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Abstract

Diagnosis aims at predicting the health status of components and systems.
In photovoltaic (PV) systems, it is vital to guarantee energy production and
extend the useful life of PV power plants. Multiple prediction and classifica-
tion algorithms have been proposed for this purpose in the literature. The
accuracy of these algorithms depends directly on the quality of the data with
which they are adjusted or trained, i.e., the features. In this paper, an inno-
vative approach for prediction of the health status in PV systems is proposed,
which includes a feature selection stage. This approach first discriminates
severely affected PV panels using basic electrical features. In a second step,
it discriminates the other faulty panels using more elaborated time-frequency
features and selecting the most relevant features through correlation and vari-
ance analysis. Finally, the approach predicts the health status of PV panels
using a nonlinear regression method named partial least squares. This later
is then combined to linear discriminant analysis and compared. The ap-
proach is validated with real current data from a PV plant composed of 12
PV panels with a power between 205 and 240 Wp in three health states
(broken glass, healthy, big snail snails). The results obtained show that the
proposed approach efficiently predicts the three health states. It determines
the level of degradation of the panels, which indicates priorities to corrective
and predictive maintenance actions. Furthermore, it is cost-effective since it
uses only electrical measurements that are already available in standard PV
data acquisition systems. Above all, the approach is generic and it can be
easily extrapolated to other diagnosis problems in other domains.

Keywords: photovoltaic system, fault classification, feature extraction,
wavelet transform, multiresolution signal decomposition, unsupervised
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1. Introduction

The increase in the demand for electricity, the price of products derived
from oil or gas and environmental pollution have driven an increase in the
use of renewable energies [1]. Among the most widely used renewable energy
resources [2, 3], abundant and clean [4] is photovoltaic (PV) energy used in
both small installations and large-scale power plants. As a consequence of
the increase in the use of PV energy, improvements in the efficiency of PV
cells and the extraction of maximum power, increased the efficiency, stability,
reliability and robustness of photovoltaic systems [5]. Along the same lines,
these advances revealed the need to improve PV plant supervision systems
due to the appearance of recurring undetectable faults [6]. It is necessary
that when a fault occurs in the system, it can be detected and classified as
quickly as possible and thus carry out predictive or corrective maintenance
of the PV system in a timely manner [7].

Faults in PV systems can be caused by aspects such as the useful life of the
components, increases in temperature during their operation, external factors
(environmental and non-environmental) or interactions between materials
[8]. In addition, depending on their location, these faults can affect the AC
or DC side of the PV system. On the DC side, some common faults are
partial shadowing, hot spots, bypass diode fault, module cracks, faults in the
Maximum Power Point Tracking (MPPT) algorithm, laminate discoloration,
isolation of cell parts by cracks, delamination, arc faults, among others [9–
18]. On the AC side, inverter faults can be found, such as open circuit of
switches, short circuit of switches, filter fault and gate fault in the inverter,
among others [19–23]. In addition, faults in the inverter protection systems
can also occur [14].

Fault diagnosis requires data acquisition and an efficient feature extrac-
tion system for diagnosis. However, at present, there is little discussion about
experimental data acquisition and processing, although it is a tedious task to
design a data acquisition system aimed at diagnosing faults [17]. The lack of
consensus in data acquisition may have its origin in the fact that faults are in
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many cases temporal due to changes in weather conditions or automatic cor-
rective actions by inverters or optimizers [14]. Furthermore, fault diagnosis
in photovoltaic (PV) systems becomes even more complicated in scenarios of
low irradiation [24]; when arc impedance may not draw high enough current;
when faults occur in less than a second [25]; in presence of the MPPT device
that optimizes the output power of a PV array [26]. In this type of scenario,
the protection devices fail to activate and even the PV characteristics of a PV
panel without faults can be similar to those of a faulty PV panel [27]. This
is why faults can go for hours without being detected and not only degrade
the state of the PV panel but also cause it to catch fire and pose a danger to
human security [28–30]. For all these reasons, early diagnosis of faults in PV
systems can sometimes be a real challenge [15] and likewise, an attractive
research area that is in full development [14].

To address the issues discussed above, and as a contribution to effective
fault diagnosis in PV systems, this paper proposes a new approach to feature
extraction and health status prediction in PV systems, based on a commercial
Tigo data acquisition platform. Our approach is based on five stages: 1)
data acquisition and pre-processing; 2) Dynamic Time Warping hierarchical
clustering; 3) feature extraction; 4) feature selection and 5) health status
prediction.

The contents of the paper are as follows. Section 2 explains related work
and describes the proposed approach. Section 3 explains data acquisition and
pre-processing. Section 4 presents Dynamic Time Warping based hierarchical
clustering. Feature extraction and feature selection are presented in Section
5 and Section 6 respectively. Section 7 is dedicated to the PV panels health
status prediction. Finally, section 8 provides a discussion on the results and
conclusions.

2. Related work and description of the approach

In recent years, multiple fault detection and health prediction techniques
have been proposed for PV plants. Many are based on the principle of Model-
Based Difference Measurement (MBDM), where measured parameters are
compared with those predicted by a statistical model [31, 32]. However,
these models may be difficult to train and update. Image analysis based
approaches have also been presented [33, 34]. Although these methods are
efficient for detecting faults such as hot spots, they are poor for detecting
faults without thermal expression and are also costly to implement. Another
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widely used method for failure analysis is based on visual inspection [35],
however this type of method has a high component of subjectivity, high cost
and long detection time on a large scale.

For these reasons, methods based on artificial intelligence algorithms have
become popular [36, 37]. Some based on clustering methods such as Fuzzy
C-means [38] at the solar cell level or hierarchical clustering at the solar
panel level have been proposed [38, 39]. In the same way, approaches based
on Support Vector Machines (SVM) [40], kernel extreme learning machine
[41], decision tree [36], neural networks [37, 42], Local outlier factor [43],
Naive Bayes Classifier [44], among others [45–47]. In [48] an approach is
proposed explicitly on the production current signal of PV strings. Other
more advanced methods combine more than one technique as a hybrid diag-
nosis technique that takes advantage of each of the methods and significantly
improves detection results. For example, [24] proposes a method Based on
Multiresolution Signal Decomposition and Two-Stage Support Vector Ma-
chines. It is interesting to note that in these works, no special attention is
paid to the process of feature extraction for training and likewise these ap-
proaches have not been tested on faulty PV panels whose fault signature is
similar to that of healthy panels. The complexity of fault diagnosis has even
generated methodologies based on semantics [49].

