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Abstract—The present work aims at quantifying how the 

position of the receiver in a realistic dynamic wireless power 

transfer (DWPT) system affects the transmission process for 

electric vehicles. With the aim of considering the transmitted 

power, the position of the receiver is influenced by the factors 

that are the moving distance along the X axis, the misalignment 

along the Y axis, the vertical variation along the Z axis and the 

rotation angle along the Z axis. The analysis is based on the 

polynomial chaos expansions for a low computational cost and 

a fast sensitivity analysis. 

Keywords—dynamic wireless power transfer system, FEM 
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I. INTRODUCTION 

The electrification of transportation means has taken 
importance in recent years, especially in the automotive 
domain, where the problems of global warming are driving 
manufacturers to find cleaner solutions that are more 
respectful of the environment. However, energy storage is 
always the main drawback of Electric Vehicles (EVs). EVs 
cannot travel across too much distance with the limited 
electricity of the battery [1-4]. So the use of dynamic wireless 
power transfer (DWPT) charging systems could be the most 
promising solution to solve the range anxiety: the vehicle is 
charged while driving [1-2]. This type of charging has the 
advantage of being transparent to the user and ergonomic, 
allowing simultaneous charging and use of the vehicle. So the 
capacity of energy storage can be largely reduced, and the 
driving range is extended when the DWPT charging system is 
employed [3]. 

However, the design of a DWPT system involves system-
level specifications that must be matched with a proper choice 
of architectures and components. These requirements include 
system performances (efficiency, voltage, current, magnetic 
leakage), budgets (cost, volume), environmental conditions, 
and system reliability (robustness, lifetime). So, 3D 
computations are needed to assess the performance of the 
DWPT system. Nevertheless, the use of complex simulation 

tools leads to heavy computations in case of wide parametric 
analysis. In this case, the standard Monte Carlo (MC) analysis 
is becoming challenging in terms of computer resources and 
simulation time. So, several metamodeling techniques have 
been developed, such as Support Vector Regression (SVR), 
Multigene Genetic Programming Algorithm (MGPA), 
Polynomial Chaos Expansions (PCE), and so on. For example, 
reference [5] concludes, thanks to polynomial chaos 
expansions metamodels, that the circular shape of the 
coupling coils is the best for static inductive power transfer 
system, while reference [6] introduces that the square shape is 
the best for DWPT systems considering the coupling 
coefficient with the variation of the misalignment. Then, some 
research papers [7-9] showed how the uncertainties on the 
components and material parameters of a wireless power 
transfer system for the static charge of electric vehicles affect 
the overall efficiency based on several metamodeling 
techniques. However, they did not analyze the power 
transmission for DWPT systems.  

The main contribution of the work consists of an accurate 
analysis to determine how the performance of a realistic 
DWPT system (built by VEDECOM), including the power 
transmission and the magnetic flux density leakage, can be 
affected by the position of the receiver. This type of analysis 
is of great interest, especially in view of real system 
implementation and an industrial design process. The 
adoption of Polynomial Chaos Expansions (PCE) as a 
metamodel allows for performing the analysis in a very 
efficient way and with a computational cost significantly 
reduced with respect to conventional simulation techniques. 
To the best of the authors' knowledge, such PCE metamodel 
analysis based on realistic DWPT systems has not been 
presented in the literature yet. 

The rest of the paper is organized as follows. Section II 
provides a general description of DWPT systems for EVs and 
proposes a realistic 3D model of the magnetic coupler 
connected with series-series electric circuits. Section III 
presents an overview of the sparse PCE metamodel and the 



sensitivity analysis based on it. In Section IV, the considered 
influencing factors and their characteristics are described, and 
how they influence the transmitted power, the current ratio 
and the magnetic flux density leakage is analyzed with the 
sparse PCE metamodel. Finally, in Section V, the main 
outcomes of the work are summarized. 

II. DYNAMIC WIRELESS POWER TRANSFER SYSTEM 

Fig.1 shows a DWPT system characterization bench, 
which has been designed and built in VEDECOM [10]. The 
magnetic coupler consists of an active transmitter (primary 
coil + ferrite plate). This transmitter is integrated into the 
ground (road) and carries an alternating current, creating an 
alternating magnetic field that generates an AC voltage across 
the receiver (secondary coil + ferrite plate) on the EVs. The 
two coils of the coupler are placed near ferrite plates to 
channel the magnetic field. All the system is located under a 
shielding (aluminum plate) as a screen. The operating 
parameters of the system considered in this paper are listed in 
Table I.  

