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Abstract—Cell-Free Massive MIMO with MRT (Maximum-
Ratio Transmission) has the advantage of decentralized beam-
forming with the smallest front-haul overhead. Its downlink power
control plays a dual role of fair power distribution among users
and interference mitigation. It is well-known that finding the
optimal max-min power control relies on SOCP (Second Order
Cone Programming) feasibility bisection search, whose large
computational delay is not suitable for practical implementation.
In this paper, we devise a deep learning approach for finding
a practical near-optimal power control. Specifically, we propose
a convolutional neural network that takes as input the channel
matrix of large-scale fading coefficients and outputs the total
transmit power of each AP (access point). Using this information,
the downlink power control for each user is then computed by
a low-complexity convex program. Our approach requires to
generate far fewer training examples than existing schemes. The
reason is that we augment the training dataset with magnitudes
larger number of artificial examples by exploiting the special
structure of the problem. The resulting deep learning model not
only provides a near-optimal solution to the original problem,
but also generalizes well for problems with different number of
users and different propagation morphologies, without the need
to retrain it. Numerical simulations validate the near optimality of
our solution with a significant reduction in computational burden.

Index Terms—Cell-Free, distributed, Massive MIMO, power
control, deep learning, convolutional neural network, maximum
ratio, MRT, conjugate beamforming, max-min.

I. INTRODUCTION

Since the seminal work [1], Massive MIMO has become a
core technology for 5G. Traditional cellular Massive MIMO
employs many service antennas in each base station tower
to accomplish precision beamforming. The intended coverage
area is divided into multiple cells. Users in each cell area are
served by a base station. Base stations do not cooperate in
beamforming related signal processing but may cooperate in
power control. Cell-Free Massive MIMO is a new wireless
technology that is likely to play a key role for beyond 5G [2].
It promises ubiquitous coverage and high data rate to all users
by leveraging the superior pathloss advantage furnished by
the many APs distributed throughout the coverage area, and
the precision beamforming and channel hardening benefits of
Massive MIMO.

For Cell-Free Massive MIMO to become a reality, a major
challenge is its fronthaul demand for the necessary beam-
forming signal processing [3]. Among all common precoding

schemes, MRT has the lowest fronthaul overhead, but it re-
quires sophisticated downlink power control to mitigate inter-
user interference [4]. It is well-known that with MRT, downlink
max-min power control, which maximizes the minimum SINR
among all active users, can be obtained with SOCP feasi-
bility bisection search. However, such algorithm comes with
a large computational delay that is not suitable for practical
implementation. The challenging goal of finding an approach
for a practical downlink max-min power control has been
pursued in the past with limited success [5], [6]. Paper [7]
considers a Cell-Free Massive MIMO with multiple antenna
APs, and proposes a deep learning method to approximate
a high complexity heuristic algorithm for max-min power
allocation. Deep learning based uplink power controls for Cell-
Free Massive MIMO are studied in [8], [9].

In this paper, we aim to train a deep learning model to find
a practical near-optimal max-min downlink power control. Our
contributions are as follows.

1) We propose a deep learning model with 2 convolution
layers and 4 fully connected layers to approximate closely
the optimal power control. To our knowledge, it is the best
in terms of performance among all practical solutions.

2) The neural network can be executed on different number
of users thanks to its structure and the specific data
preprocessing. Furthermore, we show by simulations that
it generalizes well for different number of users and
propagation morphologies, without the need to retrain it.

3) We exploit the special structure of the problem and
propose a procedure to augment the training dataset with
artificial examples. This greatly reduces the number of
examples required to train the neural network.

II. PRELIMINARIES

A. Notation
Superscripts T, ∗, denote transpose, complex conjugate trans-

pose respectively. Thus double superscripts T∗ and ∗T denote
un-transposed conjugate. E(·) is the expectation. All vectors
are column vectors. For v ∈ Cn, diag(v) denotes the diagonal
matrix with v as its diagonal elements. For A ∈ Cn×n,
diag(A) denotes the vector formed by the diagonal elements
of A. [·]l,l denotes the lth diagonal element of a matrix. [·]l
denotes the lth element of a vector. � denotes the element-wise
multiplication. In denotes the n-dimensional identity matrix.



 
Fig. 1: A cell-free system with a CPU. All APs serve all users.

B. Cell-Free Massive MIMO

A “cell-free” system does not divide coverage area into cells,
as in a traditional cellular system. The entire coverage area is
served by M APs (access points) that are deployed throughout
the coverage area. Each AP can have one or more service
antennas. We assume that each AP has one service antenna, and
the system is to serve K single antenna UEs (user equipments)
simultaneously, and M � K. Fig. 1 shows an example of a
cell-free system. In a cell-free system, each user is served by all
APs simultaneously. All APs are connected to a CPU (central
processing unit) for precoding and decoding processing, and
for power control coordination.

Let

G = (g1 · · · gK) =

 ḡT
1
...

ḡT
M

 ∈ CM×K

be the channel matrix between the M AP antennas and the K
user antennas, where gk ∈ CM is the channel vector between
the kth user and the M AP antennas, and ḡm ∈ CK is the
channel vector between the mth AP antenna and the K users.

The downlink data channel is modeled as

x = GT(
√
ρds) + w (1)

where x ∈ CK is the received signal vector at the K user
terminals, ρd is the downlink SNR (signal to noise ratio) for
each AP, s ∈ CM is M precoded inputs to the M antenna
ports at the M APs, and w ∈ CK is a circularly-symmetric
Gaussian noise vector. Downlink power is subject to the power
constraint for each access point, and can be specified as

‖E(s∗T � s)‖∞ ≤ 1. (2)

C. Downlink SINR with MRT

A Cell-Free Massive MIMO system distributes M service
antennas throughout an intended coverage area. These service
antennas serve as access points to provide data service to K
autonomous users, where M is much larger than K. This is
in contrast to a cellular Massive MIMO system in which an
intended coverage area is divided into cells, and users located
in each cell is served by an M antenna array that is located at
the center of the cell.

For a Cell-Free Massive MIMO, the channel between the
mth service antenna and the kth user is modeled as

gm,k =
√
βm,khm,k, (3)

where βm,k models the large-scale fading that accounts for
geometric attenuation and shadow fading; hm,k models the
small-scale fading that accounts for random scattering.

In rich scattering propagation environment, the magnitude of
the signal typically varies randomly according to the Rayleigh
distribution, thus the small-scaling fading hm,k,∀m, k are
modeled as circularly symmetric complex Gaussian, indepen-
dent and identically distributed random variables.

Under these assumptions, and with MMSE (minimum mean
square error) channel estimation based on orthogonal uplink
pilot sequence, the ergodic downlink effective SINR for the
Cell-Free Massive MIMO system with MRT precoding is given
by [5]

SINRcell-free
k =

ρd

(∑M
m=1

√
αm,kηm,k

)2
1 + ρd

∑M
m=1 βm,k

∑K
k′=1 ηm,k′

(4)

where

αm,k =
ρuτβ

2
m,k

1 + ρuτβm,k
(5)

is the mean-square of the channel estimate, and ρd and ρu
are the normalized downlink and uplink SNR (Signal-to-Noise
Ratio) respectively. τ is the length of the uplink pilot sequence
that is used for channel estimation. η = {ηm,k} is the downlink
power control which is subject to per AP power constraint:

K∑
k′=1

ηm,k′ ≤ 1, ∀m. (6)

The max-min power control optimization problem can be
formulated as

max
η

min
k

SINRcell-free
k ,

subject to
K∑

k′=1

ηm,k′ ≤ 1, ∀m,

ηm,k′ ≥ 0, ∀m, k′.