The contribution of this article is precisely to provide a solution to these
two last points, as discussed below. First, the panel string current must be
captured. Once this data acquisition step is achieved, it is necessary to carry
out the extraction of features that allow to discriminate the different classes
(health states) of PV panels. To discriminate between these classes, some
works propose analyzing the similarity of the signals using elastic metrics
[50]. Among these, Dynamic Time Warping (DTW ) is one of the algorithms
for measuring similarity between two temporal signals that is widely used
in clustering and classification [51]. DTW allows to determine the similarity
even between out-of-phase signals [52]. DTW is used in conjunction with Hi-
erarchical Clustering (HC) to group signals hierarchically [53, 54], assuming
that each observation is a group and the pairs of groups are merged as they
move up the hierarchy.

Other slightly more in-depth analyzes propose the use of signal processing
and decomposition techniques. Such techniques are also carried out in the
PV domain [55]. Signal decomposition techniques such as continuous Fourier
transform (FT) and discrete Fourier transform (DFT) are proposed for fault
detection. However, these transforms only provide information about fre-
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quency. In [56] the authors propose the Fourier Transform with a window
that provides both time and frequency information. However, the fixed win-
dow selection may not always be efficient for detecting critical non-stationary
disturbances such as three-phase faults and short circuits that are associ-
ated with transients [2]. Alternatively, in recent years the wavelet transform
(WT) started to gain popularity [57–60] due to its multiple resolution time
frequency analysis. This type of decomposition shows better identification
characteristics of all types of faults in PV systems, as long as the presence of
noise in the signal is avoided [2]. Based on the WT , different modifications
are proposed such as: the Multiresolution Signal Decomposition (MSD) that
apply wavelet decomposition in an iterative way [61], the Slantlet transform
[62] which is based on a modified discrete wavelet transform with two zero
moments and modified temporal localization and the Wavelet Packet Trans-
form (WPT) which performs an iterative decomposition on the high and low
frequency coefficients [18, 63].

Following the decomposition of the signal, the extraction of features is
carried out. These features increase the variance between the different classes
[64]. Features such as mean, variance, skewness, kurtosis and entropy are
suggested for troubleshooting PV systems [14, 15, 64, 65]. Each of these
features has a better or worse performance depending on the type of fault
to be analyzed. Generally these features are used as input for different fault
classification methods [66–69]. However, due to the high dimensionality (high
number of features), the computational cost of this classification is very high
and there is a high possibility of including irrelevant or redundant information
[70, 71]. Therefore, dimensionality reduction methods are proposed to reduce
the high dimensionality of features and irrelevant or redundant information
with minimal loss of information. This dimensionality reduction is a feature
selection step, creating a compressed version of the original feature matrix
F∗ [72].

For dimensionality reduction or feature selection, visual analysis tech-
niques such as scatter plots of features [73] or the parallel coordinate plot
[74, 75] are used individually. However, the identification of relationships
between the variables requires a high component of human work and is also
a process with low repeatability, since it is subject to the user criteria. On
the other hand, methods based on feature correlation are used, such as the
Pearson’s correlation matrix [76]. Although these methods systematically
reduce dimensionality, they can still select features with irrelevant or redun-
dant information. Others dimensionality reduction algorithms can be used
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such as Principal component analysis (PCA) [15, 64, 76–81], Isometric Map-
ping (ISOMAP) [82]; Locally Linear Embedding (LLE) [77, 83], Singular-
Value Decomposition (SVD) [84]; among many others [79, 85–94] to select
features. However, these algorithms, when applied directly to the set of fea-
tures, compress the irrelevant or redundant information and the correlated
features in the same way. For this reason, the approach presented in this ar-
ticle proposes to perform feature extraction and subsequent feature selection
as a combination of these methods.

Once the features have been selected, they are generally used to predict
or classify the current health status of the individuals [8, 95–97].

On the basis of all these elements, this article presents a new approach for
feature extraction and health status prediction in PV. Figure 1 illustrates the
five stages of proposal. The first stage performs automatic data acquisition
and pre-processing. The second stage applies Hierarchical Clustering (HC)
[98] to the time series issued from the captured signals, for which the time
series similarity index of Dynamic Time Warping (DTW ) [51, 52] is used as
distance. This stage performs a coarse grain discrimination, aiming to sepa-
rate the PV panels in two groups, those whose production is heavily affected
(cluster A) and the others (cluster B). The third stage is concerned with fea-
ture extraction. It is intended to be carried out only on cluster B to achieve
refined discrimination. This stage leverages signal decomposition with the
Discrete Wavelet Transform (DWT ) [24, 99] to generate a set of features.
The fourth stage called feature selection uses correlation and variance anal-
ysis to select the appropriate features. Finally, the fifth phase performs the
health status prediction of the PV system by two methods. It first uses the
Partial Least Squares (PLS) algorithm as a prediction method based on a re-
gression model. Then, this phase uses the PLS latent components, obtained
as a product of the dimensionality reduction of PLS, as input to the Linear
Discriminant Analysis (LDA) algorithm to evaluate the results of the pre-
diction with the PLS algorithm and to perform an alternative classification
of the health status of the PV panels.

3. Data acquisition and pre-processing

The proposed approach is evaluated on real data from a PV plant located
in the LAAS-CNRS laboratory in Toulouse, France. This platform consists
of n = 12 PV panels with reference SLK60P6L from Siliken California with a
power between 205 and 240Wp. The main parameters of these PV panels are
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Figure 1: The five stages of the proposed approach. i) Data acquisition and preprocessing;
ii) DTW Hierarchical clustering; iii) Feature extraction; iv) Feature selection; and v)
Health status prediction.

Symbol Quantity Value
PMPP Maximum Power (Wp) 250
IMPP Current at PMPP (A) 8.21
VMPP Voltage at PMPP (V ) 30.52
ISC Short-circuit Current(A) 8.64
VOC Open-circuit Current(A) 37.67
S Area of the module(m2) 1.64

Table 1: PV module specifications at STC.

given in Table 1 under standard test conditions (STC) (1000 W/m2, 25◦C).
Each PV panel is composed of 60 poly-crystalline silicon cells grouped into
3 sub-strings of 20 cells.

In this study, the current signal Ii for a PV panel PVi, i = 1, . . . , n,
is obtained using a commercial TIGO1 monitoring platform for PV plants.
Each PV panel of the experimental platform is equipped with its own TIGO
data acquisition system. All TIGO data acquisitions are piloted by a TIGO
reference TS4-R-O optimizer. This TIGO Optimizer is an MPPT device that
individually controls each PV panel to achieve maximum performance. To
do this, the optimizer constantly monitors the maximum power point MPP .
This platform allows to acquire the signals of current, voltage, and power at
the Maximum Power Point MPP .

The study is conducted using only the data from the current signal, that

1For more information on the TIGO platform please visit here
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make up a current database of 12 panels, with signals captured in parallel
with a sampling time of one minute for 13 hours from 7:00 a.m. to 8:00
p.m. on June 25, 2020. For a PV panel PVi, the data takes the form of a
time series denoted by Ii{1:nI} = {ii,t1 , . . . , ii,tnI

}, where nI is the number of
samples of the i−th time series that has a sampling period of one minute and
ti, i = 1..nI , is the date of the sample. The analysis is carried out in a time
window of one day. However, it is possible to use the same methodology on
different time slices. The data downloaded from the application programme
interface (API) of TIGO is not directly ready for signal decomposition and
extraction of features. It contains missing or null values that can influence
the performance of the next steps of the algorithm. Data cleansing is an
elementary phase that must precede all other phases of the algorithm.

The first set of missing or null data is found at the beginning and end
of the data set; these data are captured under low irradiation conditions.
Because of this specific location in the data set, it is not possible to use
conventional methods to impute data such as the arithmetic average. To
solve this, it is necessary to verify the voltage and power to identify the
real time interval where the PV plant is producing. All data outside this
production range is then trimmed. The second group of missing or null data
occurs within the PV plant production range. After verifying the records
in the Tigo data set and identifying that there are no consecutive null or
missing values, mean value, as given in equation (1), is used to replace the
missing current values ii,t as:

ii,t =
ii,t−1 + ii,t+1

2
, (1)

Although the data cleansing process is not complex, it is very efficient and it
is an indispensable tool to eliminate most defects that affect the performance
of the decomposition algorithms to be applied further. Figure 2 presents the
PV panel current behaviors over one day for different health statuses after
data cleaning.

The blue color corresponds to the PV panels with a broken glass fault,
the yellow color corresponds to the healthy PV panels and the red color to
the big snail trail fault. The big snail trail represents corrosion of the sheet
of the encapsulation surface and although it does not significantly decrease
the performance of the PV panels, it can be the cause of fractures or micro
cracks in the modules that reduce the production of a PV panel. As shown in
Figure 2, the behavior of the PV panels with a big snail trail is very similar
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Figure 2: Behavior of the current over one day for different health statuses: healthy
(yellow), broken glass (blue), and big snail trails (red) for a period of 13 hours every
minute.

to that of healthy PV panels.

4. DTW Hierarchical clustering

In this stage, Hierarchical clustering (HC) is used to construct the two
clusters A and B allowing to separate the panels severely affected data from
the other panels data (cf. Figure 1) based on the similarity of the current
time series Ii{1:nI} of the different PV panels PVi, i = 1, . . . , n. The time
series similarity index is taken as the Dynamic time warping (DTW) index
due to its well-known performance [50, 100].

In the following subsections, HC and DTW are presented for generic time
series that are then instantiated to the current times series Ii{1:nI} of each
PV panel PVi, i = 1, . . . , n of our case study.

4.1. Dynamic time warping

DTW is a well-known technique that is based on the principle of dynamic
programming to deform two temporal sequences in a non-linear way and
find optimal alignments between them [101, 102]. To measure the similarity
between two time series S{1:ηs} and T{1:ηt} the matrix of distances D of di-
mensions (ηs × ηt) is built. Each entry d(i, j) corresponds to a local distance
between S and T given by the Euclidean distance between si, i = 1, . . . , ηs
and tj, j = 1, . . . , ηt.

A valid warping path Wk = {wk,1, . . . , wk,ηWk
}, where ηWk

is the number
of elements of the path Wk in matrix D, is defined using the above distances
and satisfying the three following constraints:

1. Endpoint constraints: wk,1 = d(1, 1) and wk,ηWk
= d(ηs, ηt).
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Figure 3: Example of warping path in the distance matrix D. Each entry d(i, j) represents
a local distance between the time series S and T given by the euclidean distance between
each point si, and tj .

2. Monotonicity constraint: If wk,α+1 = d(i, j) and wk,α = d(i
′
, j
′
), then

i ≥ i
′

and j ≥ j
′
, ∀α = 1, . . . , ηWk

3. Continuity constraint: If wk,α+1 = d(i, j) and wk,α = d(i
′
, j
′
), then

i ≤ i
′
+ 1 and j ≤ j

′
+ 1, ∀α = 1, . . . , ηWk

Let us define W as the set of valid warping paths and W⊕
k as the sum of

elements of a valid warping path Wk, i.e., W⊕
k =

∑ηWk
p=1 wk,p. Therefore, the

DTW (S,T) distance is given by the minimum warping path among all valid
paths in D:

DTW (S, T ) = min
Wk∈W

W⊕
k . (2)

A more detailed description of DTW is presented in [54, 100]. Figure 3
illustrates the principle of DTW .

The results of DTW are used as input to a hierarchical clustering algo-
rithm.

4.2. Hierarchical clustering

Agglomerative hierarchical clustering (AHC) is a well-known method that
allows several individuals to be grouped into clusters according to the degree
of similarity between the individuals. For this, the algorithm uses a degree of
similarity between individuals and groups, and between groups [102]. Then
in each iteration, the groups with the shortest distance are merged into a
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single cluster [103, 104] from bottom to top in the hierarchical grouping.
This process continues until reaching the final condition [105, 106]. The
result of the clustering is generally presented in the form of a tree called
dendrogram [54]. The final clustering of the AHC depends on the level at
which the dendrogram is cut [98].

This algorithm is applied to the time series of the current Ii{1:nI} of each
PV panel PVi, i = 1, . . . , n. The degree of similarity is given by the DTW.
The result of the hierarchical clustering on the current signals of the PV
panels is presented in Figure 4.

As shown in Figure 4, the PV panels are grouped into two large clusters
A (green color) and B (red color). Since the group of PV panels from cluster
A is easily discriminable, the detailed analysis of the third stage is applied
only on the PV panels of cluster B. In order to analyze in detail, the behavior
of the PV panels of cluster B under the different irradiation conditions of the
day, the signals are divided into 4 slices called: morning, midday, afternoon
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and evening.
The features extraction is carried out on each of these slices. In this

article, it is assumed that if the classes are discriminated in at least one of
the slices, the algorithm is efficient and it is possible to detect anomalies
between the PV panels of group B. In order to explain and illustrate our
approach, feature extraction is explained and illustrated using the midday
slice as an example.

5. Feature extraction

This third stage is based on Multiresolution Signal Decomposition, fol-
lowed by the extraction of statistical features as proposed in [14, 15, 64, 65].

5.1. Multi-resolution signal decomposition

Every faulty condition in a PV system is associated with a change in the
output current. These changes are reflected as variations in the waveform of
the output signal compared to a healthy PV panel. Some of these changes
are visible in the frequency domain and others in the time domain. In order
to analyze these changes simultaneously (time - frequency), Multi-resolution
Signal Decomposition is used. The Multiresolution Signal Decomposition is
based on the discrete wavelet transform (DWT ) that can decompose a signal
into levels with different time and frequency resolutions using the wavelet
transform iteratively [17].

In the following, DWT is presented in a generic form. In our case study,
it is applied to the current times series Ii{1:nI} of each PV panel PVi, i =
1, . . . , n.

DWT is a signal processing technique (linear transformation) like the
Fourier transform [25]. Some of the differences between these two techniques
can be read in [107]. DWT decomposes the input signal into a variable
frequency range that depends on the mother wavelet selected as the decom-
position pattern [2]. The input signal is decomposed into approximate and
detailed coefficients that correspond to the high and low frequency com-
ponents respectively. DWT is known for its properties to simultaneously
analyze frequency and time [108–110]. As mentioned in [25], the wavelet
transformation with the proper mother wavelet is a useful tool for fault de-
tection and feature extraction. For this reason DWT is widely used in this
field [2, 111–113].
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Wavelet decomposition uses a mother wavelet that decomposes the signal
into a set of oscillatory functions called wavelets. Each of these mother
wavelets is a signal in time that captures a specific frequency band [114,
115]. There are different well-known families of discrete mother wavelets
such as: Harr, Meyer, Bior, Daubechies, Rbio, Coiflet and Symmlet. Which
are composed of 1,1,15,38,15,17 and 19 mother wavelets respectively. Each
of these mother wavelets has a different computational calculation speed and
decomposition quality depending on the particular application.

Some mother wavelets are particularly used in the PV domain, for exam-
ple: Sym8 [61] from the Symmlet family, Harr [18], and db1, db3 - db5, db8,
db9, [2, 14, 15, 17, 25, 61, 64, 65] from the Daubechies family. Each of these
wavelet families is defined according to Equation ( 3 ) [65, 116].

ψa,b(t) =
1√
a
ψ

(
t− b
a

)
, (3)

where a is the scale or dilation factor, b is the shifting factor, t refers to the
timestamp of the input signal, and ψ is defined as the mother wavelet [116].
To restrict the values of a and b to discrete values, these factors are defined
according to Equations (4) and (5) [24, 116].

a = a
−(mx/2)
0 , (4)

b = nxb0a
mx
0 , (5)

where mx and nx range over Z and a0 > 1 and b0 > 0 are fixed [116]. The
DWT of the discrete signal X{1:nX} that uses the mother wavelet ψa,b(t) of
Equation (3) is described in Equation (6)[24, 64, 65, 116]:

DWT (a, b) =
1√
a

∑
1:nX

X(t)ψ

(
t− b
a

)
, (6)

For the decomposition of the signal, it is necessary to select the appro-
priate mother wavelet ψa,b(t). Some works proposed complex algorithms for
the optimal selection of the mother wavelet [117]. In this article, the mother
wavelet selection follows the work of Wang et al. [17] that aims at detecting
faults in PV systems with wavelet transform. According to Wang et, al., [17]
the selected wavelet must comply:

13



AIi
DIi

AIi
DIi

Level 1

Level 

Level L

AIi
DIi

11

LL

0 100 200 300 400
0

5

10

0 100 200 300 400

−0.5

0

0.5

0 50 100 150 200
0

5

10

0 50 100 150 200

−0.5

0

0.5

0 20 40 60 80 100
0

5

10

15

20

0 20 40 60 80 100

−0.5

0

0.5

Decomposition of signal of panel Good_panel_4 with mother wave db8 low frequency component

Le
ve

l 1
Le

ve
l 2

Le
ve

l 3

Approximation coefficients Detail coefficients

0 100 200 300 400
0

5

10

0 100 200 300 400

−0.5

0

0.5

0 50 100 150 200
0

5

10

0 50 100 150 200

−0.5

0

0.5

0 20 40 60 80 100
0

5

10

15

20

0 20 40 60 80 100

−0.5

0

0.5

Big
Big
Big
Big
Big
Big
Big
Big
Big
Goo
Goo
Goo
Goo
Goo
Goo
Goo
Goo
Goo
Goo
Goo
Goo
Goo
Goo
Goo
Goo
Big
Big
Big
Big
Big
Big
Big
Bi

Decomposition of signal of panel Good_panel_4 with mother wave db8 low frequency component

Approximation coefficients Detail coefficients

Time
Time

0

1

2

3

4

5

6

7

08:00
Jun 25, 2020

10:00 12:00 14:00 16:00 18:00 20:00

Big snail trails
Healthy

Morning Midday Afternoon Evening

C
u
rr

e
n
t 

S
ig

n
a
ls

Figure 5: Decomposition into 3 levels of the current signal for a panel with big snail trails
(red) and a healthy panel (yellow). The approximation and detail coefficients resulting
from the decomposition are presented on the left and right of the figure, respectively.

1. To have a sufficient number of vanishing moments to represent the
salient features of the anomalies.

2. To provide sharp cutoff frequencies to reduce the amount of leakage
energy into the adjacent resolution levels.

3. The wavelet basis should be orthonormal.

Taking into account these considerations and the fact that most of the
work in fault detection in PV systems use wavelets of the Daubechies family
(db), the entire family is tested and the Daubechies38 (db38) mother wavelet
is selected due to its computational speed and good decomposition result.

Multi-resolution signal decomposition can be performed at different levels
of decomposition. The result of the decomposition into 3 levels for a current
signal Ii is shown in Figure 5. At each level ` of decomposition of a current
signal Ii, two signals can be created as the result of the wavelet transform.
The first signal corresponds to the approximation coefficients (A`Ii). This sig-
nal receives this name due to the fact that it is an approximation of the “low
frequency” components of Ii. The second signal corresponds to the detail
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coefficients (D`
Ii

). This signal represents the “high frequency” corrections of
the signal Ii.

The original signal Ii can be reconstructed from the detail and approxi-
mation coefficients. The reconstructed signal Ii,r is the sum of all the detail
coefficients prior to the last selected level L, with the detail and approx-
imation coefficients of level L. This description is formally presented in
Equation (7) [17, 118].

Ii,r = ALIi +
L∑
`=1

D`
Ii
, (7)

5.2. Features based on signal characterization

In this subsection, features are first presented for a generic signal. Then
the signals that are used for their extraction in our case study are made
explicit.

For a given generic signal X represented by a time series X{1:nX}, a num-
ber of features can be extracted. Note that the selected features retain only
some characteristics of the signal, which has an impact on the possible dis-
crimination of different signals. The nF selected features have been chosen to
capture several characteristics of a signal. These selected features have been
considered as they are also used in previous works aimed at fault diagnosis
in PV systems [2, 14, 15, 64, 65, 119–121] and works aimed at fault diagnosis
in vibration signals [66, 67, 79, 122]. Given a time series X{1:nX} of mean µ,
these features are :

• Skewness (F1): skewness represents the asymmetry of the data with
respect to the mean and is calculated by Equation (8) [76].

F1 =
1

nX

∑nX

t=0(Xt − µ)3(√
1

nX

∑nX

t=0(Xt − µ)2
)3 , (8)

• Kurtosis (F2): kurtosis measures the peak of the probability distri-
bution of the data. It also allows knowing how prone to outliers is a
distribution. Kurtosis is defined according to Equation (9) [76].

F2 =
1

nX

∑nX

t=0(Xt − µ)4(√
1

nX

∑nX

t=0(Xt − µ)2
)4 , (9)
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• Variance (F3): the variance represents the variability of a series of data
with respect to its mean.

F3 =
1

nX

nX∑
t=0

(Xt − µ)2, (10)

• P−Pvalue (F4): the peak-to-peak distance (p-p) is the distance between
the peak with the highest amplitude and the valley with the lowest
amplitude.

F4 = max(Xt)−min(Xt), (11)

• Energy (F5): explain the energy contained in the signal, it is conserved
regardless of whether it is in frequency or in time [2].

F5 =

nX∑
t=0

X2
t , (12)

The characterization of the operational condition of a PV panel PVi is
performed with the set of L+ 1 time series {ALIi , D

`
Ii

, ` = 1, . . . , L}, obtained
from the L levels multi-resolution decomposition of the corresponding current
signal Ii. These time series are segmented in four time slices corresponding
to morning, midday, afternoon, and evening. Sliced signals are indexed ac-
cordingly by ∗ ∈ { morning, midday, afternoon, evening } and we obtain
the set S ∈ {ALIi,∗ , D

`
Ii,∗
}, i = 1, . . . , nB, ` = 1, . . . , L, where nB is the number

of PV panels in cluster B.
The selected features are then determined for each time series in S, form-

ing a feature vector composed by the feature subvector FALIi,∗ for the approx-

imation coefficients and the features subvectors FD`
Ii,∗

for detail coefficients,
each sub vector being of dimension nF . The characterization of every time
slice can be summarized in a matrix of dimensions nB × ((L+ 1)× nF ):

F∗ =


FAL

I1,∗
FD1

I1,∗
. . . FD`

I1,∗
. . . FDL

I1,∗

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .
FAL

InB,∗
FD1

InB,∗
. . . FD`

InB,∗
. . . FDL

InB,∗

 , (13)
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∗ ∈{morning, midday, afternoon, evening}

Each row F∗(i, .) of the matrix F∗ provides the signature of the health
state of the PV panel PVi.

It is important to mention that some of the features in each high dimen-
sionality signature may provide redundant information, which may reduce
the performance of data-based diagnosis algorithms [70][71]. Therefore, it is
necessary to select the outstanding features by means of an algorithm that
identifies a subset of features that preserve the fine details related to a faulty
state as represented in the high dimensional space. As mentioned in [76],
a high dimensionality data set could be reduced by brute-force with an ex-
haustive search enumerating and testing all the feature subsets. However,
it is more efficient to use feature selection and feature reduction algorithms.
For this reason, a two-stage cascading dimensionality selection and reduction
method is proposed below.

6. Feature selection

For a given generic matrix of features F of dimensions (nB × ηb), whose
ηb columns represent the features that characterize the health status of nB
individuals, a set of η⊕c features, where η⊕c ⊆ ηb features that preserve relevant
details for class discrimination can be selected. The selection of the η⊕c
features is first based on correlation, then on variance analysis. In a first
selection step, highly correlated features are discarded. Then the remaining
weakly correlated features are given as input to the variance based feature
selection algorithm. Without lack of generality, feature selection is presented
for the matrix of features Fmorning obtained with 3 levels of decomposition.
It can be easily extrapolated to L levels of decomposition in any of the 4
time slices of interest.

6.1. Correlation based feature selection

Correlation based feature selection allows to choose a subset of ηc uncor-
related relevant features with high predictive value to create solid learning
models for the nB individuals in matrix F. In the literature, it has been
previously mentioned that a feature is redundant if one or more other fea-
tures are highly correlated with it. The use of the Pearson’s correlation ma-
trix for these analyzes has been proposed in social science works [123–125].
Correlation based feature selection uses the Pearson’s correlation matrix to
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determine the degree of correlation between the initial features ηb. The level
of correlation between two features ranges between -1 and 1, with 1 being
the highest positive correlation and -1 the highest negative correlation. 0
indicates no correlation at all. The more a feature is correlated to another,
the less information it brings while it can introduce noise. Thus, it is recom-
mended to eliminate it [76]. A correlation threshold τF is defined to remove
the correlated features that are out of the range [−τF, τF] and form a set of
uncorrelated features of cardinal ηc that will be used for class discrimination
and that reduce the matrix F into F.

The selection of the uncorrelated features corresponding to the columns
of the matrix F∗ that contain the relevant details of the health states of each
PV panel PVi is performed with a correlation threshold τF∗ = 0.9. As an
example, the correlation based feature selection on the matrix Fmorning is
presented in Figure 6. Figure 6a provides the correlation matrix crossing the
ηb initial features before feature selection. Figure 6b provides the correla-
tion matrix crossing the ηc weakly correlated features after eliminating the
strongly correlated features. With this feature selection, the number of fea-
tures is decreased from 20 to 14 uncorrelated features for the matrix Fmorning.
In other words, the feature dimension is reduced by 40%. Correlation based
feature selection is carried out for each matrix F∗, obtaining the matrices F∗,
where ∗ ∈ {morning,midday, afternoon, evening}.

6.2. Variance based feature selection

Now, it is not because features are not strongly correlated that they
have a strong discriminating power for a classification problem. For this
reason, a feature selection based on variance is also applied. For this purpose,
parallel coordinates is used. This technique, based on the variability of the
features [75], is widely used in multivariate data analysis [74]. In the parallel
coordinates, there are as many normalized axes as features.

For a given matrix of features F of dimensions (nB×ηc), whose ηc columns
represent the uncorrelated features that characterize the health status of nB
individuals, there are η⊕c features, η⊕c ⊆ ηc, that preserve relevant details
and present significant variance between the nB individuals. To select the η⊕c
features, the variance of the ηc features is compared between the rows F(i, .),
i = 1, . . . , nB of the matrix F. Those features that do not show a significant
variation are not selected to form the final set of η⊕c features, reducing the
matrix F into the matrix F of dimension (nB × η⊕c ).
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Figure 6: Correlation matrices: (a) Pearson correlation matrix of the ηb initial features of
Fmorning, i.e., before correlation based feature selection; (b) Pearson correlation matrix of
the ηc uncorrelated features of Fmorning, i.e., after correlation based feature selection.
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Figure 7: Parallel coordinates plot on the matrix Fmorning. The normalized values of the
uncorrelated features ηc are plotted on the vertical axis. The horizontal axis represents
the uncorrelated features ηc.

To illustrate the variance based feature selection, Figure 7 shows the plot
of parallel coordinates on the matrix Fmorning resulting from the correlation
based feature selection. The horizontal axis of Figure 7 represents the ηc
weakly correlated features and the vertical axis represents their normalized
values. As shown in Figure 7, the feature Skew CD2 (corresponding to skew-
ness extracted on the detail coefficients at level 2) does not provide significant
variance to distinguish between the different operating states (healthy and
big snail trails). Therefore, this feature is not selected to form the final set
of features η⊕c . By discarding this feature, the matrix Fmorning that had
14 features is reduced to matrix Fmorning with 13 features, maintaining the
relevant information to identify the different operating conditions of the PV
panels.

Variance based feature selection is applied to all matrices F∗, where ∗ ∈
{ morning, midday, afternoon, evening },leading to four reduced feature
matrices F∗ of 13, 12, 11 and 16 dimensions respectively.

7. Health status prediction

In the case study, applying feature selection to F∗, where ∗ ∈ { morning,
midday, afternoon, evening }, leads to four reduced feature matrices F∗.
The selected features aim to solve four classification problems of the health
status of the PV panels. Each of these problems can be formulated as a
prediction problem based on a regression model or a classification problem

20



where the response variable is the label, the predictors being the features
obtained in section 6.

The PLS algorithm provides very interesting results over other conven-
tional methods when the objective is class prediction [95]. In addition, PLS
defines latent components that can be subsequently used as predictors in a
classification problem, providing an alternative method to prediction or a
validation method of the results of the PLS based prediction. In this sense,
the PLS algorithm can be seen as a dimension reduction method that is
coupled with a regression model. It performs dimensionality reduction and
classification based on regression simultaneously [126].

7.1. PLS Regression model

The PLS algorithm is based on the iterative nonlinear partial least squares
algorithm (NIPALS) [127, 128] adapted to reduce the dimensionality in ill-
conditioned over-determined regression problems [95]. Assume the matrix of
predictors to be given by a centralized and normalized matrix F of dimen-
sion (nB × η⊕c ), and the matrix of targets or response variables be given
by a matrix Y of dimension (nB × q). The PLS algorithm is based on the
decomposition of Y and F into latent components T such that:

Y = TQT + U, (14)

F = TP T + E, (15)

where, P and Q are matrices of coefficients, of dimensions (η⊕c × ηPLS) and
(q × ηPLS) respectively, that show how the latent components are related to
F and Y . E and U are matrices of random errors of dimensions (nB × η⊕c )
and (nB × q) respectively. Finally, T is a (nB × ηPLS) matrix giving the
uncorrelated latent or PLS components of nB observations. T can be seen
as a linear transformation of F given by Equation (16).

T = FK, (16)

where K is a (η⊕c × ηPLS) matrix of weights. The columns of T and K
are denoted as T (., h) = (t1,h, . . . , tnB ,h)

T and K(., h) = (k1,h, . . . , kη⊕c ,h)
T ,

h = 1, . . . , ηPLS. The rows of F are denoted as F (j, .) = (fj,1, . . . , fj,η⊕c ),
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j = 1, . . . , nB. Based on Equation (16), each term tj,h of T (., h) is calculated
according to:

tj,h = (fj,1, . . . , fj,η⊕c ) ∗ (k1,h, . . . , kη⊕c ,h)
T =

η⊕c∑
i=1

fj,iki,h, (17)

where each element ki,h, i = 1, . . . , η⊕c , corresponds to the normalized co-
variance of the response variable with each predictor given by:

ki,h =
Cov(fj,i, yj)√∑η⊕c
i=1Cov

2(fj,i, yj)

, (18)

Once T is constructed, the matrix QT is obtained as the least squares
solution of the equation (14). Then, the regression model is defined according
to:

Y = FB + U, (19)

Where, B is a (nB × q) matrix of regression coefficients defined according
to:

B = KQT , (20)

7.2. Prediction of the health status

In the case study presented in this article, the response variables Y are
categorical. In other words, each response variable yi, i = 1, . . . , nB, of the
matrix Y takes only one of the possible nB unordered values. For example,
in our case, each categorical variable yi takes the value of yi = 2 (big snail
trails), yi = 3 (healthy) or yi = 0 otherwise.

In the proposed approach, we first use the non-linear PLS algorithm as a
dimensionality reducer. In [129], the PLS and other dimensionality reduction
algorithms are analyzed. Particularly in categorical scenarios, dimensionality
reduction using PLS shows results similar to PCA [126] with high prediction
accuracy [130, 131]. The set of components that are obtained as a result
of dimensionality reduction using PLS is called the set of PLS latent com-
ponents. These PLS latent components are used for the prediction of the
health status based on the regression model of Equation (19). The PLS is
fitted with 60% of the data and tested with the remaining 40% of the data.
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In order to evaluate the accuracy of the regression model, the comple-
mentary metrics Root Mean Squared Error (RMSE) and R-Squared or Co-
efficient of determination metrics (R2) are used. The RMSE measures the
standard deviation between the predicted values and the actual values of the
observation [132]. A number close to zero implies a high precision of the
model. The RMSE for nB samples is defined as:

RMSE =

√√√√ 1

nB

nB∑
i=1

(yi − ŷi)2, (21)

where yi are observed values and ŷi are the fitted values of the response
variable Y for the ith case. The RMSE does not provide information about
the explained component of the regression fit [133]. Because of this, the
metric R2 is used in a complementary way. R2 measures the percentage of
variation in the response variable Y explained by the predictors F [133]. The
value of R2 ranges from 0 to 1, where 1 corresponds to the best prediction
and 0 corresponds to a poor prediction. The R2 metric for nB samples is
defined as:

R2 = 1−
∑nB

i=1(yi − ŷi)2∑nB

i=1(yi − ȳ)2
, (22)

where ȳ =
∑nB

i=1 yi represents the mean value of the response variable Y .
Similarly, the confusion matrix is used as a tool for evaluating the perfor-
mance of the PLS algorithm. The confusion matrix represents a count of the
number of accurately classified negative and positive samples represented as
True Negative (TN) and True Positive (TN) respectively. Also, it represents
the number of real negative samples classified as positive stands for False
Positive (FP) and the number of real positive samples classified as negative
stands for False Negative (FN) [134].

The results of the prediction of health status for all matrices F∗, where
∗ ∈ { morning, midday, afternoon, evening }, are reported in Figure 8.

As can be seen in Figure 8, the PLS algorithm is able to correctly predict
7 of the 8 PV panels of cluster B in the 4 time slices. In the Midday time
slice, it is possible to observe how the PLS algorithm classifies a Big Snail
Trail panel as a new different class (label 0). Furthermore, the performance of
the prediction of the PLS method on the time slices Midday and Afternoon
is related to the similarity of the current signals between the PV panels PVi,
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Figure 8: Prediction of the health status of the PV panels of cluster B with PLS. Pre-
diction accuracy with R2 and RMSE metrics for the four time slices morning, midday,
afternoon, and evening with PLS.

i = 1, . . . , n when solar irradiation is at its highest value. In the same Figure
8, analyzing the value of R2 and RMSE, in the Morning and Evening
slices, it is possible to observe that the model can explain the 70% and 50%,
respectively, of what is happening in the actual data. While in the Midday
and afternoon slices, the model reaches a maximum of 14% of the data.
The performance of the PLS algorithm is strongly affected by the number of
individuals who are used to fit the model.

7.3. PLS-LDA classification method

Alternatively, a health status classification method that uses the PLS
latent components (given by T) as input of a classical classification method
is proposed. The use of PLS as a dimension reducer for classification problems
is studied in [95–97]. This method allows to classify the health status and
to validate the health status results generated with the PLS prediction of
section 7.2.

The classification algorithm has been selected to be Linear Discriminant
Analysis (LDA) due to the interesting results reported when it is used with
the PLS dimensionality reduction [97, 135]. In addition, this algorithm has
already been used in fault detection in PV systems [8]. The LDA algorithm
projects the original data matrix T (predictors) from a high-dimensional
space into a new low-dimensional space that makes within-class scatter as
small as possible and between-class scatter as large as possible.
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Given a number of classes G, the LDA determines the center class ϕCg ,
g = 1, . . . , G, for each class Cg according to:

ϕCg =
1

ne

ne∑
i=1

ei, (23)

where ne is the number of elements ei in class Cg. Then, the LDA algorithm
computes the within-class SW and the between-class SB scatters. The SW is
calculated according to:

SW =
G∑
g=1

SCg , (24)

where SCg is defined as:

SCg =
ne∑
i=1

(ei − ϕCg)(ei − ϕCg)T , (25)

The between-class scatter SB is calculated according to the expression:

SB =
G∑
i=1

(ϕg − ϕ)(ϕg − ϕ)T , (26)

where, ϕ is the mean value of all data in matrix T . Finally, the LDA finds a
linear projection v that discriminates as much as possible the set of classes
of the data. This projection is obtained by maximizing the expression:

J(v) =
vTSwv

vTSBv
, (27)

The discriminant axes of v have as eigenvalues λ1, . . . , ληPLS
and corre-

spond to the decomposition of the matrix SwS
−1
B . This decomposition into

eigenvalues defines the projection space of the original data of the matrix
T . To evaluate the degree of correct predictions (ability to identify positive
and negative samples) the confusion matrix and the F-Value are used. The
F-Value metric does not take into account the true negatives (TN), for this
reason, in cases of unbalanced classes it improves the perception of the per-
formance of the algorithm [136]. The F-Value ranges from 0 to 1, where 1