For the DWPT system transmission efficiency, circuit 
models with lumped parameters are often used. Compensation 
networks are designed to minimize the reactive power, make 
the system high misalignment tolerant, and achieve high 
efficiency. Here, the series-series (SS) compensation is taken 
into account for the reason that it provides good efficiency and 
the capacitance values don’t depend on the load variation, 
which is very useful in DWPT systems [3-4].  

 

Fig. 1. Dynamic Wireless Power Transfer System in VEDECOM 

TABLE I.  PARAMETERS AND DWPT OPERATING STATUS 

Parameter Value Unit 

Resonant frequency 
0f  85 kHz 

Transmitter power 30 kW 

Transmitting coil current 

(RMS Value) 
17 A 

Air gap 150-180 mm 

Load LR  5.3   

In Fig.2, the transmitter resistance 𝑅1 , the receiver 
resistance 𝑅2, the transmitter self-inductance 𝐿1, the receiver 
self-inductance 𝐿2 and the mutual inductance 𝑀 between the 
transmitter and the receiver in the red dotted box represents 
the electrical parameters of the magnetic coupler, which is 
below the electric circuits. Through the analysis, the output 

power 𝑃2  in the load and the ratio 𝐴𝐼  between the output 
current 𝐼1and the input current 𝐼2 can be described [11]: 

𝑃2 =  𝑟𝑒𝑎𝑙(𝑉𝐿 × 𝐼2
∗)                            (1) 

𝐴𝐼 =
𝐼2

𝐼1
= |𝐴I|𝑒

𝑗𝜃I                                (2) 

where 𝑉𝐿 is the voltage on the load, and 𝐼2
∗  represents the 

conjugate of the output current 𝐼2 . Normally, the phase 
difference 𝜃I between the input and the output for the current 

is almost 90° at the resonant frequency [11].  

 

Fig. 2. SS compensation for DWPT system 

As shown in Fig.3, the magnetic coupler is a realistic 3D 
structure consisting of two identical rectangle-shaped coils 
with copper windings (orange), ferrite core plates (dark grey), 
and an aluminum plate (blue). The dimensions of the magnetic 
coupler are shown in Table II. The size of the aluminum plate 
depends on the sizes of the coils and of the ferrite plates [12]. 
Furthermore, according to the ICNIRP guidelines and SAE 
J2954 standard [13-14], the magnetic flux density leakage 
𝐵𝑙𝑒𝑎𝑘 at the observation point which is 800 mm far from the 
center of the air gap should be smaller than 27 𝜇𝑇  (RMS 
value), also as shown in Fig. 3.  

 

(a) 

 

(b) 

Fig. 3.  (a) A pair of coils (orange) with ferrite plate (grey) and aluminum 

plate (blue) and (b) a single rectangular coil with ferrite and aluminum 
plate 



TABLE II.  PARAMETERS OF THE DWPT SYSTEM 

Symbol Quantity Value [Unit] 

cl  
External length dimension of the 

coils 
570 [mm] 

cw  
External width dimension of the 

coils 
970 [mm] 

cd  Coil thickness 7 [mm] 

c cw 
 Coil width 84 [mm] 

fl  Ferrite length 600 [mm] 

fw  Ferrite width 1000 [mm] 

c fd   Distance between coil and ferrite 13 [mm] 

ft  Ferrite thickness 5 [mm] 

all  Aluminum plate length 2000 [mm] 

alw  Aluminum plate width 1000 [mm] 

alt  Aluminum plate thickness 5 [mm] 

f ald   Distance between ferrite and 

Aluminum plate 
14.7 [mm] 

r  Ferrite relative permeability 3000 

sh  Aluminum plate conductivity   34.2 [MS/m] 

N Coil turns 8 

However, in a real scenario for the DWPT systems, 
various positions of the receiver may happen during the 
charging process. So it is meaningful to observe how the 
output power 𝑃2, the current amplitude ratio |𝐴I|, the current 
phase difference 𝜃I between the input and the output, and the 
magnetic flux density leakage 𝐵𝑙𝑒𝑎𝑘  of the obseved point vary 
with different positions of the receiver. Such investigations 
can be performed with standard 3D software modeling tools, 
but they lead to a computational burden in case of parameteric 
sweeps. Then, in order to save the computational time, a 
metamodel based on polynomial chaos expansions provides a 
fast analysis with a reduced number of calculations by 
COMSOL 3D finite element software. Moreover, a suitable 
sensitivity analysis can be obtained on this metamodel. 