(P)

An optimal solution to problem P can be obtained with SOCP
feasibility bisection search [10], [5], [11]. However, SOCP’s
computational complexity becomes impractical as M and K
increase. Hence, we use deep learning to simplify the problem
by finding near-optimal values for intermediate variables. Sup-
pose that the optimal transmit power popt

m =
∑K

k′=1 ηm,k′ for
the m-th AP can be computed by a neural network, then the
problem can be simplified as follows

max
η

min
k

ρd

(∑M
m=1

√
αm,kηm,k

)2
1 + ρd

∑M
m=1 βm,kp

opt
m

,

subject to
K∑

k′=1

ηm,k′ = popt
m , ∀m,

ηm,k′ ≥ 0, ∀m, k′.

(P ′)

In this paper, we develop and train a neural network to
find the value of popt

m for all m. It takes as input the large-
scale fading coefficients matrix B = (βm,k)m=1...M, k=1...K



Fig. 2: Structure of the neural network

and outputs the per AP power vector p = (popt
1 · · · p

opt
M ). The

resulting problem P ′ is known to be convex, see references [5],
[6]. Therefore it can be readily solved by standard convex
programming tools with low complexity.

III. DEEP LEARNING POWER CONTROL

A. Datasets

To train and evaluate the neural network, we generate
datasets composed of optimal (B,p) pairs. Each dataset cor-
responds to a different simulation scenario characterized by a
triplet (M,K,mor), where mor ∈ {urban, suburban, rural}
denotes the propagation morphology. For each example of the
dataset, we generate randomly the channel between the M APs
and the K users according to the propagation morphology mor.
The corresponding optimal p is obtained by a second-order
cone program (SOCP).

The neural network proposed in this paper takes as input
a matrix of size 32x9 and outputs a vector of size 32, which
means that it accepts any data with M ≤ 32 and K ≤ 9. These
values are chosen arbitrarily here, nevertheless the input size,
output size and hidden layers size of the neural network can
be scaled to match any practical system’s requirements in M
and K.

If an input matrix B is smaller than 32x9, the missing
elements are padded with a well chosen constant value. We
choose this constant to be lower than any other values in the
dataset, i.e., 10−20 in our simulations. Similarly, if the size of
p is less than 32, we pad the missing elements with 0. The
idea is to train the neural network to interpret these padded
values as missing elements both in the input and the output.
We will see in the next subsection that a log2 transformation
is applied to B during the preprocessing step. For this reason,
we choose to pad the input matrix with 10−20 instead of 0 to
avoid numerical issues.

B. Preprocessing

The initial values of B in the datasets are not suitable for
neural networks such as multi-layer perceptron and convolu-
tional neural networks. Indeed, the large-scale fading values
vary by many orders of magnitude, while the connections be-
tween neurons remain within the same order of magnitudes. To
solve this issue, we first apply a log2 transformation to all the
βm,k. As an example, if βm,k takes values in

[
10−15, 10−5

]
,

then −50 < log2 βm,k < −16. With this transformation, the
neural network is now able to extract useful information from

the dataset. Note that, it does not matter which logarithm base
we use as they are all equal up to a constant factor.

Another common practice is to normalize each input feature
log2 βm,k and output popt

m to have zero mean and unit standard
deviation over all examples of the dataset. This helps speed up
the training, as the model does not have to learn the statistics
of the data.

When multiple datasets are used by the same neural network
–regardless of whether it is for training or during execution–
they are normalized jointly with the same mean and standard
deviation values. This ensures that the input and output values
are consistent between any two examples that go through the
neural network.

C. Structure of the Neural Network

The structure of the neural network is illustrated in figure 2.
We use the notation “depth @ height x width” to indicate the
size of the convolution layers. The numbers on top of the fully
connected layers represent their number of neurons.

A preliminary model investigated is a multi-layer perceptron
with only fully connected layers. It works well for small
instances like 10x2. However, the size of such fully connected
layers do not scale well when M and K increases. For
this reason, we incorporated convolution layers in the current
model, which are suitable for image-like inputs like B.

The first convolution layer has a kernel of size 32x1, i.e., for
each user k, the 32 large-scale fading coefficients β1,k · · ·βM,k

are connected to 64 units. The ouput of this layer is a tensor of
size 64@1x9, where the k-th column has 64 neurons processing
the information of user k only.

Let (c1 · · · c9) be the columns of the 64@1x9 tensor. The
circular padding consists in repeating the columns periodically
to get a 64@1x13 tensor of the form (c1 · · · c9c1c2c3c4). Since
the second convolution has a kernel of size 1x5, the circular
padding ensures that each column ck is connected to the same
number of neurons. Without circular padding, columns c1 and
c9 would be connected to 128 neurons, while column c5 would
be connected to 128× 5 = 640 neurons.

The output of this second convolution layer is flatten into
128×1×9 = 1152 neurons, then followed by 4 fully connected
layers of size 768, 1024, 64 and 896. The ELU (Exponential
Linear Unit) activation function is used on all hidden layers,
followed by a layer normalization [12]. The output layer is a
simple linear activation.



D. Training and Data Augmentation

For training, we use the Nadam optimizer [13] with a
learning rate of 7 × 10−4. The batch size is 1024, and the
training is stopped after 200 epochs.

The training dataset is composed of 18, 000 examples from
the (M,K,mor) = (32, 6, urban) scenario, and 18, 000
examples from the (M,K,mor) = (32, 9, urban) scenario.
By training the network on these two scenarios, it learns to
generalize. Indeed, we will see in Section IV that the network
generalizes well even for values of K and morphologies it did
not trained for.

One can observe that the problem formulation P does not
depend on the choice of indices for the users and APs. In other
words, permuting the columns of B, and permuting the rows of
B and p produces another valid and optimal instance of P . The
row permutation (i.e., permutation of the APs’ indices) applied
to B and p has to be the same. Using this idea, we augment
the dataset by creating new examples. The procedure is as
follows: each example of the dataset is duplicated 60 times;
each duplicated example is randomly permuted. We make sure
that the 60 permutations applied on the same example are all
different to avoid creating identical examples. The augmented
training dataset now contains 36, 000 × 60 = 2.16 × 106

examples.
This augmentation is interesting for training as it achieves

efficient regularization without the need to generate a massive
number of “real” examples, which would take considerable
time due to the complexity of SOCP. In addition, the augmen-
tation helps the neural network learn the symmetries of the
problem. It is important to note that this augmentation will
only be used for training and not for performance evaluation
as it produces redundant examples.

IV. NUMERICAL RESULTS

In this section, we demonstrate the usage and effectiveness
of our deep learning model for obtaining near-optimal max-min
power control.

In our simulations, maximum 32 APs and maximum 9 users
are randomly distributed in a circular area within a radius of
500 meters for the urban scenario, 1 km for suburban and 4
km for rural. Both service antennas and user antennas have 0
dBi gain. Both AP receiver and mobile receiver have a 9 dB
noise figure. The transmit power of each AP is 200 mW. Noise
power calculation assumes 20 MHz carrier spectral bandwidth.

For each simulation scenario (M,K,mor), we generate a
dataset of 2, 000 examples which are used to obtain the figures
in this section.

A. Propagation Models

We use the “NLoS” propagation models specified in [14],
for which the path loss in dB is given by

PL(d) = 161.04− 7.1 log10(W ) + 7.5 log10(h)

−[24.37− 3.7(h/hAP)2] log10(hAP)

+[43.42− 3.1 log10(hAP)][log10(d)− 3]

+20 log10(fc)− (3.2[log10(11.75hAT)]2 − 4.97)

Urban Suburban Rural

W (in meters) 20 20 20

h (in meters) 20 10 5

hAP (in meters) 20 20 40

hAT (in meters) 1.5 1.5 1.5

fc (in GHz) 2 2 0.45

σ (in dB) 6 8 8

TABLE I: Parameters for path loss models
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Fig. 3: Distributions of β in different morphologies

where W is the street width (in meters); h is the average
building height (in meters); hAP is the AP antenna height (in
meters); hAT is the user AT antenna height (in meters); fc is
the carrier frequency in GHz; and d is the distance between
transmitter antenna and receiver antenna, also in meters.