25



2 3
Predicted label

2

3

T
ru

e
 l
a
b
e
l

4 0

1 3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

2 3
Predicted label

2

3

T
ru

e
 l
a
b
e
l

4 0

1 3

PLS Model Results

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

2 3
Predicted label

2

3

T
ru

e
 l
a
b
e
l

4 0

1 3

PLS Model Results

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0

1

2

3

4

5

6

7

08:00
Jun 25, 2020

10:00 12:00 14:00 16:00 18:00 20:00

Big snail trails
Healthy

Morning Midday Afternoon Evening

C
u
rr

e
n
t 

S
ig

n
a
ls

Tr
u
e
 L

a
b
e
l

Predicted Label

2

3

2 3

1

04

3

Tr
u
e
 L

a
b
e
l

Predicted Label

2

3

2 3

1

04

3

Tr
u
e
 L

a
b
e
l

Predicted Label

2

3

2 3

1

04

3

2 3
Predicted label

2

3

T
ru

e
 l
a
b
e
l

4 0

1 3

PLS Model Results

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Tr

u
e
 L

a
b
e
l

Predicted Label

2

3

2 3

1

04

3

F-Value = 0,875 F-Value = 0,875 F-Value = 0,875 F-Value = 0,875

Figure 9: Prediction of the health status of the PV panels of cluster B with PLS −LDA.
Prediction accuracy with F − V alue metric for the four time slices for the time slices
morning, midday, afternoon, and evening with PLS − LDA.

indicates the best performance and 0 the worst. The F-value is defined as:

F − V alue = 2 ∗ precision ∗ recall
precision+ recall

(28)

where the precision, precision = TP/(TP +FP ), allows to measure the cost
of false positives. The recall, recall = TP/(TP + FN), allows estimating
the number of individuals correctly classified as true positives compared to
the total number of elements belonging to the class. The LDA algorithm is
trained and tested with the same PV panels that fit the model of section
7.2. The total number of components generated in dimensionality reduction
using PLS are used. The classification results using the PLS-LDA method,
together with the F-Value and the confusion matrix for each time slice are
presented in Figure 9.

As shown in Figure 9, with the exception of the Midday time slice, in
the other time slices the PLS-LDA method classifies the PV panels in the
same classes as using PLS algorithm. In the Midday time slice the different
class (label 0) generated by the PLS algorithm is removed. As a summary,
Table 2 presents the final prediction accuracy for the time slices morning,
midday, afternoon, and evening of the PLS-LDA and PLS methods.

As seen in Table 2, the PLS-LDA method classifies the four time slices
with an F-value of 0.875 (high precision) compared to the prediction accuracy
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Time slice
PLS PLS-LDA

R2 RMSE F-Value

Morning 0,700 0,274 0,875
Midday -0,015 0,537 0,875
Afternoon 0,144 0,463 0,875
Evening 0,500 0,360 0,875

Table 2: Prediction accuracy for the four time slices with the PLS and PLS − LDA
methods.

presented by the PLS method that does not give homogeneous results for all
the time slices (see Midday line in Table 2. Let us recall that in this article
it is considered that if it is possible to discriminate healthy PV panels from
another set of PV panels in at least one time slice, then it is possible to
establish which PV panels are faulty with the available data.

8. Discussion and Conclusions

The approach presented in this article responds to current energy concerns
regarding the guarantee of continuous energy production in photovoltaic sys-
tems. These systems distribute approximately 2% of the energy consumed
in the world [137] and present annual losses of around 18.9% of power due
to the presence of faults [138].

This work proposes and develops a health state prediction dedicated to
photovoltaic systems. The method is based on a set of features all extracted
from the MPP current signal. This approach was tested with a string of 12
photovoltaic panels and validated for efficiency by separating three different
health scenarios: healthy, big snail trail, and broken glass.

To summarize, the approach uses, in a first stage, a simple hierarchical
clustering based on Dynamic Time Warping, to group the PV panels into two
clusters A and B, where cluster A contains the severely affected PV panels
and group B contains the others. At this early stage, the method clearly dis-
criminates between healthy and broken glass types, which points at priority
predictive maintenance actions and reduces overall costs consequently. In a
second stage, the use of a set of in-depth time-frequency features allows for
a more precise approach to detect tiny faults and shows its ability to dis-
criminate weakly affected panels from healthy panels. The second stage was
validated by advantageously identifying photovoltaic panels with big snail
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trail faults despite the difficulty of discriminating them from healthy panels.
This represents a clear contribution with respect to previous works such as
[139] that fails to detect faults whose behaviors is highly similar to that of
healthy panels. It is also important to highlight that our method has the
clear advantage to require very simple monitoring. Indeed, only the MPP
current is required. Nowadays, this type of detection can only be achieved
by regularly visiting the PV plant, which is extremely more expensive.

A further advantage is that the approach proposed in this paper only
requires a reduced number of individuals of each class, which reduces the
cost of data acquisition and storage. Another interesting point is that faults
that occur under low irradiation (Morning and Evening) are generally the
most difficult to diagnose, however, the proposed method presents the best
performance in these situations.

Another contribution is to base the diagnosis process on four time slices of
the day. The detection of a fault in a time slice may grow into a serious fault
later or vanish simply inducing a slight loss of performance. The method
hence provides information about specific time points of the day that should
be monitored. Therefore, this diagnosis by temporary slices allows analyzing
the impact and evolution of faults over time. Let us note that different time
slices could be used to increase resolution in diagnosing faults such as arc
faults [25], partial shadowing [18], LL-faults [65] that occur with low levels
of irradiation.

Referring to time aspects, it should also be noted that multi-resolution
signal decomposition is extremely efficient at detecting the exact time a signal
changes as well as the type and extent of the change [140]. This provides
an advantage over the Fourier transform because if the fault manifests faster
than the sampling window of the Fourier analysis, like it is the case of arc
faults, it is very likely that they go completely undetected.

The various contributions highlighted above make the proposed method
an effective method for monitoring PV systems and likely to significantly
reduce maintenance costs.

Interestingly, the method that is proposed is based on generic algorithms
that could be applied to PV array faults that are not considered in this article,
and also to other applications of the energy sector. This is considered in our
future work. It is also envisaged to make the measurements of the electrical
quantities, including the current, at a higher frequency than that used in
the tests of this article in order to check whether the diagnosis is thereby
improved.
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