III. POLYNOMIAL CHAOS EXPANSIONS 

Polynomial Chaos Expansions (PCE) metamodeling is a 
powerful metamodeling technique that aims at analyzing the 
relationship between the input parameters and the outputs in a 
non-intrusive way and help find the most influential input 
parameter to the output in high-dimensional problems. The 
results given in this paper were obtained by means of the 
UQLAB toolbox [15]. 

It starts by considering the vector 𝒙 ∈ ℝ𝑑  collecting 𝑑 
independent input parameters 𝔁 = {𝑥1, ⋯ , 𝑥𝑑}  with a joint 
probability density function (PDF)  𝑓𝐱(𝒙) . 𝒙  represents the 
influencing factors (the moving distance along the X axis, the 
misalignment along the Y axis, the vertical variation along the 
Z axis and the rotation angle along the Z axis, which will be 
described detailedly in Section IV) that decides the position of 
the receiver. Assuming that the problem is described by the 
corresponding outputs 𝓨 = {𝑦1, ⋯ , 𝑦𝑁}, the PCE metamodel 
is established to evaluate the varying trend of the outputs (the 
output power 𝑃2 , the current amplitude ratio |𝐴I|  and the 
current phase difference 𝜃I between the input current and the 
output current separately, and the magnetic flux density 
leakage 𝐵𝑙𝑒𝑎𝑘) [8-9, 15-17]: 

𝑀𝑃𝐶𝐸(𝔁) =  ∑ �̂�𝛼𝛷𝛼(𝔁)𝛼∈ℕ𝑑                 (3) 

where 𝛷𝛼(𝔁)  are multivariate polynomials basis functions 

with the corresponding coefficients �̂�𝛼 . 𝛼 ∈ ℕ𝑑  is a multi-
index that identifies the components of the multivariate 
polynomials 𝛷𝛼. 

In this section, the coefficients �̂�𝛼 are estimated by using a 
non-intrusive technique: the Least Angle Regression (LAR) 
[16] from a set of  the outputs 𝓨. This technique relies on the 

choice of a truncation set denoted 𝒜 = {𝛼0, ⋯ , 𝛼𝑝−1} ⊂ ℕ𝑑 

defining the multi-indices of the selected basis polynomials 
{𝛷𝛼0

, ⋯ , 𝛷𝛼𝑝−1
} . In order to decrease the size of PCE 

coefficients when dealing with high-dimensional problems, 

the hyperbolic truncation strategy 𝒜𝑞
𝑑,𝑝

 based on the total 

degree 𝑝  and a parameter 𝑞 , with 0 < 𝑞 < 1, allowing for 
reducing the size of the PCE basis is then defined as follows 
[15-18]: 

𝒜𝑞
𝑑,𝑝

= {𝛼 ∈ ℕ𝑑: ‖𝛼‖𝑞 = (∑ 𝛼𝑖
𝑞𝑑

𝑖=1 )
1

𝑞 ≤ 𝑝}      (4) 

The way to estimate the accuracy of PCE metamodel can 
be: leave-one-out (LOO) error 𝜖𝐿𝑂𝑂 . It is designed to 
overcome the over-fitting limitation by using cross-validation, 
a technique developed in statistical learning theory. It consists 

in building N separate PCE metamodels 𝑀𝑃𝐶𝐸\𝑖 , each one 

created on reduced model evaluations 𝒙\𝒙(𝑖) = {𝒙(𝑗), 𝑗 =
1, ⋯ , 𝑁, 𝑗 ≠ 𝑖} and comparing its prediction on the excluded 

point 𝒙(𝑖) with the real value  𝓨(𝒙(𝑖)). It can be written as [13-

15]: 