Our simulation parameters for the propagation models are
compatible with [14] and are summarized in Table I, where σ
is the standard deviation of the lognormal shadow fading.

We consider three propagation morphologies, namely urban,
suburban and rural. From Fig. 3, we see that there is substantial
difference in the distributions of path loss β between urban and
suburban. 2 GHz band is assumed for both urban and suburban.
Distributions for suburban and rural are similar due to the fact
that 450 MHz band is used in rural.

Fig. 4 plots the CDF of β for different numbers of APs and
UEs in a fixed area (disk with radius = 500 m) for the urban
morphology. We see that the distributions of path loss β are
essentially the same for the Ms and Ks we considered.

B. Normalized Downlink and Uplink SNR

The normalized downlink SNR (Signal-to-Noise Ratio) ρd
is calculated as follows.

ρd = Pd × GainAP × GainAT/(B ×N0 × NFAT),

where Pd is the full downlink radiated power for each AP;
GainAP is the antenna gain of the service antenna at the
AP minus associated cable loss, and GainAT is the user AT
antenna gain minus associated cable loss; B is the carrier
spectral bandwidth; N0 is the spectral density of the thermal
noise power, which can be calculated as N0 = kT , where
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k = 1.3807 × 10−23 is Boltzmann’s constant in joules per
kelvin, and T is the receiver system noise temperature in
kelvins; NFAT is the user access terminal receiver noise figure.

Similarly, the normalized uplink SNR ρu is calculated as

ρu = Pu × GainAP × GainAT/(B ×N0 × NFAP),

where Pu is the full uplink radiated power for each AT; NFAP
is the AP receiver noise figure.

The uplink SNR ρu is relevant because the downlink
throughput performance depends on the quality of the channel
estimation, which in turn depends on ρu as shown in (5). As
mentioned previously, in our simulation, we assume 200 mW
radiated power for both AP and UE amplifiers, resulting in
ρd = ρu ≈ 3.144 × 1011. We use K orthogonal pilots for
channel estimation, i.e., τ = K in (5).

C. Near Optimal Spectral Efficiency

The figures in this section present the spectral efficiency
CDF of our deep-learning based solution compared to the
optimal for different simulation scenarios. The curve “nn”
shows the performance of our model. Curve “socp” is obtained
by solving SOCP on problem P , while “opt” is obtained by
solving P ′ using a convex solver given that the optimal popt

m

are given. As expected, curves “socp” and “opt” are identical
since problems P and P ′ are equivalent.

We recall that our model is trained on the urban scenario
with M = 32 and K = 6, 9. The performance of this model
in terms of per user SE is shown in Fig. 5. At median, the
deep-learning based solution is about 0.05 b/s/Hz away from
optimal, which corresponds to around 2.7% loss in per user
spectral efficiency.

To see how our model generalizes to different K, we run a
simulation with (M,K,mor) = (32, 5, urban). Fig. 6 shows
that the deep-learning based solution is about 0.065 b/s/Hz
away from optimal at median.

An interesting question is whether our model can generalize
to different M and K. To verify this we run a simulation
with (M,K,mor) = (24, 5, urban). Fig. 7 shows that the
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Fig. 5: CDF of per user SE for (M,K,mor) = (32, 9, urban)
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Fig. 6: CDF of per user SE for (M,K,mor) = (32, 5, urban)

deep-learning based solution loses about 0.28 b/s/Hz from
optimal at median, that is approximately 14.6% loss in per
user spectral efficiency. The quality of the neural network
inference degrades compared to the previous scenarios with
M = 32. Further tuning of the model, with additional training
on different number of APs, may be able to reduce this loss.

We also validate the performance of our model with other
morphologies. Fig. 8 represents a suburban scenario, in which
the deep-learning based solution is approximately 0.05 b/s/Hz
away from optimal at median. It is also 0.05 b/s/Hz away from
optimal at median in the rural scenario shown in Fig. 9. This
represents about 2.8% loss in per user spectral efficiency.

In summary, our deep-learning based solution generalizes
very well to different number of users and different propagation
morphologies, without the need to retrain it specifically for
these new cases. However, it does not perform as well when
the number of APs changes. We offer two possible causes as
follows. First, the convolution layers in Fig. 2 can efficiently
adapt to missing users in the input when K < 9, while it is less
suited for missing APs when M < 32. Secondly, the model
has only been trained on examples with M = 32 APs. It may
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0.5 1 1.5 2

Spectral Efficiency (b/s/Hz)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
a
b
ili

ty

Downlink SE (suburban, M=32, K=9)

opt

nn

socp

Fig. 8: CDF of per user SE for (M,K,mor) = (32, 9, suburban)

0.6 0.8 1 1.2 1.4 1.6 1.8 2

Spectral Efficiency (b/s/Hz)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
a
b
ili

ty

Downlink SE (rural, M=32, K=9)

opt

nn

socp

Fig. 9: CDF of per user SE for (M,K,mor) = (32, 9, rural)

SOCP NN

Urban, M = 24,K = 5 1.92× 108

3.74× 106
Urban, M = 32,K = 5 2.76× 108

Urban, M = 32,K = 9 3.46× 108

Suburban, M = 32,K = 9 3.55× 108

Rural, M = 32,K = 9 3.79× 108

TABLE II: FLOPs comparison between SOCP and the proposed neural
network for different number of users and APs

be able to generalize better with further training on different
values of M , as well as improvements on the structure of the
neural network.

D. Computational Complexity

To compare the computational complexity of SOCP and our
solution, we count their number of floating point operations
(FLOPs) during execution. Each multiplication or addition
counts as one FLOP. We use the MOSEK solver [15] in
Python 3 to solve the SOCP problem. The SINR accuracy at
termination of the bisection search is set to 0.01. The neural
network is implemented with Tensorflow in Python 3. We show
the number of FLOPs in Table II for different number of users
and APs. Each value in this table is obtained by averaging the
FLOPs count over 2, 000 random instances.

The complexity of the neural network depends on its number
of parameters, the number of layers and their sizes. However,
it does not vary with the input size since B is padded to be
consistently of size 32×9. Therefore, the execution complexity
of our solution remains constant, equal to 3.74× 106 FLOPs,
in all scenarios.

The complexity of SOCP increases with M and K, and
varies slightly between different propagation morphologies. We
can see in Table II that SOCP requires 50 times more FLOPs
than our solution when M = 24 and K = 5. For scenarios
with 32 APs and 5 to 9 UEs, the neural network performs 70
to 100 times fewer FLOPs than SOCP.

The significant reduction in computational complexity can
also be seen by their run-times. Indeed, when both algorithms
are executed on the same computer1, we observe that SOCP
takes around 5s, while our model terminates under 50ms.
Hence, the proposed deep learning solution achieves low run-
time suitable for practical implementations.

V. CONCLUSIONS

Cell-Free Massive MIMO is a beyond 5G technology that
promises ubiquitous coverage and high data rate to all users.
A major challenge for such a system to become reality is its
fronthaul overhead and power control complexity. MRT has
the lowest fronthaul overhead, but it requires sophisticated
downlink power control to mitigate inter-user interference.
We employ a deep learning approach to the problem and
demonstrate its effectiveness. We exploit the special structure
of the problem and come up with a method to easily augment

1with the following specifications: Intel Core i5 CPU with 8 GB of RAM,
Windows 10, 64 bits. GPU is not used by the neural network to keep the
comparison fair.



the number of training examples by magnitudes. Our trained
model generalizes well for different number of users, and
different propagation morphologies. Simulations show that the
model is practically optimal in the sense that it delivers spectral
efficiency that is less than 3% away from optimal, leaving little
room for further improvement for all practical purposes. An
added advantage is the resulting near optimal power control is
also energy efficient [11].

Currently, our model does not generalize to different number
of APs well. Possible further investigation includes: 1) Extend
the model to handle different number of APs. 2) Learning
optimal linear precoding where either the whole precoding
matrix is learned or some intermediate structures are learned
to speed up the computation of the optimal precoding matrix.
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