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A. Martin
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This document is a companion to [I], where an analytical integration is performed on the

interaction coefficients of cylindrical inhomogeneities, in order to reduce the computation time.
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1 Introduction

In [1], for each pair (@,B) of cylindrical inhomogeneities, interaction coefficients 7,/5" must be
computed for 0 < m,n < p, where p € N. We recall that each cylindrical inhomogeneity is a
circular cylinder whose radius is R and length is 2L. Cylinder « is centered at r,, and oriented by
the unlt vector n,. We note ¢, = 1 (x Xq) Do and rog = Xg — Xqo. Then, TO%” is given in terms
of UJE* and Vi3 [see Eq (49) of the paper] by:

ng =g (USFs = Vg, (1)
where I3 is the 3 x 3 identity matrix and o is the conductivity of the reference material. Besides,
in [1], a multipole expansion is performed to evaluate the terms Upys' and Vi, which are finally
given by [see Eqs (63) and (64) of the paper]:

. Lm+n+3 R? Ca' G
04,3 = / /1 || O||3 dCOc dCﬁ? (2)
. 3Lm+“+‘3 R2 C”‘ CE wiw)
where
wl = rop + ngnﬁ — L{,n,. (4)



Their expressions involve double integrals on (, and (g, the longitudinal coordinates of cylinder
« and cylinder . In this document, we perform an analytical integration on (,, in order to accelerate
the computation.

2 Determination of U O%” and V%”

First, we introduce the following integral:
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The integral IF" is long to compute numerically. Besides, the analytical integration on the two
variables involves heavy analytical expressions that would also be long to compute. Hence, we pro-
pose here to perform the integration upon (, analytically, and the integration upon (g numerically.
We then note :

1
- /_ IR 4G (9)
where
1
n B Cor
Jr(Cp) /1|WO/L||KdCa (10)

We give the expression of Ji in next subsection. There are two cases. If n, and ros + L{gng are
not colinear, J3 is given by (15), (17), (20) and (21). If n, and r,3 + L{gng are colinear, J3- is
given by (32).



3 Determination of Jj

We recall that :
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Iwo /LI = ( RG22 o,
(1)
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Here, K is odd, then we note K = 2k + 1. For each (g, we put ¢y = —rTB n, — (gn, - ng =
— (%2 +¢png) -ng and ¢§ = 7£ + G +2¢s 55 -ng = (552 + (gnlg) . We notice that ¢ < ¢?. We

then put \/c? — c2 = ¢ so that
1
n CadGa
T = [ [ (12)

B

((:a + 60)2 + C%

3.1 First case: 3 >0

In that case,

1 nd .
T(Cs) = / Cadba (13)
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We put sinhz = C“c%, and we note y; = Argsh(c‘)c—;l) and gy, = Argsh(%) then:

n Y2 (cgsinhz — ¢o)" da
I () =/ Lz o)
Y1
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Y2 1
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Then, for that first case, we have:

TG =3 (") &A1) (g, ) (1)

p=0 p

where
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is below derived.



p is odd We put p =2¢+ 1 and u = coshz:
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p is even We put p = 2¢ and v = tanh x:
tanh yo ’Lt2q

K, = S R— (18
P tanh y (17u2)q+17k )

We decompose into simple elements the integrand:

’LL2q etk al.p bl p
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so that:
K, =k, (tanhys) — k,, (tanh y1) (20)

with

kp(u) :/P(u)du —a1pn(1—u)+b1,In(1+u)
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Determination of simple element decompositions We recall that here p = 2¢ is even. The
coefficients a; , and b; , are determined by the resolution of a linear system:
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‘We then have:
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The two members are polynomial in u, and the degree is < 2q — 2k + 1. On the left side, the
coefficient of u* is 0 for ¢ odd, and >_7_ k( 1)r+s (9) (%) for t even.
2

On the right side, for 0 <t < 2q — 2k + 1, the coefficient of u! is:

’”i’“ 5 (q+1—k> (q+1—k—l)
ky ks
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6322%24 (26)
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Then the linear system is A, - X, = B, with:

(Ap) 1y = > (q +k11_ k) (q " 1,;2 k- l) (—1)k

0<k1<q+1-k
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ki1+ko=t

G+1—k\ (g+1—k—1 - (27)
(AP)(t+1)(l+q+lfk) = Z ( k1 ) ( ko >(_1)

0<k1<q+1-k
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for 1<i<qg4+1—-kand0<t<2¢q—2k+1



and:

al,p
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0
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The linear system must be solved for each 0 < p < m even. The systems do not depend on (g.

3.2 Second case: ¢2 =0
In that case,
1
n Cadla
J = —e o 29
kG = [ (29)

In fact, the denominator is strictly positive (the axes of the cylinders do not intersect). Then ¢y > 1
or cg < —1. Hence:

1
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depending on the sign of ¢y. We decompose into simple elements the integrand:
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Determination of A\, and p, We first make a division of polynomials: (7 divided by (¢a +co)K
We have:
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so that:
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