𝜖𝐿𝑂𝑂 =
∑ ( 𝓨(𝒙(𝑖))−𝑀𝑃𝐶𝐸\𝑖(𝒙(𝑖)))2𝑁

𝑖=1

∑ ( 𝓨(𝒙(𝑖))− 𝓨(𝒙)̅̅ ̅̅ ̅̅ ̅̅ )2𝑁
𝑖=1

                (5) 

Expect the training data set used to construct the PCE 
metamodel, an additional set of the input parameters and the 
outputs, called the test data set,  𝐷𝑡𝑒𝑠𝑡 =

{(𝒙𝑡𝑒𝑠𝑡
(𝑖)

, 𝓨(𝒙𝑡𝑒𝑠𝑡
(𝑖)

)) , 𝑖 = 1, ⋯ , 𝑁𝑡𝑒𝑠𝑡} is available, and the test 

error can be calculated as [16]: 

𝜖𝑡𝑒𝑠𝑡 =
𝑁𝑡𝑒𝑠𝑡−1

𝑁𝑡𝑒𝑠𝑡
[

∑ ( 𝓨(𝒙𝑡𝑒𝑠𝑡
(𝑖)

)−𝑀𝑃𝐶𝐸(𝒙𝑡𝑒𝑠𝑡
(𝑖)

))2𝑁𝑡𝑒𝑠𝑡
𝑖=1

∑ ( 𝓨(𝒙𝑡𝑒𝑠𝑡
(𝑖)

)−�̂�𝑡𝑒𝑠𝑡)2𝑁𝑡𝑒𝑠𝑡
𝑖=1

]          (6) 

where �̂�𝑡𝑒𝑠𝑡 =
1

𝑁𝑡𝑒𝑠𝑡
∑  𝓨(𝒙𝑡𝑒𝑠𝑡

(𝑖)
)

𝑁𝑡𝑒𝑠𝑡
𝑖=1  is the mean of the test 

data set responses and 𝑀𝑃𝐶𝐸(𝒙𝑡𝑒𝑠𝑡
(𝑖)

)  is the prediction value 

based on the PCE metamodel. 

Then, in order to identify quantities of interest in the model 
response, a post-processing of the coefficients of PCE 
metamodel can be performed at a relatively low computational 
cost. The mean value is the first coefficient of the PCE 
metamodel, and the variance is computed as the sum of the 
squares of the remaining coefficients [15-16]. 

           Mean value: �̂�𝓨 = 𝔼[𝓨] = �̂�0                             (7) 

Variance: �̂�𝓨
2 = 𝕍[𝑀𝑃𝐶𝐸(𝔁)] = ∑ �̂�𝛼

2
𝛼𝜖𝐴\{0}        (8) 

After, the global sensitivity analysis aims at quantifying 
which input parameter(s) 𝔁  influence the outputs 𝓨 
variability most. It can be calculated by the PCE coefficients. 
The first-order PCE-based Sobol index 𝑆𝑖  of the outputs 𝓨 
quantifies the additive effect of each input parameter 
separately [19-20]: 

𝑆𝑖 =
𝐷𝑖

𝐷
=

𝕍𝓍𝑖
(𝔼𝑥~𝑖

(𝑀𝑃𝐶𝐸(𝔁)|𝑥𝑖)]

𝕍[𝑀𝑃𝐶𝐸(𝔁)]
=

∑ 𝑐�̂�
2

𝛼𝜖𝒜𝑖

∑ 𝑐�̂�
2

𝛼𝜖𝒜\{0}
        (9) 



with 𝒜𝑖 = {𝛼 ∈ 𝒜: 𝛼𝑖 > 0, 𝛼𝑗 = 0 ∀𝑗 ≠ 𝑖}  and 𝑥~𝑖  notation 

indicates the set of all variables except 𝑥𝑖. The first-order PC-

based Sobol index of the 𝑖𝑡ℎ variable is closer to 1 means that 

the 𝑖𝑡ℎ variable has more impact on the outputs 𝓨.  

IV. RESULTS AND DISCUSSIONS 

To investigate the performance of the DWPT system, it is 
mandatory to take into account the position of the receiver. So 
the influencing factors are the variations in the misalignment 
during the driving and variations in the air gap due to loading 
or unloading the vehicle. Fig.4 shows the rotation angle α 
along the Z axis, the moving distance ∆𝑋 along the X axis 
(respresents the direction of EV movement), the misalignment 
∆𝑌 along the Y axis , and the vertical variation ∆𝑍 along the 
Z axis.  

