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Computation of interaction coefficients of cylindrical inhomogeneities

, where an analytical integration is performed on the interaction coefficients of cylindrical inhomogeneities, in order to reduce the computation time.

Introduction

In [START_REF] Martin | Assessment of the equivalent inclusion method for the numerical homogenization of fibrous composites[END_REF], for each pair (α, β) of cylindrical inhomogeneities, interaction coefficients T mn αβ must be computed for 0 ≤ m, n ≤ p, where p ∈ N. We recall that each cylindrical inhomogeneity is a circular cylinder whose radius is R and length is 2L. Cylinder α is centered at r α , and oriented by the unit-vector n α . We note ζ α = 1 L (x -x α ) • n α and r αβ = x β -x α . Then, T mn αβ is given in terms of U mn αβ and V mn αβ [see Eq (49) of the paper] by:

T mn αβ = σ -1 0 U mn αβ I 3 -V mn αβ , (1) 
where I 3 is the 3 × 3 identity matrix and σ 0 is the conductivity of the reference material. Besides, in [START_REF] Martin | Assessment of the equivalent inclusion method for the numerical homogenization of fibrous composites[END_REF], a multipole expansion is performed to evaluate the terms U mn αβ and V mn αβ , which are finally given by [see Eqs (63) and (64) of the paper]:

U mn αβ = L m+n+3 8 R 2 L 2 1 -1 1 -1 ζ m α ζ n β w 0 3 dζ α dζ β , (2) 
V mn αβ ij = 3L m+n+3 8 R 2 L 2 1 -1 1 -1 ζ m α ζ n β w 0 i w 0 j w 0 5 dζ α dζ β . (3) 
where

w 0 = r αβ + Lζ β n β -Lζ α n α . (4) 1 
Their expressions involve double integrals on ζ α and ζ β , the longitudinal coordinates of cylinder α and cylinder β. In this document, we perform an analytical integration on ζ α , in order to accelerate the computation.

2 Determination of U mn αβ and V mn αβ First, we introduce the following integral:

I mn K = 1 -1 1 -1 ζ m α ζ n β w 0 /L K dζ α dζ β (5) 
We then have:

U mn αβ = L m+n 8 R 2 L 2 I mn 3 (6)
and

V mn αβ ij = 3L m+n 8 R 2 L 2 1 -1 1 -1 ζ m α ζ n β w 0 i /L w 0 j /L w 0 /L 5 dζ α dζ β (7) so that V mn αβ = 3L m+n 8 R 2 L 2 I mn 5 r αβ L r T αβ L + I m(n+2) 5 n β n T β + I (m+2)n 5 n α n T α + I m(n+1) 5 r αβ L n T β + n β r T αβ L -I (m+1)n 5 r αβ L n T α + n α r T αβ L -I (m+1)(n+1) 5 n α n T β + n β n T α (8)
The integral I mn K is long to compute numerically. Besides, the analytical integration on the two variables involves heavy analytical expressions that would also be long to compute. Hence, we propose here to perform the integration upon ζ α analytically, and the integration upon ζ β numerically. We then note :

I mn K = 1 -1 ζ m β J n K (ζ β ) dζ β (9) 
where

J n K (ζ β ) = 1 -1 ζ n α w 0 /L K dζ α (10)
We give the expression of J n K in next subsection. There are two cases. If n α and r αβ + Lζ β n β are not colinear, J n K is given by ( 15), ( 17), (20) and (21). If n α and r αβ + Lζ β n β are colinear, J n K is given by (32).

3 Determination of J n K We recall that :

w 0 /L K = r 2 αβ L 2 + ζ 2 α + ζ 2 β -2ζ α r αβ L • n α +2ζ β r αβ L • n β -2ζ α ζ β n α • n β K 2 (11)
Here, K is odd, then we note K = 2k + 1. For each ζ β , we put c 0 = -

r αβ L • n α -ζ β n α • n β = - r αβ L + ζ β n β • n α and c 2 1 = r 2 αβ L 2 + ζ 2 β + 2ζ β r αβ L • n β = r αβ L + ζ β n β 2 . We notice that c 2 0 ≤ c 2 1 . We then put c 2 1 -c 2 0 = c 2 so that J n K (ζ β ) = 1 -1 ζ n α dζ α (ζ α + c 0 ) 2 + c 2 2 K 2 (12)
3.1 First case: c 2 2 > 0

In that case,

J n K (ζ β ) = 1 -1 ζ n α dζ α c K 2 ζα+c0 c2 2 + 1 K 2 (13) 
We put sinh x = ζα+c0 c2 , and we note y 1 = Argsh c0-1 c2 and y 2 = Argsh c0+1 c2 then:

J n K (ζ β ) = y2 y1 (c 2 sinh x -c 0 ) n dx c 2k 2 cosh 2k x = y2 y1 1 c 2k 2 cosh 2k x × n p=0 n p c p 2 (-1) n-p c n-p 0 sinh p xdx (14) 
Then, for that first case, we have:

J n K (ζ β ) = n p=0 n p c p-2 2 (-1) n-p c n-p 0 K p (y 1 , y 2 ) ( 15 
)
where

K p (y 1 , y 2 ) = y2 y1 sinh p xdx cosh 2k x (16) 
is below derived.

p is odd We put p = 2q + 1 and u = cosh x:

K p = cosh y2 cosh y1 u 2 -1 q du u 2k = cosh y2 cosh y1 q t=0 q t u 2t-2k (-1) q-t du = q t=0 q t (-1) q-t 2t -2k + 1 (cosh y 2 ) 2t-2k+1 -(cosh y 1 ) 2t-2k+1 (17) 
p is even We put p = 2q and u = tanh x:

K p = tanh y2 tanh y1 u 2q (1 -u 2 ) q+1-k du (18) 
We decompose into simple elements the integrand:

u 2q (1 -u 2 ) q+1-k = P (u) + q+1-k l=1 a l,p (1 -u) l + b l,p (1 + u) l (19)
so that:

K p = k p (tanh y 2 ) -k p (tanh y 1 ) (20) 
with

k p (u) = P (u)du -a 1,p ln (1 -u) + b 1,p ln (1 + u) + q+1-k l=2 a l,p l -1 1 (1 -u) l-1 + b l,p 1 -l 1 (1 + u) l-1 (21) 
Determination of simple element decompositions We recall that here p = 2q is even. The coefficients a l,p and b l,p are determined by the resolution of a linear system:

u p (1 -u 2 ) q+1-k = (u 2 -1 + 1) p 2 (1 -u 2 ) q+1-k = q r=0 q r (u 2 -1) r (1 -u 2 ) q+1-k = q r=0 (-1) r q r 1 -u 2 r-q-1+k = q-k r=0 (-1) r q r 1 -u 2 r-q-1+k + q r=q+1-k (-1) r q r r-q-1+k s=0 r -q -1 + k s -u 2 s (22)
We then have:

P (u) = q r=q+1-k (-1) r q r r-q-1+k s=0 r -q -1 + k s -u 2 s (23) 
And:

q+1-k l=1 a l,p (1 -u) l + b l,p (1 + u) l = q+1-k-1 r=0 (-1) r q r 1 -u 2 r-q-1+k (24) 
So that:

q-k r=0 (-1) r q r 1 -u 2 r = q+1-k l=1 a l,p (1 + u) q+1-k (1 -u) q+1-k-l +b l,p (1 -u) q+1-k (1 + u) q+1-k-l = q+1-k l=1 a l,p q+1-k k1=0 q+1-k-l k2=0 q + 1 -k k 1 q + 1 -k -l k 2 (-1) k2 u k1+k2 + q+1-k l=1 b l,p q+1-k k1=0 q+1-k-l k2=0 q + 1 -k k 1 q + 1 -k -l k 2 (-1) k1 u k1+k2 (25) 
The two members are polynomial in u, and the degree is ≤ 2q -2k + 1. On the left side, the coefficient of u t is 0 for t odd, and q-k r=0 (-1) r+ t 2 q r r t 2 for t even. On the right side, for 0 ≤ t ≤ 2q -2k + 1, the coefficient of u t is:

q+1-k l=1 0≤k1≤q+1-k 0≤k2≤ p 2 -l k1+k2=t q + 1 -k k 1 q + 1 -k -l k 2 × a l,p (-1) k2 + b l,p (-1) k1 (26) 
Then the linear system is A p • X p = B p with:

(A p ) (t+1)l = 0≤k1≤q+1-k 0≤k2≤q+1-k-l k1+k2=t q + 1 -k k 1 q + 1 -k -l k 2 (-1) k2 (A p ) (t+1)(l+q+1-k) = 0≤k1≤q+1-k 0≤k2≤q+1-k-l k1+k2=t q + 1 -k k 1 q + 1 -k -l k 2 (-1) k1 for 1 ≤ l ≤ q + 1 -k and 0 ≤ t ≤ 2q -2k + 1 (27) 
and:

X p =                 a 1,p . . . a q+1-k,p b 1,p . . . b q+1-k,p                 , B p =           q-k r=0 (-1) r q r 0 . . . q-k r=0 (-1) r+q-k q r r q-k 0           (28)
The linear system must be solved for each 0 ≤ p ≤ m even. The systems do not depend on ζ β .

3.2 Second case: c 2 2 = 0

In that case,

J n K (ζ β ) = 1 -1 ζ n α dζ α |ζ α + c 0 | K (29)
In fact, the denominator is strictly positive (the axes of the cylinders do not intersect). Then c 0 > 1 or c 0 < -1. Hence:

J n K (ζ β ) = ± 1 -1 ζ n α dζ α (ζ α + c 0 ) K (30)
depending on the sign of c 0 . We decompose into simple elements the integrand: 

so that:

Determination of λ p and µ p We first make a division of polynomials: