynolds number DNS configurations [START_REF] Chedevergne | A double-averaged navier-stokes k -ω turbulence model for wall flows over rough surfaces with heat transfer[END_REF] and therefore, regarding all the tested configurations, its range of application goes from the transitionally rough regime to the fully rough regime. A noteworthy point is that with this model, independently of the considered rough regime, a clear and unambiguous definition of the input parameters applies. The velocity profiles are well described in the roughness sublayers, which may be a clear benefit for further applications where the near wall dynamics plays an essential role (transpiration, species diffusion, ablation process, ...). The two rough surfaces considered for applying the procedure are representative of some applications and present a high level of complexity of their topographies. The delicate point of this procedure concerns the threshold value which can play an important role on the DANS model by influencing the turbulent contribution. It is not certain that other surfaces, with different types of topography, are suitable for this procedure. In particular, the position of the threshold below which the RER geometry should no longer be taken into account may depend on criteria specific to a rough surface type and not yet explored. Additionally, although, in the range of Reynolds numbers tested, the purely geometrical definition of the threshold location y t proved to be adequate for rough surface A, it is not clear whether this procedure is suitable to other types of rough surfaces concerning the influence of Reynolds number. For these reasons, it is important to perform additional checks on other rough configurations at different Reynolds numbers. However, it is reasonable to assume that a standard procedure can be defined for each type of rough surface (rime ice, biofouling, sandpaper, ablative material of re-entry vehicles, etc.).
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 1 Figure 1. Photograph of the rough surface tested at ONERA.

1 Figure 2 .y

 12 Figure 2. Elevation maps and iso-contours for the scanned surfaces. The plotted surface area is 12.7 mm × 12.7 mm for rough surface A while it is 40 mm × 40 mm for rough surface B#1. Colorbars for the elevation y are in millimeters. sample, the surface elevation distribution function f is described by a set of N × M discrete points such that y ij = f (x i , z j ) with (i, j) ∈ [1, N ] × [1, M ]. Figures 3a and 3b show the probability density functions (p.d.f.) obtained on the different samples for the relative surface elevation y about the mean height, i.e. y = y -y, where the mean height y = 1 N M N

Figure 3 .

 3 Figure 3. Probability density function of the elevation about the mean height. In (b), the dark blue to light blue solid lines represent the four rough surface B#1 to B#4 respectively.
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 45 Figure 4. Cross-sections y = 0 for rough surface A and B#1. Images (a) and (b) show the roughness-occupied areas whereas in (c) and (d) the contour lines present the wetted perimeters.

Figure 6 .

 6 Figure 6. (a) Wetted perimeter for rough surface A (black line) and for rough surfaces B (blue line). (b) Roughness profiles extracted at z = z = z for rough surface A (top) and rough surface B#1 (bottom). The solid and dashed lines show the profiles for y ≥ y p and y < y p respectively, and the dotted line stands for the mean height corresponding to y = 0.

Figure 7 .

 7 Figure 7. (a) Contour (red line) of cross-section y = 0 for rough surface B#1 containing multiple smaller contours (blue lines). (b) ratio of the area occupied by the inclusions over the total solid-occupied surface. The dark blue to light blue dashed lines are the plots for the rough surface B#1 to B#4, respectively. The black solid line is the mean curve representing the rough surface B.

Figure 8 .

 8 Figure 8. Derivative of the blockage factor. The vertical dashed and dashed-dotted lines indicate the locations of the thresholds y p and y i respectively.

Figure 9 .

 9 Figure 9. Measured velocity profiles (symbols) compared to DANS model results (solid lines) for rough surfaces A and B. Reference data for a smooth wall are plotted in gray. Cases #1 through #6 for rough surface A are shown with colors ranging from dark blue to light blue. The data for rough surface B are shown in orange. A zoomed view of the dashed box region shows the area (orange area) delimited by the experimental results obtained with yg = 0.4kr and yg = 0.7kr.

Figure 10 .

 10 Figure 10. Variations of ∆u + with respect to δ + for rough surface A. Full black circles are the measurements of Squire et al.[START_REF] Squire | Comparison of turbulent boundary layers over smooth and rough surfaces up to high reynolds numbers[END_REF] and the blue squares are the DANS results. Orange and green symbols are the values obtained using van Rij correlation[START_REF] Van Rij | Analysis and experiments on three-dimensional, irregular surface roughness[END_REF] and Flack and Schultz correlation[START_REF] Schultz | Turbulent boundary layers on a systematically varied rough wall[END_REF], respectively. Symbols and indicate the use of Nikuradse ( ) and Grigson ( ) relations for the calculation of ∆u + k + s . The dark gray and light gray areas show the regions where the error is less than 20% and 40%.

Table 1 .

 1 Characteristics of the measured rough surfaces.

		kr (mm)	ka (mm) kq (mm)	S k	Ku	ESx/ESz	Λs x Λs z
	rough surface A	1.2188	0.1119	0.1504	0.0931	3.1275 0.4824/0.4817 20.1904/20.2637
	rough surface B#1	3.5980	0.5145	0.6175	-0.0169 2.2512 0.6061/0.5938 13.5056/13.5147
	rough surface B#2	3.2747	0.5224	0.6262	-0.0163 2.2690 0.6234/0.6099	13.162/13.0420
	rough surface B#3	3.1612	0.5242	0.6259	0.0766	2.1681 0.5648/0.5594 15.6634/15.1523
	rough surface B#4	3.1787	0.5073	0.6059	0.0795	2.2668 0.5617/0.5735 15.7256/14.7281
	rough surface B	3.3031	0.5177	0.6183	0.0310	2.2388 0.5890/0.5842 14.4777/14.1093

Table 2 .

 2 Boundary

			layer characteris-
	tics for the experimental configurations
		U∞	δ +	uτ
	A: Case #1	4.7	3 970	0.18
	A: Case #2	10.1	9 730	0.40
	A: Case #3	15.2	14 980 0.61
	A: Case #4	20.6	20 160 0.83
	A: Case #5	25.4	25 020 1.02
	A: Case #6	30.4	29 900 1.23
	B	28.5	3 575	1.55

Table 3 .

 3 Roughness function ∆u + . The two values of ∆u + provided for Van Rij and Flack and Schultz correlations, correspond to the use of Grigson[START_REF] Grigson | Drag losses of new ships caused by hull finish[END_REF] (left) or Nikuradse[START_REF] Nikuradse | Laws of flows in rough pipes[END_REF] (right) relations.Schultz and van Rij. Van Rij correlation overpredicts the roughness function ∆u + for all cases whereas the correlation of Flack and Schultz generally tends to underestimate it. The revised version[START_REF] Flack | Skin friction measurements of systematically-varied roughness: Probing the role of roughness amplitude and skewness[END_REF] of the correlation of eq. (12) gives lower values of k + s and further underestimates the roughness function values. The variations of the different values of ∆u + with respect to the Reynolds number δ + are plotted in figure

		Exp.	DANS van Rij [11]	Flack & Schultz [49]
	A: Case #1	2.7	2.81	5.17/4.63	2.91/1.32
	A: Case #2	5.2	5.83	6.95/7.19	4.41/3.47
	A: Case #3	6.6	6.75	7.93/8.38	5.29/4.82
	A: Case #4	7.5	7.79	8.66/9.15	5.97/5.81
	A: Case #5	8.2	8.01	9.15/9.67	6.43/6.47
	A: Case #6	8.6	8.58	9.59/10.13	6.86/7.07
	B	10.29	10.67	12.59/13.24	10.62/11.21

Cross-sections in planes perpendicular to the wall-normal coordinate y.

Since the Reynolds average is the ensemble average, the same notation is kept here for the mean height which is mean value over the ensemble of the discrete values of the elevations y ij .
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