 

Fig. 4. Influencing factors on the receiver 

TABLE III.  PROPERTIES OF THE INFLUENCING FACTORS 

Influencing 
factors 

Symbol  
Probability 

Density 
Distribution 

Mean 
Value 

Standard 
Deviation 

Misalignment 
along Y axis [mm] 

∆𝑌 Gaussian 0 162 

Vertical variation 
along Z axis [mm] 

∆𝑍 Gaussian 165 5 

Rotation angle 
along Z axis [deg] 

𝛼 Gaussian 0 10 

Influencing 
factors 

Symbol  
Probability 

Density 
Distribution 

Min 
Value 

Max 
Value 

Moving distance 
along X axis [mm] 

∆𝑿 Uniform 0 285 

The sparse PCE metamodel has been adopted to quantify 
the impact of these influencing factors on this DWPT system 
(including the output power 𝑃2, the current amplitude ratio 𝐴I, 
the current phase difference 𝜃I  between the input and the 
output, and the magnetic flux density leakage 𝐵𝑙𝑒𝑎𝑘 ). In 
addition, the sparse PCE metamodels are constructed with an 
adaptive degree varying from 3 to 15, and the hyperbolic 
scheme in Equation (4) is set to 𝑞 = 0.75 to reduce the size of 
the polynomial basis [15-16]. 

All of the sparse PCE metamodels have been trained from 
a training data set containing 387 training samples selected by 
Latin Hypercube Sampling (LHS) [21] resulting from 
COMSOL calculations with a computational cost of 8.5 h (one 
calculation in the COMOSL 3D model takes about 78 s). In 
order to investigate the performance of the sparse PCE 
metamodels, their predictions are then compared with another 
testing data set comprising 613 test samples, which is totally 
different from the training data set. Table IV. provides the 
accuracy of the sparse PCE metamodels by collecting the 

LOO error on the training data set, the test error on the test 
data set, the mean values �̂�𝓨 and the standard deviation �̂�𝓨.  

TABLE IV.  ACCURACY OF SPARSE PCE METAMODELS ON DIFFERENT 

OUTPUTS 𝓨 

Sparse PCE 
Metamodel on 

Model Response 𝓨 

LOO Error 
(%) 

Test Error 
(%) 

�̂�𝓨 �̂�𝓨 

Output power 𝑃2 
[kW] 

0.13 % 0.29 % 15.3 9.1 

Current amplitude 
ratio |𝐴I| 

0.056 % 0.15 % 2.9 1.1 

Current phase 
difference  𝜃I 

[degree] 
2.5 % 13.7 % 87.6 3.5 

Magnetic flux density 
leakage 𝐵𝑙𝑒𝑎𝑘 [𝜇𝑇] 

4.1 % 7.4 % 76.4 37.5 

In Table IV, it can be seen that the current phase difference 
𝜃I  and the magnetic flux density leakage 𝐵𝑙𝑒𝑎𝑘  have bigger 
errors than the other model responses, which means that they 
need more training samples to build the same accurate PCE 
metamodels as these of the output power 𝑃2  and current 
amplitude ratio |𝐴I|. Of these mean values �̂�𝓨 and standard 

deviations �̂�𝓨 , the magnetic flux density leakage 𝐵𝑙𝑒𝑎𝑘 

exceeds the standard defined by the ICNIRP guidelines, which 
will lead to a further study on the shielidng design.  

Furthermore, a new data set including 1000 samples is 
built with inputs obtained by Monte Carlo. Then, the PDFs of 
the model responses obtained using both COMSOL and PCE 
metamodels are illustrated in Fig.5.  

 

(a) PDFs of the sparse PCE metamodel for output power 𝑃2 

 

(b) PDFs of the sparse PCE metamodel for current amplitude ratio 𝐴I  

https://www.google.com/search?client=firefox-b-d&sxsrf=ALeKk03WK4rWCzo0IP_1CGdRalc7Q_EkHQ:1615814120129&q=Standard+deviation&stick=H4sIAAAAAAAAAOPgE-LQz9U3ME0xyFICs8zKjYy0tLKTrfRTU0qTE0sy8_P00_KLcktzEq2gtEJmbmJ6qkJiXnF5atEjRmNugZc_7glLaU1ac_IaowoXV3BGfrlrXklmSaWQGBcblMUjxcUFt4BnEatQcEliXkpiUYpCSmpZJtgeAO24JMKNAAAA&sa=X&ved=2ahUKEwjuzZzVsLLvAhWlyIUKHeElA4YQ24YFMB56BAgvEAM
https://www.google.com/search?client=firefox-b-d&sxsrf=ALeKk03WK4rWCzo0IP_1CGdRalc7Q_EkHQ:1615814120129&q=Standard+deviation&stick=H4sIAAAAAAAAAOPgE-LQz9U3ME0xyFICs8zKjYy0tLKTrfRTU0qTE0sy8_P00_KLcktzEq2gtEJmbmJ6qkJiXnF5atEjRmNugZc_7glLaU1ac_IaowoXV3BGfrlrXklmSaWQGBcblMUjxcUFt4BnEatQcEliXkpiUYpCSmpZJtgeAO24JMKNAAAA&sa=X&ved=2ahUKEwjuzZzVsLLvAhWlyIUKHeElA4YQ24YFMB56BAgvEAM
https://www.google.com/search?client=firefox-b-d&sxsrf=ALeKk03WK4rWCzo0IP_1CGdRalc7Q_EkHQ:1615814120129&q=Standard+deviation&stick=H4sIAAAAAAAAAOPgE-LQz9U3ME0xyFICs8zKjYy0tLKTrfRTU0qTE0sy8_P00_KLcktzEq2gtEJmbmJ6qkJiXnF5atEjRmNugZc_7glLaU1ac_IaowoXV3BGfrlrXklmSaWQGBcblMUjxcUFt4BnEatQcEliXkpiUYpCSmpZJtgeAO24JMKNAAAA&sa=X&ved=2ahUKEwjuzZzVsLLvAhWlyIUKHeElA4YQ24YFMB56BAgvEAM


 

(c) PDFs of the sparse PCE metamodel for current phrase difference 𝜃I 

 

(d) PDFs of the sparse PCE metamodel for magnetic flux density leakage 
𝐵𝑙𝑒𝑎𝑘 

Fig. 5. PDFs of model response 𝓨 obtained from the sparse PCE 
metamodel 

These figures shows that the PDFs estimated via PCE 
metamodels have a good agreement with the PDFs of Monte 
Carlo calculations by COMSOL. So, a sparse PCE metamodel 
is able to respresent the model responses 𝓨  with the 
variability of the influencing factors, which shows that this 
technique may be used to choose the coil and ferrite plate sizes 
for the DWPT system. 

Then, the values of the First-order Sobol index, calculated 
by Equation (9), show that how the influencing factors affect 
the different model responses 𝓨 separately.  

 

Fig. 6. First-order Sobol index for different model responses 𝓨 

It can be seen that the variations in the output power 𝑃2 
and the current amplitude ratio |𝐴I| are mainly related to the 
moving distance along the X axis because of the reduction of 
magnetic field lines. The current phase difference 𝜃I  is 
influenced by the vertical variation along the Z axis most. The 
rotation along the Z axis has almost no effect on the model 
responses 𝓨  compared to the other factors in the given 
variation range. The misalignment along Y axis has the 
maximum impact on the magnetic flux density leakage 𝐵𝑙𝑒𝑎𝑘 , 
due to the reason that the observation point is on the direction 
of Y axis.  

V. CONCLUSION 

This work analyzes how the position of the receiver 
influences this realistic DWPT system based on sparse PCE 
metamodels. The moving distance along the X axis influences 
most of the output power 𝑃2 and the current amplitude ratio 

|𝐴I| . However, the vertical variation along Z axis will 

influence the current phase difference 𝜃I  most during the 
dynamic charging process, which leads to the increase of the 
reactive output power. The magnetic flux density leakage 
𝐵𝑙𝑒𝑎𝑘 will be influenced most by the misalignment along Y 
axis. So it is meaningful to know the variations of the model 
responses with these influencing factors in order to optimize 
this DWPT system better. At the same time, it reveals that this 
metamodeling by PCE can be extended to design magnetic 
systems suitable for both stationary and dynamic WPT 
system. 
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